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A B S T R A C T   

Rigorous and efficient management of the railway infrastructure is crucial to avoid accidents and reduce oper-
ation and maintenance costs. This requires in-depth knowledge of the assets, the interaction among them and the 
effect that each track parameter has on the overall infrastructure performance. In this study, a large set of studies 
are carried out, on a previously calibrated finite element slab track model, where the relevant track parameters 
are varied within their usual ranges. The results are then used to train and validate a series of predictive models 
based on Machine Learning algorithms. This methodology provides greater understanding and enhanced pre-
diction of the behaviour of tracks, which are composed of multiple variables such as the soil/subgrade, sup-
porting layers, sleepers, pads and rails. The study also considers train axle loads and service speeds, which are 
other key elements that influence the track performance. The results show that the parameters that have greatest 
influence on the railway infrastructure are the properties of the soil, characteristics of the rail pads and the axle 
loads. This work can support the implementation of predictive maintenance procedures for railway tracks and 
the development of innovative technological solutions, providing responses to the industrial needs of reducing 
costs and contributing to improve the competitiveness of railway transport.   

1. Introduction 

Modern societies require efficient means of transport for passengers 
and goods. Speed, comfort, safety and environmental friendliness are 
unavoidable demands nowadays. There are several reasons that have 
made the railway one of the most used means of transport worldwide. 
The main advantages of the railway over other alternatives are the high 
safety level and reliability, together with reduced costs and the low 
levels of CO2 emissions [1–3]. According to the Spanish Transport and 
Logistics Observatory, in 2016, the railway was the means of transport 
of 28.8% of goods in Spain and more than twice the long-distance 
journeys were made by train than by airplane [4]. Furthermore, the 
railway was responsible for 29% of public transport in Spain and the risk 
of fatal accidents per kilometre is equivalent for railroad and airplane, 
being 28 times lower than transport by private vehicles [5]. These 

figures are easily comparably to other countries. According to the Eu-
ropean Union, in terms of pollution, in 2014, roads were responsible for 
72.8% of total CO2 emissions in the transport sector, naval was 
responsible for 13.0% and aviation for 13.1%, while railways only 
produced 0.6% [6]. Therefore, the use of rail transport helps to reduce 
dependence on fossil fuels and, at the same time, decrease pollution and 
carbon emissions that cause global warming. 

In order to enhance its advantages and increase its use, the railway 
sector has undergone a remarkable growth in research, investment and 
infrastructure development worldwide over the last decades. This evo-
lution in the sector, especially in the case of high-speed rail, has given 
rise to a large number of studies proposing solutions to improve the 
mechanical performance and the efficiency of the tracks [7–16]. The 
accurate characterization of rail infrastructure components has a great 
importance in vehicle-track interaction studies. Some authors devoted 
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their attention to modelling and characterization of rail pads [17–21], 
which are the elements with the greatest influence on track stiffness, a 
fundamental parameter for maintenance of the track [22–27], in 
particular in the case of ballastless tracks [28–30]. 

Other authors have proposed co-simulation methodologies using 
Finite Element Method (FEM) and multibody formulations in order to 
study the flexibility of track structures under realistic trainset loads 
[31–34]. These developments open up the possibility of integrating 
more detailed wheel-rail contact models [35–44], to consider track ir-
regularities [45,46] and other track singularities [10,47–50] in the 
studies aiming to assess track performance and degradation evolution 
[51–55] under realistic operation conditions. 

Understanding and predicting the behaviour of the track compo-
nents, their interaction and the influence of load and environmental 
conditions is of paramount importance for infrastructure managers. 
Such knowledge enables them to optimize asset management and 
develop more cost-efficient maintenance procedures, where renewal 
interventions are defined according to the real conditions of the assets 
rather than on empirical time intervals. 

The large number of variables that affect the performance of railway 
infrastructure can be categorized into three groups. The weight and 
speed of the trains are the source of the loads and frequencies acting on 
the track components. The geographic location of the track is directly 
related to the environmental conditions, especially the temperature. The 
response of the system depends on the material properties of the ele-
ments that compose the track [56–60] and on the ground that supports 
it. 

