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Collective synchronization in the presence of reactive coupling and shear diversity
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We analyze the synchronization dynamics of a model obtained from the phase reduction of the mean-field
complex Ginzburg-Landau equation with heterogeneity. We present exact results that uncover the role of
dissipative and reactive couplings on the synchronization transition when shears and natural frequencies are
independently distributed. As it occurs in the purely dissipative case, an excess of shear diversity prevents the
onset of synchronization, but this does not hold true if coupling is purely reactive. In this case, the synchronization
threshold turns out to depend on the mean of the shear distribution, but not on all the other distribution’s moments.
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I. INTRODUCTION

Reaction-diffusion systems consisting of a large number
of degrees of freedom display a rich variety of dynamical
regimes that are important in a wide range of fields [1–3].
In particular, systems composed of many interacting aggre-
gates of heterogeneous, self-oscillating elements, often show
oscillations at the macroscopic level as a consequence of the
collective synchronization of the individual oscillators [1,4–6].
An appropriate model to study collective synchronization is the
mean-field version of the complex Ginzburg-Landau equation
(CGLE) with heterogeneity,

żj = zj [1 + i(ωj + qj ) − (1 + iqj )|zj |2]

+ K

N
(1 + ic)

N∑
k=1

(zk − zj ). (1)

This equation describes an ensemble of N � 1 globally
coupled limit-cycle oscillators, each defined by a complex
variable zj ≡ �je

iθj . Every oscillator differs from the rest
in the natural frequency of rotation ωj and in the shear (or
nonisochronicity) qj , which measures how the frequency of
rotation depends on the oscillator’s amplitude �j . Here we
consider ωj and qj to be independent random variables, with
a joint probability function p(ω,q) = g(ω)h(q).

The oscillators are coupled via a diffusive coupling of
strength K , which has both a real (dissipative) and an
imaginary (reactive) component. In general, a positive dis-
sipative coupling drives the system to a more homogeneous
state [7] (but see [8]). The effect of reactive coupling on
synchronization is more intricate and strongly relies on the
presence of shear qj �= 0 [9].

More than 30 years ago, the Kuramoto model (KM) was
proposed as an analytically tractable system to study collective
synchronization [10]. Since then it has become a paradigmatic
model to explain temporal organization in a large variety of
natural systems far from thermodynamic equilibrium [5,11].
Under some approximations, the KM can be rigorously
obtained from Eq. (1). Indeed, when the mutual coupling K of
the oscillators is weak, a perturbation treatment permits one to
reduce Eq. (1) to a set of N equations for the phases only [1],

θ̇j = ωj + K(qj − c) + KR[(1 + qj c) sin(� − θj )

− (qj − c) cos(� − θj )], (2)

where R e−i� = N−1 ∑N
k=1 eiθk is the complex order parame-

ter. Originally, Kuramoto considered Eq. (1) without reactive
coupling and without shear [10]. The resulting phase equation
(2) with c = qj = 0 is the well-known KM. Assuming constant
shear, qj = q̂, model (2) is equivalent to the so-called
Sakaguchi-Kuramoto model [12,13]. This can be seen using
the definition tan βj = (qj − c)/(1 + qj c), with |βj | � π

2 ,
which permits one to write Eq. (2) in the more compact form,

θ̇j = ωj + (1 + qj c)K

cos βj

[R sin(� − θj − βj ) + sin βj ].

As in the KM, the Sakaguchi-Kuramoto model shows a
transition from incoherence to collective synchronization at
large enough values of K(1 + q̂c). The synchronized solution
can be obtained explicitly if g(ω) is a Lorentzian distribution.

We recently reported in Ref. [14] that, if shear is distributed
according to a certain probability function h(q), the onset of
synchronization is prevented when the width of h(q) exceeds a
precise threshold. These results were obtained assuming purely
dissipative coupling (c = 0), and are fully analytic if g(ω) and
h(q) are both Lorentzian. More recently [15], we allowed ω

and q to be nonindependent, but still considering c = 0.
Our first aim in this paper is to analyze the phase reduction

(2) with a general diffusive coupling (c �= 0) and independent
random variables ωj and qj . We will show that, in this
case, if g(ω) and h(q) are both Lorentzian, the onset of
synchronization is also prevented beyond a critical value of the
width of h(q). In the second part, we address the case of purely
reactive coupling, since it has physical relevance in the context
of arrays of coupled nanomechanical oscillators [16–18], and
in ion chains interacting via Coulomb forces [19]. We will
demonstrate that, in this case, the synchronization’s critical
coupling becomes fully independent of the particular shape
of the shear distribution h(q). Finally, we briefly discuss the
implications of this result for the KM with random coupling
strengths recently studied by Hong and Strogatz [20,21].

