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Abstract. Deep learning (DL) has recently emerged as an
innovative tool to downscale climate variables from large-
scale atmospheric fields under the perfect-prognosis (PP)
approach. Different convolutional neural networks (CNNs)
have been applied under present-day conditions with promis-
ing results, but little is known about their suitability for ex-
trapolating future climate change conditions. Here, we ana-
lyze this problem from a multi-model perspective, develop-
ing and evaluating an ensemble of CNN-based downscaled
projections (hereafter DeepESD) for temperature and precip-
itation over the European EUR-44i (0.5◦) domain, based on
eight global circulation models (GCMs) from the Coupled
Model Intercomparison Project Phase 5 (CMIP5). To our
knowledge, this is the first time that CNNs have been used
to produce downscaled multi-model ensembles based on the
perfect-prognosis approach, allowing us to quantify inter-
model uncertainty in climate change signals. The results are
compared with those corresponding to an EUR-44 ensemble
of regional climate models (RCMs) showing that DeepESD
reduces distributional biases in the historical period. More-
over, the resulting climate change signals are broadly com-
parable to those obtained with the RCMs, with similar spa-
tial structures. As for the uncertainty of the climate change
signal (measured on the basis of inter-model spread), Deep-
ESD preserves the uncertainty for temperature and results in
a reduced uncertainty for precipitation.

To facilitate further studies of this downscaling approach,
we follow FAIR principles and make publicly available the
code (a Jupyter notebook) and the DeepESD dataset. In par-
ticular, DeepESD is published at the Earth System Grid Fed-

eration (ESGF), as the first continental-wide PP dataset con-
tributing to CORDEX (EUR-44).

1 Introduction

The Coupled Model Intercomparison Project (CMIP) ini-
tiative produces periodic multi-model ensembles of centen-
nial global climate projections under different future sce-
narios using global circulation models (GCMs). The two
latest ensembles available are CMIP5 (Taylor et al., 2012)
and CMIP6 (Eyring et al., 2016), with typical resolutions
of around 200 and 100 km, respectively. These results are
widely used by the impacts and adaptation communities in
different sectors (e.g., energy, agriculture and health, among
others). However, the biases and spatial resolution of these
global projections hamper their use in regional applications,
and different downscaling approaches and methods are rou-
tinely applied to produce actionable information at the re-
gional and local scales (Maraun and Widmann, 2018).

Dynamical downscaling is based on the use of re-
gional climate models (RCMs) over a limited region
driven by GCM outputs at the boundaries (Giorgi, 2019;
Gutowski et al., 2020). Different regional initiatives pro-
vide high-resolution, physically consistent downscaled sim-
ulations over continental-wide domains. In particular, the
Coordinated Regional Climate Downscaling Experiment
(CORDEX, https://cordex.org, last access: 26 August 2022)
provides multi-model ensembles of regional climate projec-
tions driven by CMIP5 model outputs over 14 continental

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://cordex.org


6748 J. Baño-Medina et al.: Downscaling multi-model ensembles

domains. These regional projections are highly demanding
in terms of computational resources, and the resolution of
the available regional projections ranges from 50 to 10 km,
depending on the domain.

The empirical–statistical downscaling approach (ESD) is
based on empirical–statistical models translating the coarse-
resolution information provided by the GCMs (predictors)
to the regional/local scale provided by the available histori-
cal observations (predictands), typically temperature or pre-
cipitation fields (Gutiérrez et al., 2019). Under the perfect-
prognosis (PP) approach, the statistical models are trained in
a historical period to learn a predictor–predictand link using
simultaneous observed and reanalysis (quasi-observations)
values (daily in this work) for predictands and predictors, re-
spectively. The resulting models are then applied to GCM
predictor values (from present climate or future scenarios) to
obtain the regional/local downscaled results. This approach
is based on a number of assumptions. For example, predic-
tors have to be realistically simulated by GCMs (e.g., ex-
hibiting small systematic biases), so large-scale fields in up-
per levels (less affected by orography and model resolution)
are typically used as predictors (perfect-prognosis assump-
tion); moreover, the statistical models trained in present cli-
mate conditions should remain valid under modified (out-
of-sample) climate conditions (generalization assumption)
(see Gutiérrez et al., 2019, for more details). Compared to
dynamical downscaling, ESD lacks explicit physics in the
model formulation and typically does not ensure full multi-
variate (intervariate and spatial) consistency. However, these
methods overcome the systematic biases present in RCM
products (as the model is trained using observations) and
are not computationally demanding, avoiding the need for
large computational infrastructures (Le Roux et al., 2018).
Therefore, these methods could be widely used to downscale
global multi-model ensembles providing results at continen-
tal scales, e.g., in CORDEX domains.

