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Using the Minkowski relativistic 4-vector formalism, based on Einstein’s equation, and the relativistic thermodynamics
asynchronous formulation (Grøn (1973)), the isothermal compression of an ideal gas is analyzed, considering an electromagnetic
origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen
(1969)) and Hamity (Hamity (1969)). In this relativistic framework Mechanics and Thermodynamics merge in the first law
of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ = Wμ + Qμ, in Lorentz covariant formulation,
which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical
physics.

1. Introduction

During the 1960s and 1970s many physicists devoted con-
siderable effort to finding the most adequate relativistic for-
mulation of thermodynamics [1]. Yuen’s 1970 paper [2]
presents the state of the art on relativistic thermodynamics
at this time. After the work by Van Kampen [3] and Hamity
[4] introducing 4 vectors in thermodynamics and the clearly
stated asynchronous formulation by Gamba [5], Cavalleri
and Salgarelli [6], and Grøn [7] a consensual relativistic
thermodynamics formalism should have been achieved.
However, no agreement on the correct Relativistic thermo-
dynamics was reached [8] ([9], pp. 303–305). Until recently,
papers on this topic have been published [10], mainly on
relativistic transformation of temperature [11, 12].

Let Z be a composite body, which moves, in a reference
frame S, under the action of k external (conservative and
nonconservative) forces Fk = (Fxk,Fyk,Fzk), simultaneously
applied during time interval dt, with resultant force F =
(
∑

k Fk) = (Fx, Fy , Fz), impulse I = F dt, with nonzero
work δWext /= 0 (only conservative forces perform work)
and that experiences a certain thermodynamic process, with
internal energy variation dU /= 0 and heat δQ /= 0. In classical

physics, the complete description of this process, expressed
in Galilean covariant form, is given by [13]: (i) a vectorial
equation (linear momentum-impulse equation) dp = I:

⎧
⎪⎨

⎪⎩

dpx
dpy
dpz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

k

Fxkdt
∑

k

Fykdt
∑

k

Fzkdt

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(1)

and (ii) a scalar equation (first law of thermodynamics or
energy equation) [14]:

dKcm + dU = δWext + δQ. (2)

From (1) the following equation can be obtained:

dKcm = F · dxcm, (3)

or the center of mass equation [15], where dxcm is the
displacement of the center of mass (cm) of Z and dKcm is
its kinetic energy variation throughout the process.



2 Physics Research International

For an observer in frame SA in standard configuration
with respect to frame S, with velocity V = (V , 0, 0)
(Appendix A), it has the corresponding equations

dKcmA = F · dxcmA,

dKcmA + dU = δWextA + δQ,
(4)

where the corresponding magnitudes are measured in SA, the
mass, force, interval of time, impulse I, linear momentum
variation dp, internal energy dU , and heat δQ are Galilean
invariants, and magnitude velocity vA = v−V , displacement
dxcm = dxcmA − Vdt, kinetic energy dKcmA = dKcm − Vdp,
and work δWextA = δWext − VI, have their specific Galilean
transformation [16].

It is interesting to note that when forces applied to Z
have an electromagnetic origin, with some force Fk obtained
from “Lorentz force” equation Fk = q(E + v × B) (q
electric charge, E electric field, and B magnetic field), the
whole formalism is neither covariant under Galilean trans-
formations (Lorentz force is not Galilean covariant [17]) nor
covariant under Lorentz transformations (the previous ther-
modynamics formalism is not Lorentz covariant), in con-
tradiction with Einstein’s principle of inertia.

After these considerations about Galilean relativis-
tic thermodynamics, not compatible with electromagnetic
interactions, it seems necessary to obtain a formalism for
the first law of thermodynamics expressed according to the
principles of the special theory of relativity, that is, Lor-
entzian relativistic thermodynamics, compatible with elec-
tromagnetic interactions. As a result of this, it will be possible
to obtain a Lorentz covariant formalism for exercises in
classical physics that include concepts of mechanics, ther-
modynamics, and electromagnetism.

A modern view of a relativistic thermodynamics theory
requires a clear definition of (i) the tensorial objects which
characterize the equilibrium state of the system and of
(ii) any tensorial object that characterizes the interaction
of the system with its mechanical (work reservoir ([18],
Chap. 3)) and thermal (heat reservoir ([18], pp. 89-90))
surroundings, with a prescription of the apparatus which
measures it. The observables will depend, in general, on
the physical system and on the observer (Appendix A), but
the principle of relativity ensures that all inertial observers
obtain equivalent descriptions of the same process. So,
any relativistic formalism developed to describe a physical
process must be according to this principle, that is, it must be
Lorentz covariant. This is the course chosen in this paper, in
which we solve an exercise on the isothermal (nonquasistatic)
compression of an ideal gas in the reference frame S0 in
which the system is at rest and in a frame SA, in standard
configuration to S0 (Appendix A), using the Minkowski 4-
vectors—related through Lorentz transformations [19]—
and a Lorentz covariant form for the first law of thermody-
namics.

The paper is arranged as follows. In Section 2 the
formalism, based on the principle of the inertia of energy
(Einstein’s equation) and on the asynchronous formulation,
is developed. After that, in Section 2.3 the principle of simil-
itude is enunciated, expressing the conditions under which

the same equations can be used for an elementary particle
and for a composite system. Section 3 presents the 4-vector
energy function Uμ for different systems. The asynchronous
formulation of 4-vector work Wμ is obtained in Section 4.
In Section 5 thermal radiation 4-vector (heat) Qμ, based
on photons, is introduced. In Section 6 the mathematical
formulation of the relativistic thermodynamics first law
is presented in Lorentz covariant form. In Section 7 the
isothermal compression, by two pistons, of an ideal gas is
solved by using the previously developed formalism in both
frames S0, zero momentum frame, and SA, in standard con-
figuration respect S0. Forces on pistons are described using
an electromagnetic interaction, in its relativistic Lorentz
covariant form. Finally, Section 8 proposes some conclusions
regarding the possibility of solving exercises in classical
physics in a complete Lorentz covariant form. Although we
assume that the reader is familiar with the Minkowski 4-
vector formalism, in Appendix A a brief review on 4-vectors
and Lorentz transformation algebra is provided introducing
the “metric tensor” gνμ and the “Lorentz transformation”
L
μ
ν(V) used in the paper [20].

2. Relativistic Thermodynamics Formalism

Relativistic thermodynamics formalism is developed in two
steps: (i) Einstein’s equation E0 = mc2, expressed as the
principle of the inertia of energy, which allows us to obtain
energy function U and the 4-vector energy function Uμ for
a given system; (ii) the asynchronous formulation, that will
allow us to obtain the work W performed by forces acting
on a system and the 4-vector work Wμ. As a consequence,
the principle of similitude can be formulated, according to
which, and under very general circumstances, a composite
system behaves as a whole in its interactions with its
surroundings and equations for an elementary particle can
be used with a composite, deformable system.

2.1. Inertia of Energy. It could be considered, in a broad
sense, that the main goal of relativistic thermodynamics is to
reach a unified description on point dynamics and extended-
body dynamics [13].

In order to ensure that an extended body behaves
like a “single particle” interacting with its surroundings—
work reservoirs or thermal bath—and so that it is phys-
ically meaningful to use Lorentz transformations, it is
necessary that all forms of energy that make up the body
contribute in the same way to its inertia [21]. These
forms of energy must include those related with the mass
of its constituent elementary particles, binding—nuclear,
chemical, and so forth—energies (Figure 1), internal kinetic
energy (see Section 7.1.1), electrostatic energy [22], and so
forth, and energy of thermal radiation in equilibrium with
matter inside the system [23] (see Section 5).

Einstein’s Equation E0 = mc2 for an extended body can
be interpreted by relating its inertia—a body’s reluctance
to undergo a change in velocity [24]—with energy function
[25]—energy content of the physical system or internal
energy [26].
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Figure 1: An atom (A)—self-contained structure—is obtained
from a nucleus (N), previously assembled from protons (p) and
neutrons (n), and an ensemble of electrons (e). Nucleus inertia
MN = UNc−2 decreases respect the inertia of its elementary particle
components UN = 6mp + 4mn, due to the energy UN − UN =
−ŨN = −8hν′ released in its formation. Atom inertia MA = UAc−2

decreases with respect to the inertia of its component nucleus and
electrons UA = 6me + MN due to the energy UA −UA = −ŨA =
−8hν released in its formation.

Principle of the Inertia of Energy. for an extended body in
complete equilibrium, any kind of energy inside the system,
relativistically expressed in reference frame S0 in which the
system as a whole is at rest, contributes to the energy function
U of the system [27]. Considering that all forms of energy are
convertible between them [28] the inertia M of a system [29]
in equilibrium is ([30], p. 163)

M = Uc−2 . (5)

According to Einstein [31, 32] the inertia of a body changes
with its content of energy [33] (Section 3).

It is possible to define the inertia M of a body (we
prefer the term inertia, instead of mass [34], to avoid
confusions when the system includes photons (Section 5)) as
[35]: the inertia M of a composite body equals the sum of its
elementary particles mass (protons, neutrons, and electrons)
m0:

m0 =
∑

j

mp +
∑

k

mn +
∑

l

me, (6)

with energy U = m0c2, minus the minimum energy Ũ , di-
vided by c2, necessary to separate its elementary particles so
that they are far apart (Section 7.1.1):

M =
(
U− Ũ

)
c−2 = m0 − Ũc−2 , (7)

with U =U− Ũ .

