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1.  INTRODUCTION

‘It may well happen that different GCMs pro-
duce  different results’ (Von Storch et al. 1993,
p. 1170).

Since von Storch et al. (1993) wrote that line, the
 statistical downscaling (SD) community has under-
taken much effort to generate regional to local cli-
mate projections from (coupled) global climate models
(GCMs). However, most studies are based on a single
GCM (Hewitson & Crane 1996, Wilby et al. 1999, Huth
2004, Frías et al. 2006, Schmidli et al. 2007) and there-
fore do not take into account the significant ‘model

uncertainty’ (Stainforth et al. 2007) of multi-model
ensembles (Christensen et al. 2007). Ignoring model
uncertainty means ignoring an important contributor
to the total uncertainty of climate projections (Stain-
forth et al. 2007, Knutti et al. 2010) and might lead pol-
icy-makers, adaption strategists and the general public
to the erroneous belief that deterministic climate pro-
jections have a prognostic skill (Oreskes et al. 1994).

Regional climate change is usually quantified with
the ‘delta change method’ (Räisänen 2007): future pro-
jections are relative to the simulated climate in the
control period (Christensen et al. 2007). In this para-
digm, one completely remains in the model world and,
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strictly speaking, it is not necessary to validate the
downscaled control climate against observations.

Alternatively, projections are corrected by the error
of the downscaled control climate and then presented
relative to observed values in the reference period
(Imbert & Benestad 2005). However, if a control run
cannot reproduce key elements of the observed
regional climate, artificial feedback processes in the
corresponding scenario run amplify the error, leading
to unrealistic projections (Räisänen 2007). No kind of a
posteriori correction (Karl et al. 1990, Von Storch 1999,
Imbert & Benestad 2005) can account for this additional
error.

The number of GCM ensemble members used in
downscaling studies is mainly determined by the avail-
ability, inter-model comparability and quality of the
GCM (predictor) data.

On a monthly time scale, the Intergovernmental
Panel on Climate Change (IPCC) 4th Assessment
Report (AR4) GCM data (Christensen et al. 2007, Ran-
dall et al. 2007) is well organised and readily available
(PCMDI 2009a), thereby permitting SD studies based
on a large multi-model ensemble (Benestad 2005).
However, it is the frequency increase of extreme
events on a daily timescale which is most important for
impact studies and the corresponding adaption strate-
gies (Easterling et al. 2000).

Projections on a daily time scale are therefore
needed (Wilby et al. 2004). However, data harmony
between the different GCMs of the main climate-
research institutes cannot be assumed, although the
Coupled Model Intercomparison Project 5 (CMIP5)
(PCMDI 2009b) may offer improvement in this area.
Harmonising daily predictor data from different GCMs
for use in a multi-model ensemble is a time-consuming
process. This might explain why there are so few SD
studies based on such ensembles; to our knowledge,
only Timbal et al. (2003), Timbal & Jones (2008) and
Teutschbein et al. (2011) have used daily predictor
fields from a small multi-model ensemble.

On the other hand, the additional uncertainty intro-
duced by the various SD techniques seems to have
been  sufficiently investigated (see
Fowler et al. 2007 and references
therein) as it was the main subject of
the Statistical and Regional Dynami-
cal Downscaling of Extremes for
European Regions (STARDEX) pro-
ject (Goodess 2005).

In the present study, air tempera-
tures at the 850 hPa pressure level
and mean sea level pressure
(T850MSL) were taken as the optimal
predictor combination to downscale
local daily mean (Tmean), maximum

(Tmax) and minimum (Tmin) air temperatures at 2 m
height. This choice is based on a detailed predictor
screening using re-analysis data in the validation
period (optimal conditions). The corresponding results
were consistent with those of Timbal et al. (2003) and
therefore are not shown in the present article. For
downscaling of Tmin, accuracy is enhanced if humid-
ity predictors are added to temperature and circulation
predictors (Timbal et al. 2003). However, we assume
that humidity variables are not reliably reproduced by
the current GCM generation (Timbal et al. 2003,
Maraun et al. 2010), and therefore we did not use them
in the present study.

As for the SD technique, we applied the analogue
method (AN) (Lorenz 1969, Zorita et al. 1995, Zorita &
Von Storch 1999). Inspired by Wilby et al. (2004), our
study is outlined as follows.

