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Abstract
The COST-731 action is focused on uncertainty propagation in hydrometeorological
forecasting chains. Goals and activities of the action Working Group 2 are presented.
Five foci for discussion and research have been identified: (1) understand uncertainties,
(2) exploring, designing and comparing methodologies for the use of uncertainty in
hydrological models, (3) providing feedback on sensitivity to data and forecast providers,
(4) transferring methodologies among the different communities involved and (5) setting
up test-beds and perform proof-of-concepts. Current examples of different perspectives on
uncertainty propagation are presented. Copyright  2010 Royal Meteorological Society
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1. Introduction

Operational flood forecasting systems rely on data
from observing systems to generate initial conditions
required for predicting discharge for some hours and
days in advance, depending on the lead time required
for different types of operational decision in relation
to the response time of a basin. For many flood
warning purposes in mesoscale to macroscale basins,
a flood forecasting system based only on observed
precipitation data might be all that is needed. In small
river basins, however, and for flash flood warnings,
this may not give sufficient lead time to be useful for
operational warnings so that some prediction of future
rainfalls will be required, either from the propagation
of weather radar rainfall estimates or from numerical
weather predictions (NWP). Other purposes might
also require the forecasting of future rainfall inflows
such as for decisions about moving to flood alert
status in larger basins (Thielen et al., 2009), long

lead time decisions about the employment of mobile
flood defenses or predictions of longer term (even
seasonal) hydrological responses for water resource
management.

In recent years many efforts have been undertaken in
order to improve both the quality of data from observ-
ing systems (discharge gauges, hydrometeorological
networks and weather radar) and in NWP. Despite
large improvements it is nowadays recognized that
many of the processes linked with the triggering of
(flash-)floods (local thunderstorms, generation of sur-
face runoff) suffer from low predictability (Collier,
2007; Pappenberger et al., 2009) and there is con-
sequently a serious need for quantifying predictive
uncertainty of the model involved (Pappenberger and
Beven, 2006; Beven, 2006, 2009; Todini and Manto-
van, 2007).

In meteorological sciences the problem of predic-
tive uncertainty has been addressed by developing
and implementing ensemble NWP systems (EPS) at

Copyright  2010 Royal Meteorological Society
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84 M. Zappa et al.

the global (ECMWF EPS, Molteni et al., 1996) and
regional scale (COSMO-LEPS, Marsigli et al., 2005).
There has also been some progress in the develop-
ment of both operational and experimental end-to-end
hydrological ensemble prediction systems (HEPS). A
recent review by Cloke and Pappenberger (2009) com-
piled a list of examples from numerous countries
of operational and nearly operational implementation
of HEPS. Such systems propagate the input uncer-
tainty as determined by applying global and limited-
area atmospheric ensemble prediction systems (LEPS)
through a hydrological model. This raises some inter-
esting issues about how such information should be
interpreted and communicated to end-users (Faulkner
et al., 2007; Bruen et al., 2009).

Concerning the uncertainty of observing systems,
there has been some recent experience in propagat-
ing observation-based precipitation ensembles through
hydrological models (e.g. Moulin et al., 2009). Sim-
ilar approaches are also emerging in the field of
weather radar quantitative precipitation estimation
(QPE). Recent progresses on coupling ensemble
weather radar QPE with hydrological models have
been proposed by Szturc et al. (2008b) and Germann
et al. (2009).

In hydrological modeling the estimation of model
uncertainty has emerged as one of the most prolific
research fields in recent years (in terms of number of
published papers on the topic). Since the presentation
of the ‘Generalized Likelihood Uncertainty Estima-
tion’ (GLUE) by Beven and Binley (1992) numerous
algorithms have been developed and adopted for esti-
mation uncertainty of environmental models in gen-
eral and of hydrological models in particular (Beven,
2006, 2009; Liu and Gupta, 2007; Matott et al., 2009;
Montanari et al., 2009). A transfer of these methods
for estimating uncertainty in observed precipitation
fields has been recently realized by Pappenberger et al.
(2009).

Working Group 2 of the COST-731 Action (Rossa
et al., 2009b; http://COST-731.bafg.de) deals with
the assessment and propagation of the three afore-
mentioned sources of uncertainty: uncertainty in
NWP, uncertainty in meteorological information from
observing platforms and uncertainty in hydrological
models. The next sections will present an overview on
goals and activities of COST-731 Working Group 2.
The text includes many acronyms, which are declared
in alphabetical order in Appendix.