Recently, deep learning methods based on convolutional
neural networks (CNNs) have become very popular as a sta-
tistical downscaling technique due to their ability to achieve
an automatic selection of predictors in the form of data-
driven spatial features (Baño-Medina, 2020). Although they
have shown promising results for continental-level climate
downscaling under perfect conditions (Pan et al., 2019;
Baño-Medina et al., 2020; Sun and Lan, 2021; François et
al., 2021), there is little knowledge on whether these sta-
tistical models are able to generalize to out-of-sample cli-
mate change conditions. Some preliminary work using a sin-
gle GCM shows that CNNs can accurately reproduce the lo-
cal climate variability and provide plausible climate change
projections over Europe as compared to well-established sta-
tistical downscaling approaches (Baño-Medina et al., 2021).
However, further analysis along these lines is needed to as-
sess the suitability of CNNs for climate change applications.

Here we provide a multi-model perspective by applying a
CNN model (Baño-Medina et al., 2021) to downscale daily

precipitation and temperature over Europe from the histor-
ical and future projections (RCP8.5 scenario) provided by
an ensemble of eight GCMs. We evaluate the consistency
of the downscaling approach across models and analyze the
uncertainty of the resulting climate change signals. More-
over, we follow previous downscaling literature (Vrac et
al., 2007; San-Martín et al., 2017; Quesada-Chacón et al.,
2021) and compare the resulting projections with an ensem-
ble of RCMs, which are used as pseudo-observations. In or-
der to facilitate further analysis, this dataset (referred to as
deep learning empirical statistical downscaling, DeepESD)
is made publicly available on the Earth System Grid Federa-
tion (ESGF), as a contribution to the EUR-44i domain (0.5◦

horizontal resolution), so it can be downloaded together with
the ensemble of available RCMs. To our knowledge, this is
the first continental-scale climate change projection dataset
produced using statistical downscaling methods contributing
to CORDEX and published in ESGF, following the standard
procedure for RCMs. Moreover, following FAIR principles
(Wilkinson et al., 2016), the code used to generate the dataset
along with guidelines on how to access the data is available
on Zenodo (see the section on code and data availability).

2 Data and methods

Following the PP approach, the CNN models have been
trained over the period 1979–2005 using daily predictors
from the ERA-Interim reanalysis (Dee et al., 2011), upscaled
from its original 0.75◦ resolution to a reference 2◦ regu-
lar grid, and predictands from E-OBS v20 (Cornes et al.,
2018), originally at 0.25◦ but upscaled to 0.5◦ for consis-
tency with previous works (Baño-Medina et al., 2020, 2021).
E-OBS is a high-resolution observational dataset generated
by spatially interpolating the European Climate Assessment
& Dataset (ECA&D) network of stations (Klok and Klein
Tank, 2009). Although national and sub-national datasets ex-
ist, E-OBS accurately represents the regional climate over
the entire European continent (Bandhauer et al., 2022), and
it is commonly used in continental-wide statistical downscal-
ing experiments (Maraun et al., 2015; Vrac and Ayar, 2016;
Baño-Medina et al., 2020, 2021). We chose version 20 (v20,
release date October 2019) since it was the most recent at
the start of this study. Following previous studies (Gutiérrez
et al., 2019; Baño-Medina et al., 2020), air temperature, spe-
cific humidity, and geopotential, meridional and zonal wind
velocity at 500, 700 and 850 hPa (i.e., a total of 15 vari-
ables per grid box) have been used as predictors covering the
domain 34–76◦ N, 8◦ W–34◦ E, resulting in a 22 × 22 × 15
(longitude× latitude×variable) high-dimensional input grid.
To avoid potential artifacts derived from the different scale of
the distinct variables, ERA-Interim predictors are standard-
ized at the grid box level (Baño-Medina et al., 2021).