In Section 2 the predictor and predictand data are
presented. Section 3 describes the downscaling method
and the validation measures. Section 4 presents the
results of a 3-step downscaling procedure (see Table 1).
In Section 4.1 (Step 1), we estimated the SD tech-
nique’s error by taking the predictors in the validation
period from re-analysis data (optimal conditions). In
Section 4.2 (Step 2), predictors in the validation period
were taken from control runs of an ensemble of AR4
GCMs (Solomon et al. 2007); the additional model
uncertainty was taken into account (Chen et al. 2006)
and thus downscaling conditions were suboptimal.
In Section 4.3 (Step 3), predictands were downscaled
from the ensembles’ scenario runs. In contrast to Wilby
et al. (2004), the resulting local climate projections are
presented relative to observations in the reference
period. No form of a posteriori corrections (Karl et al.
1990, Von Storch 1999, Imbert & Benestad 2005), either
of the predictors or of the downscaled series, was con-
ducted. Table 1 gives detailed information on the test
and validation periods used in the 3 downscaling steps.
Section 5 discusses the main re sults and Section 6 pro-
vides some concluding remarks.

The present study focused on the summer (JJA) and
autumn (SON) seasons in the NW Iberian Peninsula
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Downscaling Section Training period Validation and 
step projection period

1: Optimal 4.1 1 Sep 1972 to 31 Aug 1991 1 Sep 1992 to 31 Aug 2002
conditions Re-analysis data Re-analysis data

2: Suboptimal 4.2 1 Sep 1972 to 31 Aug 2002 1 Sep 1972 to 31 Aug 1999
conditions Re-analysis data GCM control-run data

3: Projections 4.3 1 Sep 1972 to 31 Aug 2002 1 Sep 2002 to 31 Aug 2050
Re-analysis data GCM scenario-run data

Table 1. The 3-step downscaling procedure followed in the present study. ‘Section’ 
refers to section of text in the present paper. GCM: global climate model
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(Galicia) (Lorenzo et al. 2008). The presented 3-step
method can be applied in any region where quality-
controlled long-term ob servations are available.

2.  DATA

Two classes of daily predictor data were used:
(1) The European Centre for Medium-Range Weather

Forecasts (ECMWF) 40-yr re-analysis data (ERA-40)
(Uppala et al. 2005), downloaded from the public
server of the ECMWF (2009a); and 

(2) GCM data from 5 control runs and 14 scenario
runs of 3 different GCMs. The models were taken from
the ENSEMBLES-stream 1 project (Niehörster et al.
2008) and are members of the AR4 multi-model ensem-
ble (Randall et al. 2007). Control-run data were used to
validate the AN under suboptimal conditions (Step 2),
while scenario-run data were used to generate climate
projections (Step 3). The GCMs were obtained from
the CERA database (http://cera-www.dkrz.de/CERA/)
and were post-processed on the supercomputer of the
Deutsche Klimarechenzentrum (http://cera-www.dkrz.
de/ CERA).

The Gaussian grids of the GCM data were regridded
on the regular ERA-40 2.5° grid using the bicubic inter-
polation technique (Jones 1999). To circumvent the
problem of different time aggregations in GCM and re-
analysis data, daily means were calculated for all pre-
dictor data. Furthermore, different variable names and
units were harmonised to correspond to the ECMWF
standard table 128 (ECMWF 2009b). The chosen do -
main (Fig. 1a) was kept constant throughout the work
and was assumed to capture the ‘skilful scale’ (Bene -
stad et al. 2008) of the 3 GCMs.

In the first step (Section 4.1), T850MSL predictor
data were taken from ERA-40 for both the validation
(1 Sep 1972 to 31 Aug 1991) and training (1 Sep 1992 to
31 Aug 2002) periods (Table 1); the AN was validated
under optimal conditions.

In the second step (Section 4.2), T850MSL predictor
data were taken from ERA-40 and from 5 control
runs of the GCM experiments listed under Step 2 in
Table 2. The ERA-40 data served as predictors in the
training period (1 Sep 1972 to 31 Aug 2002) while
the GCM data were used in the validation period
(1 Sep 1972–31 Aug 1999, control-run days). Thus, the
 conditions for validating the AN were suboptimal in
Step 2. As both the model uncertainties (3 different
GCMs) and initial-conditions uncertainties (3 runs of
the MPI-ECHAM5 GCM) were described by the 5 con-
trol runs, we hereinafter use the term ‘multi-model
multi-initial conditions ensemble’ (MMMICE) (Smith
2004) for this.