To the best of the authors’ knowledge, there is currently no study 
available in the literature aiming to predict the overall response of the 
track from external actions and the behaviour of its components, 
including their mutual interaction. The development of computational 
methods such as FE and Machine Learning (ML) algorithms open up new 
perspectives in this context. Several recent examples use ML methods to 
predict the mechanical behaviour of different components. In particular, 
Kiani et al. [61] develop a series of ML models to predict the structural 
response and derive fragility curves to assess seismic risk. Kawamura 
et al. [62] propose an expert rating system for deteriorated concrete 
bridges based on multilayer neural networks, which takes as inputs just 
visual inspection and technical specifications. Basudhar et al. [63] 
establish a methodology for generating decision functions using Support 
Vector Machine. Ferreño et al. [19] use ML algorithms to generate a 
series of models to successfully predict the mechanical behaviour of 
different types of rail pads based on their operating conditions. 

The aim of the work presented here is to analyse 4 quantities that are 

commonly used to assess the dynamic behaviour of the track, namely the 
displacements and accelerations measured on both the rails and slab. For 
this purpose, a literature review enabled the identification and classifi-
cation of the variables influencing the dynamic behaviour of the railway 
infrastructure. The variables related to the train-induced forces include 
axle loads, speed, wheel passing frequency and the wheel-rail contact 
forces. The variable associated with the environment that is considered 
here is temperature. It is studied in 2 different locations, namely the 
cities of Seville (Spain) and Moscow (Russia). The material properties of 
the track components considered comprise the density, Young’s 
modulus and Poisson’s ratio of the relevant elements of the fastening 
system, the concrete slab track characteristics and the geotechnical 
properties of the soil. 

The statistical distributions of infrastructure variables are used to 
generate synthetic random samples through a Monte Carlo approach 
[64–66]. In this way, 5400 combination scenarios are defined and 
simulated using a FE model, which was previously validated experi-
mentally [11,16], in order to obtain the displacements and accelerations 
of the rail and slab track for each case study. The resulting datasets are 
then analysed by means of ML algorithms, namely multilinear regres-
sion, K-nearest neighbours, decision trees, random forest, 
gradient-boosting and neural networks (multilayer perceptron). The 
best model was selected for each of the assessment variables (displace-
ments and accelerations) and interpreted to identify the most relevant 
features in each case using the permutation importance approach as well 
as its marginal influence by means of partial dependence plots. This 
methodology enables the recommended operational ranges for the 
relevant track features to be established. 

The remainder of the paper is organized as follows Section 2.1 de-
fines the FE model as well as the material properties of the track com-
ponents. Section 2.2 explains the process used to generate the synthetic 
data, while section 2.3 describes the ML and statistical methods. Section 
3 presents the results and their analysis. Finally, section 4 presents the 
interpretation and relevance of the results obtained. 

2. Materials and Methods 

2.1. FE Model of the Track 

The FE track model used to perform this work is calibrated by lab-
oratory tests [11,16]. This is a dynamic model developed through the 
Harmonic Response module of ANSYS. To optimise the computational 
cost, three modifications are made to the original experimentally cali-
brated model shown in Fig. 1. Firstly, symmetry conditions are applied 

Fig. 1. Elements of the FE track model.  
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so that only one quarter of the original model is used. Secondly, as 
different types of fastening systems are to be analysed, the three ele-
ments that form the fastening in the original model (EPDM elastic PAD, 
steel plate and rubber pad) are replaced by a single body with me-
chanical properties equivalent to the three components. Finally, as the 
two soil layers of the original model, subgrade and frost protection layer 
(FPL), are both compacted sands, although with different degrees of 
compaction, it was decided to combine both bodies into a single one 
with equivalent properties. Fig. 1 shows the final configuration of the 
system and the different elements involved, whose dimensions are 
detailed in Table 1. 