II. GENERAL DIFFUSIVE COUPLING (c �= 0)

To analyze Eq. (2), we adopt the thermodynamic limit N →
∞. This allows us to define a probability density function
(PDF) for the phases f (θ,ω,q,t), such that the complex order
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parameter r = R e−i� is

r(t) =
∫∫ ∞

−∞

∫ 2π

0
eiθf (θ,ω,q,t)dθ dω dq.

The evolution of Eq. (2) obeys the continuity equation,

∂tf = − ∂θ

({
ω+K(q − c)+K

2i
[r e−iθC(1−iq) − c.c.]

}
f

)
.

(3)

Here C ≡ 1 + ic, and c.c. stands for complex conjugate of
the preceding term. Next we expand f in Fourier series
as f (θ,ω,q,t) = 1

2π
g(ω)h(q)

∑∞
l=−∞ fl(ω,q,t)eilθ , with fl =

f ∗
−l and f0 = 1. Substituting the Fourier series into the

continuity equation (3), we obtain the infinite set of integro-
differential equations,

∂tfl = −il[ω + K(q − c)]fl

+ Kl

2
[r∗C∗(1 + iq)fl−1 − rC(1 − iq)fl+1]. (4)

The next step is to assume that the asymptotic solutions of the
model belong to the family of functions,

fl(ω,q,t) = α(ω,q,t)l , (5)

a type of ansatz discovered by Ott and Antonsen [22–24]. This
solution of Eq. (4) requires α to evolve according to

∂tα = −i[ω + K(q − c)]α

+ K

2
[r∗C∗(1 + iq) − rC(1 − iq)α2], (6)

with

r∗(t) =
∫∫ ∞

−∞
g(ω)h(q)α(ω,q,t)dω dq. (7)

A considerable simplification is achieved if g(ω) and h(q) are
chosen to be Lorentzian PDFs,

g(ω) = δ/π

(ω − ω0)2 + δ2
, h(q) = γ /π

(q − q0)2 + γ 2
. (8)

In this case, the integral (7) can be solved closing the integrals
at infinity and using the residue’s theorem; notice that g(ω) =
(2πi)−1[(ω − ω0 − iδ)−1 − (ω − ω0 + iδ)−1], likewise for
h(q). The important requirement is that the complex function
α can be analytically continued from real ω and q into the
complex planes ω = ωr + iωi and q = qr + iqi , inside the
integration contours.

It can be shown that α has no singularities in the lower half
ω plane [22]. Regarding the variable q, we follow the reasoning
in Ref. [14] and find that α is analytic in the lower half complex
q plane for K > 0, and in the upper one for K < 0. However,
now this holds true only if the order parameter satisfies [25]

R < R× = 1√
1 + c2

. (9)

We assume that states fulfilling this condition are correctly
analyzed within this framework. As we show below, the
numerical simulations fully confirm the validity of this
assumption.

Therefore, using the residue’s theorem, the integrals in
Eq. (7) give

r∗(t) = α(ω = ωp,q = qp,t) ≡ a(t), (10)

where ωp = ω0 − iδ and qp = q0 ∓ iγ (for positive and
negative K , respectively) correspond to the simple poles of the
Lorentzian PDFs (8). The infinite set of ordinary differential
equations (6) then simply reduces to the single ordinary
differential equation with complex variable,

ȧ = −iωpa + K

2
C(1 − iqp)(1 − |a|2)a.

As a = R e−i� , the equations for the order parameter inside
the manifold defined by Eq. (5) read

Ṙ =
[

− δ + K

2
(1 + cq0 ∓ γ )(1 − R2)

]
R, (11)

�̇ = ω0 + K

2

[
q0 − c(1 ∓ γ )

]
(1 − R2), (12)

which we conjecture are the correct equations for the evolution
of the order parameter, as far as condition (9) is fulfilled. From
Eq. (11), we find that a synchronized solution bifurcates from
incoherence at the critical coupling,

Kc =
⎧⎨
⎩

2δ
1+q0c−γ

if 1 + q0c > 0,

2δ
1+q0c+γ

if 1 + q0c < 0,
(13)

which only exists if

γ < γd = |1 + q0c|. (14)