In the third step (Section 4.3), predictor data in the
projection period (1 Sep 2002 to 31 Aug 2050) came
from 14 scenario runs of the MMMICE, spanning the
Special Report on Emissions Scenarios (SRES) emis-
sion scenarios A1B, A2 and B1 (Nakicenovic & Swart
2000) (Step 3 in Table 2). Thus, in addition to model
and initial-conditions uncertainties, forcing un cer -
tainties were taken into account. The pre dictors used
in the training period are identical to those of Step 2.

As predictand data, daily Tmean, Tmax and Tmin at
9 synoptic stations of the Spanish and Galician meteo-
rological services (Agencia Estatal de Meteorología
and MeteoGalicia) were used, covering both the coastal
and more continental regions of the area under study
(Fig. 1b). These time series were quality-controlled
and homogenised as described in Cruz et al. (2009).
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Fig. 1. (a) Predictor domain and (b) area under study 
and meteorological stations used (crosses)
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3.  METHODS

3.1.  The analogue method

The analogue method, introduced to the atmospheric
sciences by Lorenz (1963, 1969), is a widely used SD
technique. As the efficiency of the AN decreases with
increasing dimensionality of the predictor fields (Van
den Dool 1994), Barnett & Preisendorfer (1978) applied
a principal components analysis (PCA; see Preisendor-
fer & Mobley 1988 for the application of PCA in meteo-
rology) to reduce the dimensions of the data. They then
defined the axes of the state space that the analogues
are searched in using k principal component vectors
(PCs) instead of v raw atmospheric variables. As k < v,
the dimensionality of the predictor data is drastically
reduced if the variable is spatially autocorrelated
(redundant). This procedure was followed by Zorita et
al. (1995), who generated precipitation scenarios for
the coastal USA, and by Cubasch et al. (1996), who
projected future temperature and precipitation scenar-
ios in southern Europe. Working in optimal conditions,
Zorita & Von Storch (1999) compared it with other
 linear and nonlinear SD techniques, and concluded:

‘It is found in these applications that the ana-
log method performs in general as well as
the more complicated methods, and can be
applied to both normally and nonnormally dis-
tributed local variables’ (Zorita & Von Storch
1999, p. 2474).

In this classical or in slightly modified forms, the AN
has recently been used in weather (Gutiérrez et al.
2004) and seasonal forecasting (Sordo et al. 2008). For
regional to local climate change studies, it is quite
appropriate (Timbal & McAvaney 2001, Timbal et al.
2003, Imbert & Benestad 2005, Frías et al. 2006, Timbal
& Jones 2008) as it reproduces the predictand’s mar-
ginal probability density function (PDF) fairly well, at
least in optimal conditions (Zorita & Von Storch 1999).

However, the classical version of the AN (Zorita &

Von Storch 1999) is not able to simulate record events
in a warming climate because the analogue search
is restricted to the target day’s season of the year
(restricted AN). To overcome this, Imbert & Benestad
(2005) suggested expanding the analogue search to all
seasons (unrestricted AN). Yet, this only partly solves
the problem, as no record heat events can be projected
in summer (Imbert & Benestad 2005).

Finally, if the autocorrelation and/or extreme value
distribution of the local predictand are downscaled, the
nearest-neighbour resampling method (Lall & Sharma
1996) yields better results than the AN (Brandsma &
Buishand 1998).

In the present study, the following variation of the
classical AN (Zorita & Von Storch 1999) was applied in
each of the 3 working steps.

First, an S-mode PCA (Huth 1996) was conducted
to reduce the dimensions of the predictor data. Let
Xtv be a matrix with t time steps and v predictor vari-
ables (v = number of atmospheric variables × number
of horizontal grid points × number of pressure or sur-
face levels). After standardising the predictor vari-
ables column by column, they were geographically
weighted by multiplying them with the absolute
value of the cosine of their corresponding latitude
(Benestad et al. 2008). On the basis of the resulting
matrix X ’tv, the covariance matrix KVV was calcu-
lated:

(1)

where X ’tvT is the transpose of X ’tv, and v – 1 is the spa-
tial degrees of freedom. This then serves to extract the
eigenvectors and eigenvalues by applying the singular
value decomposition algorithm (Wilks 2006, Press et al.
2007):

(2)
where Lvv is a square matrix with v × v dimensions and
in which columns = eigenvectors = empirical orthogo-

K
v

X Xvv tv
T

tv’ ’=
−
1

1

K L Rvv vv vv
T= Ω
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Step        GCM                                         Scenario (run)                       Acronym                                       Source

