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Abstract
Background and purpose: Clinical trials in spinocerebellar ataxia type 3 (SCA3) will re-
quire biomarkers for use as outcome measures.
Methods: To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin 
carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid bio-
markers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically 
assessed, and the plasma concentrations of the four proteins were analysed on the Simoa 
HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed 
for t-tau and phosphorylated tau (p-tau181). A transgenic SCA3 mouse model (MJDTg) was 
used to measure cerebellar t-tau levels.
Results: Plasma t-tau levels were higher in mutation carriers below the age of 50 com-
pared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in 
ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and 
p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respec-
tively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) 
only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in 
mutation carriers compared to controls. Plasma NfL concentrations were higher in muta-
tion carriers compared to controls, and differences were greater for younger carriers. The 
Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic 
patients (p < 0.001).
Conclusion: Our results suggest that tau might be a marker of early disease stages in 
SCA3. NfL can discriminate mutation carriers from controls and is associated with differ-
ent clinical variables. Longitudinal studies are required to confirm their potential role as 
biomarkers in clinical trials.
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biomarkers, cerebellum, neurofilaments, spinocerebellar ataxias, tau
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INTRODUC TION

Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) 
is the most common autosomal dominant cerebellar ataxia worldwide 
and is caused by a CAG repeat expansion in the ATXN3 gene, which 
encodes ataxin-3 [1,2]. Currently, there is no curative treatment for 
this condition and trials for compounds targeting the mutant ATXN3 
allele will require disease markers for use as outcome measures [3–5]. 
Tau, neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAP) 
or ubiquitin carboxy-terminal hydrolase L1 (UCHL1) could address this 
unmet need for biofluid markers, as they can mirror neuronal injury or 
underlying pathological processes in the central nervous system [6].

The microtubule-associated protein tau (encoded by the MAPT 
gene) has been studied as a diagnostic and prognostic biomarker in dis-
orders such as Alzheimer's disease (AD) [7–9], Creutzfeldt-Jakob disease 
(CJD) [10–14] and Huntington's disease (HD) [15], as well as a prog-
nostic biomarker in stroke and traumatic brain injury (TBI) [16,17]. In a 
pilot study, cerebrospinal fluid (CSF) tau was elevated in patients with 
spinocerebellar ataxia type 2 (SCA2) and multiple system atrophy, cere-
bellar type (MSA-c), compared to controls [18]. In SCA3, dysregulation 
of MAPT splicing with a decreased 4R/3R ratio has been observed [19].

Glial fibrillary acidic protein (GFAP) is the principal intermediate 
filament in mature astrocytes and has been investigated as a marker 
of astrocytic activation in AD, Parkinson's disease and amyotrophic 
lateral sclerosis [20]. Inflammation is known to be part of the neu-
rodegenerative process in SCA3 [21], and astrocytes may play an 
important role, especially in early stages [22,23].

Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is one of the 
most abundant proteins in the brain [24] and, similarly to ataxin-3, in-
tervenes in ubiquitination pathways [25]. UCHL1 has been linked to 
pathological processes in AD and Parkinson's disease [24]. Together 
with GFAP, UCHL1 has been proposed as a biomarker in TBI [26,27].

Neurofilament light-chain (NfL) has emerged as an attractive bio-
marker in several neurological diseases [11,28–31]. In SCA3, NfL has 
been shown to be a promising biomarker when measured with a single-
plex assay in several cohorts [32–34], and with single-plex and homebrew 
duplex assays in cohorts partially replicated in the present study [4,35].

The aim of this study was to investigate whether plasma levels of 
tau, GFAP and UCHL1 differ in SCA3 carriers compared to controls, 
and to determine which variables influence the levels of such markers. 
Understanding these aspects could clarify the potential role of these mol-
ecules in future clinical trials. In addition, a secondary aim of this study was 
to replicate the results for NfL in an SCA3 cohort using a multiplex assay.