For downscaling we used an ensemble formed by the eight
CMIP5 GCMs described in Table 1, whose ability to repro-
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duce the large-scale dynamics has already been assessed for
PP studies (Brands et al., 2013), which have also been used
in EURO-CORDEX to drive RCMs (Vautard et al., 2021).
Therefore, we apply our trained models to downscale the pro-
jections from this ensemble for the historical (1975–2005)
and RCP8.5 scenario (2006–2100) periods. We follow pre-
vious work in this field (Baño-Medina et al., 2021; Olmo et
al., 2022) and select the RCP8.5 scenario, which shows the
strongest climate change signal (especially for temperature)
and therefore allows the generalization capability of CNNs
to be optimally explored. Due to their different spatial res-
olutions, all GCM data have been interpolated to the refer-
ence 2◦ grid (considering the nearest grid box) to match the
predictor space used for ERA-Interim. No differences in the
downscaled results were found by employing other interpola-
tion techniques (e.g., bilinear). Moreover, in order to reduce
potential systematic biases in GCM predictors which may af-
fect the perfect-prognosis assumption, we bias-adjust GCM
predictors towards the corresponding reanalysis values. As
suggested in previous studies, we use a change-preserving
method (Vrac and Ayar, 2016) in order to avoid introducing
artificial trends/changes in future GCM predictor values. In
particular we use a simple scaling method (mean and vari-
ance) applied at a monthly scale; for future periods, the cli-
mate change signal is removed from the data before bias ad-
justment and added to the results. We want to remark that we
tested both signal-preserving and standard bias adjustment
obtaining substantial differences in the climate change sig-
nals for temperature; signal-preserving yields more plausible
results (as compared with GCM and RCM climate change
signals). As in the case of the reanalysis, GCM predictors
are standardized at the grid box level for their use in the CNN
(the same standardization parameters used for the reanalysis
data are applied here).

The above pre-processing steps are illustrated in Fig. 1.
For the CNN models used in this work, we deploy the

best-performing topologies developed in Baño-Medina et al.
(2020), a recent study which intercompares different CNNs
over Europe to downscale temperature (precipitation). They
consist of three convolutional layers (LeCun and Bengio,
1995) with 50, 25 and 10 (1) spatial kernels (3 × 3 grid
boxes) followed by a dense connection linking the last hidden
layer to the output neurons (corresponding to the land grid
points in E-OBS). As in Baño-Medina et al. (2020) we apply
a distributional downscaling approach and use the network
to estimate daily predictor-conditioned Gaussian (Bernoulli–
gamma) distributions for temperature (precipitation). This is
implemented for each land grid box using two (three) output
neurons corresponding to the distributional parameters: mean
and variance (probability of rain, shape and scale factors).
The resulting networks are trained to optimize the negative
log-likelihood of the Gaussian (Bernoulli–gamma) distribu-
tion. We refer the reader to Baño-Medina et al. (2020) for
more details. During calibration, we use a test set (randomly

selected 10 % of the data) to perform early stopping and stop
training when the test error stops decreasing after 30 epochs.

The computations performed in this work were executed
on a single node 2x Intel(R) Xeon(R) E5-2670 0 at 2.60 GHz
CPU (16 cores) with 60 GiB of RAM. The computational
time taken to calibrate the model and generate the projec-
tions for a GCM was less than 6 h, which is considerably
less than the time required to run a similar experiment with
an RCM (for instance, the EUR-44 simulations performed
with the WRF model for a single GCM in Fernández et al.,
2019, lasted six months using nine nodes with 144 cores).
This approach can provide either deterministic predictions,
by considering the expected value of the distribution for each
day and grid point, or stochastic ones, by simulating a ran-
dom value from the distribution. Note that the deterministic
approach typically result in an underestimation of the vari-
ability (and the extremes), since the explained variance may
be significantly smaller than the observed one (Williams,
1998; Cannon, 2008; Baño-Medina et al., 2020). This is es-
pecially relevant for precipitation, whose local variability is
often influenced by local phenomena which are not captured
by the chosen predictors (Schoof and Pryor, 2001; Maraun
and Widmann, 2018). We analyzed both deterministic and
stochastic approaches and finally used the stochastic (deter-
ministic) version of the precipitation (temperature) down-
scaled fields. For the stochastic version we tested the results
for different realizations and found robust results for histori-
cal biases and climate change signals.