2. COST-731 and Working Group 2

Individual efforts seldom lead to innovative ideas in
scientific research. This is the reason why the Euro-
pean Community offers different instruments in order
to promote cooperation in research. While European
framework program projects are meant to support tar-
geted research and development efforts, COST Actions
(http://www.cost.esf.org/about cost) are means to

focus and coordinate existing research efforts sup-
ported by national funding agencies. By means of
those actions scientists and students working in the
same research field are connected to each other and
can start collaborations. COST-731 is a network for
scientists dealing with the propagation of uncertainty
in end-to-end hydrometeorological forecasting chains
(Rossa et al., 2009b). Three working groups (WG)
deal with different aspects of this chain. WG-1 focuses
on the propagation of uncertainty from observing sys-
tems (e.g. radars) into NWP models (Rossa et al.,
2009a). WG-3 makes use of uncertainty information
for issuing warnings and improving decision making
(Bruen et al., 2009). This paper describes the activ-
ities of WG-2, which coordinates research efforts on
the propagation of uncertainty from observing systems
and NWP into hydrological models. Figure 1 shows a
simplified sketch of input and outputs in a hydrom-
eteorological forecasting chain needing to assess and
communicate uncertainty all along the path from the
observation to the issuing of warning for end-users.
Five main objectives have been defined when design-
ing WG-2:

1. Understand and evaluate the uncertainty associated
with different observed or forecast variables for
which different methodologies may be used;

2. Explore and design methodologies for the estima-
tion and propagation of uncertainty in hydrological
models and try to establish a standard methodology
or guidelines for good practice to be a reference in
the future;

3. Explore and design methodologies for assessing
the hydrological impact of the different sources of
observation and forecast uncertainty in order to give
a feedback to the data providers;

4. Explore the transfer of verification methodologies
commonly used in meteorology for hydrological
purposes;

Figure 1. The COST-731 WG2 position on uncertainty
propagation of observed (blue arrows) and forecasted (red
arrows) meteorological and hydrological (black arrows)
information in operational forecasting chains. This figure was
drawn after a discussion round at the COST-731 mid-term
seminar in Bologna (June 2008).

Copyright  2010 Royal Meteorological Society Atmos. Sci. Let. 11: 83–91 (2010)
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COST-731 WG2 – Uncertainty Propagation 85

5. Set up a European test-bed in which to run a
demonstration project as a proof-of-concept to the
hydrological community, not yet used to dealing
with uncertainties in operational forecasting chains.
Examples of test-beds are presented in Bruen et al.
(2009).

3. Selected ongoing discussion
and applications

3.1. QPE/QPF uncertainties and verification

An underlying uncertainty is inherent in all observing
systems and instruments of meteorological variables.
This is possibly most pronounced in the precipitation
observations. There are many sources of error in
the estimation of rainfall volumes and intensities for
both the tipping bucket rain gauge (Sevruk, 1996)
and weather radar (Germann et al., 2006; Villarini
and Krajewski, 2008). The reduction of such errors
would make weather radar QPE much more appealing
for hydrology in the future (Collier, 2009a; Germann
et al., 2009). Thus, ideas are needed to quantify the
uncertainty in radar QPE.

A contribution from Poland to COST-731 is the
concept of the quality index (QI ) as a measure of
data quality to characterise the weather radar data
quality quantitatively, e.g. using numbers in range
from zero (bad data) to one or one hundred (excellent
data). The index is computed from a set of selected
individual quality factors that are estimated in real
time. Operationally the QI is calculated for surface
precipitation estimates since this is the radar-based
data most often required by hydrologists (Szturc et al.,
2009). QI is calculated in real-time mode in following
COST-731 member countries: Germany (Friedrich
et al., 2006), Poland (Szturc et al., 2008a), France
(Tabary et al., 2007) and in the Emilia-Romagna
region (Italy). Further ideas on assessing the quality of
weather radar information for hydrological application
are presented by Collier (2009b).

A number of different contributors to the COST-731
project are working on the estimation of uncertainty
and verification issues for NWP QPF at the scale of
mesoscale to macroscale river basins (Casati et al.,
2008; Ebert et al., 2008; Wernli et al., 2008). A team
from the Czech Republic focuses its research on
the use of weather radar QPE for the deterministic
and probabilistic verification of NPW QPF in case
of convective rainfall events (Rezacova et al., 2009;
Zacharov et al., 2009).

A team from Belgium has investigated the merging
of precipitation data from weather radar and from
spaceborne microwave cross-track scanners using the
scale-recursive estimation (SRE) methodology (Van de
Vyver and Roulin, 2009) allowing the assimilation of
noisy measurements at different spatial scales.