2                 MPI-ECHAM5                         Control (1, 2, 3)                     M1, M2, M3                                  Roeckner (2007a)
               CNRM-CM3                            Control (1)                             C1                                                  Royer (2006a)
               NERSC, bccr_bcm2                 Control (1)                             B1                                                   Drange (2006a)
3                 MPI-ECHAM5                         A1B (1, 2, 3)                           M1A1B, M2A1B, M3A1B             Roeckner (2007b)
                                                       A2 (1, 2, 3)                             M1A2, M2A2, M3A2                    Roeckner (2007c)
                                                       B1 (1, 2, 3)                             M1B1, M2B1, M3B1                     Roeckner (2007d)
               CNCM3                                    A1B (1)                                   C1A1B                                           Royer (2006b)
                                                       A2 (1)                                     C1A2                                             Royer (2006c)
                                                       B1 (1)                                     C1B1                                              Royer (2006d)
               NERSC, bccr_bcm2                 A1B (1)                                   B1A1B                                           Drange (2006b)
                                                       A2 (1)                                     B1A2                                              Drange (2006c)

Table 2. General circulation model (GCM) data used in the validation and projection period of Steps 2 and 3
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nal functions (EOFs); Ω is a diagonal matrix with w = v
eigenvalues in descending order; and Rvv

T is a trans-
posed square matrix with v × v dimensions. The projec-
tion of the EOFs in Lvv on the standardised and geo-
graphically weighted matrix X ’tv was achieved by the
following matrix multiplication:

(3)

where Ctk is a matrix with t time step, and k PCs. In
the resulting matrix Ctk, the PCs are ordered from
left to right in descending order of their explained
variance, which is calculated by di viding the corre-
sponding eigen values in (Eq. 2) by the number of
input atmospheric variables v. The k PCs yielding an
explained variance >99% were chosen to describe
the axes of the state space. They were weighted by
their eigenvalue as proposed by Imbert & Benestad
(2005).

In Fig. S1 in the Supplement (available at www.int-
res. com/  articles/ suppl/ c048p163_ supp.   pdf), the re sults
of the PCA for individual ERA-40 predictors (period:
1 Sep 1972 to 31 Aug 2002) are shown. The acronyms
follow Table 128 of ECMWF (2009b). Fig. S2 in the
supplement shows EOF 1 to 9 for the mean sea level
pressure (MSL).

To reproduce the dispersion of the local variable to
predict, only one predictand value per target day, cor-
responding to the nearest neighbour, was assumed.
The nearest neighbour is defined by minimising the
Euclidean  distance, which is commonly used in this
context (Ma tulla et al. 2008). It is important to mention
that least-squares validation measures like the correla-
tion coefficient can be improved by calculating the
(distance-weighted) mean of various neighbour values
(Timbal & McAvaney 2001), with the disadvantage of
underestimating the predictand’s dispersion. As sug-
gested by Imbert & Benestad (2005) the unrestricted
AN was applied.

In the first step (optimal conditions), Xtv consisted
entirely of ERA-40 data and was split into a training
period of 19 yr (1 Sep 1972 to 31 Aug 1991; Table 1)
and a validation period of 10 yr (1 Sep 1992 to 31 Aug
2002). As 2 predictor variables (T850MSL) entered
the PCA, the procedure can be called combined PCA
(Bretherton et al. 1992).

In the second step, a common PCA (Benestad 2002)
was applied: ERA-40 data constitutes the upper part of
Xtv (training period: 1 Sept 1972 to 31 Aug 2002) and
GCM control-run data its lower part (validation period:
1 Sep 1972 to 31 Aug 1999, control-run days; Table 2).
The control-run data were assumed to be independent,
as they do not covary with their re-analysis counter-
parts. Standardisation, weighting and PCA were con-
ducted on this ‘common’ matrix.

In the third step, the procedure of Step 2 was
repeated, with the difference that scenario-run data
was used instead of control-run data (Table 3). The
projection period extends from 1 Sep 2002 to 31 Aug
2050. Finally, a scenario period (SCE) was defined for
JJA 2020–2050 and SON 2020–2049, and the corre-
sponding downscaled temperature scenarios were
compared to observations in the reference period (REF:
JJA 1973–2002 and SON 1972–2001, respectively).

3.2.  Validation measures

To compare the cumulative distribution functions
(CDFs) of the observed and downscaled time series, the
reliability score described in Perkins et al. (2007) (which
we will call PRS) was calculated. For a perfect fit of both
CDFs, PRS equals 1, but is 0 in the case of no overlap.