2.2. Asynchronous Formulation. For an extended, deformable
body a relativistic theory cannot be directly formulated in
an arbitrary inertial frame. It must be based on known
prerelativistic descriptions. On the one hand, it seems nec-
essary to maintain the classical concept that the resultant
force on the body must be zero (zero total impulse) when
the motion remains uniform and to assure that when no
torque is applied to the system in a certain reference frame,

no torque is applied to it in another frame [36]. On the
other hand, in classical mechanics forces on an extended
system are applied simultaneously. This simultaneity occurs
in all inertial frames. In thermodynamics, heat is a kind of
interchanged energy with (assumed implicitly) zero linear
momentum.

According to Cavalleri and Salgarelli, when forces on an
extended, composite, body are applied, in order to develop
a coherent formalism for relativistic thermodynamics, a
privileged observer must exist, in reference frame S0, that
performs experiments on the body that remains at rest
(Figure 2) [6].

According to Gamba [5]:

“in the Asynchronous Formulation, observers in
frames S0 and SA refer to the same experiment
(the experiment performed in the privileged
frame S0) and obtain its own physical magni-
tudes, expressed as 4-vectors. In this formula-
tion both descriptions of the experiment are
connected by true Lorentz transformations
[19].”

The observer in S0 takes an ideal surface, at rest, which
delimits the system considered and measures energy, work or
heat, interchanged through the surface during time interval
Δt. An observer in SA obtains the same magnitudes by true
Lorentz transformations, from the events considered by an
observer in S0. The observer in SA does not perform a similar
experiment to observer in S0 (synchronous formulation
[37]), it just translates the experiment performed in S0 to
its own physical magnitudes. Owing to the relativity of
simultaneity, forces applied simultaneously in S0 will not be
simultaneous in SA (asynchronous processes).

The existence of frame S0 guarantees the correspondence
between the relativistic and the classical descriptions; an
equivalence necessary in the low velocity limit.

In the asynchronous formulation, given the quantity
Aμ = Bμ + Cμ, where Bμ is defined for the event x

μ
1 =

{x1, y1, z1, ct1} and Cμ is defined for the event x
μ
2 =

{x2, y2, z2, ct2}, with x
μ
1 /= xμ2 , but with t2 = t1,

Aμ
(
x
μ
1[t1], x

μ
2[t1]

)
= Bμ

(
x
μ
1[t1]

)
+ Cμ

(
x
μ
2[t1]

)
, (8)

then quantity Aμ(x
μ
1[t1], x

μ
2[t1]) in S0 is the same as

A
μ
A(x

μ
1A[t1A], x

μ
2A[t2A]) in SA when all subindex A quantities

are obtained from the corresponding quantities in S0 through
Lorentz transformations. Relativity gives rules to relate mea-
surements made by observers in frame S0 to measurements
made by observers in frame SA only if this definition is
adopted [5].

In the asynchronous formulation the 4-vector energy
function Uμ is a time-like 4-vector in S0, with zero linear
momentum components [38] (see Section 3):

Uμ = {0, 0, 0,U}. (9)

In frame SA, U
μ
A = {cpA, 0, 0,EA} transforms under Lorentz

transformation as U
μ
A = L

μ
ν(V)Uν.
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Figure 2: Compression process in frame S0. A set of external forces
Fk (k = 1, 2, 3, 4) are applied on an extended, deformable system
during the same time interval Δt, as measured in frame S0, with
zero total impulse and zero torque. The kth force has associated the
displacement Δrk (r = (x, y)) and 3-vector velocity vk = Δrk/Δt.
The center of mass (cm) of the system does not move during the
process.

For work due to external forces applied simultaneously in
frame S0 with total zero impulse, the 4-vector work Wμ is a
timelike 4-vector [1] (see Section 4):

Wμ = {0, 0, 0,W}. (10)

As a generalization of this asynchronous formulation, in
frame S0 every flux of energy through the frontier of the
system as thermal radiation (heat) is exchanged with zero
total impulse. Thus, heat is exchanged with zero linear mo-
mentum in frame S0 with a 4-vector Qμ related to thermal
radiation exchange given by [3] (see Section 5)

Qμ = {0, 0, 0,Q}. (11)

In frame SA the same Lorentz transformation L
μ
ν(V) is

common to U
μ
A, W

μ
A, with W

μ
A = L

μ
ν(V)Wμ and to the 4-

vector Q
μ
A, that transforms as the energy (timelike) part of a

(time-like) 4-vector, Q
μ
A = L

μ
ν(V)Qμ.

2.3. Principle of Similitude. The asynchronous formulation
and the principle of the inertia of energy guarantee that the
system can be described as a “single particle” [39] char-
acterized by its energy function U or its inertia M. These
considerations permit us to enunciate [13] the following.

Principle of Similitude. The mathematical expression for a
physical law is the same when referred to an elementary
particle, with tabulated mass m, or when referred to a
composite body, well characterized by its energy function U ,
and inertia M = Uc−2.

In the asynchronous formulation there is no difference
between Lorentz transformations for an elementary particle
and Lorentz transformations for an extended body, provided
that the system is in equilibrium, that is, energy function U
of the body is well defined. In frames like SA, in which the
system has velocity V , differences between point dynamics

and extended-body dynamics are due to the relativity of
simultaneity [6], that is, forces applied simultaneously in S0

but at different points of the body will not be simultaneous
in SA.

The principle of similitude has the following meaning.
Physics equations, such as the Lorentz force equation F =
q(E + v × B), Newton’s second law of classical mechanics
F = ma, or relativistic equations, such as E2 = m2c4 + c2p2

or p = (E/c2)v, are correct when they are applied to an
elementary particle, with mass m and charge q, because
every magnitude is well defined, for example, total energy
E = γ(v)mc2, linear momentum p = γ(v)mv, and so forth,
as well as the electric field E, the magnetic field B, and so
forth, and forces applied are local forces, all of them applied
at the same point. Similarly, a 4-vector, like Cμ = Aμ + Bμ

or Cμ = c−1qE
μ
ν vν, transforms between frames S0 and SA in

standard configuration, by using the Lorentz transformation,
L
μ
ν(V), with C

μ
A = L

μ
ν(V)Cν, and so forth, and where C

μ
A,

and so forth, is in SA the same 4-vector Cμ in S0, because all
of them are locally defined.

When one wants to apply these equations to a process
described on a composite, deformable body (e.g., a Ni atomic
nucleus, a gas enclosed in a cylinder-piston system, a mac-
roscopic chunk of Fe, etc.) and one wants to use the Lorentz
transformation between reference inertial frames to trans-
form 4-vectors, it is necessary to have previously ensured that
the body behaves as a whole and that the principle of inertia
of energy is satisfied. Because on an extended body different
forces are applied at different points, it is necessary to ensure
previously that there exists a reference frame S0 in which
the center of mass does not move during the process. This
goal is achieved when external forces are applied according
to the asynchronous formulation and when the interval of
time during which forces are applied on the mobile parts of
the system is greater than the relaxation time of the system.

Consider a gas enclosed in a cylinder-piston system. If the
force on piston is applied in such a way that the velocity of the
piston vk is greater than the velocity of the sound in the gas vs,
with a characteristic gas relaxation time tC given by tC ≈ L/vs,
where L is a characteristic linear dimension of the system,
then the system does not behave as a whole during time
intervals Δt < tC because there are parts of it that do not feel
the perturbation and so do not contribute to the inertia of the
system. In this case the description of the process cannot be
made according to the relativistic formalism to be developed
here, the principle of similitude is not applicable and another
formalism must be used to describe the process [40].

When a process on a composite, extended body is carried
out in such a way that the principle of inertia of energy
is satisfied, the same set of equations valid for elementary
particles can be used on the body.

Consider a macroscopic body with well-defined energy
function U . In general, this energy function is temperature
dependent U ≡ U(T) (see Section 7.1.1) (U dependence
on volume will not be considered volume [41]) and also
its inertia M(T) = U(T)c−2, according to the principle of
inertia of energy ([9], p. 289). When moving with velocity V
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(one-dimensional) in frame SA its linear momentum pA and
total energy EA are given by

pA = γ(V)M(T)V ,

EA = γ(V)U(T),

pA = EA

c2V
.

(12)

As previously noted, these results can be obtained fromU
μ
A =

L
μ
ν(V)Uν. These equations constitute the generalization for

an extended body of equations pA = γ(V)mV , EA =
γ(V)mc2, and pA = (EA/c2)V for an elementary particle of
mass m and velocity V . The total energy EA of the body can
be expressed as

E2
A = [U(T)]2 + c2p2

A = [M(T)]2c4 + c2p2
A . (13)

Equation (13) is the generalization, in a thermodynamics
context, of the equation E2 = m2c4 + c2p2 for an elementary
particle.

For an elementary particle mass m and velocity V , the
kinetic energy K is K = [γ(V) − 1]mc2. The kinetic energy
KA for an extended body, defined as KA = EA −U(T), is

KA =
c2p2

A

EA +U(T)
= [γ(V)− 1

]
U(T)

= [γ(V)− 1
]
M(T)c2.