We use a set of CORDEX RCMs (EUR-44 domain, Ta-
ble 2) to analyze the generalization to out-of-sample cli-
mate change conditions of the CNN-based regional projec-
tions. Using RCM simulations as pseudo-observations is a
common procedure adopted in the literature to validate ESD
downscaled projections for future scenarios (Vrac et al.,
2007; San-Martín et al., 2017; Quesada-Chacón et al., 2021).
Nevertheless, note that RCMs still suffer from deficiencies
in their model formulations that may affect their futures es-
timates (Boé et al., 2020; Gutiérrez et al., 2020), and there-
fore they should not be considered as purely true values for
the CNN projections but rather as plausible trajectories. For
a direct comparison, we interpolate these RCMs from their
original spatial resolution (0.44◦) to the predictand 0.5◦ reg-
ular grid.

Finally, we test the sensitivity of CNN training on the re-
sults by repeating the downscaling experiment 10 times and
evaluate historical biases and future climate change signals
as shown below without finding appreciable variations.

3 Results

Figure 2 shows mean daily precipitation and temperature
over the historical period 1975–2005 (and biases relative to
E-OBS) for the multi-model means provided by the GCMs,
RCMs and DeepESD ensembles. For precipitation, the raw
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Table 1. The different CMIP5 models used in this study.

Name Institution Spatial resolution

CanESM2 (Christian et al., 2010) Canadian Centre for Climate Modelling and Analysis (2.81◦, 2.79◦)
CNRM-CM5 (Voldoire et al., 2013) Centre National de Recherches Météorologiques and

Centre Européen de Recherche et de Formation Avancée
(1.4◦, 1.4◦)

MPI-ESM-MR (Müller et al., 2018) Max-Planck-Institut für Meteorologie (1.87◦, 1.87◦)
MPI-ESM-LR (Müller et al., 2018) Max-Planck-Institut für Meteorologie (1.87◦, 1.87◦)
NorESM1-M (Bentsen et al., 2013) Norwegian Climate Center (2.5◦, 1.9◦)
GFDL-ESM2M (Dunne et al., 2013) National Oceanic and Atmospheric Administration

Geophysical Fluid Dynamics Laboratory
(2.5◦, 2.02◦)

EC-EARTH (Doblas Reyes et al., 2018) European-wide consortium (1.12◦, 1.12◦)
IPSL-CM5A-MR (Dufresne et al., 2013) Institut Pierre-Simon Laplace Climate Modelling Center (2.5◦, 1.27◦)

Figure 1. Workflow of pre-processing steps applied to reanalysis and GCM data in this work.

GCM results show a smooth spatial pattern which does
not capture the strong local-to-regional variability of this
variable, and both GCM and RCM overestimate rainfall
over most of the domain. As expected, DeepESD exhibits
a largely unbiased spatial pattern over the entire continent,
which is a result of being trained directly with observations.
For temperature, all approaches capture the latitudinal gradi-
ent, but both GCM and RCM results exhibit important biases
over vast regions of the continent with predominant negative
biases for RCM results. Again, DeepESD yields a mostly un-
biased spatial pattern as a consequence of the training pro-
cess (Casanueva et al., 2016). Besides these results for the
mean, Fig. 3 compares the entire precipitation and temper-
ature distributions for the GCM, RCM and DeepESD en-
sembles over the historical period 1979–2005, for three dif-
ferent illustrative regions (the Alps, the Iberian Peninsula
and Eastern Europe, as defined in the PRUDENCE regions,
Christensen and Christensen, 2007). The reduction of biases
for DeepESD is noticeable along the entire distribution (in-

cluding the extremes) for both precipitation and temperature.
Note that for precipitation these results are due to the use of
the stochastic nature of the method, sampling from the in-
ferred conditional distributions.