In addition, we concentrated on certain ‘regions’ of
the CDF using the following validation measures rec-
ommended by the STARDEX project (Goodess 2005):
the bias (BIAS) and the difference between the fore-
casted and observed 10th and 90th percentiles (DPCT10
and DPCT90, respectively):

(4)

where n is the number of time steps (days); oi is the ith
value of the observations; and fi is the ith value of the
forecast. 

(5)

(6)

where PCT10f and PCT90f are the 10th and 90th per-
centiles of the forecast, respectively; and PCT10o and
PCT90o are the 10th and 90th percentiles of the obser-
vations, respectively. These validation measures are
usually given in °C, not taking into account that an

C X Ltk tv vv’=

BIAS = −
=

( )
1

1n
f o

i

n
i iΣ

DPCT PCT PCT10 10 10= −f o

DPCT PCT PCT90 90 90= −f o

Type Definition
Name of event

Daytime heat events
Warm days No. of days with Tmax > PCT90
Heat days No. of days with Tmax > PCT95
Extreme heat days No. of days with Tmax > PCT97.5

Night-time warm events
Mild nights No. of days with Tmin > PCT90
Warm nights No. of days with Tmin > PCT95
Extreme warm nights No. of days with Tmin > PCT97.5

Table 3. Definition of heat and warm events. The units for all
events are % of reference period (REF), with 0% meaning
no increase. Tmax and Tmin: daily maximum and minimum
air temperatures, respectively; PCT90, PCT95 and PCT97.5: 

90th, 95th and 97.5th percentiles, respectively

http://www.int-res.com/articles/suppl/c048p163_supp.pdf
http://www.int-res.com/articles/suppl/c048p163_supp.pdf
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error of 1°C is more important for a less dispersed time
series (e.g. summer Tmin at A Coruña) than for a more
dispersed one (e.g. autumn Tmax at Ourense). Here,
both the observed and downscaled time series were
divided by an outlier-resistant dispersion measure of
the observations before entering the validation: the
mean absolute deviation (MAD) from the median
(Press et al. 2007):

(7)

where n is the number of time steps (days); oi is the i th
value of the observations; and MEDo is the median of
the observations.This procedure permits a comparison
of the validation results for various sites, seasons and
predictands.

Further, the 2-sided t-test for significant bias, modi-
fied for serially correlated data (Wilks 2006), is shown
in binary format (see SIGTEST in Figs. 2 to 5 and
Fig. S3 in the supplement): it equals 1 if the bias is
 significant at the 0.1% level and 0 if the H0 hypothesis
of equal means cannot be rejected. The test statistic (z)
of this parametric hypothesis test is given by:

(8)

where μ is the mean of the theoretical Gaussian distri-
bution, and s2

d/n is the variance of the differences of n
paired values (= observation and forecast). For H0 (= no
significant bias), μ equals 0 in Eq. (8). The serial corre-
lation of daily temperature data artificially increases
the z-value, which leads to an erroneous acceptance of
the alternative hypothesis. Therefore the effective
sample size (n*) replaces n in Eq. (7):

(9)

where RLAG1 is the lag-1 (Wilks 2006) autocorrelation
coefficient. In Steps 1 and 2, error bars were calculated
by the  nonparametric bootstrap percentile method
(Efron &  Tibshirani 1993). Based on 1000 synthetic
pairs of observed and downscaled time series, the 95%
confidence interval of the validation measure’s H0 was
estimated (Wilks 2006).

In Step 3, the error bars represent the standard error
of n values of the respective statistical parameter.
These n values were calculated on n downscaled series
per station, predictand and season of the year. Here, n
is defined by the number of scenario runs, and is equal
to 14. As the definition of uncertainty intervals for cli-
mate change projections is subject to active scientific
debate (Stainforth et al. 2007), we do not want to intro-
duce an additional uncertainty source for defining these
uncertainties (Katz 2002). As a consequence, the boot-
strap percentile method was not applied in this step.

CDFs were calculated by nonparametric kernel den-

sity smoothing (Wilks 2006). Gaussian kernels were
assumed and the (modelled) cumulative probability
was calculated for a class width of 0.1°C, ranging from
the minimum to maximum value of the observed or
downscaled time series respectively.

4.  RESULTS

4.1.  Step 1: validation under optimal conditions

Fig. 2 shows PRS, BIAS, DPCT10, DPCT90 and SIG -
TEST for the summer values of Tmean, Tmax and
Tmin. On the x-axis, the equivalent of 1 MAD in °C is
given for each station.