New, innovative object or feature-based forecast
verification techniques have proven to be useful tools
in identifying QPE/QPF uncertainties. Techniques like

the Contiguous Rain Area (CRA) and the Struc-
ture–Amplitude–Location (SAL) (Wernli et al., 2008)
have been utilized to evaluate the effects of the obser-
vation data source on the eventual quality of QPF.
Radar-derived quantitative QPE and the more conven-
tional rain gauge data have been the main source of
information applied as the ‘observed truth’, focusing
on rainfall forecasts within hydrological basins. This
kind of analysis is, moreover, valuable in address-
ing the overall quality of different forecast mod-
els within the meteorological–hydrological forecast
chain. Such studies are also beneficial in the choice of
proper forecast verification measures for given fore-
cast applications. As part of its efforts in COST-
731 the Finnish Meteorological Institute is imple-
menting the novel object-based verification measure
SAL for hydrological applications. The procedure has
been adapted for the verification of NWP QPF in
river basins in Finland (Nurmi and Nasman, 2009;
http://www.ecmwf.int/products/greenbook/2008/GB
2008 Finland.pdf). So far, SAL has been only applied
for large river basins (>40 000 km2). The ultimate
goal is to provide a measure of forecast quality for
small-scale river basins.

3.2. Weather radar ensembles for hydrology

When COST-731 started in 2005 there were no
established techniques for estimating uncertainty in
weather radar QPE and no probabilistic weather radar
product was operational in Europe. Four years later at
least three of the WG2 contributors have implemented
and published new methods for the application of
ensemble radar QPE in hydrology.

The first approach, not working in real-time mode
yet, implements the above introduced ‘QI ’ as a
radar QPE/QPF uncertainty metric. Having a QI map
attached to radar-based precipitation data, the next
step is to express precipitation field in a probabilistic
manner with uncertainty resulting from the QI. The
precipitation uncertainty is estimated by applying a
probability density function (PDF) that is a function
of the QI value (Szturc et al., 2008b). The PDF
parameters must be estimated in each time step for
all pixels of radar-based data which are treated as
independent. These parameters are obtained from radar
deterministic measurement and the QI information.
Percentiles of the PDFs can be considered as a
probabilistic set of rainfall fields. A proof-of-concept
of this procedure including propagation through a
hydrological model is presented in detail by Szturc
et al. (2008b) and shown in Figure 2.

Germann et al. (2009) from Switzerland presented
an operationally running prototype, an ensemble gen-
erator for radar precipitation estimation called REAL
(Figure 3). REAL uses the operational MeteoSwiss
radar precipitation fields (Germann et al., 2006) as a
deterministic component. Perturbations for the radar
ensemble are generated by means of singular value
decomposition of the full radar error covariance matrix

Copyright  2010 Royal Meteorological Society Atmos. Sci. Let. 11: 83–91 (2010)
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86 M. Zappa et al.

Figure 2. Hydrological ensemble nowcasting as described by Szturc et al. (2008b, modified) starting on 7 August 2006 for the
Mała Wisła River basin in Poland (297 km2). Different percentiles of ensemble of hydrographs generated are shown with different
gray. The median of the obtained ensemble is shown as thin light gray line. The observed discharge is plotted as thick black line.

Figure 3. Operational hydrological ensemble nowcasting with REAL and PREVAH (Germann et al., 2009), starting on 12 July 2009
for the Pincascia basin in Southern Switzerland (44.4 km2). The 25 members from REAL (light gray) are shown with corresponding
interquartile range (REAL IQR, red area) and the median (red line). Additionally, two deterministic runs are shown: deterministic
radar QPE (yellow line) and forcing with interpolated pluviometer data (green line). The observed runoff is shown in blue. Spatially
interpolated observed precipitation as ensemble precipitation from the REAL members (orange whisker-plots).

as obtained by comparing the deterministic weather
radar QPE with a dense network of rain gauges.
Twenty-five members are generated at an hourly time
step and used for ensemble runoff nowcasting by forc-
ing the semi-distributed hydrological model PREVAH
(Viviroli et al., 2009).

