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Large ensembles of heterogeneous oscillators often exhibit collective synchronization as a result of

mutual interactions. If the oscillators have distributed natural frequencies and common shear (or

nonisochronicity), the transition from incoherence to collective synchronization is known to occur at

large enough values of the coupling strength. However, here we demonstrate that shear diversity cannot be

counterbalanced by diffusive coupling leading to synchronization. We present the first analytical results

for the Kuramoto model with distributed shear and show that the onset of collective synchronization is

impossible if the width of the shear distribution exceeds a precise threshold.
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Collective synchronization is a form of self-organization
in time that results from the interactions among a large
heterogeneous population of self-sustained oscillators
[1–5]. This phenomenon is observed in a large variety of
systems that range from biology to chemistry, physics, and
engineering (see, e.g., [6]). For the sake of mathematical
simplicity, most theoretical advances in this field consider
oscillators with different natural frequencies. Nevertheless,
it is of great importance to know how other sources of
heterogeneity influence collective synchronization. This
question has been addressed in the cases of heterogeneous
patterns of connectivity [7] and interaction delays [8].

The so-called shear (or nonisochronicity) is a crucial
nonlinear ingredient for the formation of patterns in oscil-
latory extended media [2,9], as well as for the onset of
complex behaviors in ensembles of identical limit-cycle
oscillators [10]. Although shear is a generic feature of
oscillators, studies considering shear diversity in ensem-
bles of oscillators are very scarce and focus on a regime far
from synchronization [11]. Here we will show that distrib-
uted shear plays a key role in collective synchronization
and may even prevent its onset.

Mathematical formulations of collective synchroniza-
tion usually consider as elementary oscillatory unit a nor-
mal form describing a system near the onset of oscillations,
the so-called Stuart-Landau (SL) oscillator [2]:

_% ¼ %ð1� %2Þ; _� ¼ !þ qð1� %2Þ: (1)

Here the natural frequency ! determines the frequency of
rotation on the attractor of radius %ðtÞ ¼ 1. Additionally, q
quantifies the shear of the flow, i.e., how much perturba-
tions off the limit cycle modify the angular frequency _�. It
is then usual to consider an ensemble of N � 1 globally
coupled SL oscillators (1), a mean-field version of the
complex Ginzburg-Landau equation with disorder [12]:

_z j ¼ zj½1þ ið!j þ qjÞ � ð1þ iqjÞjzjj2� þ KðZ� zjÞ;
(2)

where zj ¼ %je
i�j , j ¼ 1; . . . ; N, and Z ¼ N�1

P
N
k¼1 zk.

We assume a purely dissipative coupling, K 2 R.
Previous works studying model (2) have adopted the

simplifying assumption that diversity is only present in
the natural frequencies !j, and the shear is either absent

qj ¼ 0 [12,13] or constant qj ¼ q [14]. However, in a

heterogeneous ensemble, either the inherent (say, genetic
variability for living organisms or tolerances for electronic
circuits) or the imposed (e.g., experiments using coupled
chemical reactors [15]) disorder will generically be re-
flected in both natural frequency and shear terms.
The aim of this Letter is to analyze the genuine problem

of collective synchronization in a large ensemble of SL
oscillators (2) with !j and qj distributed. In our mathe-

matical analysis we will assume that the oscillators are
weakly coupled; i.e., jKj is small. In this case, the dynam-
ics of Eq. (2) is well described by the phases only [2],

_� j¼!jþKqjþKR½sinð���jÞ�qjcosð���jÞ�: (3)

Here, the complex order parameter r ¼ Rei� ¼
N�1

P
N
k¼1 e

i�k is a mean field and measures the degree

of synchronization in the population. The well-known
Kuramoto model is recovered in the fully isochronous
case, qj ¼ 0 [2,5,12,16], whereas the nonisochronous

case without disorder, qj ¼ q, corresponds to the so-called

Sakaguchi-Kuramoto model [17,18].
To analyze model (3) we adopt its thermodynamic limit

N ! 1. Thus we drop the indices and introduce the proba-
bility density for the phases fð�;!; q; tÞ [19]. Then, the
quantity fð�;!; q; tÞd�d!dq represents the ratio of oscil-
lators with phases between � and �þ d�, natural frequen-
cies between ! and !þ d!, and shear between q and
qþ dq. The density f obeys the continuity equation