In order to perform the parametric analysis, synthetic samples are 
generated from the random selection of values for each of the variables 
involved. In the following, details of the reference ranges defined in each 
case are presented. 

2.1.1. Soil Properties 
The subgrade and the FPL together constitute a compacted sand layer 

of 1.2 m height. Their behaviour is described by Young’s modulus (E), 
Poisson’s ratio (ν), and density (ρ). Average reference values of these 
properties mat be found, for example, in reference [67], namely, E=250 
MPa, ν = 0.2 and ρ = 1900 kg/m3. The authors of references [68–70] 
propose the use of log-normal distributions for these three properties, 
with coefficients of variation of 0.30 for E and 0.05 for ν and ρ. 

2.1.2. Hydraulically Bonded Layer (HBL) 
The HBL is a low-quality concrete layer (C-12/15). According to 

Eurocode-2 [71], its characteristic compression strength is fck = 12 MPa 
and mean strength is fcm = 20 MPa. The literature [71] suggests that the 
compressive strength of concrete follows a Gaussian distribution as 
shown in equation (1). Furthermore, it also provides equation (2), which 
correlates the compressive strength with the Young’s modulus. 
Combining both expressions, it is possible to generate the statistical 
distribution of the Young’s modulus of concrete C-12/15, a mean value 
of 27.09 GPa with a standard deviation of 2.33 GPa. 

pdf =
1

σ ∗
̅̅̅̅̅̅̅̅
2∗π

√ ∗e−
(x− μ)2

2∗σ2 (1)  

Ec(MPa) = 22000∗
(

f c

10
MPa

)0.3

(2) 

Based on Eurocode 2 [71], the Poisson’s ratio of HBL is not consid-
ered as a statistical variable but as a fixed parameter with a value of 
0.20. The database available in reference [72] is used to model the 
statistical distribution of concrete density as Gaussian, with a mean 
value of 2445.21 kg/m3 and a standard deviation of 16.16 kg/m3. 

2.1.3. Grout 
Grout is a concrete layer between the slab and the HBL. This element 

is specific to the slab track typology and its properties are considered 
fixed for this study, i.e., the ones defined in the calibrated model with 
E=22.5 GPa, ν = 0.2 and ρ = 2300 kg/m3. 

2.1.4. Slab 
The slab is made of C-35/45 concrete. The statistical distribution of 

the properties of this material is obtained in a similar way to the HBL. 
According to Eurocode 2 [71], the fck is 35 MPa and the fcm of 43 MPa, 
resulting in a mean value of 27.09 GPa with a standard deviation of 2.33 
GPa. The Poisson’s ratio and density are similar to the ones defined for 
the HBL. 

2.2. Elements of the Fastening System 

An example of the track fastening system is shown in Fig. 2, showing 
the elements that compose it. The fastening system is the most variable 
component of the track assembly. It is made of different materials whose 
properties depend on operational and environmental conditions such as 
temperature, train speed, axle load and clamping force of the fastening, 
also known as ‘toe load’. As this is a complex element to simulate, it was 
decided to replace the entire fastening system with an element with 
equivalent mechanical properties. To define these properties, the ML 
algorithm developed by Ferreño et al. is used [19], which provides the 
dynamic stiffness from the operational conditions. The transformation 
from stiffness to Young’s modulus is done through Young’s law. In order 
to obtain behaviour similar to a spring, Poisson’s ratio of this component 
is fixed at 0 to avoid the effect of contact. 

2.2.1. Rail Pad Materials 
EPDM, TPE and EVA are the most commonly used materials for rail 

pads and were considered by Ferreño et al. [19] to generate a regression 
ML model to predict the dynamic properties of rail pads depending on 
the operational conditions. The specific literature [73–75] shows that 
the densities of these materials (mean ± standard deviation) are 1.45 
±0.20, 1.11±0.06 and 0.94±0.01 kg/m3, respectively. Normal 

Table 1 
Dimensions of the track model.  

