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Abstract

Tropical cyclones are associated with extreme winds, waves, and storm surge,

being among most destructive natural phenomena. Developing capability for a

rapid impact estimate is crucial for coastal applications and risk preparedness.

When predicting waves characteristics associated to tropical cyclones, the tradi-

tional approach involves a two-step procedure (a) a Holland-type wind vortex

model and (b) numerical simulations using a wave generation model, using buoy

and satellite measurements for validation. In this work, we take advantage of the

increasing amount of remote sensing observational data and propose a new

empirical model to estimate the wind wave footprint of tropical cyclones. For this

purpose, we construct a dataset with over a million satellite observations of waves

triggered by tropical cyclones assuming a circular shape of the TC influence area

and defining composites of significant wave height as a function of representative

parameters of the track characteristics like the minimum pressure, its forward

velocity, and its latitude. The validation against buoy data confirms the useful-

ness of the model for a first and rapid estimation of the wave footprint, although

an underestimation of the most extreme events is observed due to the relatively

small number of observations recorded. Due to its efficiency, the model can be

applied for rapid estimations of wave footprints in operational systems, recon-

struction of historical or synthetic events and risk assessments.
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1 | INTRODUCTION

Tropical cyclones (TCs), also named hurricanes or
typhoons, represent one of the most extreme and deadli-
est natural phenomena in the world. Waves generated
by extreme winds related to the moving TC pose a great
risk for exposed areas in terms of infrastructure

destruction, beach erosion, or coastal flooding. Further-
more, although storm surge induced by tropical
cyclones tends to be more concentrated and close to the
cyclone centre, waves generated can propagate many
kilometres away from the centre (Moon et al., 2003;
Walsh et al., 2012) and cause severe flooding at distant
locations (Hoeke et al., 2021).
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Waves generated by TCs are an extreme example of
wind–wave interactions and their study is necessary to
support risk assessments and mitigation efforts. These
assessments are hampered by both the lack of extensive
records of historical TCs (Bloemendaal et al., 2020) and
the severe and complicated wave field generated by
intense and fast-varying winds (Moon et al., 2003). Glob-
ally, a mean of about 90–100 TCs occurs annually
(Bloemendaal et al., 2020; Hoogewind et al., 2020), with
reliable datasets starting in 1980. Furthermore, the char-
acteristics of tropical cyclones are expected to globally
change over time due to climatic effects, with a poleward
shift of TC tracks (Hemer et al., 2013; Daloz and
Camargo, 2018; Hoogewind et al., 2020) and a gradual
increase of tropical cyclone frequency and intensity
(Emanuel, 2013). These changes will have a chain effect
in extreme storm surge and wave climate at middle lati-
tudes (Mori and Takemi, 2016).

Nevertheless, future projections of changes in TC
activity are based on global climate models (GCMs) and
rely on its ability to correctly represent TCs, as the poten-
tial cost of underpredicting its intensity could be enor-
mous (Abdalla et al., 2021). Hodges et al. (2017) studied
the representation of TCs in historical reanalysis datasets,
concluding that although nearly all the historical TCs
were represented, the wind intensities were significantly
lower and pressures were too high, leading to wave and
storm surge hindcast models not able of capturing
extreme events (Cid et al., 2017; Cagigal et al., 2019). This
underestimation, mostly due to a nonsufficient resolution
of reanalysis models (Durrant et al., 2014; Hodges
et al., 2017), provides evidence of the need of observa-
tions to calibrate numerical wave and storm surge
models. In the case of TCs, sparse both in time and space,
these observations can be acquired from the dense net-
work of satellite information available worldwide.

With this increasing amount of remote and in situ
measurements, the wind wave field generated by tropical
cyclones, which was usually assumed to mirror the wind
field, has been demonstrated to have a more complex
spatial distribution (Young, 2017), with a pronounced
asymmetry of the TC wave field (King and Shemdin, 1979;
Young and Vinoth, 2013; Tamizi and Young, 2020; Ponce
de Le�on and Bettencourt, 2021). This asymmetry is pri-
marily caused by the forward motion of the TC, causing
waves to the right (left in southern regions) of the track to
be exposed to the wind for a prolonged time causing a
trapped-fetch effect (Bowyer and MacAfee, 2005).