@tf ¼ �@�

��
!þ Kqþ K

2i
½re�i�ð1� iqÞ � c:c:�

�
f

�
;

where c.c. stands for complex conjugate of the preceding
term, and the complex order parameter is

PRL 106, 254101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JUNE 2011

0031-9007=11=106(25)=254101(4) 254101-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.254101


r ¼
Z 1

�1

Z 1

�1

Z 2�

0
ei�fð�;!; q; tÞd�d!dq: (4)

If the phases are uniformly distributed r vanishes. This
state is customarily referred to as incoherence. Since
fð�;!; q; tÞ is real and 2� periodic in the � variable, it
admits the Fourier expansion

fð�;!; q; tÞ ¼ pð!; qÞ
2�

X1
l¼�1

flð!; q; tÞeil�; (5)

where fl ¼ f��l, f0 ¼ 1, and pð!; qÞ is the joint probabil-
ity density function (PDF) of ! and q. The first Fourier
mode is important because it determines the order
parameter (4):

r�ðtÞ ¼
ZZ 1

�1
pð!; qÞf1ð!; q; tÞd!dq: (6)

Inserting the Fourier series (5) into the continuity equation
we obtain the following set of integro-differential equa-
tions for the Fourier modes

@tfl ¼ �ilð!þ KqÞfl þ Kl

2
½r�ð1þ iqÞfl�1

� rð1� iqÞflþ1�:
(7)

Recently Ott and Antonsen found that the ansatz [20,21]

flð!; q; tÞ ¼ �ð!; q; tÞl (8)

is a particular solution of the Kuramoto model and related
systems with distributed natural frequencies. Here we also
resort to (8) as it turns out to be a solution in our case if �
obeys

@t�¼�ið!þKqÞ�þK

2
½r�ð1þ iqÞ�rð1� iqÞ�2�: (9)

The idea behind the approach of Ott and Antonsen is to
simplify an infinite set of equations—like Eq. (9)—using
distributions that can be inserted in Eq. (6) and integrated
via Cauchy’s residue theorem (see below).

In this Letter we assume that ! and q are independent
random variables, pð!; qÞ ¼ gð!ÞhðqÞ. Moreover, we re-
strict the analysis to symmetric unimodal PDFs gð!Þ and
hðqÞ centered at!0 and q0, respectively. We start choosing
g and h to be Lorentzian (Cauchy) PDFs,

gð!Þ ¼ �=�

ð!�!0Þ2 þ �2
; hðqÞ ¼ �=�

ðq� q0Þ2 þ �2
:

The integrals in (6) can be evaluated by means of the
residue theorem with the contour closings at infinity in
the lower or the upper half-plane of C, granted � ¼ f1 can
be continued from real! and q into complex!¼!rþ i!i

and q ¼ qr þ iqi.
Regarding variable !, analyticity of � holds in the

lower half complex ! plane (see [20]). As gð!Þ ¼
ð2�iÞ�1½ð!�!0 � i�Þ�1 � ð!�!0 þ i�Þ�1� has only
one simple pole !p ¼ !0 � i� inside this integration
contour, only the value of � ¼ f1 at ! ¼ !p counts in
the integral over ! in Eq. (6).

The integration over q in Eq. (6) is more intricate. We
have to choose an integration contour such that, if � is
analytic and j�j � 1 everywhere inside the contour at
t ¼ 0, this will hold for all t > 0. As � is a solution of
Eq. (9), the analyticity of � at t ¼ 0 is preserved
as t grows if � remains finite [22]. Moreover, if � is
analytic, the Cauchy-Riemann conditions imply @qr j�j þ
@qi j�j � 0, and the maximum of j�j is necessarily located
on the boundary (namely, on the integration contour). First
of all, setting� ¼ j�je�ic in Eq. (9), we obtain that, on the
real q axis, j�j is governed by

@tj�j ¼ ��j�j þ K

2
Re½r�eic ð1þ iqÞ�ð1� j�j2Þ: (10)

The fact that @tj�j ¼ �� < 0 at j�j ¼ 1 guarantees that, if
an initial condition satisfies j�ð!; q; t ¼ 0Þj< 1, this will
hold for all t > 0. Consequently, the series in Eq. (5)
remains convergent. Regarding the semicircular path
q ¼ jqjei# with jqj ! 1, at j�j ¼ 1 Eq. (9) yields