METHODS

Study participants

Our study comprised a main cohort and a replication cohort (Table 
S1). The main cohort consisted of 143 ATXN3 mutation carriers 
and 172 unrelated healthy controls. The former group was divided 

into 23 pre-ataxic carriers (Scale for the Assessment and Rating 
of Ataxia [SARA] score <3) and 120 ataxic patients (SARA score 
≥3). Mutation carriers and 56 controls were recruited through the 
European Spinocerebellar ataxia type 3/Machado–Joseph disease 
Initiative (ESMI) study [36], between November 2016 and January 
2019. Additional age-matching control samples were obtained from 
two local repositories. ESMI participants underwent a standardized 
protocol including SARA [37], the Inventory of Non-Ataxia Signs 
(INAS) [38], the Activities of Daily Living (ADL) questionnaire [39] 
and the Spinocerebellar Ataxia Functional Index (SCAFI) [40]. For 
mutation carriers who did not report an onset of gait ataxia, age of 
ataxia onset was predicted using a published formula for European 
populations [41]. A replication cohort was recruited via the Ataxia 
Biomarker Study Group from March 2018 to June 2019. This in-
cluded healthy controls (n  =  34) and pre-ataxic (n  =  4) and ataxic 
(n  =  41) ATXN3 mutation carriers. All centres received ethical ap-
proval from their local ethics committees. Written informed consent 
was obtained from all participants prior to enrolment.

Sample collection

Blood samples were collected using ethylenediaminetetraacetic acid 
(EDTA) tubes and cell preparation tubes (BD Vacutainer CPT mono-
nuclear cell preparation tube, sodium heparin), following a common 
protocol. CPT tubes were centrifuged at 1700g for 30 min at room 
temperature. Whole blood and plasma aliquots were then stored at 
−80°C. Participants’ ATXN3 genotype was determined as previously 
reported [35]. All mutation carriers had been genetically diagnosed, 
and the CAG repeat length was available for 22 pre-ataxic carriers 
and 105 ataxic patients in the main cohort. CSF samples were ob-
tained via lumbar puncture for 11 ATXN3 mutation carriers (three 
pre-ataxic carriers and eight ataxic patients), following standard pro-
cedures. CSF samples were centrifuged at 1100g for 10  min, and 
aliquots were stored at −80°C.

Biomarker quantification

Plasma samples were analysed using the Neurology 4-Plex ‘A’ 
kit on the Simoa HD-1 analyser (Quanterix, Billerica, MA, USA) at 
University College London and Mayo Clinic, following the manu-
facturer’s instructions. The Simoa platform is an ultrasensitive 
digital enzyme-linked immunosorbent assay (ELISA) as previously 
described [42]. The Neurology 4-Plex ‘A’ kit allows the simultane-
ous quantification of total tau (t-tau), NfL, GFAP and UCHL1 [43]. 
For each sample, measurements were performed in duplicate, and 
average values with a coefficient of variation below 20% were con-
sidered. CSF t-tau and phosphorylated tau181 (p-tau181) were quanti-
fied with conventional ELISA using, respectively, the Innotest hTau 
Ag assay and the Innotest Phospho-Tau(181P) kit (Fujirebio Europe 
N.V., Gent, Belgium).
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Statistical analysis

Data analysis was performed using Stata15.1 (StataCorp, Texas, 
USA). Quantitative variables are presented as mean (SD) or median 
(minimum, maximum). Categorical variables are presented as per-
centages. Differences in means were analysed with ANOVA (with 
Bonferroni correction for ad hoc comparisons), Wilcoxon's rank 
sum test or the t test. Analyte concentrations were transformed 
using the natural logarithm due to their right-skewed distributions. 
Spearman's rho was used to examine correlations between CSF and 
plasma concentrations.

Effects of participant categories in biomarker concentrations 
were assessed with multiple linear regression, adjusting for con-
founders (age and sex) and first-order interactions between partici-
pant categories and the confounders. Dependent variables were the 
log-concentrations of the different analytes. Interaction terms were 
included if statistically significant (p < 0.05), whereas confounders 
were retained if they caused clinically significant changes in the main 
effect coefficients (more than 10%). Effects were reported as re-
gression coefficients with their 95% confidence intervals (CIs) and 
p value. Classification performance of NfL was assessed through 
multiple logistic regression, with the logit(y = ataxic) as dependent 
variable, and the respective receiver operating characteristic (ROC) 
curve.

Multiple linear regression models were used to investigate the 
predictors of the biomarkers’ concentrations in mutation carriers. 
Maximum models were fitted using available variables (age, sex, dis-
ease duration, number of CAG repeats, SARA, INAS, ADL, SCAFI) 
and all the possible equations were examined. Model selection was 
based on Mallows’ Cp criterion, adjusted R2 and the principle of par-
simony. The proportion of explained variability was expressed using 
adjusted R2 values. Model assumptions were evaluated for all re-
ported models.