Different models to predict the wind waves generated
by TCs have been presented (Young and Vinoth, 2013;
Young, 1988; 2017), mainly focusing on predicting the
maximum significant wave height (SWH), although
attempts to obtain the spatial SWH field from numerical

modelling and measured data have also been made
(Young, 2017; Tamizi and Young, 2020). To capture the
spatial variability of wind wave TCs, a dense network of
observations, especially for extreme conditions, is
required (Tamizi and Young, 2020). For this reason, in
the last few years, satellite information has been used to
explore TC characteristics and extreme events (Knaff
et al., 2014; Young, 2017; Takbash et al., 2019; Tamizi
and Young, 2020), resulting in extreme value estimates
consistent with buoy data (Takbash et al., 2019) without
relying on in situ buoy measurements, which are sparse
and known to fail when exposed to very extreme
conditions.

This paper builds and analyses a database of wave
conditions from satellite measurements associated to TCs
worldwide. The objective is to combine a TC (Knapp
et al., 2018) and an altimeter dataset (Ribal and
Young, 2019), to obtain a database with over a thousand
tropical cyclones with associated satellite waves. Such a
unique dataset with more than 1 million of observations
will be analysed and explored to understand and develop
an estimate of the wind waves generated by TCs. The
analysis will be based on the clustering technique of self-
organizing maps (SOM) for an intuitive 2D lattice of the
influence of the TC parameters on the wave footprint
(Camus et al., 2011b).

We aim to generate a comprehensive dataset of sat-
ellite SWH observations triggered by TCs worldwide,
and to use such a dataset to fit a predictive model. The
paper is organized as follows. Section 2 presents the
data sources used to build the database, whose con-
struction is presented in section 3. Section 4 outlines
the clustering of the SWH generated by TCs. Section 5
focuses on the applications and validation of the clus-
tering technique for a preliminary estimate of the SWH
footprint generated by any given track worldwide,
while a discussion and concluding remarks are pre-
sented on section 6.

2 | DATA

2.1 | Tropical cyclone data

The database selected for the historical TCs is the Inter-
national Best Track Achieve for Climate Stewardship
(IBTrACS) version 4, first released in 2018 (Knapp
et al., 2018). The database combines best track data from
a number of meteorological centres worldwide, providing
a homogenized global dataset with records from 1852.
TCs information is combined considering the reports
from the official World Meteorological Organization in
charge of each region.
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2.2 | Wave data

Satellite wave data has been extracted from the Inte-
grated Marine Observing System (IMOS) database (Ribal
and Young, 2019), which consists of global SWH and
wind speed from 13 altimeters starting in 1985. It pro-
vides the information for all the different altimeter mis-
sions under the same format, on a regular grid of 1�

worldwide. IMOS database has been selected as it has
been calibrated against buoy data from the National
Oceanographic Data Center as well as cross-validated
with altimeters to test for consistency. The database is
updated every 6 months and data can easily be down-
loaded using a graphical interface.

The altimeter data provided by IMOS covers the
period from 1985 to 2020, except for the lapse between
1990 and 1991 when no satellite missions were deployed.
For the analysis provided in this paper, the whole data-
base has been used, while a range of different filters to
differentiate outliers from the database have been used
during the development of the methodology.

In order to compare the results of the satellite
derived analysis, an external source of data is needed.
For this purpose, the National Buoy Data Center
(NDBC) buoy network has been selected, using a total
of 40 buoys located in deep waters around the
United States.

3 | DATABASE DEVELOPMENT

Combining IMOS and IBTrACS allows to obtain the spa-
tial distribution of waves associated to historical TCs
worldwide. The aim is to generate a comprehensive data-
base accounting for all the satellite data available over a
time interval and over an influence radius centred at
each point of the TC track. The methodology assumes a
wave influence of circular shape with a 500-km radius at
each point, and defines, in moving polar coordinates with
respect to the forward direction, the maximum SWH
within a time interval, which has been fixed to 3 hr as in
Tamizi and Young (2020). Following previous studies,

FIGURE 1 Methodology for generating the database. (a) TC track with associated SWH satellite measurements from IMOS in a 500-km

radius from each point of the track, (b) selection of a point from the TC track with its associated SWH, highlighted in colour in panel (a).