(14)

The kinetic energy of the body in frame S0, in which its linear
momentum is null, is zero.

3. Four-Vector Energy Function

Energy function U of a composite body is obtained from the
energy function of its components (Section 2.1).

(1) Universal constants (c, h (Planck), kB(Boltzmann),
G, ε0, etc.) are relativistic invariants having the same
value for all inertial observers in relative motion.

(2) For an elementary particle—proton, neutron, and
electron—the inertia equals its tabulated mass—mp.
mn, me, respectively.

(3) For a nucleus, A
ZN, with Z protons and (A − Z)

neutrons, its inertia MN equals the sum of the inertia
of the elementary particles—with all elementary par-
ticles at infinite separation as initial arrangement—
minus its binding energy (strong interaction) [42]
ŨN divided by c2 (Figure 1):

UN =
[
Zmp + (A− Z)mn

]
c2 −

∣
∣
∣ŨN

∣
∣
∣,

MN = UNc
−2.

(15)

(4) For an atom, the inertia MA equals the sum of the
inertia of its nucleus and electrons minus released

energy ŨA (electromagnetic interaction) [43] divided
by c2 (Figure 1):

UA = UN + npmec
2 −

∣
∣
∣ŨA

∣
∣
∣,

MA = UAc
−2.

(16)

For instance, energy function u for a 4He atom (2
protons, 2 neutrons, and 2 electrons) [21] is given
[31] by

u = u0 −
(∣
∣
∣ŨN

∣
∣
∣ +

∣
∣
∣ŨA

∣
∣
∣
)

,

u0 = 2
(
mp +me

)
c2 + 2mnc

2.
(17)

(5) For a molecule, formed by k atoms, the inertia MM is
the sum of the inertia of its individual atoms minus
the energy released when chemical bonds are formed
[44] divided by c2:

UM =
∑

k

UAk −
∣
∣
∣ŨM

∣
∣
∣, MM = UMc

−2. (18)

Energy function UC of a composite, self-contained
(stable) system is less than the sum of the energy
function of its k constituents [45] U = ∑k Uk, UC <
U .

(6) For a system of free noninteracting components
[46] like a gas of He atoms, the inertia equals
the sum of the total energy of components U =∑

k(kk + uk)—kinetic energy and energy function of
the kth component, respectively—divided by c2 (see
Section 7.1.1).

(7) For thermal radiation (photons in a cavity with
energy density proportional to fourth power of ab-
solute temperature) filling a cavity [47] its total
energy Up contributes to the total inertia of the
system [48]. The thermal radiation emitted by a body
can be described as radiation in a cavity [49] (see
Section 5).

As previously noted, in the zero-momentum frame S0 of
a composite system with energy function U ≡ U(T) the 4-
vector that denotes the state of the system is given by Uμ =
{0, 0, 0,U(T)}. For an observer in frame SA, 4-vector energy
function U

μ
A = {cpA, 0, 0,EA} is U

μ
A = L

μ
ν(V)Uν, and one

obtains

U
μ
A =

{−cγ(V)M(T)V , 0, 0, γ(V)U(T)
}

,

M(T) = U(T)c−2,

pA = −γ(V)M(T)V ,

EA = γ(V)U(T),

(19)

according to the principle of inertia of energy (Section 7.2.1).
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Einstein Equation. for a completely isolated system that per-
forms any kind of internal process, for example, annihilation
or creation of particles, disintegration, inelastic collisions,
and so forth, the inertia does not change along the process
[13], according to the Principle of Inertia of Energy, with

ΔUμ = 0. (20)

4. Four-Vector Work

In order to obtain a complete characterization of forces
applied to a thermodynamical system (i.e., based on a fun-
damental interaction), we will describe forces as the inter-
action between an electric charge qk located on the kth
piston and a (static) electric field Ek = (Exk,Eyk,Ezk). This
procedure guarantees a detailed description of forces and
of its relativistic transformation between reference frames
(Appendix B).

Consider in frame S0 a set of k forces Fk =
(Fxk,Fyk,Fzk) = q(Exk,Eyk,Ezk), with an electromagnetic
origin, simultaneously applied, on different k pistons, on
an extended body (Figure 3) during the same interval of
time Δt, according to the previously discussed asynchronous
formulation. Impulse Ik = (Ixk, Iyk, Izk) and work Wk for the
kth force are given by

Ik =
(
Fxkdt,Fykdt,Fzkdt

)
,

Wk = Fk · drk = Fxkdxk + Fykdyk + Fzkdzk.
(21)

The kth field Ek is represented by the 4×4×4-tensor Ek
μ
ν :

εk
μ
ν =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 Exk
0 0 0 Eyk
0 0 0 Ezk
Exk Eyk Ezk 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (22)

with the 4× 4× 4-tensor electromagnetic force Fk
μ
ν :

Fk
μ
ν = qεk

μ
ν =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 Fxk
0 0 0 Fyk
0 0 0 Fzk
Fxk Fyk Fzk 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (23)

The kth piston has a 4-vector displacement dx
μ
k and a 4-

vector velocity v
μ
k :

dxμ = {dxk, dyk, dzk, cdt
}

,

v
μ
k =

dx
μ
k

dτk
= γ(vk)

{
vxk, vyk, vzk, c

}
,

dt
dτk

= γ(vk),

(24)

where τk is the proper time of kth piston displacement.
For the kth piston, two 4-vectors can be obtained: (i) the

4-vector Minkowski force F
μ
k and (ii) the 4-vector work W

μ
k .

(1) The 4-vector Minkowski force F
μ
k is given by ([20],

Chap. 33)

F
μ
k = c−1Fk

μ
νvν

k

= γ(vk)
{
Fxk,Fyk,Fzk, c−1[Fk · vk]

}
,

(25)

with Fk · vk = Fxkvxk + Fykvyk + Fzkvzk.

(2) The 4-vector work δW
μ
k is given by

δW
μ
k = Fk

μ
νdxν

k

=
{
cFxkdt, cFykdt, cFzkdt,Fxkdxk

+Fykdyk + Fzkdzk
}

=
{
cIxk, cIyk, cIzk,Wk

}
,

(26)

a 4-vector with units of energy. The 4-vector F
μ
k can

be obtained by deriving δW
μ
k in respect to proper

time dτk of the kth piston as

δW
μ
k

dτk
= dt

dτk

δWμ

dt
= cF

μ
k . (27)

This obtention of the 4-vector F
μ
k shows that δW

μ
k is

a 4-vector itself (Appendix A). For a finite interval of time
Δt, with constant force Fk, and 4-vector interval Δx

μ
k =

{Δxk,Δyk,Δzk, cΔt}, the 4-vector work W
μ
k is

W
μ
k = Fk

μ
νΔxν

k

=
{
cFxkΔt, cFykΔt, cFzkΔt,FxkΔxk + FykΔyk + FzkΔzk

}
.

(28)

For the set of k forces simultaneously applied to the body
at different pistons in frame S0 during the finite interval of
time Δt (Figure 4), the total 4-vector “force-displacement
product” (work) Wμ is the sum of the 4-vector W

μ
k . The

4-vector total work Wμ is given by Wμ = ∑
k W

μ
k , with

condition
∑

k Ik = 0:

Wμ = {0, 0, 0,W}; W =
∑

k

Wk. (29)

In frame SA, W
μ
A = L

μ
ν(V)Wν = {cIxA, 0, 0,WA}, with

impulse IxA and “force-displacement product” WA being

IxA = −γ(V)
(
Wc−2)V ,

WA = γ(V)W.
(30)

Adiabatic First Law ([18], Section 4.2). A system that changes
its energy function owing to forces applied to it, in an
adiabatic process, is

ΔUμ =Wμ. (31)
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Figure 3: Extended system, with k pistons (k = 1, 2, 3, 4), to which
forces Fk = qEk are simultaneously applied during time interval
Δt as measured in frame S0 by a set of synchronized clocks at rest
(Figure 1). On the kth piston there is a clock that measures its
proper time τk . The kth piston displaces drk during time interval
dt, speed vk = drk/dt, and proper time interval dτk . Forces Fk have
an electromagnetic origin: an electric field Ek , produced by a plane-
parallel charged capacitor, interacts with a charge qk fixed to the kth
piston.

5. Four-Vector Heat

Work is described in thermodynamics as oriented (nonran-
dom) internal energy transferred between a body and a work
reservoir (Figure 4). However, heat is described as random
(or nondirected) internal energy transferred between two
bodies at different temperatures [50]. Nondirected means
“without linear momentum.”

According to Rindler, in the special theory of relativity
any transfer of energy, being equivalent to a transfer of in-
ertia, necessarily involves momentum [51, p. 91]. This as-
sessment is valid for all forms of radiation and must be valid
for heat [52], whatever definition of heat is being used.

The most direct argument on relativistic heat transfor-
mations is provided by Arzeliés [1]. Based on the principle of
equivalence work-heat, this author assumes that relativistic
heat transforms as relativistic work.

The 4-vector heat, Qμ, is obtained in two steps. First,
we obtain the 4-vector for thermal radiation (its frequency
distribution fulfills Planck’s frequency distribution) enclosed
in a cavity with walls at temperature T , and then the thermal
radiation exchanged by a body as heat is described as thermal
radiation in a cavity.

