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ABSTRACT

It is shown that the choice of the norm has a great impact on the construction of ensembles of bred vectors.

The geometric norm maximizes (in comparison with other norms such as the Euclidean one) the statistical

diversity of the ensemble while at the same time it enhances the growth rate of the bred vector and its

projection on the linearly most unstable direction (i.e., the Lyapunov vector). The geometric norm is also

optimal in providing the least fluctuating ensemble dimension among all the spectrum of norms studied. The

results are exemplified with numerical integrations of a toy model of the atmosphere (the Lorenz-96 model),

but these findings are expected to be generic for spatially extended chaotic systems.

1. Introduction

The ‘‘breeding method’’ is a well-established and com-

putationally inexpensive procedure for generating per-

turbations for ensemble integrations (Toth and Kalnay

1993, 1997). Bred vectors (BVs) are finite perturbations

periodically rescaled to a certain magnitude that have

been prominently used in probabilistic weather forecast-

ing with ensembles (Kalnay 2003; Gneiting and Raftery

2005). The breeding method and variants of it are ap-

plied in operative ensemble forecast systems, such as

that used by the National Centers for Environmental

Prediction (NCEP; USA) (see, e.g., Wei et al. 2008).

Moreover, breeding continues to be a popular tool to

study the predictability of a variety of systems such as

the baroclinic rotating annulus (Young and Read 2008)

and the atmosphere of Mars (Newman et al. 2004).

Different initial BV perturbations all generally tend

to become aligned with the fastest-growing modes. If

different BVs were globally quasi-orthogonal to each

other (Toth and Kalnay 1997), one might expect they

would automatically provide a good sample of the dif-

ferent dominant growing error directions, without the

need for additional computation. A closer inspection re-

veals that the BV perturbations are often locally rather

similar in shape, differing only in sign and amplitude

(Toth and Kalnay 1997; Hallerberg et al. 2010). In fact,

a major modification of the BV implementation at NCEP

has recently been implemented by replacing the BVs

given by the ensemble forecast with some ‘‘ensemble

transform’’ that orthogonalizes the ensemble with re-

spect to the metric defined by the inverse covariance

matrix (Bishop and Toth 1999; Wang and Bishop 2003;

Wei et al. 2006, 2008). Other metrics can be used and

lead to different ensembles of BVs (Keller et al. 2010).

Orthogonalization with respect to a given metric gen-

erally enhances the statistical diversity of the ensemble

by making the BV perturbations globally more dis-

similar (Annan 2004; Keller et al. 2010).

In this paper we show how the ensemble diversity can

be enhanced by using the geometric norm with no fur-

ther transforms or orthogonalizations needed. We first

show that the BVs’ dynamics and the statistical prop-

erties of the ensemble strongly depend on the norm

definition used to construct them. So far Euclidean-type

norms are widely used in applications. However, our

results demonstrate that, among a spectrum of studied

norms, the geometric norm is the most convenient be-

cause it provides a greater statistical diversity of the

ensemble, while it enhances the projection of the en-

semble as a whole on the most unstable direction. With

other norm choices, such as the standard Euclidean one,

a good projection on the leading Lyapunov vector (LV) is

always associated with the collapse of all the BVs (i.e., the

complete loss of the ensemble diversity).
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2. The model

We illustrate our study with numerical integrations

of the well-known model by Lorenz (Lorenz 1996; here-

after the Lorenz-96 model) that has been used by var-

ious authors as a low-order test bed for atmospheric

prediction and assimilation studies (Lorenz and Emanuel

1998; Anderson 2001). This model is defined by the set

of variables fu(x, t)gx51,. . .,L and evolves according to

du(x, t)

dt
5 2u(x 2 1, t)[u(x 2 2, t) 2 u(x 1 1, t)]

2 u(x, t) 1 F, with x 5 1, . . . , L, (1)

with periodic boundary conditions in the discrete spatial

variable x. Hereafter we adopt a system size of L 5 128

and a forcing constant F 5 8. For these values the system

exhibits well-developed chaos (Lorenz 2006).

A good description of the chaotic dynamics can be

achieved by understanding the behavior of initial in-

finitesimal perturbations, which are governed by the

‘‘tangent linear model’’:

ddu(x, t)

dt
5 2du(x 2 1, t)[u(x 2 2, t) 2 u(x 1 1, t)]

2 u(x 2 1, t)[du(x 2 2, t) 2 du(x 1 1, t)]

2 du(x, t). (2)

After some transient any infinitesimal perturbation

du(x, 0) becomes permanently aligned along the most

unstable direction. This direction defines, disregarding

an arbitrary nonzero constant factor, the leading LV, and

is hereafter denoted g(t) 5 fg(x, t)gx51,. . .,L.