The third approach for estimating weather radar
ensembles has been developed in Spain (Llort et al.,
2008; Figure 4). Their approach relies on the genera-
tion of a best estimate of the rain fields by blending the
weather radar QPE with rainfall fields obtained from
quality checked rain gauge records using external drift
Kriging (Llort et al., 2008). This best guess is used

for estimating the error structure (including bias, ran-
dom variability and spatial correlation) of the weather
radar QPE. Finally the errors structures are sampled
to generate perturbation fields to be added to the orig-
inal radar QPE. Several equally probable perturbation
fields are generated and used as the forcing input data
for hydrological simulations using the fully distributed
model WBrM model (Schröter et al., 2009).

3.3. Observation-based ensembles for hydrology

When dealing with observational estimates of rainfall,
the rainfall gauge observation error is not the only

Copyright  2010 Royal Meteorological Society Atmos. Sci. Let. 11: 83–91 (2010)
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COST-731 WG2 – Uncertainty Propagation 87

Figure 4. Hydrological ensemble nowcasting as described by Schröter et al. (2009) starting on 8 October 2002 for the Besòs river
basin in Spain (1020 km2). Qens-max-min shows the maximum and minimum range of ensemble hydrographs. The 5% (Qensq05),
50% (Qensq50) and 95% (Qensq95) percentiles of the ensemble hydrographs obtained using an ensemble of precipitation fields
are also plotted. Q-QPEBm is the simulated hydrograph using the benchmark precipitation field (radar observations blended with
rain gauges using external drift Kriging) as forcing, while Q-QPErad is the simulated hydrograph using the radar rainfall field as
forcing.

source of uncertainty. The spatial interpolation of
the available (real time) point observations is also
an important source of uncertainty. Ahrens and Jaun
(2007) designed a verification technique for ensemble
NWP QPF based on a comparison with a synthetic
observation-based precipitation ensemble reference.
This observational reference is generated by applying
ordinary Kriging as a deterministic reference. For the
generation of ensemble precipitation fields a stochastic
simulation technique is adopted. The procedure was
tested for estimating the quality of COSMO-LEPS
rainfall forecasts on Switzerland in 2005.

Moulin et al. (2009) go a step further: they pro-
pose a technique for computing ensemble precipitation
information by generating an error model for rain-
fall estimation. To achieve this result, they combine
an interpolation technique based on ordinary Krig-
ing and Monte Carlo sampling of error fields. Finally
they propagate the obtained ensemble through a rain-
fall–runoff model and estimate the spread of the
obtained ensemble discharge simulations for an upper
Loire river basin (France). The lead author of this last
study was invited to give a talk for the WG-2 members
during the 2009 HEPEX Workshop in Toulouse.

3.4. Downscaling of precipitation fields

When precipitation forecasts from meteorological EPS
are available, efforts should conduct to propagate
its PDF through hydrological models. This is more
appropriate than using deterministic forecasts based
on some form of aggregation of the members of the
meteorological EPS because the response of a river
basin to precipitation events is not linearly related
to the intensity of the events, but strongly depends
on topography and dimensions of the river basin, on
the antecedent wetness prior to an event and on the
time and space characteristics of the event itself. The
same is true for perturbations (uncertainties) in the
(forecast) precipitation in that any perturbations will be
damped if they are integrated over space and/or time

scales that are larger than the characteristic scales of
the perturbations. Some basins show high sensitivity
to a limited range of scales that may be present in
the perturbations and resonance-like behavior may be
observed.

3.5. Ensemble NWP for medium-range
hydrological forecasts

We pointed out in the introduction that the propagation
of atmospheric EPS through hydrological models is a
research field that has seen a lot of recent research
activity, as thoroughly summarized by Cloke and
Pappenberger (2009).

COST-731 WG-2 also contributes to this research
area. Thirel et al. (2008) present an ensemble stream-
flow prediction system that has been built using data
from both the ECMWF EPS and the French short
time ensemble prediction product PEARP. The sys-
tem adopts the French hydrometeorological SAFRAN-
ISBA-MODCOU chain for the hydrological model
component. In a first step, a post-processing of the
meteorological ensemble has been calibrated, and then
the atmospheric EPS have been used to feed the
hydrometeorological model. The impact of the input
from the EPS systems on discharge prediction has
been assessed by adopting probabilistic measures of
skill (Laio and Tamea, 2007). The short-term forecast
performance for small basins was better when using
PEARP, while the ECMWF EPS results were better
for large scale basins.

A system based on the ECMWF EPS and the
SCHEME hydrological model has been evaluated for
two test basins in Belgium using the Brier Skill
Score (Roulin and Vannitsem, 2005) and the Relative
Economic Value (Roulin, 2007, and presented at
the join COST-731 – NetFAM Workshop, in Vilnius,
Lithuania). This system was made operational and
then extended to the basins of the Meuse and Scheldt
in Belgium and France (Van den Bergh and Roulin,
2009).