ID Layer Material Width 
[mm] 

Length 
[mm] 

Height 
[mm] 

1 Subgrade +
FPL 

Compacted sand 6000 2200 1200 

3 HBL Concrete layer (low 
quality) 

3000 2100 300 

4 Grout Bituminous grout 2550 2100 40 
5 Slab Concrete (HA-35) 2550 1930 200 
6 Fastening 

system 
EVA / EPDM / TPE 150 160 6 

7 Rail (UIC 60) Steel – – —  

Fig. 2. Fastening system assembly.  

Table 2 
Train loads applied on the fastening system.  

Axle load 
[ton] 

Train Speed [km/ 
h] 

Mean Force 
[kN] 

Standard Deviation 
[kN] 

15 120 75.40 1.67 
180 75.40 3.10 
230 75.40 4.97 

19 80 93.19 2.63 
130 93.19 1.92 
180 93.19 2.89 

22 80 107.90 2.71 
130 107.90 1.96 
180 107.90 2.83  
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distributions are considered in the 3 cases. 

2.2.2. Train Loads 
The maximum train-track loads are obtained by computational 

simulations [76–79] considering conventional railway vehicles with 
axle loads of 15, 19 and 22 ton. For each axle load configuration, three 
train speeds are considered as detailed in Table 2. The wheel-rail contact 
forces are statistically modelled using a Gaussian distribution for each 
combination of axle load and velocity. In order to transform these forces 
into load amplitudes supported by the fastening system, it is considered 
that:  

• The fastening system underneath the wheelset supports 50% of the 
load, it being assumed that the remaining loads are supported by the 
adjacent sleepers [11,80].  

• The load considered is the maximum load, while the minimum is 
zero, meaning that the amplitude corresponds to 50% of the 
maximum load.  

• A normal distribution is assumed for the application of train loads. 

2.2.3. Load Frequency 
For each train speed, the distance between wheelsets in the bogies 

(D1) and the distance between bogies (D2) determine the corresponding 
loading frequencies, f1 and f2, as detailed in Table 3. The studies are 
carried out considering a mean frequency (fmean) between f1 and f2. 

2.2.4. Temperature 
To study the influence of environmental temperature, two lo-

cations with different thermal profiles were considered, Seville 
(Spain), as an example of a very hot city, and Moscow (Russia), as a 
very cold city. In the case of Seville, the maximum daily tempera-
ture throughout the year is considered and in Moscow the 

minimum daily temperature [81,82] is considered. These datasets 
enable the empirical Cumulative Distribution Functions (CDF), 
shown in Fig. 3, to be developed. 

2.2.5. Clamping/Toe Load 
The connection between the rail and the sleeper is achieved by 

means of a pair of bolts that compose the fastening system. When 
tightened, these bolts compress the metal clips and the pads, fixing the 
rail to the sleeper, as depicted in Fig. 2. According to the literature [18], 
the nominal value of the tightening force on the bolt is 18 kN. The 
tightening intensity is determined by the torque supplied to the bolt. 
However, it is neither immediate nor easy to estimate the compressive 
force on the rail pad because of the frictional forces during tightening, 
which are influenced by the usual presence of dust, sand or grease, 
which reduce the net value of compression. Despite being an important 
parameter, since it introduces a constant stress state on the rail pad, no 
record of its value was found in the literature. For this reason, the 
following four scenarios (previously defined by Sainz-Aja et al. [18]) 
were considered:  

• Ftoe-load = 1 kN: Represents the possibility that the fastener is broken 
or loose and therefore does not exert any clamping force.  

• Ftoe-load = 9 kN: Represents the possibility that the fastening has not 
reached the nominal tightening value.  

• Ftoe-load = 18 kN: Nominal tightening value based on literature.  
• Ftoe-load = 25 kN: Represents the possibility that the fastening has 

been over-tightened. 

2.2.6. Rail 
The rail properties were considered to be deterministic because EN 

13674-1 [83] specifies conditions in the selection of materials and in the 
manufacturing process of rails that minimise the possible dispersion of 
their properties. Here, it is considered that E=200 GPa, ν = 0.2 and ρ =
7800 kg/m3. 