Obtaining the tangent linear (and adjoint) models

can be however extremely difficult in operative weather

models and one has to resort to analyzing finite pertur-

bations, which are evolved with the full nonlinear model.

This is, for instance, the situation at NCEP, where en-

sembles of BVs are used.

3. Bred vectors

BVs are finite perturbations obtained after periodic

rescaling, say at times tm 5 mT (m 2 Z1). A control

trajectory u and a perturbed one u9 are simultaneously

integrated [via Eq. (1)] and at the scheduled time the

difference between them is calculated

Du(tm) 5 u9(tm) 2 u(tm) (3)

and rescaled to a given amplitude «, obtaining the BV

b(tm) 5 «
Du(tm)

kDu(tm)k . (4)

This BV is then used to redefine the perturbed system:

u9(t1m) 5 u(tm) 1 b(tm), (5)

with t1m 5 lim
n/0tm 1 n. The u9 and u states are then

evolved in time according to the model equations [Eq.

(1)] until the next scheduled rescaling. At the next

scheduled time tm11 the breeding cycle [Eqs. (3)–(5)] is

repeated. After several breeding cycles, the perturba-

tions generated by this procedure acquire a large growth

rate, which makes them suitable for ensemble fore-

casting. Usually a set of BVs is evolved from different

initial random perturbations and this constitutes the

ensemble. Ideally a good ensemble of BVs should span

the most unstable directions in phase space well enough

to capture the main instabilities.

There are three basic ingredients in the definition of

the BV: (i) the rescaling interval T, (ii) the perturbation

amplitude «, and (iii) the choice of the norm k�k used in

Eq. (4).

The rescaling interval has a negligible influence in the

results as long as it remains small—say, smaller than the

doubling time, which is on the order of 0.4 time units for

the Lorenz-96 model. We have used T 5 0.1 time units,

which corresponds to ½ day in the time scale assumed by

Lorenz (1996).

The perturbation amplitude controls the ‘‘finiteness’’

of the perturbations; a sufficiently small « makes the

perturbation quasi-infinitesimal, and in the limit « / 0

the BV perfectly aligns with the leading LV of the system.

However, very little is known about the effect of the

norm choice on the properties of the resulting ensem-

ble and we discuss this issue in detail in the incoming

sections.

4. Choice of a norm

The choice of the norm is probably the more obscure

element determining the BVs’ nature. BVs have often

been claimed to be insensitive to the choice of norm

(Kalnay et al. 2002; Corazza et al. 2003). However, this

belief is not actually based on any rigorous argument.

Here we show that the effect of changing the norm type

has a dramatic impact on BVs. We will show that dif-

ferent norms lead to different ensemble properties and

it is not a mere change of the ‘‘ruler’’ or metrics. There

are intrinsic and genuine effects on the statistics of the

BVs for each particular norm type.

Intuitively, for a homogeneous system like the Lorenz-

96 model, any definition for the norm one wants to

use should be homogeneous in the sense that it weights

equally all sites. To see why this constraint is rele-

vant let us consider a particularly illustrative example.
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Think of a norm arising from some scalar product

kbk2
5 hb, bi5 bTMb with a very ‘‘unbalanced’’ metric

matrix M, say M 5 diag(100, 1, 1, . . . , 1). This choice

would result in very dissimilar BVs depending on

whether the site x 5 1 is more or less unstable at a given

time. For a given «, at some times the vector dynamics

could be infinitesimal-like while at other moments it

would be clearly finite. For spatially homogeneous sys-

tems, it is reasonable to restrict ourselves to ‘‘homoge-

neous’’ norms that produce a BV that is statistically

equivalent up to a high degree at different times and we

do so in our study.

In this work we compare the performance of q-norms,

which are defined as

kDukq 5

�
1

L
�
L

x51
jDu(x, t)jq

�1/q

. (6)

Note that for q 5 2 the norm is an energy-like norm,

analogous to those used in atmospheric models. In the

limit q / ‘ the q-norm becomes the supremum norm:

kDukq/‘
5 supfjDu(x, t)jgx51,...,L. (7)

Moreover, the geometric mean is obtained in the limit1

q / 0:

kDuk0 5 P
L

x51
jDu(x, t)j1/L. (8)

The use of the geometric norm yields the so-called log-

arithmic BVs (Primo et al. 2005, 2006, 2008; Pazó et al.

2010; Hallerberg et al. 2010). For clarity of presenta-

tion we will add the subscript q to the notation (bq for

the BV and «q for the amplitude) to emphasize which

q-norm is being used. For all q-norms the BVs look very

similar to the naked eye and are strongly localized in

space for small «q [see, e.g., Hallerberg et al. (2010) and

Primo et al. (2008) for typical snapshots of BVs with q 5

0 and q 5 2].