@tj�j ¼ ð1� R cos�ÞKjqj sin#; (11)

where �ð!; q; tÞ ¼ c ð!; q; tÞ ��ðtÞ. In this equation the
desired relation, @tj�j � 0, is fulfilled in the lower half
complex q plane # 2 ð��; 0Þ only if K > 0, and in the
upper half-plane # 2 ð0; �Þ for K < 0.
The integral over q in (6) can now be conveniently

evaluated, and yields

r�ðtÞ ¼ �ð! ¼ !p; q ¼ qp; tÞ ¼ aðtÞ; (12)

with qp ¼ q0 � i� for K > 0, and qp ¼ q0 þ i� for
K < 0. Thus, among the infinite set of equations,
Eq. (9), only the one at ð!; qÞ ¼ ð!p; qpÞ is needed:

_a ¼ �i!paþ K

2
ð1� iqpÞð1� jaj2Þa: (13)

The dynamics of the radial component jaj ¼ R obeys

_R ¼
�
��þ K

2
ð1� �Þð1� R2Þ

�
R; (14)

where ‘‘�’’ stands for ‘‘�’’ if K > 0 and ‘‘þ’’ if K < 0.
The incoherent state, R ¼ 0, is always stable except above

Kc ¼ 2�

1� �
if � < 1: (15)

At Kc a stable nontrivial solution, corresponding to a
partially synchronized state, appears with R2 ¼
ðK � KcÞ=K. Equation (15) is depicted in Fig. 1(a) and
compared with numerical simulations of Eq. (2). In the
Kuramoto model—recovered when � ¼ 0—a large
enough coupling strength K always results in partial syn-
chronization of the population aboveKc, for any width � of
the frequency distribution gð!Þ. However, here we find that
the width � of the shear distribution hðqÞ has a more severe
effect on the synchronization transition. If � � �d ¼ 1,
synchrony disappears for all K and �, and incoherence
becomes the only stable state. It is noteworthy that this is a
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collective phenomenon caused by the presence of distrib-
uted shear, and it has no counterpart in the case of two
coupled SL oscillators [11,23,24].

To confirm the generality of these findings for other
PDFs [25], next we follow [19] and perform the linear
stability analysis of Eq. (7) about the incoherent state
fl�0 ¼ 0. We find that the only potentially unstable modes
are l ¼ �1. Inserting f1ð!; q; tÞ ¼ bð!; qÞe�t into Eq. (7),
the discrete spectrum of eigenvalues � can be obtained
by virtue of a self-consistency argument. This yields the
integral equation

2

K
¼

ZZ 1

�1
1þ iq

�þ ið!þ qKÞgð!ÞhðqÞd!dq: (16)

The border of unstable incoherence Kc is found imposing
Reð�Þ ! 0þ. If gð!Þ and hðqÞ are Gaussian functions with
variances �2 and 	2, respectively, and hðqÞ has zero mean
(q0 ¼ 0), the critical coupling can be explicitly obtained:

Kc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ 8	2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�þ 16	2Þp
2	2ð�� 2	2Þ

vuut
: (17)

This function is plotted in Fig. 1(b) and compared with
the results of numerical simulations. Remarkably, we find

again a threshold for the dispersion of hðqÞ, 	d ¼
ffiffiffiffiffiffiffiffiffi
�=2

p ¼
1:253 . . . , above which incoherence is stable for all K.

We have found that the divergence of Kc does not only
exist for Lorentzian and Gaussian distributions, but for any
symmetric unimodal distribution. This divergence occurs
at a shear diversity that is conveniently expressed in terms
of the peak value hðq0Þ. If q0 ¼ 0, the divergence occurs at

hð0Þ ¼ ��1: (18)

Otherwise, if hðqÞ is not centered at zero, Kc also diverges
at a certain value of hðq0Þ ¼ hd, but a simple distribution-
independent formula like (18) does not exist.
Our numerical calculations of Eq. (2) using Gaussian

PDFs also reveal that incoherence and synchronization
coexist in a region with large K=� [light shaded region,
Fig. 1(b)]. Note that this region is not present in the
Lorentzian case [Fig. 1(a)], in spite of the similar bell-
shaped form of these two distributions. Figure 1(b) sug-
gests that the destabilization of incoherence may also occur
through a subcritical bifurcation for certain PDFs. To
elucidate the supercritical or subcritical character of the
synchronization transition, we carry out a self-consistency
analysis in the manner of Kuramoto [2,12,16,17] in the
limit of large coupling and/or very small frequency disper-
sion, i.e., Kgð!0Þ � 1. After going into a rotating frame-
work � ! �þ!0t, rescaling time t ! K�1t, and
neglecting the !j=K term, we approximate Eq. (3) by