Transgenic and wild-type (WT) animals

Machado–Joseph disease transgenic mice (MJDTg; C57BL/6 back-
ground), expressing the N-terminal-truncated human ataxin-3 with 
69 glutamine repeats [44], were maintained as previously described 
[45]. MJDTg and WT (C57BL/6) mice were selected at 4–5 weeks 
(four MJDTg mice and four WT mice) and 8–9 weeks (three MJDTg 
mice and three WT mice). MJDTg mice show an early phenotype 
at the age of 4–5 weeks consisting of reduced body weight, worse 
performance in the rotarod and cerebellar atrophy. Whilst weak and 
diffuse accumulation of ataxin-3 is observed at early time-points, 
inclusion bodies appear around 6 weeks of age (P40), with increas-
ing size and number thereafter [44]. The experiments were carried 
out in accordance with the European Community Council Directive 
(2010/63/EU) for the care and use of laboratory animals and pre-
viously approved by the Responsible Organization for the Animals 
Welfare of the Faculty of Medicine and Center for Neuroscience 
and Cell Biology of the University of Coimbra (ORBEA and FMUC/

CNC, Coimbra, Portugal) and the national authority Direcção Geral 
da Agricultura e Veterinária (DGAV, Portugal).

Cerebellar tissue collection and western blotting

Animals were given a ketamine/xylazine overdose (2 × 100 mg/kg 
ketamine + xylazine 10 mg/kg, intraperitoneal) and were transcardi-
ally perfused with phosphate buffered saline. Cerebella were dis-
sected and stored at −80°C before use. Protein extracts and western 
blots were performed as previously described [45]. For these experi-
ments, 15 µg of total protein extracts were run in the gel. A mono-
clonal anti-tau (Tau46; 1:1000; Cell Signaling Technology) or mouse 
monoclonal anti-β-actin antibody (clone AC74; 1:5000; Sigma-
Aldrich), diluted in blocking solution (5% non-fat milk in TBS-T), was 
used. An alkaline phosphatase-linked antibody specific to mouse im-
munoglobulin G (1:20,000, Amersham Biosciences, GE Healthcare, 
UK) was used as secondary antibody. GraphPad Prism v.8.0.1 was 
used to analyse animal data.

RESULTS

Plasma t-tau concentrations are elevated in young 
pre-ataxic and ataxic ATXN3 mutation carriers 
compared to controls

Both study cohorts are described in Table 1. Unadjusted plasma t-
tau concentrations were higher in pre-ataxic carriers (0.77  log pg/
ml [0.65]) compared to controls (0.37 log pg/ml [0.77]; p = 0.046), 
but they did not differ between ataxic SCA3 patients (0.51 log pg/
ml [0.67]) and controls (p = 0.374) or between pre-ataxic and ataxic 
ATXN3 mutation carriers (p = 0.377) (Figure 1a). After adjustment 
for age and sex, an interaction between the groups and age was de-
tected (Figure 1b and Table S2). Compared to controls, significantly 
higher t-tau levels were found in pre-ataxic carriers for 30 years of 
age (0.42 log pg/ml higher compared to controls; 95% CI 0.07, 0.77; 
p = 0.020) and for ataxic patients for 30 (0.42 log pg/ml; 95% CI 0.10, 
0.73; p = 0.011) and 40 years of age (0.29 log pg/ml; 95% CI 0.07, 
0.51; p = 0.010). In addition, it was observed that plasma t-tau levels 
decreased with increasing age, with a steeper reduction in ATXN3 
mutation carriers.

The different predictors for plasma t-tau concentrations in pre-
ataxic and ataxic ATXN3 mutation carriers were investigated sepa-
rately. In pre-ataxic carriers, age (−0.04 log pg/ml per 1-year increase; 
95% CI −0.07, −0.01; p = 0.008) and sex (0.51 log pg/ml increase in 
females compared to males; 95% CI 0.07, 0.95; p = 0.024) were the 
best predictors for plasma t-tau, explaining 42.91% of its variability.