Copyright  2010 Royal Meteorological Society Atmos. Sci. Let. 11: 83–91 (2010)
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88 M. Zappa et al.

The European hydrometeorological test-bed MAP
D-PHASE was the starting point for many opera-
tional implementations of HEPS. In Switzerland the
experimental HEPS system described in Jaun et al.
(2008) has been put into operational use (Zappa et al.,
2008). In parallel the Swiss Federal Office for Environ-
ment first adopted their operational ensemble modeling
framework. Thus, two distinct forecasting chains with
a complete time series between 1 June 2007 and 30
November 2008 are available for more than 20 basins,
some of them shared by the two systems. A sys-
tematic verification is still ongoing and is addressing
the challenging task of applying meteorological veri-
fication measures for evaluating hydrological ensem-
bles (Cloke and Pappenberger, 2008; Demargne et al.,
2009; Jaun and Ahrens, 2009).

3.6. Ensemble seasonal hydrological forecasts

There are only very few contributions dealing with
seasonal hydrological forecasts in the scientific litera-
ture (Wood et al., 2002). Operational applications are
slowly emerging but are still far from being estab-
lished. There is a large gap between the number
of studies of medium-range flood forecasting (up to
10 days lead time) and the number of seasonal hydro-
logical forecasting system for water resources man-
agement. This low popularity of seasonal hydrological
forecasts is not owed to disinterest ‘a priori ’ by the
community. Seasonal forecasts suffer from the scarce
predictability of precipitation patterns and intensities.
Anyway, two currently running systems have been
implemented by WG-2 contributors and are briefly
defined here.

The same SAFRAN-ISBA-MODCOU chain used
for medium-range forecasts over France has been
applied using the DEMETER database of ensemble
seasonal forecasts (Céron et al., 2009). In a first
test focused on the spring period, the initial state
of the hydrological model was extracted from the
chain forced by observations in mid-February and
ran 3 months with seasonal forecasts. The scores on
snow cover, soil wetness index and discharges showed
an improvement when compared to the scores for
meteorological variables alone (e.g. precipitations),
showing that there is an added value of using of
hydrological models in seasonal forecast applications.

The Finnish Environment Institute makes opera-
tional use of monthly and seasonal lake inflow fore-
casts in large lake rich watersheds with long delays in
Finland. Combined monthly and seasonal meteorolog-
ical EPS forecasts from ECMWF have been verified as
inputs for lake inflow forecasting in some Finnish river
basins since 2007. Weather forecasts with lead times
of 30 and 100 days are available from ECMWF. Win-
ter 2008–2009 was warm and wet in southern Finland.
The inflow forecasts for Lake Saimaa (4300 km2) at
Vuoksi basin (61 000 km2) based on monthly and sea-
sonal weather EPS forecasts from ECMWF were better

than climatology based inflow forecasts. Also dur-
ing autumn 2008 the combined monthly and seasonal
precipitation forecasts were better than climatological
precipitation as ‘forecast’ giving better inflow forecast
to Lake Saimaa as well. After the positive experience
during these test periods, the monthly weather EPS
from ECMWF have been taken into operational use
for lake management in Finland. The coming years
will show if a successful operation of such forecasts
is possible even if the predictability of precipitation at
the seasonal time scale is poor.

3.7. Use the adjoint method in hydrology

Too often forecasts from the flood modeling chain are
used without any concern for their uncertainty and/or
their sensitivity to perturbations in inputs (e.g. data
quality issues) or to fitted parameter values. Proper
use of numerical model outputs requires this type of
assessment, but the techniques available are limited.
Monte Carlo simulation is computationally expen-
sive for complex models so alternative techniques
are sought to address this need. Variational methods
using the model adjoint show promise for this purpose
as they allow the tracking of influences backwards
through the model (Penenko et al., 2002). However,
although the technique is used in the meteorologi-
cal and oceanography domain (Moore 1991; Rabier
et al., 1996), very little work has been done in the
physical infrastructure environmental/water or hydro-
logical/floods areas, although it has potential, e.g. for
the sensitivity analysis of distributed catchment mod-
els (Castaings et al., 2009) or of pipe network models
(Liggett and Chen, 1994), and for estuary management
applications (Sanders and Piasecki, 2002) and effluent
control (Piasecki, 2003).