2.3. Generation of Synthetic Samples 

A total of 5400 random samples were generated using the Monte 
Carlo method [64–66] corresponding to specific operating conditions. 
These samples define the 5400 scenarios that were subsequently studied 
using the track FE model in order to obtain the respective displacements 

Table 3 
Load frequencies.  

Train Speed [km/h] D1 [m] D2 [m] f1 [Hz] f2 [Hz] fmean [Hz] 

80 2.70 19.00 1.17 8.23 4.70 
120 2.70 19.00 1.75 12.34 7.05 
130 2.70 19.00 1.90 13.37 7.63 
180 2.70 19.00 2.63 18.52 10.58 
230 2.70 19.00 3.36 23.66 13.51  
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Fig. 3. Temperature statistical distribution in Seville and Moscow.  
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and accelerations. 

2.4. ML Algorithms 

The dataset used to perform the analysis by means of ML algorithms 
consists of 5400 samples, each of them includes 27 features. These 27 
features comprise 19 inputs and 8 outputs. The 19 inputs can be 
organised in two categories:  

• Train type-specific variables: train axle load (Train_axle_load), train 
speed (train_speed), frequency of wheel passing (frequency), load 
amplitude supported by the rail fastening (amplitude), force applied 
on the inner FE fastening (Fint) and the force applied on the outer FE 
fastening (Fext).  

• Variables dependent on track location: city (City), rail pad material 
(Material), toe load (Toe_Load), city temperature (Temperature), 
modulus of elasticity of: sand (E_sand), HBL (E_HBL), slab (E_slab) 
and rail pad (E_PAD); density of: sand (D_sand), HBL (D_HBL), slab 
(D_slab) and seat plate (D_PAD) and; Poisson’s ratio of sand (P_sand), 
HBL (P_HBL) and slab (P_slab). 

The mechanical behaviour of the slab track is defined based on eight 
outputs. These correspond to the acceleration and vertical displacement 
of four key points of the track model, namely the railhead and the 
sleeper of the two modelled segments.  

• Outputs: Acceleration in external rail of the model (ACELL_rail_ext), 
acceleration in internal rail of the model (ACELL_rail_int), accelera-
tion in external slab of the model (ACELL_slab_ext), acceleration in 

internal slab of the model (ACELL_slab_int), displacement in external 
rail of the model (dis_rail_ext), displacement in internal rail of the 
model (dis_rail_int), displacement in external slab of the model 
(dis_slab_ext) and displacement in internal slab of the model 
(dis_slab_int). 

To perform the analysis of the dataset, the first step is to standardise 
all the data using the StandardScaler algorithm available in the Scikit- 
Learn python library. Subsequently, the dataset is randomly divided in 
4049 instances for training (75 % of instances) and 1350 instances for 
testing (25% of the instances). 

Six ML algorithms available in the Scikit-Learn library are used for 
regression modelling, these are described below. To evaluate the quality 
of the regression models, four different parameters were analyzed: R2, 
RMSE (Root-mean-square-error), MAE (Mean-absolute-error), and 
MAPE (mean-absolute-percentage-error).  

• Logistic regression (LR) [84]: LR measures the relationship between 
the dependent variable and the independent variables using the 
sigmoid/logistic function.  

• K-Nearest Neighbors (KNN) [85]: this algorithm conducted for a new 
observation by analyzing the output variable of the “K” closest 
observations.  

• Decision Tree (DT) [86]: is a non-parametric supervised learning 
method used for classification and regression. 

• Random forest (RF) [87]: combine multiple “weak classifiers” (de-
cision tree) into a single “strong classifier”. 

Fig. 4. Correlation matrix.  
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• Gradient Boosting (GB): is a machine learning technique used for 
regression problems, which produces a predictive model in the form 
of an ensemble of weak prediction models.  

• Multi-Layer Perceptron (MLP) [88]: is an artificial neural network 
composed of multiple layers. 