In a generalization of the asynchronous formulation, we
assume that in frame S0 (zero momentum frame) heat is
emitted or absorbed with zero linear momentum ([3] p.
173). With the 4-vector Qμ given in frame S0 as Qμ =
{0, 0, 0,Q}, in frame SA, standard configuration, with Q

μ
A =

{cpA, 0, 0,EA}, and Q
μ
A = L

μ
ν(V)Qν, a linear momentum

associated to Q, must be ([4] p. 1746)

pA = −γ(V)
Q

c2
V. (32)

The relativistic linear momentum of heat in frame SA re-
quires a physical interpretation—because of the contrast
with no momentum for heat in classical thermodynamics

FL − δF FL q FL − δF FR − δF −q FR FR − δF
E

E

E

Δt Δt

L R

(a)

FL − δF FR − δF

ΔxL ΔxR

(b)

Figure 4: (a) A gas contained in a cylinder is compressed under the
action of two pistons, L, with electric charge +q fixed to it, and R,
with electric charge −q fixed to it. On piston L, a force FL = qE
is exerted by the electric field E and a force −(FL − δF) slightly
smaller by the gas. On piston R a force FR = −qE is exerted by
the electric field, an a force (FR − δF) by the gas. (b) Thus the gas is
compressed under the action of force FL applied to a displacement
ΔxL and a force FR applied to a displacement ΔxR. Both forces FL

and FR are applied simultaneously during time interval Δt. Every
piston acts as an intermediate agent between the work reservoir
(electric field and battery to which the capacitor is connected) and
the thermodynamics system (the gas).

[53]. In order to provide the relativistic interpretation of heat
and the description of a thermal bath, we will describe ther-
mal radiation as an ensemble of emitted photons enclosed in
a cavity [54].

A cavity with walls at temperature T , measured with a
gas thermometer at constant volume, and filled with photons
that fit Planck’s frequency distribution—that is, thermal
photons—constitutes a thermal bath. In frame S0 in which
cavity walls are at rest, the total linear momentum of the
photon ensemble is zero. In the monochromatic approxima-
tion [55] to Planck’s distribution, every photon has the same
frequency ν, with ν(T) = AT (Wien’s Law), where A is a
constant (Figure 5).

The 4-vector wave ωμ for a photon ([56], pp. 255–257)
of wavelength λ and angular frequency ω = 2π/T , period T ,
that propagates in a direction given by the wave vector k,

k =
(

2π
λ

cos θ,
2π
λ

sin θ, 0
)

, (33)

is ([20], pp. 269-270)

ωμ =
{

c
2π
λ

cos θ, c
2π
λ

sin θ, 0,
2π
T

}

. (34)

For a given rth photon, with frequency ν, λν = c, and
moving in direction k = (cos θr , sin θr , 0), there exists an
energy 4-vector (� = h/2π),

q
μ
r = �ω

μ
r =

{

c
[
hν

c

]

cos θr , c
[
hν

c

]

sin θr , 0,hν

}

. (35)
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Figure 5: (a) Cavity with walls at temperature T filled with
thermal radiation (photons) frequency ν = ν(T) (monochromatic
approximation). In frame S0 linear momentum for this ensemble of
photons is zero pp = 0 and its energy function is Up = Nhν. (b) In
frame SA, the same ensemble of photons, with frequencies νL > ν,
νR < ν (relativistic Doppler effect) and ν′ (aberration effect), has
linear momentum ppA = γ(V)(Upc−1)V , according to the principle
of inertia of energy, and total energy Ep = γ(V)Up.

The norm of this 4-vector is ‖qμr ‖ = 0. An individual photon
has no inertia.

In frame S0, total linear momentum for the N photons
inside the cavity at temperature T , pp, and its total energy Ep
are given by

pxp =
∑

r

hν

c
cos θr = 0,

pyp =
∑

r

hν

c
sin θr = 0,

Ep(T) =
∑

r

hν = Nhν(T).

(36)

In the zero-momentum frame S0, total energy Ep(T) is the
energy function Up(T) of the system. The 4-vector thermal
radiation Qμ, Qμ =∑r q

μ
r is

Qμ =
{

0, 0, 0,Up(T)
}

, Up(T) = Nhν(T). (37)

In frame SA,

Q
μ
A = L

μ
ν(V)Qν =

{
−cγ(V)Mp(T)V , 0, 0, γ(V)Up(T)

}
,

Mp(T) = Nhν(T)c−2.
(38)

The energy function Up(T) is the norm of the 4-vector
‖Qμ

A‖ = Nhν(T). This photons ensemble has nonzero inertia
[48] Mp = Upc−2.

Consider for a moment this cavity filled with thermal
radiation containing one mole of atoms of a gas also. It
is interesting to note that (i) photons of thermal radiation
enclosed in a cavity, with Planck’s frequency distribution,
the atoms of the gas, with its (ii) electrons distributed in
electronic orbitals following Boltzmann’s energy distribu-
tion, and (iii) atoms moving with Maxwell’s (or Juttner dis-
tribution [57]) kinetic energy distribution, every distribu-
tion with the same parameter temperature T , contribute to
the energy function and to the inertia [35] of the system.
As previously discussed, energy function for an ensemble
of atoms and energy function for an ensemble of thermal
photons transform between inertial frames in the same way.
Thus, thermal equilibrium at temperature T between matter
and radiation is a relativistic invariant and every inertial
observer will agree on that equilibrium (Figure 6).

After the obtention of a 4-vector Qμ for the contribution
to its energy function by thermal radiation inside a cavity, it is
necessary to characterize as a 4-vector heat Qμ the exchanged
energy by a body as thermal photons.

First of all, systems thermally interacting with each other
cannot be in equilibrium if they are in relative motion [58].
In the Asynchronous Formulation generalization to heat,
there exists a privileged frame S0 in which the system is
at rest with respect to the thermal bath and in S0 thermal
radiation (photons) is absorbed or emitted with zero total
linear momentum.

The energy absorbed, or emitted, by a body as thermal
radiation (heat) throughout a process can be modeled as
photons inside a cavity. A thermal system can absorb or emit
photons through its frontier except in adiabatic processes. A
photon emitted by a body, with frequency ν and direction u,
contributes with −hνu/c to the linear momentum variation
of the body and with −hν to the total energy variation of
the body that emits it. A photon absorbed by a body, with
frequency ν and direction u, contributes with +hνu/c to the
linear momentum variation and with +hν to total energy
increment of the system.

Absorbed or emitted photons can be considered different
phases in thermal equilibrium [59]. Thus, there is not “force-
displacement product” (work) associated with emission or
absorption of thermal radiation (photons).

With the system and thermal bath mutually at rest, the
ensemble of emitted photons (when the system is at higher
temperature than thermal reservoir) is described as an en-
semble of thermal photons in a cavity with zero total linear
momentum, and so the ensemble of absorbed photons
(when the system is at lower temperature than thermal
reservoir).
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Figure 6: (a) A gas contained in a cylinder is compressed by a
force F applied to a piston inside a cavity (thermal resevoir) at
temperature T (isothermal process). The centre of mass of the gas
remains at rest in its initial and final equilibrium states. (b) During
the compression process photons with frequency ν (monochro-
matic approximation) are emitted with zero linear momentum.
(c) Heat Q emitted during the compression is characterized as the
energy associated with the thermal radiation made up of all photons
emitted contained into the cavity (with minus sign).

In frame S0, the 4-vector thermal radiation (heat) Qμ

associated when the body emits (−) or absorbs (+) N pho-
tons with frequency ν(T) is given by

Qμ = −Qμ =
{

0, 0, 0,∓Up(T)
}

, (39)

with Up(T) = ṄhνΔt, where Ṅ = dN/dt is the flux of
photons (net number of photons exchanged in unit time)
and N = ṄΔt is the net number of photons exchanged by
the body during time interval Δt.

For an observer in frame SA, Q
μ
A = {cpA, 0, 0,EA}, from

Q
μ
A = L

μ
ν(V)Qν with linear momentum ppA and total energy

EpA:

ppA = −γ(V)Mp(T)V ; Mp(T) = Up(T)c−2,

EpA = γ(V)Up(T) = γ(V)Mp(T)c2,
(40)

Physical interpretation of linear momentum for heat in
frame SA will be obtained from relativistic Doppler and
aberration effects applied to photons (see Section 7.2.3). The
norm of Q

μ
A is

∥
∥
∥Q

μ
A

∥
∥
∥ =

[
E2
pA − c2p2

pA

]1/2 = Up(T) =Mp(T)c2, (41)

with energy function Up(T) and inertia Mp(T) relativistic
invariants [60].

If heat is defined as the total energy associated with the
emitted (or absorbed) photons as measured in the observer’s
frame, then QA = γ(V)Q, with Q = Up(T). If heat is
defined as the emitted (or absorbed) energy carried by
photons in frame S0 in which the interchange of photons
with a thermal surrounding mutually at rest and zero linear
momentum happens—as it is defined (implicitly) in classical
thermodynamics—then Q is the norm of any 4-vector Qμ =
‖Qμ

A‖ and it is a relativistic invariant. In any case, it is the 4-
vector that possesses physical meaning, not its components.