Throughout this paper we shall be considering an

ensemble of k 5 10 BV members, fb(i)
q gi51,...,k. All

members of the ensemble are simultaneously re-

scaled, and they are initiated with independent ran-

dom initial conditions, which is expected to result in

some degree of diversity in the ensemble of BVs (Kalnay

et al. 2002).

5. Results

We define ensemble diversity as the degree of linear

independence or transversality among the ensemble

members. Diversity can be quantified by calculating

the ‘‘ensemble dimension,’’ which measures the effec-

tive dimension of the subspace spanned by the ensem-

ble. The higher the ensemble dimension, the greater the

statistical diversity. Higher ensemble dimension would

imply larger dissimilarities among the ensemble mem-

bers. Since BV perturbations tend to align with the

fastest-growing modes, a greater diversity indicates that

the ensemble is able to actually sample not only the main

LV but also other, less unstable, directions.

Our goal here is to show, by means of several numer-

ical calculations with a simple model, that the 0-norm

is more convenient than other norms for constructing

ensembles of BVs as far as ensemble diversity enhance-

ment is concerned. We arrive at this conclusion by

measuring the ensemble dimension and its temporal

fluctuations, the average growth rate, and the align-

ment of the ensemble members with the main LV.

a. Ensemble dimension

In this subsection we will analyze the statistical di-

versity in an ensemble of k BVs. Clearly, for all q values,

in the limit «q / 0 all BVs become aligned with the

leading LV and there is no diversity in the ensemble

(other than a global sign for the orientation of the vec-

tors). If «q is finite some degree of transversality between

ensemble members can be expected, and to measure this

diversity of the ensemble we resort to the so-called en-

semble dimension (Bretherton et al. 1999).

The ensemble dimension (Oczkowki et al. 2005) or

BV dimension (Patil et al. 2001) was proposed as a way

to account for the number of effective degrees of free-

dom that explains most of the total ensemble variance

(in the spirit of principal component analysis) [see, e.g.,

Bretherton et al. (1999) and references therein]. To

compute the ensemble dimension at a given time one

computes the k 3 k covariance matrix C with elements

Cij(t) 5
hb(i)

q , b( j)
q i

Lkb(i)
q k2kb

( j)
q k2

, (9)

where the standard scalar product is used in the nu-

merator hb(i)
q , b( j)

q i5 �xb
(i)
q (x, t)b( j)

q (x, t). If we denote by

fmi(t)gi51,. . .,k the set of eigenvalues of C, the ensemble

dimension is

Den(t) 5

�
�

k

i51

ffiffiffiffiffi
mi
p

�2

�
k

i51
mi

, (10)

1 limq/0kDukq 5 limq/0 exp[q21 ln(L21�L

x51jDu(x)jq) 5 limq/0

exp[q21 ln(L21�L

x51eqlnjDu(x)j)] 5 Eq. (8).
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where the denominator Simi equals k due to the nor-

malizing terms in the denominator of Eq. (9). The sta-

tistic (10) typically returns a real number between two

limit values: Den 5 k (if all vectors are orthogonal) and

Den 5 1 (if all vectors are aligned). Therefore, Den(t)

measures the instantaneous degree of ‘‘transversality’’

of the ensemble.

Figure 1 depicts the results of the time-average en-

semble dimension hDeni for different q-norms. Depend-

ing on the value of q, «q is varied in a different range.

The largest value of «q in each dataset corresponds

(approximately) to the value of the average distance

(for the corresponding q-norm) between independent

realizations of the model (i.e., random climatological

values). In applications «q is much smaller than this

value (typically on the order of the analysis error). In

the small «q region of the plots, hDeni becomes equal to

1 below a particular value of «q, though for the 0-norm

the convergence to 1 appears to be much less abrupt.

b. Fluctuations of the ensemble dimension

Figure 1 shows that all q-norms allow us to obtain en-

sembles with a certain hDeni after tuning «q to a par-

ticular value. However the ensemble dimension is a

time-fluctuating quantity and one should wish to min-

imize its fluctuations. Of course, some degree of fluc-

tuations is unavoidable because of (i) the finiteness of

the ensemble and (ii) intrinsic fluctuations in the state

of the system (which progressively average out for large

enough systems).