Figure 4 shows the mean climate change signal result-
ing from the GCM, RCM and DeepESD ensembles, as well
as the underlying uncertainty (characterized by multi-model
dispersion). In particular, the right (left) panel in this figure
shows the values for precipitation (temperature) for near-,
mid- and far-future periods (rows 1–3) relative to 1975–2005,
as projected by the GCM, RCM and DeepESD ensembles (in
columns).

Overall, the spatial pattern of future precipitation changes
is similar for the three ensembles, with precipitation decreas-
ing over southern Europe and increasing over the northern
part of the continent. Slight regional differences exist among
the three ensembles, with DeepESD presenting weaker (de-
creasing) signals of change over the Iberian Peninsula but
stronger (increasing) ones over some parts of northern and
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Table 2. Details of the EURO-CORDEX (EUR-44 domain) RCM simulations used in this study. The first two columns show the GCM and
ensemble member driving the RCM.

GCM Member RCM Institution

CanESM2 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
CNRM-CM5 1 CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community
CNRM-CM5 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
MPI-ESM-LR 1 CLMcom-CCLM4-8-17 Climate Limited-area Modelling Community
MPI-ESM-LR 1 MPI-CSC-REMO2009 Max Planck Institute for Meteorology
NorESM1-M 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
GFDL-ESM2M 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
EC-EARTH 12 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
EC-EARTH 12 CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community
IPSL-CM5A-MR 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
IPSL-CM5A-MR 1 IPSL-INERIS-WRF331F Institut Pierre-Simon Laplace

Figure 2. Annual daily precipitation (left block) and temperature (right) for the historical period 1975–2005, as obtained from the ensembles
of GCMs, RCMs and DeepESD GCM-downscaled results (left, middle and right columns, respectively). The first row shows the ensemble
mean climatological values, and the second row displays the corresponding biases with respect to E-OBS v20.

Eastern Europe, especially when compared with GCMs. In-
terestingly, both the climate change signal and the multi-
model uncertainty spatial patterns of DeepESD are more sim-
ilar to the downscaled RCM than to the GCM ensemble.
Moreover, DeepESD projects lower uncertainty than both
physical-based ensembles across most of the European con-
tinent.

Regarding temperature, the spatial patterns are broadly
consistent among the three ensembles, with the highest
warming located over northern Scandinavia, Eastern Europe,
and the Mediterranean Basin and the lowest one for the
British Isles and western and central Europe. As in the case
of precipitation, some regional differences exist among en-
sembles, especially over central and Eastern Europe where
both RCMs and DeepESD project lower signals of change
than the GCMs, reducing the warming signal by about 0.5–

1 ◦C by the end of the century. Finally, the GCMs’ ensem-
ble spread ranges between 0.5–1.5 ◦C, with higher values in
southern and especially northern Europe than in the rest of
the continent. The RCMs (DeepESD) project a similar spa-
tial pattern than the GCMs, with a lower spread over central
and Eastern Europe (Scandinavia).

Further research is needed to assess whether the differ-
ences between GCM and RCM/DeepESD signals are due to
an added value of downscaling or to deficiencies in the mod-
els. In the case of the RCMs, some recent studies attribute
them to the lack of time-varying anthropogenic aerosols in
the RCM formulation (Boé et al., 2020; Gutiérrez et al.,
2020). To further analyze the results for DeepESD, Fig. 5
shows (in columns) the climate change signals (2071–2100
with respect to 1975–2005) of the eight CMIP5 climate mod-
els considered and the corresponding DeepESD downscaled
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Figure 3. Probability density functions (PDFs) of the GCM (red), RCM (blue), and DeepESD (green) ensembles of precipitation and tem-
perature over the historical period 1979–2005, as well as E-OBS (black) for the Alps, the Iberian Peninsula and Eastern Europe as defined
in the PRUDENCE regions (Christensen and Christensen, 2007). The solid line represents the ensemble mean, and the shadow encompasses
2 standard deviations. The dashed line indicates the distributional mean of each PDF.