The adjoint method provides a useful way of calcu-
lating the local sensitivity of a model (Errico, 1997).
Effectively, it provides a local linearized inverse
model, that can (1) show the sensitivity of some use-
ful property, possibly an objective function as used
in optimization, of the model’s output to variations in
inputs or parameters and (2) provide gradient informa-
tion for use in optimizing model fit (White et al., 2003;
Belanger and Vincent, 2005) or backward-in-time
model runs (Neupauer and Wilson, 1999; Penenko
et al., 2002). It is an alternative to the forward calcu-
lation of partial derivatives, and is particularly useful
and computationally efficient for spatially distributed
models. The power of adjoint methods lies in that
a single (backward) integration of the adjoint model
yields all spatial and temporal sensitivities. The main
difficulty consists in the differentiation and transposi-
tion of complex operators. Although, for simple mod-
els, the adjoint equations can be derived analytically
using variational methods (Sun and Yeh, 1990), for
more complex models computer codes for numerical
differentiation are available for the automatic calcula-
tion of the required relationships.

Copyright  2010 Royal Meteorological Society Atmos. Sci. Let. 11: 83–91 (2010)
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COST-731 WG2 – Uncertainty Propagation 89

Other methods based on multiple forward runs are
easier to implement and take proper account of model
nonlinearities but at the expense of requiring more
computational resources. In COST-731, the focus is
primarily on determining the sensitivity of flood fore-
casts derived from linked meteorological and hydro-
logical models to variations in inputs and/or parame-
ters of both models. A presentation on Castaings et al.
(2009) achievements during a COST-731 meeting in
Koblenz (Germany) provided very enriching informa-
tion for all contributors of WG-2.

4. Summary and outlook

This paper summarized some of the current research
efforts and topics that Working Group 2 of COST-731
is addressing since the start of the Action in 2005.
Concerning the WG-2 topics we observe that the con-
tributors are active in many branches of a common
research filed. There is common wish and effort of
toward improving knowledge on uncertainties in oper-
ational hydrometeorological forecasting chains.

So far, most examples consider only one member of
the uncertainty chain (Figure 1). In the future test-beds
are needed in order to evaluate how different sources
of uncertainty can ‘interact’ and superpose. First exam-
ples in this direction are found in Pappenberger et al.
(2005) and Zappa et al. (2009).

Many of the presented examples are also a result
of short-term scientific missions completed by a sci-
entist and PhD students of one research group in the
research unit of a second member of COST-731 WG2.
COST confirms being a valuable platform for real-
izing scientific exchange within Europe. Since few
years also Australia, New Zealand and other countries
have agreements with the COST administration and
can regularly send scientist in Europe for starting col-
laborations. With one more year left in the schedule of
COST-731 it has been observed that numerous collab-
orations have been starting between participants. This
led among others to the successful acquisition of joint
projects in calls of the Seventh Framework Program.
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A. Appendix: Abbreviations in Alphabetical
Order

COSMO: Consortium for Small-scale Modeling

COST: European Cooperation in Science and Tech-
nology

CRA: Contiguous Rain Area (verification method)
DEMETER: Development of a European Multimodel

Ensemble system for seasonal to inTERannual
prediction

D-PHASE: Demonstration of Probabilistic Hydrologi-
cal and Atmospheric Simulation of flood Events in
the Alpine region

ECMWF: European Centre for Medium-Range
Weather Forecasts

EPS: Ensemble Prediction System
GLUE: Generalized Likelihood Uncertainty Estima-

tion
HEPEX: The Hydrologic Ensemble Prediction

Experiment (http://hydis8.eng.uci.edu/hepex/)
HEPS: Hydrological Ensemble Prediction System
ISBA: Interactions Soil–Biosphere–Atmosphere

Model
LEPS: Limited-Area Ensemble Prediction System
MAP: Mesoscale Alpine Programme (http://www.

map.meteoswiss.ch/)
MODCOU: Coupled Model
NWP: Numerical weather prediction model
PDF: Probability Density Function
PEARP: Prévision Ensemble ARPEGE
PREVAH: PREecipitation-Runoff-EVApotrans-

piration HRU Model
QI: Quality Index
QPE/QPF: quantitative precipitation estimation/ pre-

diction
REAL: Radar Ensemble generator designed for usage

in the Alps using LU decomposition
SAFRAN: meteorological analysis system
SAL: Structure-Amplitude-Location (verification

method)
SCHEME: SCHEldt and MEuse semi-distributed

hydrological model
SRE: Scale-Recursive Estimation (data assimilation

method)
WBrM: Water Balance raster Model
WG: Working Group
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