Heat. For a system that changes its energy function without
forces applied to it, by heating, or cooling, in diathermal
contact with a thermal bath, system and bath at mutual rest,
is

ΔUμ = Qμ. (42)

6. Relativistic Thermodynamics First Law

According to the generalized asynchronous formulation of
relativistic thermodynamics, the description of a certain
process on a composite, deformable system, and after the
obtention of 4-vectors energy function Uμ, initial U

μ
i and

final U
μ
f , work Wμ, and heat Qμ, is as follows.

Relativistic Thermodynamics First Law. Mathematical: the
relationship between variations in energy function of a
system after a certain process, during which it interacts with
a mechanical reservoir, with forces simultaneously applied
to it during that process, and a thermal reservoir, system
and reservoir mutually at rest, with thermal radiation inter-
changed by the system during the process, with every
magnitude expressed as a 4-vector, is [4, 61]

ΔUμ = U
μ
f −U

μ
i =Wμ +Qμ. (43)

No matter whether a system is self-contained or free
(confined in a container), any energy, momentum, Uμ, Wμ

or Qμ, is always a 4-vector provided that one performs a co-
variant summation at constant time (simultaneously) in
the frame S0 in which the system is mutually at rest [2]
(at least instantaneously) with its mechanical and thermal
surroundings.
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Figure 7: Cylinder with gas, diathermal walls, closed by two pistons,
R and L, inside a plane-parallel capacitor with charge surface density
σ . Laser (l), beam splitter (s), pistons of blocked mechanism (b)
are used to assure that forces are applied simultaneously [62]. The
gas in cylinder is compressed by forces acting on pistons. Force
FL = F acts on piston L during time interval Δt and displacement
ΔxL = Δx. Force FR = −F acts on piston R during time interval
Δt and displacement ΔxR = −Δx. During the compression process,
photons are emitted by cylinder walls with frequency ν and zero
linear momentum in frame S0.

In the frame reference SA, the first law is expressed as

ΔU
μ
A = U

μ
f A −U

μ
iA =W

μ
A +Q

μ
A. (44)

Every 4-vector in SA can be obtained by a Lorentz transfor-
mation for the corresponding 4-vector in S0

L
μ
ν(V)

[
Uν
f −Uν

i =Wν +Qν
]
−→ U

μ
f A −U

μ
iA =W

μ
A +Q

μ
A.

(45)

This circumstance guarantees the first law Lorentz covari-
ance.

7. Ideal Gas Isothermal Compression

A horizontal cylinder (Figure 7), with thin metallic walls,
section A, length L, containing 1 mol, NA atoms, of 4He gas,
enclosed by two pistons, left (L) and right (R). We assume
that helium behaves as an ideal gas, described by thermal
equation of state PV = NAkBT . The gas is in equilibrium
under pressure Pi and at temperature T , volume Vi, Vi =
RT/Pi. The limits of the system are the walls of the cylinder,
considered diathermal. Pistons are considered adiabatic.

7.1. Compression in Frame S0. As privileged frame S0 we take
the frame in which cylinder walls, plate parallel capacitor and
thermal reservoir walls are at rest. During the compression
process, forces on gas are applied simultaneously, during
time interval Δt. Thermal radiation is interchanged with zero
impulse in S0 and the gas center of mass remains at the same
point, with initial and final zero velocity.

7.1.1. Energy Function in S0. For simplicity, we assume that
the atoms of He inside the cylinder possess only translational
energy, that is, all atoms are in its ground electronic state.
In general, one can assume that gas velocity distribution is
Juttner distribution [57] ([9], pp. 289–293). For simplicity,
one assumes that atoms are randomly distributed inside the
container and that every atom has the same translational
energy, that is, every He atom moves with the same speed v =
v(T) (monokinetic approximation [50]), same modulus, but
with different vectorial components v = (vx, vy , vz), v = |v|.
In this approximation, v(T) = aT1/2. Constant a is obtained
by imposing

k = [γ(v)− 1
]
u = 3

2
kBT , (46)

where k = [γ(v)− 1]u is the kinetic energy of a He atom and
u its energy function (Section 3).

Linear momentum p j = (px j , py j , 0) (for simplicity we
assume x− y as movement of the atoms) and total energy Ej
for the jth atom are

px j = γ(v)mvx,

py j = γ(v)mvy ,

ej = γ(v)u, m = uc−2.

(47)

Initial total linear momentum pi = (pxi, pyi, 0) and initial
total energy (energy function ) Ui are given by

pxi =
∑

j

px j = γ(v)m
∑

k

vx j = 0,

pyi =
∑

j

py j = γ(v)m
∑

k

vy j = 0,

Ui = U(T) = γ(v)
∑

j

u = NAγ(v)u.

(48)

The 4-vector initial energy function U
μ
i is then

U
μ
i = {0, 0, 0,Ui}; Ui = γ(v)NAu. (49)

Energy function Ui depends on temperature through tem-
perature dependence on velocity v = v(T). In S0 (pi = 0),
total system energy ([63], Sec. 8.3) is, by definition, its energy
function Ui = Ki + Ui, sum of the kinetic energy of helium
atoms Ki =

∑
k kk = NA[γ(v)− 1]u, and Ui =

∑
k u = NAu.

For an ideal gas in an isothermal process, energy function
remains constant, as well as the temperature, and also He
atom speed. The 4-vector final energy function U

μ
f is then:

U
μ
f =

{
0, 0, 0,Uf

}
, (50)

with Uf = Ui = U(T).

7.1.2. Work in S0. Forces on pistons are described as pro-
duced by the interaction of an electric charge with an elec-
tromagnetic field (Figure 7). Static electric positive +q and
negative −q charges are located on right and left pistons,
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respectively. The whole device, gas plus pistons, is located
inside the homogeneous electric field E produced by a plane-
parallel capacitor ([64], Chap. 13) with charge surface den-
sity σ .

In frame S0 the capacitor is at rest. A horizontal electric
field Ex is created inside the capacitor. For this (uniform)
electric field the potential 4-vector Φμ = {Ax,Ay ,Az,φ},
where A = (Ax,Ay ,Az) and φ are the vector potential and
the scalar potential, respectively, is given by the contravariant
4-vector [65]:

Φμ = {0, 0, 0,−Exx}, Ex = σ

2ε0
. (51)

The electromagnetic 4 × 4-tensor E νμ—double con-
travariant—is given by ([51], Section 42)

E νμ = ∂Φν

∂xμ
− ∂Φμ

∂xν
. (52)

For the horizontal plane-parallel capacitor the 4 × 4-tensor
E νμ is

E νμ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 Ex
0 0 0 0
0 0 0 0
−Ex 0 0 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (53)

The mixed 4× 4-tensor E
μ
ν is obtained as

E
μ
ν = gνξE

ξμ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 −Ex
0 0 0 0
0 0 0 0
−Ex 0 0 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (54)

Initially, pistons are locked by a blocked mechanism (b
in Figure 7). A laser (l in Figure 7) and a beam splitter (s in
Figure 7) that is located just between the pistons, are used to
release simultaneously both pistons. When the laser is turned
on the split beams will arrive at the blocked mechanism of
both left and right pistons and, at time t = 0, are unlocked
allowing electric field charges interaction simultaneously on
both L and R pistons [62].

When pistons are released, the Minkowski force F
μ
k on kth

piston is

F
μ
k = qE

μ
ν v

μ
k , v

μ
k =

dxν
k

dτk
, (55)

where q is the electric charge on piston, E
μ
ν is the 4×4-tensor

electromagnetic field, and v
μ
k and τk are the kth piston 4-

vector velocity and proper time, respectively [66].
For the left piston (subindex L), displacement ΔxL = Δx

and velocity vL = ΔxL/Δt = v, 4-vector Δx
μ
L and 4-vector

velocity v
μ
L, are respectively

Δx
μ
L = {Δx, 0, 0, cΔt}, v

μ
L = γ(v){v, 0, 0, c}. (56)

For the right piston (R), displacement ΔxR = −Δx and ve-
locity vR = ΔxR/Δt = −v, 4-vector Δx

μ
R and 4-vector velocity

v
μ
R, are respectively

Δx
μ
R = {−Δx, 0, 0, cΔt}, v

μ
R = γ(v){−v, 0, 0, c}. (57)

The Minkowski forces due to electromagnetic interaction
are:

F
μ
L = −qE

μ
ν vν

L = γ(v)
{

+cqEx, 0, 0, qExv
}

,

F
μ
R = +qE

μ
ν vν

R = γ(v)
{−cqEx, 0, 0, qExv

}
.

(58)

With forces acting on pistons, FL = (qEx, 0, 0) and FR =
(−qEx, 0, 0), 4-vectors work are, respectively,

W
μ
L = −qE

μ
ν Δxν

L =
{

+cqExΔt, 0, 0, qExΔx
}

,

W
μ
R = +qE

μ
νΔxν

R =
{−cqExΔt, 0, 0, qExΔx

}
.

(59)

The total 4-vector work Wμ is then

Wμ =W
μ
L +W

μ
R =

{
0, 0, 0, 2qExΔx

}
. (60)

7.1.3. Heat in S0. During (slow) gas compression, N =
ṄΔt photons with frequency ν(T) are emitted, with zero
total linear momentum. Photons are emitted through the
horizontal walls of the cylinder, N/2 photons are emitted in
direction θ+ = π/2 and N/2 photons in direction θ− = −π/2.
Total linear momentum for this ensemble of photons pp =
(pxp, pyp, 0) is

pxp = 0,

pyp = N

2
hν sin θ+ +

N

2
hν sin θ− = 0.