We characterize the fluctuations of Den by means of

the standard deviation s 5 h[Den(t) 2 hDeni]2i1/2, where

the brackets denote a temporal average. The results are

depicted in Fig. 2, where we plot the relative fluctuations

of the ensemble dimension versus hDeni to better com-

pare different q-norms. One can readily see that the

0-norm produces the ensemble with the smallest fluc-

tuations for most hDeni values.

c. Alignment with the main Lyapunov vector

Ideally (i.e., disregarding limitations by numerical ac-

curacy) the BVs become perfectly aligned with the main

LV as «q / 0. To determine quantitatively the degree of

alignment with the LV, g(t), we have measured the in-

stantaneous angle between each BV of the ensemble,

b(i)
q (t), and g(t) at breeding times t 5 tm as customary in

an L-dimensional Euclidean space:2

f(i)(t) 5 ;[g(t 5 tm), b(i)
q (t 5 tm)]. (11)

The ensemble and time-average angle hfi is shown in

Fig. 3 and demonstrates that the logarithmic BVs (q 5 0)

are able to achieve a considerable degree of alignment

with the LV on average, while retaining some degree of

diversity. One clearly sees that BVs constructed with

q . 0 become strongly aligned among themselves while

still keeping a high degree of transversality with the

main LV, as reflected by the high average angle of the

ensembles (hfi . p/4) in Fig. 3 for hDeni 5 1. In con-

trast, the ‘‘logarithmic ensemble’’ (q 5 0) exhibits a

lower angle with the main LV, even if the statistical di-

versity is high. We claim that the higher diversity and

lower hfi exhibited by the ensemble of logarithmic BVs

(q 5 0), as compared with the ensembles with q . 0,

FIG. 1. Average ensemble dimension as a function of the amplitude

for ensembles of k 5 10 BVs, with different q-norms.

FIG. 2. Relative fluctuations of the ensemble dimension.

2 As the sign of the LV is not defined, we can adopt the con-

vention of defining f in the range [0, p/2].
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indicates that this ensemble is spanning a subspace

formed by a narrow hypercone around the main LV,

while ensembles with q . 0 tend to lie in a lower-

dimension subspace that is more transverse to the LV.

d. Average growth rate

Also the growth rate of the ensemble members can

be compared with that of the main LV, reflecting again

the different behavior for different norm choices. The

average exponential growth rate of the bred vectors is

l 5
1

T

*
ln

 
kDu(tm 1 T)k2

kbq(tm)k2

!+
. (12)

Notice that for the sake of clarity we are using the same

norm type (q 5 2) to measure the exponential growth

rate in all cases (nevertheless, because of the long av-

eraging the norm type is irrelevant).

Figure 4 shows the dependence of l on the ensemble

dimension. One can see that the logarithmic BVs (q 5 0)

exhibit the largest amplification rate for a given ensemble

dimension, which is in agreement with the results dis-

cussed in the preceding subsections showing that the

logarithmic ensemble (q 5 0), among all ensemble choices,

exhibited the greatest projection on the LV. Conversely,

given an exponential growth rate, using the 0-norm will

result in the most diverse ensemble.

6. Conclusions

We have studied the effect of different norms on the

construction of ensembles of BVs. The geometric (q 5 0)

norm outperforms other norms (such as the Euclidean

one, q 5 2) for constructing ensembles of BVs in spatially

extended systems. The enhancement of performance (in

terms of root-mean-square error, ensemble spread, and

calibration time) of ensembles of logarithmic (q 5 0)

bred vectors with respect to standard ‘‘Euclidean’’ (q 5 2)

bred vectors was already uncovered by Primo et al. (2008).

In the present work we give a rationale behind those

results. We show that an ensemble of logarithmic BVs

(obtained with the 0-norm) exhibits greater diversity—

larger ensemble dimension—while its members are more

strongly projected on the leading LV and have growth

rates that rapidly approach the leading Lyapunov ex-

ponent. In comparison, ensembles based on BVs with

q . 0 perform rather poorly. They tend to collapse in

one single direction (i.e., hDeni5 1) very abruptly as the

BV amplitude is diminished and, even when all the

statistical diversity is lost they remain rather transverse

FIG. 3. Average angle between the BVs and the main LV.

FIG. 4. (a) Average growth rate as a function of the average

ensemble dimension. The dotted line indicates the value of the

Lyapunov exponent. (b) Zoom of (a).
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to the leading LV as demonstrated by the angle with the

main LV shown in Fig. 3. Moreover, the geometric norm

also leads to the least fluctuating ensemble dimension

among all the possible q-norms.

In the view of these results two prominent questions

remain open. On the one hand, it would be very in-

teresting to evaluate the performance of 0-norm BVs

in real applications. The study by Primo et al. (2008)

of 0-norm BVs already showed promising, albeit pre-

liminary, results. Clearly, more research is needed in this

direction. On the other hand, there is the problem of

analyzing the potential advantages of ensemble Kalman

filters based on 0-norm BVs. Our results show that

logarithmic BVs have very robust properties regarding

statistical diversity, growth rates, and projection onto

the main LV. Therefore, a natural question that arises

is this: to what extent can these features translate into

a better performance of ensemble Kalman filtering

methods? We believe our results may serve as a basis

for future research along these lines.
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