One of the great features of ML algorithms is that they can evaluate 
and compare the correlation of each variable with the predicted 
outcome. In this work, two different algorithms are used to estimate 
feature importance, namely, impurity-based and permutation-based 
ones, both integrated in the Scikit-Learn library [89,90]. 

To evaluate the effect of each variable within the range of parameters 
analysed, Partial Dependence Plots (PDPs) are used, which is a tool that 
enables the analysis of the influence of each variable on the value pre-
dicted by the algorithm previously calibrated according to the value that 
the variable takes. 

Table 4 
Feature correlation higher than 0.75.  

Feature 1 Feature 2 |r| Feature 1 Feature 2 |r| 

Amplitude F_int 1 Material disp_rail_ext 0.87 
Amplitude F_ext 1 Material Rail_displacement 0.87 
F_int F_ext 1 Material E_PAD 0.82 
Train_Speed Frequency 1 E_Sand Displ_slab_ext 0.82 
Rail_displacement disp_rail_ext 1 E_Sand Slab_displacement 0.82 
ACELL_rail_ext Rail_acceleration 1 Train_Speed Slab_acceleration 0.78 
Slab_displacement Displ_slab_ext 1 Frequency Slab_acceleration 0.78 
Slab_acceleration ACELL_Slab_ext 1 Train_Speed ACELL_Slab_ext 0.78 
Axle_Load Amplitude 0.98 Frequency ACELL_Slab_ext 0.78 
Axle_Load F_int 0.98 City Temperature 0.75 
Axle_Load F_ext 0.98     

Table 5 
Features replacement.  

Saved variables Replaced variables 

Amplitude Axle_load, F_int, F_ext 
Train_Speed Frequency 
Temperature City 
E_PAD Material  

Fig. 5. Output distribution.  
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3. Results 

3.1. Exploratory Data Analysis 

Firstly, as there is such a large number of variables and being aware 
that there is a correlation among several of them, a feature correlation 
analysis was carried out to analyse whether there was a linear correla-
tion between variables, see Fig. 4. Table 4 shows the correlation values 
between pairs of variables greater than 0.75. Based on the results ob-
tained in this correlation matrix, a number of variables were eliminated 
as detailed in Table 5. This preliminary analysis also enabled the veri-
fication that the results for both displacements and accelerations in the 
inner and outer parts were comparable, so, from now on, only inner 
values will be considered. This first analysis also showed that there is a 
strong correlation between the rail displacement values and the 

materials used to manufacture the bedplates, and between the speed of 
the trains and the accelerations recorded. 

As a general analysis of the dataset, a histogram of the outputs 
available in the model is drawn, as shown in Fig. 5. 

3.2. Optimization of the Algorithms for Regression 

From this point onwards, 4 different regression models will be used, 
one for each output available in the model. Case 1 corresponds to slab 
displacement, case 2 to rail displacement, case 3 to slab acceleration and 
case 4 to rail acceleration. Fig. 6, Fig. 7, Fig. 8 and Fig. 9 show a com-
parison between the values obtained experimentally and those provided 
by each model in the test data, i.e., in those cases that have not been used 
to calibrate the model. Table 6 shows the quantitative parameters that 
enable the estimation of the quality of the model. From the data shown 

Fig. 6. Algorithm optimization for case study 1 (slab displacement).  
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in these figures and the table, it is possible to conclude that the decision 
tree (DT), random forest (RF) and gradient boosting (GB) models are the 
best fitting models, providing models of similar quality. 

The results obtained when evaluating the quality of the predictive 
models considered here show that, in all case studies, the RF exhibits an 
R2 higher than 0.979 and a MAPE lower than 6.23%. This reveals that 
RF has the greatest predictive capacity. Therefore, in the following, only 
the RF model is considered and the analyses continue in order to extract 
more information from the track model. In particular, two types of 
analysis are carried out. Firstly, the variables with the greatest influence 
on each of the parameters analysed are identified. Then, the influence of 
these main variables throughout the study range is investigated. 