(c) SWH information in (b) reprojected to the new reference polar coordinated system. (d) SWH information from (b) translated to the

congruent grid defined for the methodology [Colour figure can be viewed at wileyonlinelibrary.com]
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radius has been fixed to 500 km in order to capture the
nature of the waves propagating away from the TC eye
(Kita et al., 2018; Tamizi and Young, 2020; Ponce de Le�on
and Bettencourt, 2021). The procedure to generate the
database is exemplified for one historical TC in Figure 1.
Figure 1a shows the track of the selected TC with its asso-
ciated wave satellite data inside the influence area (grey
circles) and time range at each point of the track. The
coloured circle has been chosen to exemplify the transfor-
mation from the satellite wave data defined in position
by [Lon, Lat] (Figure 1b) to the polar coordinated system
referred to the translation direction as in Figure 1c.

This transformation allows to generalize the reference
for all the TCs worldwide. We have chosen the Northern
Hemisphere (NH) to be used as the reference for our
composites, so that the waves from the Southern Hemi-
sphere (SH) are flipped right–left. This transformation is
done in order to take into account the clockwise wind
direction in the NH, opposed to the anticlockwise rota-
tion in the SH. This opposite rotation makes the waves
generated by a tropical cyclone in the NH be larger in the
forward right quadrant of the TC, while in the SH the for-
ward left quadrant is the one accounting for the largest
waves.

In order to discretise the data, we generate a congru-
ent mesh (Beckers and Beckers, 2012) as the one in
Figure 1d, discretised every 10� in radius, and compart-
mentalize in 10 variable distances, so that each of
the cells has the same area to make sure that the amount
of data that will fall into each cell is homogeneous. For
each TC and point of the track, the maximum SWH of
the data contained in each cell is stored for the analysis
(Figure 1d).

Following this methodology and combining all the
TCs with information of minimum pressure worldwide
with the satellite waves from IMOS, results in a database
with �37,000 track points which have at least one cell
with wave data, and almost a million cells with wave
information in total, corresponding to a mean of �7% of
the mesh covered with satellite wave data at each point.
The components of the database generated are the fol-
lowing: longitude (Lon), latitude (Lat), minimum pres-
sure (Pmin), translation direction (θt), translation speed
(Vt), and SWH, which will be defined in the congruent
mesh discretised by 36 angular sectors of 10� and 10 dis-
tances (e.g., Figure 1d).

4 | SOM CLASSIFICATION

Once the database has been generated, the focus is on
understanding the wave generation area associated with
a tropical cyclone and the effect of the different TC

parameters in the shape and magnitude of the waves gen-
erated. For this purpose, we use SOMs for clustering com-
binations of the TC parameters: [Pmin, Vt, Lat], to later
analyse the associated composites of SWH in a 500 km
radius area. SOMs are one of the most powerful data min-
ing techniques when clustering high-dimensional data,
also due to their visualization properties. The algorithm
computes N centroids each characterizing a group of data
preserving the topology on its original space. SOMs have
been previously applied to evaluate multivariate wave cli-
mate (Camus et al., 2011a), project changes in synoptic
weather patterns (Gibson et al., 2016), explore interann-
ual climate variability (Izaguirre et al., 2012) among
many other applications in the field of the meteorology
and oceanography (Liu and Weisberg, 2011).

When comparing the SOM algorithm with other clus-
tering techniques as the maximum dissimilarity analysis
(MDA) or the K-means clustering (K-means), SOM has
been ranked the best for the cluster visualization in a 2D
lattice (Camus et al., 2011b). Nevertheless, it is not the
most suitable technique for exploring the boundaries of
the data space. For this reason, we have performed a pre-
selection of M = 7,500 points from the full database fol-
lowing MDA to reduce the dimensionality of the full
dataset to be further clustered into 49 groups following
SOM. To implement the SOM, we use the MiniSom
library (Giuseppe, 2019), which is developed in the
Python ecosystem. Using this library, we fit the SOM
with M, previously selected with MDA, combinations of
[Pmin, Vt, Lat] to obtain 49 clusters. Using the function
that determines the Euclidean distance between the data
provided and the cluster centroids, a cluster is assigned to
every point of the �37,000 that compose the database so
that every combination of [Pmin, Vt, Lat] is clustered.