As shown by the PRS scores being close to 1, the pre-
dictands’ CDFs are reproduced well by the AN, using
T850 and MSL as predictors (AN+T850MSL). Admit-
tedly, the downscaled series tend to significantly
underestimate the local mean temperatures. However,
this cold bias was only slight at most of the stations,
while the upper and lower percentiles were not repro-
duced significantly worse than the mean (compare
PCT10 and PCT90 with BIAS in Fig. 2). This confirms
that the probability of relatively rare heat/cold events
is reproduced well by AN+ T850MSL when conditions
are optimal. In addition, the accuracy (not shown) was
comparable to the restricted AN (Timbal & McAvaney
2001, Timbal et al. 2003).

In autumn, the reliability of the downscaled series
was slightly higher than in summer (Fig. S3 in the
 supplement), while in winter, comparable results were
yielded (not shown). Comparing spring to summer re-
sults, Tmean and Tmax were worse reproduced while
Tmin was more reliably downscaled (not shown).

4.2.  Step 2: validation under suboptimal conditions

In Step 2, we validated whether AN+T850MSL was
able to reproduce the CDFs of local daily observations
when predictor data in the validation period were
taken from GCM control runs (Step 2 in Table 2).
Figs. 3 to 5 and Figs. S4 & S5 in the supplement show
the combined error of the AN and the control run the
predictor data are taken from.

As the predictors were extracted from 5 control runs
(Table 2), 5 downscaled series were generated for
each station, season of the year and predictand (B1 =
NERSC, BCCR_BCM2 run 1, C1 = CNRM-CM3 run 1,
M1 to M3 = MPI-ECHAM5 run 1 to 3; Table 2). By sim-
ply joining these, a single multi-model sample (MM)
was created for each site, season and predictand.

First, it has to be pointed out that none of the individ-
ual downscaled series can robustly reproduce the local

z
s
n
d

= −BIAS μ
2

n n*
–=
+

1
1

R LAG1
R LAG1

MAD MED( )= −
=

1
1n

o
i

n
i oΣ
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observations for all predictands and stations in any
season of the year. With up to –1 MAD (–4°C), the bias
was most evident for Tmax in spring downscaled from
the NERSC, BCCR_BCM2 control run (not shown).

In contrast, calculating the CDF from MM yielded
a robust good fit for all predictands and stations in
summer and autumn.

This most important result is shown for the summer
season in A Coruña (maritime climate) and Ourense
(more continental climate) in Figs. 3 to 5.

The left panels of Figs. 3 to 5 show the observed
(OBS) and downscaled (B1, C1, M1, M2, M3, MM)
CDFs. The corresponding value of 1 MAD in °C is
given in the upper left of the subplots.

In the right-hand panels of Figs. 3 to 5, the validation
measures (y-axis) presented in Section 3.2 are shown
for the 5 single-model hindcasts (B1, C1, M1, M2, M3)
and the MM hindcast (x-axis). The corresponding re -
sults for Tmax at all stations are shown in Fig. S4 in the
Supplement. It is equally valid for Tmean and Tmin
(not shown). Autumn results were comparable and are
shown for Tmax in Fig. S5 in the supplement.

It has to be underlined that neither the predictor data
nor the downscaled series were corrected by bias
adjusting, variance inflation (Karl et al. 1990), ran-
domisation (Von Storch 1999) or any other kind of cor-
rection. The downscaled series therefore are consistent
with their corresponding GCM predictor data.

4.3.  Step 3: projections

In the last step of the present study, ensemble pro -
jections downscaled from the scenario runs of the
MMMICE (Table 2) were generated for summer and
autumn. CDFs of the scenario period (SCE: JJA 2021–
2050, SON 2020–2049) were compared to CDFs of the
observations in the reference period (REF: JJA 1973–
2002, SON 1972–2001). Again, neither the predictors
nor the downscaled projections were corrected (Trigo
& Palutikof 1999).

Like in Step 2, MM samples were generated for each
site, season and predictand by simply joining the 14
corresponding downscaled time series. Due to their
good fit in the control period (Section 4.2), climate-
change indicators calculated from MM were assumed
to provide the most credible projections.

Figs. 6 & 7 show the CDFs of the single downscaled
series and the MM samples for the summer Tmax at
a maritime site (A Coruña) and a continental site
(Ourense), respectively. The GCM acronyms used in
Section 4.2 are accompanied by their corresponding
SRES scenario (Nakicenovic & Swart 2000). To give an
example: ‘M3A1B’ refers to the third run of the MPI-
ECHAM5 driven by the A1B emission scenario.