_� j ¼ qj þ R½sinð�� �jÞ � qj cosð�� �jÞ�: (19)

Hereafter we assume q0 ¼ 0. In a partially synchronized
state the population splits into two groups, the synchro-

nized (or locked) subpopulation with jqj � qmax ¼
R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
and the desynchronized (or drifting) one with

jqj> qmax. Both subpopulations contribute to the order
parameter R ¼ hcos�is þ hcos�ids, where we have chosen
a reference frame where � ¼ 0 and the brackets denote
averages over each subpopulation. We can now make an
expansion in powers of R for each contribution. Up to
cubic order we obtain:

hcos�is ’ R
�

2
hð0Þ þ R2 2

3
hð0Þ þ R3 �

8

�
hð0Þ þ h00ð0Þ

2

�
;

hcos�ids ’ R

2
� R2 2

3
hð0Þ þ R3

4

�
1

2
þ

Z 1

0

h0ðqÞ
q

dq

�
;

where we have assumed hðqÞ is twice differentiable at the
origin. With these expansions, and discarding the trivial
solution R ¼ 0, we find that R follows asymptotically a
square-root dependence of the form:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �hð0Þ

J

s
; (20)

where

J ¼ 1

2

�
1þ �h00ð0Þ

4
þ

Z 1

0

h0ðqÞ
q

dq

�
(21)

is evaluated at hð0Þ ¼ ��1. The sign of J determines the
orientation of the bifurcating branch in Eq. (20), as
shown in the conjectured bifurcation scenarios in
Figs. 2(a) and 2(b). When J > 0, as for the Gaussian
distribution (J ¼ 1

2 � 3
4�), a partially synchronized solution

branches off from incoherence subcritically. This is in
concordance with the numerical results in Fig. 1(b). The
scenario for J < 0, Fig. 2(b), is also followed by PDFs with
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FIG. 1. Phase diagram for (a) Lorentzian and (b) Gaussian
PDFs, gð!Þ and hðqÞ. (a) Solid line: synchronization critical
coupling, Eq. (15). Inset: R2 as a function of K; the solid line is
R2 ¼ ðK � KcÞ=K. (b) Solid line: critical coupling given by
Eq. (17). In both (a) and (b) the symbols correspond to numerical
results obtained using an ensemble of SL oscillators, Eq. (2),
with (a) N ¼ 40000, � ¼ 0:01; !0 ¼ q0 ¼ 1

2 and (b) N ¼
22500, � ¼ 0:02, !0 ¼ q0 ¼ 0. Parameters !j and qj were

deterministically selected to represent pð!; qÞ, and averages
were done over time.
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a nondifferentiable maximum of type hðqÞ ¼ hð0Þ þ
h0ð0þÞjqj þ 	 	 	 , like the Laplace distribution (formally
J ¼ �1). It is important to note that bistability between
incoherence and synchronization is found irrespective of
the sign of J, because Eq. (19) has a stable fixed point at
�j ¼ � (R ¼ 1) that persists as a solution with R near 1,

provided gð!Þ has a small dispersion (or K is large
enough).

The case of Lorentzian hðqÞ is quite peculiar. On the one
hand, J vanishes for this PDF, which is consistent with
the infinitely abrupt transition predicted by the Ott and
Antonsen ansatz in the limit K ! 1; see Fig. 2(c). On
the other hand, according to our numerical simulations, the
synchronized solution R ¼ 1 of Eq. (19) does not persist
for � > 1 if gð!Þ is not a delta function. This indicates that,
for heavy-tailed hðqÞ, the term !j=K neglected in Eq. (19)

may become relevant and destroy the synchronized solu-
tion beyond a certain critical value of hðq0Þ�1.

In summary, this Letter uncovers the effect of shear
diversity on the collective synchronization of globally
coupled oscillators. We have obtained the first analytical
results for the Kuramoto model with distributed shear (3).
If shear is widely distributed, incoherence is always stable
and for some distributions —such as the Lorentzian one—
synchronization is impossible. The techniques used here
can be readily applied to a number of extensions of the
model (3), such as considering other distributions pð!; qÞ,
periodic or stochastic driving, time delays, or networks and
communities of oscillator populations.
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