The representation of the centroid of the 49 clusters
for the different predictor variables is shown in
Figure 2a. A smooth transition between neighbour clus-
ters is observed, facilitating the visual interpretation of
the results. Once the predictors are clustered, we analyse
the wave data associated to each of the different clusters.
The first step is filtering the data outliers at each cell,
which have been defined as the SWH values out of the
range of the mean ± 4 times the standard deviation.
Then, we fit the data in each cell to a generalized extreme
value (GEV) distribution, as exemplified in Figure 2g for
one selected cluster. To increase the number of data to
populate the GEV distribution while smoothing the
behaviour between neighbour cells, the distribution is
fitted with each cell and its neighbours. The GEV
parameters, which are the location (μ), scale (ψ), and
the shape (ξ) are shown in Figure 2b–d, respectively.
The scale parameter represents the spread of the data,
while the mean values of the distribution are defined by
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FIGURE 2 SOM classification of the predictors that define the TC characteristics (a). The predictand (SWH) is represented by its fitting

to a GEV distribution, defined by μ (b), ψ (c), and ξ (d). As an example, SWH associated to the 0.5 quantile is shown in (e). p-values from the

Kolmogorov–Smirnov test to estimate the goodness of fit (f) and exemplified obtention of GEV parameters for the highlighted cluster in (a)–
(e) and one specific grid cell (g)
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the location parameter and the behaviour of the most
extreme data is driven by the shape parameter. This last
parameter differentiates between Weibull type (ξ < 0,
blue in Figure 2d), corresponding to a constrained tail of
the distribution while, Gumbel type (ξ = 0, white in
Figure 2d) or Fréchet type (ξ > 0, red in Figure 2d) are
less constrained, and hence, can extrapolate to larger
values.

To estimate the goodness of fit, we perform the
Kolmogorov–Smirnov test between the data and the GEV
distribution to obtain the p-values (Figure 2f) in order to
reject the hypothesis that the data comes from the same
GEV distribution when the values are below the signifi-
cance level. Figure 2f shows in red the cells where the p-
value is less than 0.05. This occurs at cells where there is a
large amount of data, generally associated with less intense
TCs. A good general fit to the GEV distribution is present
in most of the cells (blues in Figure 2f), and as an example
of the magnitude of SWH, Figure 2e shows the 0.5 quantile
of the distributions, which pattern is comparable to the
location parameter that represents the mean values.

The SOM clustering allows to easily visualize the TC
parameters that cause the different composites of SWH.
As expected, larger SWHs are mainly associated with low
Pmin clusters (i.e., more intense TCs), while Vt and Lat
allow to characterize the shape of the SWH composite.
Largest TCs, in terms of its radius, typically occur at high
latitudes (Knaff et al., 2014). The translation speed also
plays an important role in the area of influence of a
TC. When the translation speed becomes comparable to
the group celerity of the waves, waves to the right (left in
the SH) of the track are exposed to prolonged wind forc-
ing and a resonance effect is produced (King and
Shemdin, 1979; Young, 1988; Moon et al., 2003), referred

to as trapped-fetch waves (Bowyer and MacAfee, 2005).
When this occurs, the largest values of SWH are pro-
duced. For rapidly moving storms (lower left corner clus-
ter in Figure 2) waves generated on the right of the storm
are left behind the storm since group velocities are smal-
ler than the translation speed of the storm (Young, 1988).
The opposite occurs for slowly moving storms, with
waves propagating ahead the storm.

5 | WIND WAVE FOOTPRINT AND
VALIDATION AGAINST BUOY DATA

Once the SOM clustering has been developed, the rela-
tionships found between the predictors and the SWH
composites can be used to derive the SWH from any
given TC track just by knowing its representative combi-
nations of [Pmin, Vt, Lat], θt, and the hemisphere. A com-
posite of SWH at each point of the track defines the
waves within an area of 500 km radius, and then, the
maximum SWH footprint from the TC can be defined as
the maximum SWH in a grid discretized every 0.5� both
in latitude and longitude.

The outcome of this process is visualized in Figure 3
for a number of TCs worldwide. The figure shows in col-
our, the maximum SWH at each grid from the compos-
ites associated to the 0.5 quantile distribution of the
GEV fit (Figure 2e). Also, the track is coloured by its
minimum pressure, where darker colours are associated
with more intense TCs and the black dot represents the
TC genesis.