The ensemble spread of the local projections was
clearly dominated by model uncertainties, rather than
by forcing or initial-conditions uncertainties (repre-
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sented by the 3 MPI-ECHAM5 runs), the latter 2
 having a similar magnitude (Figs. 6 & 7).

For Tmax (Figs. 6 & 7) and Tmean (not shown), rela-
tive warming was especially pronounced for rare
events (as defined by percentile thresholds), a result
that was less obvious for Tmin (not shown). Further-
more, for the summer Tmax at A Coruña, the relative
warming of all percentiles was less pronounced than in
Ourense (compare Figs. 6 & 7). This means that the
buffering effect of the sea surface’s heat capacity on
the relative warming at coastal sites, especially pro-
nounced for Tmax, is reproduced well.

One may ask why the CDFs of the downscaled series
based on the NERSC, BCCR_BCM2-scenario runs
(B1A1B and B1A2 in Figs. 6 & 7) were colder than the ob -
servations’ CDFs. This is because the large cold bias in
the control period (see green lines for B1 in Figs. 3 to 5
and Figs. S4 & S5 in the supplement) leads to projections
in the SCE that remain colder than the observations in the
REF.

More specific results for summer and autumn are
given in Fig. 8. Fig. 8a,b shows the mean relative
warming (MRW) for Tmean, Tmax and Tmin at each
of the 9 stations for both summer (Fig. 8a) and autumn
(Fig. 8b). Bars refer to the MRW calculated from MM,
and error bars to the standard error of 14 MRW values,
calculated from the 14 single downscaled series.

MRW was more pronounced in summer than in
autumn, highest for Tmax and lowest for Tmin. The
greater the warming, the larger was its corresponding
uncertainty interval.

The greatest MRWs and widest uncertainty intervals
were simulated for the summer Tmax. They ranged
from 0.7 ± 0.2°C to 1.8 ± 0.3°C, followed by Tmean
from 0.5 ± 0.1°C to 1.2° ± 0.2°C, and Tmin from 0.3 ±
0.1°C to 0.8 ± 0.2°C.

Autumn values ranged from 0.0 ± 0.1°C to 1.3 ± 0.2°C
for Tmax, from –0.1 ± 0.1°C to 0.8 ± 0.2°C for Tmean
and from –0.1 ± 0.1°C to 0.4 ± 0.1°C for Tmin. For both
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seasons the MRW for Tmax was greater at continental
(e.g. Oursense) than at maritime sites (e.g. A Coruña).
This tendency also can be seen for Tmean and, to a
lesser degree, for Tmin.

Fig. 8c,d illustrates the frequency increase of day-
time heat and Fig. 8e,f of night-time warm events,

respectively. A value of 0% refers to a zero frequency
increase. For the definitions of these rare events, see
Table 3.

The less frequent the event in the REF, the higher its
modelled frequency increase and the broader its
uncertainty interval in the SCE. This tendency was
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more pronounced for daytime than for night-time
heat/warm events (compare Fig. 8c,d to Fig. 8e,f),
leading to a tripling to quadrupling of the modelled
probability of extreme summer heat days accompanied
by a large modelled uncertainty (Fig. 8c,d).

Finally, Fig. 9 shows the MM estimates of the fre-
quency increase (z-axis) relative to the percentile
thresholds used to define extreme events in the REF
(y-axis, see Table 3) at the 9 stations under study (x-
axis) in summer. Up to the 90th percentile, the relation-
ship between the relative frequency of an extreme
event in the REF and its frequency increase in the SCE
was  linear. For the highest percentiles this relationship
changes to be exponential for daytime events (Fig. 9a)
while it remains linear for their night-time correspon-
dents at most of the stations (Fig. 9b).

5.  DISCUSSION

It may be argued that the success in reproducing the
observed percentiles is no proof of skill for the ana-
logue method, as the observed distribution function
would be equally met if the analogues had been
selected randomly (Cubasch et al. 1996).

This is certainly true under optimal conditions where
random number generators can be applied because
the shape of the distribution is known. Nevertheless,
under climate-change conditions, the predictand’s dis-
tribution cannot be assumed a priori (Schär et al. 2004),
and the unrestricted AN, used in the present study, has
the remarkable advantage to simulate the CDF consis-
tently with its GCM predictors. In addition, its accuracy
can be compared with the results of Timbal et al.
(2003), who used the restricted version of the AN.

On the other hand there are several problems yet to
be solved.