(61)

Total energy of these emitted photons E = Nhν, with pp = 0,
is its energy function Up:

Up = Nhν. (62)

According to the principle of inertia of energy, these N pho-
tons have inertia [63] Mp = Upc−2. The 4-vector for heat
Qμ (thermal radiation emitted from the point of view of the
system) is then given by

Qμ = {0, 0, 0,−ṄhνΔt
}
. (63)

7.1.4. First Law in S0. From first law U
μ
f − U

μ
i = Wμ + Qμ,

one obtains 0 = 2qExΔx − ṄhνΔt or

ṄhνΔt = 2qExΔx, Ṅhν = 2qExv. (64)

The configurational work done on the gas provides the
energy emitted as heat.

7.2. Compression in Frame SA. An observer in frame SA

obtains the corresponding 4-vector U
μ
iA, U

μ
f A, W

μ
A, and Q

μ
A by

measuring different magnitudes—displacements ΔxA, time
intervals ΔtA, velocities vA, forces FA, photon frequency νA,
and so forth—in its own frame (Figure 8). With first law in
frame SA expressed as U

μ
f A − U

μ
iA = W

μ
A + Q

μ
A, the Lorentz

invariance of this equation assures that the same result as in
S0, that is, ṄhνΔt = 2qEΔx, is obtained.
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Figure 8: Isothermal compression given in Figure 7, described from
the point of view of an observer in frame SA, standard configuration,
with velocity V with respect to frame S0. In frame SA forces are not
applied simultaneously and heat carries linear momentum.

7.2.1. Energy Function in SA. Let there be one mol of He
atoms moving inside the cylinder. In frame S0, with zero
total linear momentum, velocities of atoms are measured
simultaneously. During the same interval of time Δt, dis-
placement Δr j = (Δxj ,Δyj , 0) for the jth atom is measured
and its 3-vector velocity is given by vk = (Δr j /Δt) =
(vx, vy , 0). In order to ensure that in frame S0 total linear
momentum is zero, for every atom j moving with velocity
vj = (vx j , vy j , 0) there must exist another atom n moving
with opposite velocity vn = (vxn, vyn, 0), such that vx j = −vxn
and vy j = −vyn.

The velocity vA = (vxsA, vysA, 0) of the sth atom is given,
in terms of its velocity v = (vxs, vys, 0) measured in S0 and
velocity V = (V , 0, 0) of frame SA with respect to frame S0,
by the equation ([51], Section 12)

vsA = 1
γ(V)[1− vxsV/c2 ]

(
γ(V)[vxs −V], vys, 0

)
, (65)

with the useful relations ([67], p. 69)

γ(vsA) = γ(v)γ(V)
[

1− vxsV

c2

]

,

γ(vsA)vxsA = γ(v)γ(V)(vxs −V),

γ(vsA)vysA = γ(v)vys.

(66)

For every pair j − n of opposite atoms, total momentum
and total energy are easily obtained using the previous trans-
formations:

px( j+n)A = γ
(
vjA
)(
uc−2)vx jA + γ(vrA)

(
uc−2)vxnA

= γ(V)
[
2γ(v)uc−2]V ,

py( j+n)A = γ
(
vjA
)(
uc−2)vy jA + γ(vrA)

(
uc−2)vynA = 0,

(67)

and total energy is given by

EjA = γ
(
vjA
)
u = γ(v)γ(V)

[

1− vxV

c2

]

u,

EnA = γ(vnA)u = γ(v)γ(V)
[

1 +
vxV

c2

]

u,

E( j+n)A = EjA + EnA = γ(V)
[
2γ(v)u

]
.

(68)

For the N/2 total pairs of opposite atoms, one has

U
μ
iA =

{

−cγ(V)

[
γ(v)NAu

c2

]

V , 0, 0, γ(V)
[
γ(v)NAu

]
}

= {−cγ(V)MV , 0, 0, γ(V)U(T)
}

, M = U(T)c−2

(69)

This is the same result obtained from Lorentz transformation
[68] on the 4-vector energy function in S0, given in (49),
U
μ
iA = L

μ
νUν

i .
A similar description for 4-vector final energy function

U
μ
f A, with U

μ
f A = L

μ
νUν

f , is

U
μ
f A

{−cγ(V)MV , 0, 0, γ(V)U(T)
}
. (70)

7.2.2. Work in SA. By considering the locked-unlocked piston
set, laser beam, splitter, blocked mechanism described pre-
viously in frame S0, it is evident that forces that are simul-
taneously applied in S0 are not simultaneous in frame SA

(Figure 8) [1].
To obtain the 4-vector W

μ
A in SA, relativistic transforma-

tions of time intervals, spatial displacements, and forces must
be used.

In SA, 4-vector displacements are

Δx
μ
RA = L

μ
ν(V)Δx

μ
R

=
{

γ(V)[−Δx −VΔt], 0, 0, cγ(V)
[

Δt +
V

c2
Δx
]}

,

Δx
μ
LA = L

μ
ν(V)Δx

μ
L

=
{

γ(V)[+Δx −VΔt], 0, 0, cγ(V)
[

Δt − V

c2
Δx
]}

.

(71)

Spatial displacements ΔxLA and ΔxRA associated with forces
FLA and FRA, respectively, are different in SA as well as time
intervals: ΔtLA /=ΔtRA [1].

It is assumed that 4-vector forces acting on extended
bodies are transformed in the same way as 4-vector forces
acting on point particles [69, 70]. Force FA = (FxA,FyA,FzA)
measured with respect to SA is given, in terms of force F =
(Fx,Fy ,Fz) measured with respect to S0 and the velocity V =
(V , 0, 0) of frame SA with respect to frame S0, by [71]

FxA =
Fx −

(
V/c2

)(
Fxvx + Fyvy

)

1− vxV/c2
,

FyA =
γ−1(V)Fy
1− vxV/c2

.

(72)
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For horizontal forces (Fy = Fz = 0) and Fx = ±F,

FLA = qEx, FRA = −qEx . (73)

Total impulse IA and work WA in frame SA are given by

IA = FLAΔtLA + FRAΔtRA = −γ(V)
[
2qExΔxc−2]V ,

WA = FLAΔxLA + FRAΔxRA = γ(V)
[
2qExΔx

]
,

(74)

with

W
μ
A = {cIA, 0, 0,WA}. (75)

This is the same result for W
μ
A obtained by using Lorentz

transformation on 4-vector work in S0 given by (60), W
μ
A =

L
μ
ν(V)Wν

A.
The same result is obtained if one considers relativistic

transformation of electric and magnetic fields ([72], Section
10.5).

The 4× 4-tensor electromagnetic field in SA, EA
μ
ν , can be

obtained as (Appendix A) ([20], p. 281)

EA
μ
ν = L

μ
ν(V)EA

μ
νL+μ

ν(V) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 −Ex
0 0 0 0
0 0 0 0
−Ex 0 0 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (76)

The electromagnetic field does not change in frame SA with
respect to the field in S0 (no magnetic field appears in
SA). The 4-vector work W

μ
LA and W

μ
RA can by obtained by

applying its definition in SA:

W
μ
LA =qEA

μ
νΔxν

LA=
{

cqExγ(V)
[

Δt−
(
V

c2

)

Δx
]

, 0, 0, qγ(V)

×Ex[Δx −VΔt]
}

,

W
μ
RA = −qEA

μ
νΔxν

RA =
{

−cqEx
[

Δt +
(
V

c2

)

Δx
]

, 0, 0,−q

×Ex[−Δx −VΔt]
}

.

(77)

In SA total impulse,

IA = −cγ(V)
[

2qEΔx
c2

]

V , (78)

is not zero and total work is

WA = γ(V)
[
2qEΔx

]
. (79)

The 4-vector work W
μ
A in SA is then

W
μ
A =W

μ
LA +W

μ
RA

=
{

−cγ(V)
[

2qEΔx
c2

]

V , 0, 0, γ(V)
[
2qEΔx

]
}

,
(80)

a result previously obtained.

7.2.3. Heat in SA. From relativistic Doppler effect, frequency
νA in frame SA for a photon emitted in frame S0 with
frequency ν and direction (cos θ, sin θ, 0) is given by

νA = γ(V)
[
1− β(V) cos θ

]
ν. (81)

The relativistic aberration effect [73] indicates that photon
direction (cos θA, sin θA, 0) as measured in SA is

cos θA =
cos θ − β(V)

1− β(V) cos θ
,

sin θA =
γ−1(V) sin θ

1− β(V) cos θ
.

(82)

In frame S0, for a photon jth emitted with angle θj =
+π/2 there is another photon nth emitted with angle θn =
−π/2 (both with frequency ν, in order to assure zero
total linear momentum for emitted photons). In frame SA

photons are emitted with frequency νA = γ(V)ν, higher
than frequency measured in S0 (transverse Doppler effect).
Photons in SA are emitted with angles larger than π/2 (in
absolute value) (Figure 8).