3.3. Feature Importance 

Fig. 10 shows the results of the impurity-based and the permutation- 

based methods, which are indicators of the weight that each variable has 
in the results. It can be seen that, in each case study, the variables that 
both methods indicate as most relevant are similar. The only appreciable 
difference is that in case study 2, the variables Toe_Load and Amplitude, 
which have similar influence values in the two methods, are in reverse 
order. 

From these results, it can be concluded that the parameters govern-
ing the behaviour of the slab and rail head are the same in the case of 
displacements and accelerations if the variable Train_speed is added. 
With regard to the behaviour of the slab, the parameters that have the 
greatest influence are mainly E_sand and Amplitude. In the case of rail 
head behaviour, the parameters that have the greatest influence are 
E_pad, Amplitude and Toe_Load. 

Fig. 7. Algorithm optimization for case study 2 (rail displacement).  
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3.4. Partial Dependence Plots 

Fig. 11 to Fig. 14 show the PDPs for each case study for the variables 
that were defined as the most relevant in the previous section. From 
Fig. 11, it can be seen that as E_Sand increases, the vertical displacement 
of the slab decreases. On the other hand, the greater the amplitude, the 
greater the displacement of the slab. It should be remembered that the 
sign criterion of the FEM implies that larger displacements mean more 
negative values. It can also be observed that the degree to which E_Sand 
influences is notably greater than that of Amplitude, as can be seen in 
the previous section. 

Fig. 12 shows the effect of E_PAD, Amplitude, Toe_Load and E_Sand 
on the vertical displacement of the rail. In the case of E_PAD, it can be 
seen that the lower the E_PAD, the greater the vertical displacement of 

the rail, especially in those cases where the E_PAD is less than 100 kN/ 
mm. In the case of Amplitude, it can be seen that the higher the 
Ampliutde, the greater the vertical displacements in the rail, with an 
approximately uniform evolution throughout the range studied. In the 
case of the Toe_Load there is also an approximately constant distribution 
over the range studied, with vertical displacements increasing as the 
Toe_Load is reduced. Finally, in the case of E_Sand, it can be seen that the 
effect is quite similar to that of a variation in E_PAD, but with notably 
lower values (up to 0.1 in the case of E_Sand and up to 0.5 in the case of 
E_PAD). 

Fig. 13 shows the effect of Train_Speed, Amplitude, E_Sand and 
Temperature on the accelerations measured in the slab. Regarding 
speed, it is observed that the higher the speed, the higher the acceler-
ation values recorded. In the case of Amplitude, a similar effect can be 

Fig. 8. Algorithm optimization for case study 3 (slab acceleration).  
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observed, i.e., increasing Amplitude leads to higher accelerations. The 
effect of E_sand is similar to that seen in the case of slab displacements, 
but influencing to a lesser degree. Finally, in the case of temperature, it 
can be seen that the influence is minimal, an observation that is 
consistent with the results obtained in the previous section. 

Fig. 14 shows the effect of E_pad, Amplitude, Train_Speed and 
Temperature on the measured accelerations on the rail. It can be seen 
that E_PAD is not only the parameter that has the greatest effect, as in the 
case of rail displacement, it also has a similar effect to that seen in the 
case of rail displacement. In the case of the amplitude, it can be seen that 

Fig. 9. Algorithm optimization for case study 4 (rail acceleration).  

Table 6 
Model quality parameters in testing data.  

ML Method Case Study 1 Case Study 2 Case Study 3 Case Study 4 
R2 MAPE R2 MAPE R2 MAPE R2 MAPE 

LR 0.865 -9.07 0.542 -48.11 0.847 -31.24 0.580 -87.87 
KNN 0.744 -11.71 0.575 -35.06 0.807 -25.39 0.605 -47.47 
DT 0.991 -1.73 0.995 -3.35 0.983 -3.78 0.979 -6.22 
RF 0.991 -1.72 0.995 -3.37 0.983 -3.79 0.979 -6.23 
MLP 0.476 -18.80 0.991 -6.25 0.990 -2.85 0.984 -8.50 
GB 0.996 -1.55 0.997 -2.94 0.982 -6.58 0.984 -7.42  
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Fig. 10. Permutation importance and feature importance for the 4 case studies.  
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the greater the amplitude is, the greater are the accelerations on the rail. 
In the case of Train_Speed, it can be seen that it has an approximately 
linear effect on the acceleration in the rail and that the higher the 
Train_Speed, the higher the accelerations. Regarding Temperature, it is 
observed that it has hardly any influence on the rail acceleration. 