Otherwise, if γ � γd , incoherence becomes the only stable
state for all K; see Fig. 1. This result extends the one found in
Ref. [14] for c = 0 to ensembles of oscillators globally coupled
via both dissipative and reactive coupling. However, as is
depicted in Fig. 1(a), now the region of stable synchronization
is located at positive values of K only if

1 + q0c > 0. (15)
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FIG. 1. Phase diagrams with boundary (13) for (a) q0c = − 1
2

and (b) q0c = − 3
2 . Insets show the numerical results of the time-

averaged quantity R2 vs K/δ, with parameters γ = 1
4 (|Kc| = 8δ),

δ = 0.1, and ω0 = 3. {ωj ,qj }j=1,...,N were deterministically selected
to represent the distribution (8) with N = 14 400 oscillators. The data
sets correspond to two different combinations of q0 and c, with c = 2
(R2

× = 1
5 ) and c = 3

2 (R2
× = 4

13 ). The solid line is Eq. (16).
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This inequality is the well-known Benjamin-Feir-Newell
criterion for the stability of plane waves in the homogeneous
CGLE [1,3,13,26,27], which is valid in any dimension (infinite
in the present case). Finally, we also find that the order
parameter of the partially synchronized solution follows:

R2 = K − Kc

K
, with R < R×, (16)

exactly as in the KM with Lorentzian g(ω) [1]. However, now
this formula holds only up to R×; recall Eq. (9). The insets in
Fig. 1 show numerical simulations that confirm the validity of
Eq. (16). Remarkably, our numerical simulations indicate that
R departs from Eq. (16) precisely when R exceeds R×.

Unfortunately, there is no straightforward theoretical ex-
tension of these results to more general distributions g(ω) and
h(q), but still some reasonable conjectures can be raised as
follows.

(i) The flip of the synchronization region when 1 + q0c

changes sign—compare Figs. 1(a) and 1(b)—is a consequence
of the Benjamin-Feir-Newell criterion (15) and it can be
supposed to be a general feature of Eq. (2).

(ii) Although it seems difficult to prove, the divergence of
Kc at a critical value of the shear diversity Eq. (14) is likely
to be a general property, as it happens in the purely dissipative
case (c = 0) [14].
(iii) For certain distributions and parameter values, and as

a consequence of the persistence of a fully synchronized
solution θj = � located at |K|g(ω0) → ∞, stable synchro-
nization and incoherence should coexist at large K values
(as it occurs for c = 0 and Gaussian distributions [14]).
Note that infinitesimal perturbations obey δ̇θ j = K

N
(1 + qj c)

[(1 − N )δθj + ∑
l �=j δθl]. The Jacobian matrix has always

one trivial zero eigenvalue. If c = 0 and K positive, the
remaining eigenvalues are negative, and the fixed point is stable
irrespective of the width of h(q). However, if c �= 0, the fixed
point becomes a saddle when the qj ’s exceed some degree of
heterogeneity, and hence its continuation at finite K is not an
attractor either. In sum, under a large enough heterogeneity of
shear, incoherence should be the only attractor at all K values;
however, if c = 0, synchronization coexists with incoherence
at large enough K—provided h(q) is not heavy-tailed; see
Ref. [14].

III. PURELY REACTIVE COUPLING

For the remainder of this paper, we will concentrate on the
case of purely reactive coupling. Motivated by the dynamics
of nanoscale mechanical oscillator arrays, this problem was
analyzed in detail by Cross et al. [16,17] with a coupling of the
form i κ

N

∑
k(zk − zj ) in Eq. (1), and without shear diversity. To

investigate the effect of shear diversity, we first write the phase
model (2) without dissipative coupling. Substituting c = κ/K

in Eq. (2) and letting K → 0 yields

θ̇j = ωj − κ + κR[qj sin(� − θj ) + cos(� − θj )], (17)

where κ is now the total reactive coupling. Then, Eq. (13)
suggests that in this limit the critical coupling is

κc = 2δ

q0
, (18)

that remarkably depends on q0 but is independent of the amount
of heterogeneity γ .

The derivation of Eq. (18) is not rigorous because R× = 0
in this limit, and condition (9) is not fulfilled. Therefore, to
confirm the validity of Eq. (18) and to determine how this
result generalizes to other distributions, next we perform the
linear stability analysis of the incoherent state of Eq. (17) [28].
In the incoherent state all modes fl , save the trivial one f0 = 1,
vanish. The equation for the Fourier modes, related to Eq. (4),
is

∂tfl = −il(ω − κ)fl + κl

2
[r∗(q − i)fl−1 − r(q + i)fl+1].