fields for precipitation (rows 1–2) and temperature (rows 4–
5). Rows 3 and 6 show the differences between the DeepESD
downscaled and raw climate change signals for the different
GCMs. As per the climate change signal of precipitation, we
observe a south-to-north gradient with different intensities
depending on the GCM (i.e., MPI, GFDL and IPSL present
the lowest values over the Mediterranean Basin). Differently
to the GCMs signal, DeepESD provides a more homoge-
neous spatial pattern explaining the low inter-model spread
of Fig. 4. As per temperature, all GCMs project a positive
climate change signal with subtle spatial patterns which vary
across GCMs that are well captured by the DeepESD down-
scaled fields. This similarity in the climate change signals
between the GCM and DeepESD fields explains the simi-
lar inter-model spread of Fig. 4. Also, we observe that the
CNRM-CM5 is the one model responsible for the reduced
warming signal over Eastern Europe described in Fig. 4.

To examine the behavior of CNNs beyond climatological
fields, Fig. 6 shows the yearly time series for precipitation
and temperature averaged over the Alps, the Iberian Penin-
sula and Eastern Europe domains, as defined in the PRU-
DENCE regions (Christensen and Christensen, 2007), which
are broadly representative of the different European climate
regimes – mountainous, Mediterranean and continental, re-
spectively. Namely, we focus on the frequency of rainy days

(R01), i.e., those receiving at least 1 mm of rain; the average
precipitation in rainy days (SDII); and the mean of tempera-
ture. For every indicator, the ensemble of GCMs (red), RCMs
(blue), and DeepESD (green) for the total period 1975–2100
and the observational reference, E-OBS (black), for the pe-
riod 1979–2008 are shown. In all cases, the solid lines rep-
resent the multi-model ensemble mean, whilst the shadows
encompass all the models contributing to the ensemble.

Figure 6a shows that both GCMs and RCMs overestimate
the frequency of wet days with respect to the observational
reference – a consequence of the drizzle effect (Dai, 2006).
For the SDII, RCMs present mostly unbiased fields, whilst
GCMs underestimate this metric across all regions, remark-
ing the added value of RCMs to reproduce regional precipita-
tion. In contrast to GCMs and RCMs, DeepESD provides in
general more robust estimates for both R01 and SDII under
the historical scenario. In terms of future changes, the three
ensembles project an increase in the SDII across all regions,
as well as a decrease (increase) of the number of wet days in
the southern (northern) regions consistent with the results of
Fig. 2.

For temperature, Fig. 6c shows that the three ensembles
perform similarly across all regions, with some systematic
underestimation of mean temperatures by the RCMs and
DeepESD exhibiting nearly unbiased results under the his-
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Figure 4. Climate change signal for annual mean precipitation (left) and temperature (right) for near- (2006–2040), mid- (2041–2070) and
far-future (2071–2100) periods, in rows, relative to 1975–2005 as projected by the GCM, RCM and DeepESD ensembles (in columns). The
last row shows the uncertainty of the far-future signal, as measured by the standard deviation of the results across models.

torical scenario. Note that the GCMs time series are mostly
unbiased, which is the result of averaging out the positive
and negative biases appearing in the spatial fields of Fig. 2.
As per the projected signals of change, the three ensembles
point out to a (quasi-)linear increase along the century and
across all regions, with warming values of about 4–6 ◦C for
the far future in most of cases.

This indicates that DeepESD is able to accurately repro-
duce the historical climate – even the discrete-continuous na-
ture of precipitation – and beyond the regional differences
shown in Fig. 5, there is a synchrony in the temporal evolu-
tion of the signals among ensembles. These results also indi-
cate that DeepESD results in a smaller spread of the ensem-
ble due to the adjustment of the models towards the observed
climatology.

4 Conclusions

Deep learning topologies are increasingly being tested for
downscaling purposes, achieving promising results in present
climate due to their ability to infer complex non-linear pat-