In frame SA, total linear momentum and total energy are
easy to obtain for this pair of opposite emitted photons (in
S0) and for theN/2 pairs of emitted photons pairs, total linear
momentum and energy are

pxpA = −cγ(V)
[
Nhνc−2]V ,

pypA = 0,

EpA = γ(V)Nhν = γ(V)ṄhνΔt.

(83)

For the ensemble of emitted photons the 4-vector is

Q
μ
p =

{
−cγ(V)MpV , 0, 0, γ(V)Nhν

}
, Mp = Nhνc−2.

(84)

In frame SA, N/2 are emitted with angles ±θA, with zero
linear momentum in y direction. These photons carry linear
momentum in direction −x and its total linear momentum
is pxA = −γ(V)(hν/c2)V .

The 4-vector heat emitted by the body Q
μ
A = −Q

μ
p is

Q
μ
A =

{

c
[

γ(V)
Nhν

c2

]

V , 0, 0,−γ(V)Nhν

}

. (85)

This result was obtained from Lorentz transformation on
the 4-vector heat in S0, given by (63), Q

μ
A = L

μ
ν(V)Qν. An

ensemble of photons with energy ṄhνΔt and zero linear mo-
mentum, has an inertia Nhνc−2 associated. The ensemble of
N thermal photons does not transform between frames like
a photon but like an elementary particle.

Total energy for photons EpA as measured in SA and total
energy for photons Up in S0 are related as

EpA = γ(V)Up. (86)

The norm ‖Qμ
A‖ of the 4-vector heat Q

μ
A is an invariant, with

∥
∥
∥Q

μ
A

∥
∥
∥ = Up = ṄhνΔt. (87)
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7.2.4. First Law in SA. From the first law in SA, U
μ
f A − U

μ
iA =

W
μ
A + Q

μ
A and the 4-vectors given in (69),(80),(85), one

obtains

0 = −cγ(V)
[

2qEΔx
c2

]

V + cγ(V)
[
Nhν

c2

]

V ,

0 = γ(V)
[
2qEΔx

]− γ(V)[Nhν].

(88)

These two equations are redundant, and one obtains

Nhν = 2qEΔx. (89)

This is a result previously obtained in frame S0.
In frame SA, total energy EA, linear momentum pA, and

energy function U remain constant during the compression
process—these magnitudes remain constant in frame S0 too.
In frame SA the set of forces applied to the gas produces
a net impulse —in contrast with the net zero impulse in
frame S0—and the ensemble of photons emitted during the
process carries linear momentum—in contrast with the net
zero momentum for emitted photons in S0. Impulse and
work provided by external forces on the gas, represented by
the 4-vector W

μ
A, are transmitted to the ensemble of emitted

photons, represented by Q
μ
A. When photons are emitted, the

gas gets a (positive) linear momentum due to this emission of
thermal radiation that compensates for the (negative) linear
momentum provided by forces applied on it, with a result
of total zero linear momentum variation. Similarly, energy
carried for photons is provided by the work done by the
forces. This transformation, Q

μ
A = −Wμ

A, is the relativistic
generalization for the complete transformation of work W
into heat Q for an isothermal process on an ideal gas, U =
U(T), with ΔU = 0. The description of this process in frame
S0 is the usual description in classical thermodynamics, with
energy associated with heat but with no linear momentum.

8. Conclusions

A coherent development of modern relativistic thermody-
namics requires (i) a guarantee that the system behaves ac-
cording to the principle of the inertia of energy, that is,
forces are applied in such a way that the system behaves as
a whole [29] and (ii) that the experiment in frame S0 is per-
formed in such a way that equations for elementary (point)
particles can be applied to the extended thermodynamic
system (principle of similitude). When this goal is achieved,
in the asynchronous formulation formalism, the Minkowski
4-vector calculus in special relativity can be used for nonlocal
(extended bodies) as well as for local (elementary particles)
4-vector quantities.

For the description of the process performed by body
Z (Section 1) using the special theory of Relativity with the
Minkowski 4-vector formalism, (1)-(2) merge in the first law
of relativistic thermodynamics:

dUμ = δWμ + δQμ. (90)

According to the asynchronous formulation, in frame S0

body Z is instantaneously at rest ([74], p. 41), with vi = 0,
and v f = v, v = (vx, vy , vz), v = |v|,—with equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ(v)M f vx

γ(v)M f vy

γ(v)M f vz

γ(v)Uf −Ui

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

k

Fxkdt
∑

k

Fykdt
∑

k

Fzkdt

δW

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0

0

0

δQ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,
(91)

with Fk conservative forces simultaneously applied to Z and
with

δW =
∑

k

(Fk · vk)dt, δQ = Ṅhνdt,

Mi = Uic
−2, M f = Uf c

−2.

(92)

where Ṅ is the flux of photons between Z and its thermal
reservoir. Thus, the coherence of the developed formalism
is based on the principle of the inertia of energy, with
the Lorentz transformation, that guarantees that any kind
of energy, U , W , or Q, that contributes to the temporal
(energy) component of a 4-vector in frame S0, contributes
with the inertia M = Uc−2 to the spatial (linear momentum)
component of the body in frame SA.

If every force Fk acting on Z has its origin in the
interaction of an electric charge q with an electromagnetic
field, with a 4 × 4-tensor Ek

μ
ν , the 4-vector Minkowski force,

F
μ
k , is given by

F
μ
k =

q

c
Ek

μ
νv

μ
k = γ(vk)

{
Fxk,Fyk,Fzk , c−1Fk · vk

}
, (93)

and the corresponding 4-vector work (infinitesimal), δW
μ
k , is

δW
μ
k = qEk

μ
νdx

μ
k =

{
cFxkdt, cFykdt, cFzkdt, Fk · dxk

}
, (94)

with

cF
μ
k =

δW
μ
k

dτk
(95)

and with

δWμ =
∑

k

δW
μ
k = c

∑

k

F
μ
kdτk, dτk = γ−1(vk)dt. (96)

In conclusion, the formulation of the first law of relativis-
tic thermodynamics using Minkowski 4-vector formalism,
introducing 4-vector Uμ and 4-vector Qμ, and considering
an electromagnetic origin for the 4-vector work Wμ, allows
us to solve exercises in classical physics, including concepts
of mechanics, thermodynamics, and electromagnetism, in a
complete Lorentz covariant formalism.
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Figure 9: Frames S0 and SA in “standard configuration.” Axes y and
z in both frames are parallel, and frame SA moves with velocity V
along axis x of frame S0. At time t = tA = 0 origins coincide. Every
frame has its own set of synchronized clocks. (i) Initial event, atom
photon absorption, (f) final event, atom photon emission. Δτ is the
proper time of the atom (measured by a clock that travels with it)
between events i and f.

Appendices

A. Minkowski 4-Vector Formalism and the
Lorentz Transformation

The special theory of relativity is characterized by the group
of Lorentz transformations that describe the way in which
two different observers relate their experimental observa-
tions to the same process on the same physical system. A
quantity is therefore physically meaningful—it is of the same
nature to all observers—if it behaves as a 4-vector under
Lorentz transformation [19]. This can be cited as the Mink-
owski hypothesis.

Two rigid reference frames S0 and SA, with identical units
of length and time, are given to be in standard configuration
[67] when the SA origin moves with velocity V = (V , 0, 0)
along the x-axis of S0, the xA-axis coincides with the x-axis,
while the y- and yA-axes remain parallel, as do the z- and zA-
axes (parallel movement) and all clocks are set to zero when
origins meet (Figure 9).

(1) It is important to note that an “observer” is a huge,
extended, information-gathering system. An inertial
observer is a coordinate system for spacetime, which
makes an observation by recording the location
(x, y, z) and time (t) of any event. An “observation”
made by the inertial observer is the act of assigning to
any event the coordinates x, y, z of the location of its
occurrence and the time t read by the clock at (x, y, z)
when the event occurred ([74], pp. 3-4) (Figure 9).

(2) An event is described by a contravariant (Greek
index, column), and 4-vector xμ and x

μ
A in observers

in S0 and in SA, respectively (x, y, z, t) in S0 and

(xA, yA, zA, tA) in SA, are expressed as contravariant 4-
vectors [23]

xμ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
y
z
ct

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, x
μ
A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xA

yA

zA

ctA

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (A.1)

(For the sake of typographic simplicity, a contravari-
ant 4-vector will be written as row 4-vector, but
maintaining its contravariant index.)

(3) The Lorentz transformation for standard configu-
ration, with constant velocity V , is given by ([65],
Chap. 4)

L
μ
ν(V) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(V) 0 0 −β(V)γ(V)
0 1 0 0
0 0 1 0

−β(V)γ(V) 0 0 γ(V)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (A.2)

where β(V) = V/c and γ(V) = [1− β2(V)]−1/2

(Lorentz factor).