Primarily, the artificial positive skewness of the sum-
mer CDFs in the scenario period, produced by the fact
that the analogue search is restricted to the historical
record (Imbert & Benestad 2005), could not be resolved
in the present study. To handle this restriction, 2
 criteria are suggested.

First, the maximum upper and lower percentiles that
can be reliably reproduced under suboptimal condi-
tions are to be identified. In our case we would state
the upper threshold to be approximately at the 99th
percentile for each of the 3 predictands (see MM in
Figs. 3 to 5 and Figs. S4 & S5 in the supplement). This
threshold should not be exceeded when defining a
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Fig. 9. Relationship between relative frequency in the reference period (REF) (y-axis) and frequency increase in scenario period
(SCE) (z-axis) at all stations (x-axis) for (a) daytime heat events and (b) night-time warm events during summer (JJA). Tmax and 

Tmin: daily maximum and minimum air temperatures, respectively. Colours represent slope of surfaces
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warm/heat event in the reference climate (see Table 3)
and projecting its future frequency increase.

Second, the corresponding projections should be
consistent with the expected increase of the first and/or
second moments of the predictand’s PDF (Schär et al.
2004), i.e. the percentiles should increase exponen-
tially. In the present study, this criteria is approxi-
mately fulfilled up to the 99th percentile for Tmax
(Fig. 9a) and for Tmean (not shown). However, it is
missed for Tmin which may either be a shortcoming of
the AN, or result from in creased simulated (clear sky)
anticyclonic conditions, leading to a frequency in -
crease of extreme daily temperature amplitudes.

Furthermore, more studies have to be undertaken to
clearly separate the error of the SD technique under
optimal conditions (Error 1) from the error introduced
by the GCM control run (Error 2), both defining the
combined error (Error 3). In the worst case, Error 1 and
2 compensate each other, yielding an artificial non-
significant Error 3 (Huth 2004). In the present study,
the good fit yielded in summer and autumn under
 suboptimal conditions may well have been affected
by these compensation effects, which however were
 negligible, as Error 1 was acceptable.

One might further say that the good fit under subop-
timal conditions is just a question of chance, since we
chose a number of GCMs that yield reliable results in
at least some seasons of the year. This is true to a cer-
tain extent, but it raises some interesting ideas. Using
a larger multi-model ensemble and searching each
member’s optimal domain—which may differ from
 season to season (Wetterhall et al. 2005) and from pre-
dictor to predictor (Huth 2004)—it might be possible to
reliably reproduce the distributions of the predictands
in every season of the year. By optimising the domain
the GCM predictors are extracted from, it may be geo-
graphically displaced from the best domain under opti-
mal conditions. This is straightforward, as the regional
centres of action simulated by GCMs rarely exactly
coincide with the ones given by re-analysis data (Demu -
zere et al. 2009). It is therefore suggested to identify
this displacement by applying classification schemes
on both the re-analysis and GCM predictor data (Huth
2000) and to apply the AN on spatially differing domains
in the training and validation period.

Finally, using the standard error to define the mod-
elled uncertainty of future projections yields reason-
able results. Although this choice is admittedly some-
what subjective, it should be seen as an easy-to-use
option among several more sophisticated techniques
(Katz 2002). Estimating the uncertainty interval of
future climate projections is an issue of active scientific
debate (Katz 2002, Stainforth et al. 2007, Knutti et al.
2010), and, as no clear consensus exists, every approach
is necessarily subjective to a certain degree.

6.  CONCLUSIONS

In the NW Iberian Peninsula, CDFs of local daily
temperature variables can be reliably reconstructed by
the AN in summer and autumn when an ensemble of
control runs is downscaled and the resulting series are
combined. The corresponding projections therefore
neither have to be corrected nor given in relative terms
to the control period. Their uncertainty interval is dom-
inated by model errors, rather than by initial conditions
or forcing uncertainties.

Besides the mean relative summer warming ranging
from 0.7 ± 0.2°C to 1.8 ± 0.3°C for Tmax, a tripling to
quadrupling of extreme heat days is projected. The
 latter is accompanied by a large modelled uncertainty.

For down-scaling GCM data, 2 important paradigms
are highlighted:

(1) Harmonised daily GCM predictor data for a large
multi-model ensemble should be made available for
the downscaling community.

(2) Regional climate projections that ignore GCM
uncertainty should be treated with caution, particu-
larly if they refer to the probability of future extreme
events. This holds especially if their corresponding
control-run versions are not validated and/or the pro-
jections are given by the ‘delta method’, i.e. are pre-
sented relative to the control period.
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