For ataxic SCA3 patients, age (−0.03 log pg/ml per 1-year increase; 
95% CI −0.04, −0.02; p < 0.001) and sex (0.36 log pg/ml increase in 
females compared to males; 95% CI 0.12, 0.60; p = 0.003) accounted 
only for 16.20% of the variability in plasma t-tau. Adding the number 
of CAG repeats and the total INAS count increased the proportion 
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F I G U R E  1  Total tau (t-tau) in SCA3 (main cohort). (a) Plasma t-tau concentrations in the control, pre-ataxic and ataxic SCA3 groups. 
T-tau values are expressed in the natural logarithmic scale. (b) Scatterplot showing the relationship between plasma t-tau concentrations (in 
the natural logarithmic scale) and age for the different subject groups, with best fitting lines for controls (black squares), pre-ataxic SCA3 
(red triangles) and ataxic SCA3 (blue dots). The shaded areas represent the 95% CI of the best fitting lines. (c) Scatterplot showing the 
relationship between plasma t-tau concentrations (in the natural logarithmic scale) and INAS count for ATXN3 mutation carriers, with best 
fitting line and its 95% CI for the ataxic patients (blue dots). INAS was not investigated as a predictor in pre-ataxic carriers (red triangles) 
due to its small range of variation (0–4) and its floor effect. (d) Scatterplot between CSF t-tau concentrations (in pg/ml) and CSF p-tau181 
concentrations (in pg/ml), with best fitting line and its 95% CI for the pooled group of pre-ataxic (red triangles) and ataxic (blue dots) SCA3 
carriers. (e) Scatterplot between plasma t-tau concentrations (in pg/ml) and CSF t-tau concentrations (in pg/ml), with best fitting line 
and its 95% CI for the pooled group. Similar findings were obtained with p-tau181 (data not shown). (f) Scatterplot between CSF p-tau181 
concentrations (in pg/ml) and disease duration (in years), with best fitting line and its 95% CI for the pooled group [Colour figure can be 
viewed at wileyonlinelibrary.com]
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of explained variability to 23.46%. INAS had a significant effect of 
0.07  log pg/ml per 1-point increase (95% CI 0.02, 0.12; p =  0.004) 
(Figure  1c). Therefore, patients with higher INAS scores (reflecting 
a more complex neurological phenotype) will tend to display higher 
plasma t-tau concentrations. Although the coefficient for the number 
of CAG repeats was not significant (−0.04  log pg/ml per 1-CAG in-
crease; 95% CI −0.08, 0.01; p = 0.090), this variable increased the pro-
portion of explained variability and was included in the best predictive 
model. No significant relationships were found with SARA or ADL and 
the inclusion of these variables did not produce better models.

To investigate if tau could be increased in early stages of SCA3, 
t-tau and p-tau181 levels were measured in our pilot CSF cohort. 
Median t-tau levels in pre-ataxic subjects (384  pg/ml [309, 464]) 
were higher than in ataxic patients (227 pg/ml [147, 322]; p = 0.025). 
CSF t-tau concentrations in all the pre-ataxic carriers were above 
300 pg/ml, which has been reported as the cut-off value for healthy 

controls between 21 and 50 years of age [46]. Likewise, CSF p-tau181 
levels in pre-ataxic carriers (51  pg/ml [44, 63]) were greater than 
those in ataxic patients (32.5 pg/ml [14, 41]; p = 0.014). Greater CSF 
t-tau concentrations were associated with higher CSF p-tau181 lev-
els in the pooled cohort (rho = 0.973; p < 0.001; Figure 1d). Plasma 
t-tau concentrations were not associated with levels of either CSF 
t-tau (rho = 0.318; p = 0.340; Figure 1e) or p-tau181 (rho = 0.418; 
p = 0.201). CSF t-tau and p-tau181 were not associated with age (re-
spectively, p = 0.537 and p = 0.450), but higher concentrations of p-
tau181 were associated with shorter disease duration (rho = −0.606 
and p = 0.048 for p-tau181, Figure 1f; rho = −0.551 and p = 0.079 for 
t-tau, data not shown).