Previously, the variables were classified into those that are specific to 
the location of the track and those that are dependent of the train 
running on the track. When analysing these last two sections according 
to this classification, it can be noticed that regarding the variables that 
are dependent on the location of the track, in the case of focusing on the 
slab, the main parameter to take into account would be the E_sand, with 
all the others being several orders of importance below it. If the focus is 
on the behaviour of the rail, it is observed that the most important 
parameter is the E_PAD but that E_sand and Toe_Load also have a certain 
degree of influence. On the other hand, regarding the variables that 
depend on the train running on the track, it is demonstrated that 
Amplitude, directly related to the train axle load, is a parameter that, 
although in no case is it the most important one, in all cases has 

significant importance. The results also reveal that Train_Speed has a 
great repercussion in the case that the parameter to be analysed is the 
acceleration. 

3.5. Data Correlation with Principal Variables 

To conclude the analysis, a correlation is sought between the 
experimentally obtained values and the variables identified as critical. 
Fig. 15 demonstrates how the crucial variables have clearly marked 
patterns in the distribution of the results. 

4. Conclusion 

In this work, a total of 5400 simulations of a previously calibrated FE 
track model were carried out, modifying each of its 27 features within 
their usual variation ranges. Based on these results, a number of machine 
learning predictive algorithms were trained and validated. This meth-
odology provided deeper understanding of complex track systems, 

Fig. 11. PDP for relevance variables in case study 1 (slab displacement).  

Fig. 12. PDP for relevance variables in case study 2 (rail displacement).  
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Fig. 13. PDP for relevance variables in case study 3 (slab acceleration).  

Fig. 14. PDP for relevance variables in case study 4 (rail acceleration).  
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aiming to identify the parameters that have most influence on the track 
performance and to plan the maintenance interventions based on the 
real conditions of the critical assets. These studies enabled the following 
conclusions to be drawn:  

• Seven predictive models were calibrated, the best of all being the RF 
(Random Forest) with an R2 always greater than 0.979 and a MAPE 
lower than 6.23%. 

• The parameters with the greatest influence on the vertical displace-
ments of the slab are E_Sand and Axle load. 

• The quantities with the greatest influence on the vertical displace-
ments of the rail are E_PAD, Toe_load, Axle load and E_sand. 

• The parameters with the greatest influence on the vertical acceler-
ations of the slab are Train_Speed, Axle load and E_Sand. 

• The parameters with the greatest influence on the vertical acceler-
ations of the rail are E_PAD, Axle_Load and Train_Speed.  

• The influence of E_sand and E_PAD are greater when they are lower. 

The results obtained here provide valuable information in terms of 
identifying the track features and operation conditions that are most 
relevant when designing a new railway track or when defining specific 

Fig. 15. Correlation of each output with the most relevant variables.  
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predictive maintenance strategies. Another important outcome of this 
work is the identification of the parameters that should be modified/ 
adjusted in the event that problems are observed during the operation of 
an existing section of track. 
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[42] Magalhães H, Marques F, Liu B, Antunes P, Pombo J, Flores P, Ambrósio J, 
Piotrowski J, Bruni S. Implementation of a non-Hertzian contact model for railway 
dynamic application. Multibody Syst Dyn 2019. https://doi.org/10.1007/s11044- 
019-09688-y. 

[43] Liu Y, Montenegro P, Gu Q, Guo W, Calçada R, Pombo J. A Practical Three- 
Dimensional Wheel-Rail Interaction Element for Dynamic Response Analysis of 
Vehicle-Track Systems. Comput Struct 2021. 
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