Wave data from the NDBC buoys represented in
Figure 4a are used to validate the historical TCs footprint.
For each TC track, buoys within a 500-km buffer are

FIGURE 3 Wind wave footprint extracted from the model proposed for a selection of historical TCs worldwide [Colour figure can be

viewed at wileyonlinelibrary.com]
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selected (Figure 4b) and the maximum SWH registered
by the buoy against the SWH footprint at the buoy loca-
tion is compared. Figure 4c represents the scatter of buoy
versus modelled SWH associated to the 0.5 quantile of
the distributions. The colour refers to the probability den-
sity of the scatter, in order to reinforce that most of the
values lie on the bisectrix, suggesting that the mean
values of the SWH footprint are correctly estimated. Nev-
ertheless, when talking about very large extremes, the
percentile 0.5 of the GEV distribution does not capture
waves up to 16 m, caused by extreme TCs as Katrina in

2005 (Wang and Oey, 2008) probably because the number
of data to populate those bins associated with extreme
events is not large enough. Figure 4d represents the inter-
quartile range of the fit, which increases with the SWH,
and reaches up to 4.8 m for some extreme estimations,
which is too large to give a confident estimate of these
values.

Although the database generated aggregates all
the historical combinations of TCs and satellite wave
data, a larger dataset will be required to capture and
populate all the plausible combinations (Tamizi and

FIGURE 4 Buoy selection and validation. (a) Location of selected NDBC buoys for validation, (b) example of the footprint for a

specific TC and the buoys selected in a 500-km buffer (shaded area) from the track (large dots), (c) buoy versus modelled SWH. Colour

represents the probability density (d) same as (c), but colour represents the interquartile range [Colour figure can be viewed at

wileyonlinelibrary.com]
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Young, 2020). This is even more relevant when trying to
explain the most extreme waves. This model can be used
to understand the distribution of SWH within a TC track
and, at a low computational expense, to provide a first
order estimate. Nevertheless, it is important to under-
stand that although the spatial distribution of SWH may
correctly reflect the waves generated by a TC and its
mean value, very extreme events are likely to be under-
predicted, a problem common to parametric modelling
(e.g., Young, 2017).

6 | SUMMARY AND
CONCLUSIONS

This work presents a comprehensive dataset with over a
million satellite observations of waves under the influ-
ence of historical TCs worldwide. The database has been
analysed using an efficient clustering technique (SOM)
that allows to explore in an easy to understand 2D lattice,
the influence of different TC predictors, as the minimum
pressure, the translation speed, and the latitude, in the
shape and magnitude of the SWH generated. Taking
advantage of the full dimensionality of the data, the
results show a clear pattern in how the different TC
parameters relate to the SWH. It is found that the pres-
sure is the main driver for the larger wave heights, while
the size of the SWH footprint is explained by the latitude,
being the larger TCs the ones located at higher latitudes.
The translation speed explains whether the larger waves
are left behind or travel ahead the storm depending on
whether the speed is larger or smaller than the group
velocity respectively.

Besides the properties of the SOM analysis to improve
the understanding of the SWH field generated, the com-
posites can be used to derive a first estimation of the
SWH footprint of any historical or synthetic TC world-
wide, although the accuracy of the most extreme events
is at the moment limited. Although in this work, and in
order to find a balance between the number of clusters
and the data to populate each of them, the number of
clusters has been set up to 49, a larger number of groups
will improve the characterization of these extreme events.
This is something that could easily be done in the future
taking advantage of the rapidly increasing amount of
altimeter data that is being produced worldwide.

To make the model accessible to the community, we
have created a GitLab repository with the codes to derive
the SWH footprint for any historical TC from the
IBTrACS dataset, with the potential to be adapted to any
other TC synthetic database. The codes, which have been
developed in the Python language under the Jupyter
Notebook ecosystem, and all the necessary data for them

to be run can be accessed and downloaded from https://
gitlab.com/geoocean/bluemath/tcs/wave-footprint-
satellite. As an estimation of the SWH footprint associ-
ated to a TC can be derived in a matter of seconds, we
believe this tool can be of great interest for supporting
risk assessments or early warning systems worldwide.
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