terns from climate data. Nevertheless, the ability of these
models to generalize to out-of-sample climate change condi-
tions is still to be analyzed with many questions open. Here,
we present DeepESD, an ensemble of regional precipitation
and temperature projections (up to 2100) over Europe pro-
duced by applying convolutional neural networks to down-
scale a set of eight GCMs over the EUR-44 CORDEX do-
main. This multi-model perspective permits us to analyze
unexplored aspects of CNN-based downscaling such as the
inter-model uncertainty of the climate change signals or the
similarities/differences of the downscaling across GCMs. We
build on existing CNNs models (Baño-Medina et al., 2020)
and focus on their performance in the climate model space,
using GCM projections. In this sense, we follow previous lit-
erature (Vrac et al., 2007; San-Martín et al., 2017; Quesada-
Chacón et al., 2021) and compare the DeepESD future fields
with a set of state-of-the-art CORDEX RCMs, which are
used as pseudo-observations. To our knowledge, this is the
first time that CNNs have been used to produce downscaled
multi-model ensembles based on the perfect-prognosis ap-
proach and are compared against an ensemble of RCMs.
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Figure 5. The climate change signals (2071–2100 with respect to 1975–2005) of the eight CMIP5 climate models considered and the
equivalent DeepESD downscaled fields for precipitation (rows 1–2) and temperature (rows 4–5). Rows 3 and 6 show the difference between
the DeepESD downscaled and raw climate change signals for the different GCMs.

We find that CNN-based downscaling is able to reproduce
the observed climate over the historical period for both pre-
cipitation and temperature fields at a distributional level, re-
ducing the systematic biases exhibited by the global and re-
gional physical models. When analyzing the future climate
change signals, we find that DeepESD presents spatial pat-
terns and magnitudes which are broadly similar to the ones
from the RCMs. Nevertheless, there are regional differences
– at a climatological scale and inter-annual scales – in the
projected climate change signals among DeepESD and the
physical-based models. For the case of precipitation, these
differences are driven towards a decrease in the multi-model
uncertainty with respect to the one of their driving GCMs. As
per temperature, the CNNs project similar signals of change
as the GCMs, being able to capture the particularities of each
one and resulting in a similar ensemble spread. This property

was not perceived in previous studies (Baño-Medina et al.,
2021) where a single GCM (i.e., EC-Earth) was considered.

Despite the analysis presented herein, the plausibility of
the projections has to be further analyzed prior to the inte-
gration of DL topologies into climate change applications.
For instance, this can be done by developing specific studies
dealing with the domain adaptation of the statistical mod-
els learned in perfect conditions to climate model spaces, by
conducting synthetic case studies permitting us to analyze
their extrapolation capabilities to climate change conditions,
and by comparing the CNN-based fields against other ma-
chine learning techniques. To this aim, following the FAIR
principles we make DeepESD publicly available from the
ESGF portal, which will allow the scientific community to
continue exploring the benefits and shortcomings of these
new techniques for the downscaling of climate. Precisely,
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Figure 6. Annual time series for (a) R01, (b) SDII and (c) the mean of temperature, averaged over the Alps (AL), the Iberian Peninsula (IP)
and Eastern Europe (EA) PRUDENCE regions. For every indicator, the ensemble of GCMs (red), RCMs (blue), and DeepESD (green) for
the total period 1975–2100 and the observational reference, E-OBS (black), for the period 1979–2008 are shown. In all cases, the solid lines
represent the multi-model ensemble mean, whilst the shadows encompass all the models contributing to the ensemble.

DeepESD contributes to CORDEX EUR-44 being the first
statistical-based dataset to ever participate in this interna-
tional initiative, entailing a breakthrough of this type of tech-
niques on the study of regional climate.

Code and data availability. To promote transparency and
reproducibility of our results, we provide the data (DOI:
https://doi.org/10.5281/zenodo.6823421, Baño-Medina et
al., 2022a) and the companion Jupyter notebook (DOI:
https://doi.org/10.5281/zenodo.6828303, Baño-Medina et al.,
2022b), explaining how DeepESD has been produced. This
notebook is based on the R software and builds on the climate4R
framework, a set of libraries specifically designed for climate
data access and post-processing (Iturbide et al., 2019). To build
the CNNs used, we rely on downscaleR.keras (Baño-Medina et
al., 2020), which integrates Keras, a state-of-the-art DL library,
within climate4R. Furthermore, most of the results shown in this
paper can be replicated by following the indications given in the
notebook, providing thus the basis for practitioners to perform their
own experiments.

DeepESD downscaled results have been published at the ESGF
data node at the University of Cantabria (https://data.meteo.
unican.es/thredds/catalog/esgcet/catalog.html, last access: 26 Au-
gust 2022).
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