(4) The inverse Lorentz transformation, L+ν
μ(V) =

Lν
μ(−V), with L+ν

μ(V)Lν
μ(V) = 1μ, which trans-

forms an SA 4-vector into a S0 4-vector, is given by
([20], p. 280)

L+ν
μ(V) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(V) 0 0 β(V)γ(V)
0 1 0 0
0 0 1 0

β(V)γ(V) 0 0 γ(V)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (A.3)

(5) The 4-vectors relative to the same event are related as
[75] (the Minkowski hypothesis)

xμ = L
μ
ν(V)xν

A , (A.4)

(6) The raising and lowering of suffixes of 4 × 4-
tensors is effected by means of the metric tensor
gνμ [51]. When the invariant interval between two
events, initial (xi, yi, zi, cti) and final (x f , y f , z f , ct f ),
with (infinitesimal) displacement 4-vector dxμ =
{dx, dy, dz, cdt} (dx = x f − xi, etc.) is defined as
([74], p. 9)

ds2 = c2(dt)2 −
[

(dx)2 +
(
dy
)2 + (dz)2

]
, (A.5)

which is written in the form

ds2 = gνμdxνdxμ , (A.6)

then gνμ is given by ([76], pp. 21-22):

gνμ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (A.7)

(7) For a contravariant 4-vector Aμ, Aμ = {Ax,Ay ,
Az,At), with “spatial” components A = (Ax,Ay ,Az)
and “temporal” component At:
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(a) the corresponding covariant (Greek subindex,
row) 4-vector is defined as Aμ = gμνAν, chang-
ing the sign of Aμ spatial components, Aμ =
{−Ax,−Ay ,−Az,At);

(b) given a covariant 4-vector Bμ, Bμ = {Bx,By ,
Bz,Bt), the inner product BμAμ, or projection
of Aμ along Bμ, is

BμA
μ = BtAt −

(
BxAx + ByAy + BzAz

)
; (A.8)

The inner product of two 4-vectors is a relativis-
tic invariant, that is, BμAμ = BAμA

μ
A,

(c) its norm ‖Aμ‖ defined as ‖Aμ‖ = AμAμ is

‖Aμ‖ =
[
A2
t −

(
A2
x + A2

y + A2
z

)]1/2
; (A.9)

the norm of a 4-vector is a relativistic invariant,
that is, ‖Aμ‖ = ‖AμA‖.

(d) a linear combination of two 4-vectors is again a
4-vector. For a given 4-vector Cμ, Dμ = (aAμ +
cCμ), where a and c are constants, Dμ is a 4-
vector;

(e) two 4-vectors Aμ and Bμ are said to be equal if,
for all j

Aj = Bj ; (A.10)

The property of two 4-vectors being equal is
an invariant property. Consequently, a 4-vector
equation is an invariant equation. This suggests
that the most general manner of writing a
physical law into a covariant form would be to
formulate it as a 4-vector equation ([77], pp. 69-
71)

(8) The proper time dτ for the 4-vector displacement dxμ

is the time measured by a clock that moves with the
system (Figure 9):

dτ =
{

(dt)2 − c−2
[

(dx)2 +
(
dy
)2 + (dz)2

]}1/2
, (A.11)

being cdτ, the norm of the 4-vector displacement.
Thus,

dt
dτ
= γ(v). (A.12)

This equation expresses dτ as a function of the time
dt measured in S0, frame chosen for the description
of events.

(9) The contravariant 4-vector velocity vμ is defined as
[23]

vμ = dxμ

dτ
= γ(v)

{
vx, vy , vz, c

}
. (A.13)

B. Electromagnetic Field

An elementary particle (structureless), with electric charge q,
moves with velocity v = (vx, vy , vz), with 4-vector velocity
vμ = γ(v){vx, vy , vz, c}. This particle moves in an electric
field E = (Ex,Ey ,Ez) given by the 4 × 4-tensor—double
contravariant—electromagnetic field ([51], p. 126) E νμ:

E νμ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 −Ex
0 0 0 −Ey
0 0 0 −Ez
Ex Ey Ez 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (B.1)

The corresponding mixed 4 × 4-tensor ([78], pp. 66–68) E
μ
ν

is given by E
μ
ν = gνξE ξμ, with:

E
μ
ν =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 Ex
0 0 0 Ey
0 0 0 Ez
Ex Ey Ez 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (B.2)

The 4 × 4-tensor electromagnetic force F
μ

ν is defined as
F

μ
ν = qE

μ
ν :

F
μ

ν =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 0 Fx
0 0 0 Fy
0 0 0 Fz
Fx Fy Fz 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (B.3)

with Fx = qEx,Fy = qEy ,Fz = qEz. The so-called 4-vector
Minkowski force ([51] p. 131) Fμ on the particle is given by

Fμ = 1
c
F

μ
ν vν

= γ(v)
{

qEx, qEy , qEz,
q

c

(
Exvx + Eyvy + Ezvz

)}

.

(B.4)

For the electromagnetic field characterized by the 4 × 4-
tensor E

μ
ν = gνξE ξμ in S0 frame, the same field is characterized

by the 4× 4-tensor EA
μ
ν in SA frame, given by

EA
μ
ν = L

μ
ξ (V)E ξ

χL
+χ

ν(V). (B.5)
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[10] J. H. Dunkel, P. Änggi, and S. Hilbert, “Non-local observ-
ables and lightcone-averaging in relativistic thermodynamics,”
Nature Physics, vol. 5, no. 10, pp. 741–747, 2009.

[11] P. T. Landsberg and G. E. A. Matsas, “The impossibility of a
universal relativistic temperature transformation,” Physica A,
vol. 340, no. 1–3, pp. 92–94, 2004.

[12] G. L. Sewell, “Note on the relativistic thermodynamics of
moving bodies,” Journal of Physics A, vol. 43, no. 48, Article
ID 485001, 8 pages, 2010.
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classical thermodynamics,” The European Physical Journal, vol.
18, pp. 269–273, 1997.

[42] H. Kolbenstvedt and R. Stolevik, “The concepts of mass and
energy,” Journal of Chemical Education, vol. 68, no. 10, pp.
826–828, 1991.

[43] Ø. Grøn, “Manifestly covariant formulation of Bohr’s theory
for photon emission from an atom,” European Journal of
Physics, vol. 1, no. 1, pp. 57–58, 1980.

[44] R. S. Treptow, “E = mc2 for the chemist: when is mass
conserved?” Journal of Chemical Education, vol. 82, no. 11, pp.
1636–1641, 2005.

[45] G. Marx, “Is the amount of matter additive?” European Journal
of Physics, vol. 12, no. 6, pp. 271–274, 1991.

[46] L. P. Manzi and P. D. Wasik, “Rest mass of a system of
particles,” American Journal of Physics, vol. 38, pp. 270–271,
1970.

[47] H. S. Leff, “Teaching the photon gas in introductory physics,”
American Journal of Physics, vol. 70, no. 8, pp. 792–797, 2002.

[48] H. Kolbenstvedt, “The mass of a gas of massless photons,”
American Journal of Physics, vol. 63, pp. 44–46, 1995.

[49] A. M. Gabovich and N. A. Gabovich, “How to explain the non-
zero mass of electromagnetic radiation consisting of zero-mass
photons,” European Journal of Physics, vol. 28, no. 4, pp. 649–
655, 2007.

[50] B. A. Waite, “A gas kinetic explanation of simple thermody-
namic processes,” Journal of Chemical Education, vol. 62, no.
3, pp. 224–227, 1985.

[51] W. Rindler, Special Relativity, Oliver and Boyd, Edinburg, Tex,
USA, 2nd edition, 1966.

[52] G. M. Barrow, “Thermodynamics should be built on energy-
not on heat and work,” Journal of Chemical Education, vol. 65,
no. 2, pp. 122–125, 1988.

[53] F. Rohrlich, “On relativistic theories,” American Journal of
Physics, vol. 34, p. 987, 1966.

[54] G. Margaritondo, “A historically correct didactic first step
in the quantum world: stressing the interplay of relativity,



18 Physics Research International

thermodynamics and quantum physics,” European Journal of
Physics, vol. 24, no. 1, pp. 15–19, 2003.

[55] D. Shanks, “Monochromatic approximation of blackbody ra-
diation,” American Journal of Physics, vol. 24, pp. 244–246,
1956.

[56] J. R. Forshaw and A. G. Smith, Dynamics and Relativity, Wiley,
2009.

[57] D. Cubero, J. Casado-Pascual, J. Dunkel, P. Talkner, and P.
Hänggi, “Thermal equilibrium and statistical thermometers
in special relativity,” Physical Review Letters, vol. 99, no. 17,
Article ID 170601, 4 pages, 2007.

[58] G. Horwitz, “Rest frames in relativistic thermodynamics,”
Physical Review D, vol. 4, no. 12, pp. 3812–3813, 1971.

[59] F. Herrmann and P. Wrfel, “Light with nonzero chemical
potential,” American Journal of Physics, vol. 73, no. 8, pp. 717–
721, 2005.

[60] A. M. Gabovich and N. A. Gabovich, “How to explain the non-
zero mass of electromagnetic radiation consisting of zero-mass
photons,” European Journal of Physics, vol. 28, no. 4, pp. 649–
655, 2007.

[61] N. G. van Kampen, “Relativistic thermodynamics,” Journal of
the Physical Society of Japan, vol. 26, supplement, pp. 316–321,
1969.

[62] E. Huggins, “Note on magnetism and simultaneity,” The
Physics Teacher, vol. 47, pp. 587–589, 2009.

[63] E. F. Taylor and J. A. Wheeler, Spacetime Physics: Introduction
to Special Relativity, W. H. Freeman and Company, New York,
NY, USA, 1992.

[64] J. H. Smith, Introduction to Special Relativity, Stipes Publish-
ing, Champaign, Ill, USA, 1965.
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