Linearizing this equation about the incoherent state, we find
that the only potentially unstable mode is the l = 1,

∂tf1 = − i(ω − κ)f1

+ κ

2
(q − i)

∫∫ ∞

−∞
f1(ω′,q ′,t)g(ω′)h(q ′)dω′ dq ′.

Let f1(ω,q,t) = b(ω,q)eλt , and neglect the trivial solution
b = 0. Invoking self-consistency and separating λ into its real
and imaginary parts (λ = λr + iλi) yields

2

κ
=

∫∫ ∞

−∞

(q − i)[λr − i(ω − κ + λi)]

λ2
r + (ω − κ + λi)2

g(ω)h(q)dω dq.

The interesting feature in the right-hand side of this equation
is that the integration over q is trivial and the result does not
depend on the particular shape of h(q). Performing the limit
λr → 0+ to obtain the stability threshold κc yields

2

κc

= (q0 − i)

[
πg(κc − λi) − i

∫ ∞

−∞

g(ω)

ω − κc + λi

dω

]
,

(19)
that only depends on h(q) through its mean value q0 (defined
as principal value if required). Finally, splitting Eq. (19) into its
real and imaginary parts, we obtain a system of two equations
for the unknowns κc and λi

(
1 + q2

0

)
πg(κc − λi) = 2q0

κc

, (20)

(
1 + q2

0

) ∫ ∞

−∞

g(ω)

ω − κc + λi

dω = − 2

κc

. (21)

These equations can be solved for Lorentzian g(ω), and indeed
we recover the boundary (18). However, note that now this
result is stronger, since we have not imposed any constraint
on the shape of h(q). Here h(q) can be any distribution
of mean q0. Additionally, an explicit value for κc can be
easily obtained from Eq. (20) if g(ω) is a uniform (top-hat)
distribution. These results for Lorentzian and uniform g(ω)
are in agreement with those obtained in Ref. [17] with
h(q) = δ(q − q0). This confirms that the phase equation is
indeed a good approximation of the amplitude equation in the
limit of weak coupling and narrow frequency distributions.

Figure 2(a) displays a phase diagram with the boundary
(18), and Fig. 2(b) shows the time average 〈R2〉 obtained from
numerical simulations using different distributions h(q) with
common q0 values. As expected, in Fig. 2(b), the transition
between incoherence and synchronization occurs at the same
value of κ/δ, irrespective of the distribution type.
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FIG. 2. (a) Phase diagram with boundary (18) in the case of
purely reactive coupling and g(ω) Lorentzian. (b) Time averages
〈R2〉 obtained from numerical simulations with q0 = 2, δ = 1, and
N = 40 000, and for different distributions of q: Gaussian with
variance ν2 = 1; symmetric bidelta: h(q) = 1

2 δ(q − 3) + 1
2 δ(q − 1);

asymmetric bidelta: h(q) = 3
4 δ(q − 3) + 1

4 δ(q + 1); Lorentzian with
γ = 1; and bimodal: h(q) = 1/(2π )

[q−(q0−5/2)]2+1
+ 1/(2π )

[q−(q0+5/2)]2+1
. In all

cases, the critical coupling is at κc/δ = 1, as predicted by Eq. (18).

Finally, we point out an interesting similarity between
Eq. (17) and the model recently studied by Hong and Strogatz
[20,21], which in our notation reads θ̇j = ωj + qjR sin(� −
θj ). Note that here qj acts as a distributed coupling strength.
Performing a stability analysis like we did above, we obtain

that the stability border of incoherence satisfies 2 = πq0g(ω0),
if g(ω) is unimodal and symmetric. Again, we obtain a formula
that depends on the mean of h(q), but not on its shape.
This result reproduces the classical Kuramoto relation for
uniform all-to-all coupling [h(q) = δ(q − q0)], and the critical
point found in Eq. (12) of Ref. [20] for Lorentzian g(ω) and
bidelta h(q).

IV. CONCLUSIONS

We have reported on exact results that extend the phase
models of Kuramoto and Sakaguchi [10,12] to situations where
shear is distributed. In contrast to the recent work [14], here
the coupling is not purely dissipative but also contains a
reactive component c. In this case, we also find that shear
diversity prevents the onset of collective synchronization, but
the Benjamin-Feir-Newell criterion determines now if the
region of synchronization is located at positive or negative
values of K . Finally, we have obtained a remarkable result
when the coupling is purely reactive: the stability threshold
of incoherence depends on the mean shear q0, while the shear
diversity becomes irrelevant.
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