Cerebellar t-tau protein levels are increased in 
transgenic SCA3 mice in early stages of the disease

Since higher plasma t-tau concentrations were found in young pre-
ataxic and ataxic ATXN3 mutation carriers compared to controls, 
and possibly increased CSF t-tau and p-tau181 levels in pre-ataxic 
carriers compared to ataxic patients, it was assessed whether this 
pattern was reproducible in relevant neurological tissues from an 
animal model of SCA3 (MJDTg) [44]. The levels of t-tau in cerebellar 
lysates from MJDTg mice were higher than the levels in lysates from 
WT animals at the age of 4–5 weeks (p = 0.033; Figures 2 and S1). 
However, cerebellar t-tau levels were no different between the two 
groups at the age of 8–9 weeks. There was a reduction in cerebellar 
t-tau levels in both groups over time, and the difference between 
4–5  week and 8–9  week MJDTg mice was statistically significant 
(p = 0.001). Therefore, cerebellar t-tau levels in this animal model 
mirrored our findings in humans, since they showed an increase in 
early symptomatic MJDTg mice compared with WT mice, and t-tau 
levels decreased with advancing age.

Plasma GFAP and UCHL1 did not show higher levels 
in mutation carriers compared to controls

When plasma GFAP concentrations were adjusted by age and sex, 
carriers showed significantly lower concentrations compared to con-
trols: −0.45 log pg/ml for pre-ataxic carriers (95% CI −0.71, −0.21; 
p < 0.001) and −0.20  log pg/ml for ataxic patients (95% CI −0.33, 
−0.06; p = 0.004). Age and sex explained 23.35% of the variability in 
GFAP, with minimal increment when considering the type of subject 
(27.25%). GFAP showed a steady rise with increasing age, similar for 
the three groups. In the replication cohort, GFAP did not differ be-
tween groups.

Unadjusted plasma UCHL1 concentrations were lower in pre-
ataxic ATXN3 mutation carriers (2.55  log pg/ml [1.10]) compared 
to controls (3.03  log pg/ml [1.44]; p  =  0.046), but levels in con-
trols and ataxic participants were similar (2.65  log pg/ml [1.21]; 
p = 0.374). However, these results were calculated using a smaller 

F I G U R E  2  Total tau (t-tau) protein levels are increased in the 
cerebella of SCA3 transgenic mice at an early symptomatic stage. 
Protein extracts from the cerebella of wild-type (WT) and MJD 
transgenic mice (MJDTg) were analysed at 4–5 and 8–9 weeks 
of life by western blot (n = 3–4). (a) Membrane picture showing 
immunoreactivity against t-tau and actin. (b) Optical densitometry 
(OD) analysis of t-tau. Data were normalized to the housekeeping 
gene actin. Data are presented as mean ± SEM and normalized to 
4–5-weeks-old WT mice. One-way analysis of variance (ANOVA) 
followed by Sidak's post hoc test. *p = 0.033, **p = 0.001 [Colour 
figure can be viewed at wileyonlinelibrary.com]

(a)

(b)
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subset of samples with a coefficient of variation of <20% (43.7% 
of the total).

Plasma NfL concentrations are raised in ATXN3 
mutation carriers compared to controls, and this 
difference is most marked for younger subjects

In the main cohort, unadjusted mean NfL levels in ataxic (3.26  log 
pg/ml [0.46]) and pre-ataxic (2.70 log pg/ml [0.47]) ATXN3 mutation 
carriers were higher than the value in controls (2.31 log pg/ml [0.83]; 
respectively, p < 0.001 and p = 0.032) (Figure 3a). Age and sex were 
included as confounders and an interaction between the participant 
categories and age was detected (Figure  3b). Therefore, differences 
in NfL between groups will vary depending on participants’ age, being 
greater in younger participants (Table S3).

The classification performance of NfL in differentiating ataxic 
SCA3 patients from controls was analysed through a multiple logistic 
regression model (adjusting by age and its interaction). In our model, 
a rise in one log-unit in NfL increased the odds of being classified as 
ataxic, but such effect was attenuated with increasing age (coeffi-
cient for logNfL: 8.38–0.11 × (age), Figure 3c). The ROC curve for 
this model yielded an area under the curve (AUC) of 0.92 (95% CI 
0.88, 0.95) (Figure  3d). When pre-ataxic ATXN3 mutation carriers 
and controls were compared, the model yielded an AUC of 0.89 (95% 
CI 0.83, 0.93). The inclusion of tau and its interaction with age did 
not produce models with improved AUC values.

In the replication cohort, unadjusted mean NfL reproduced 
the findings of the main cohort, with ataxic SCA3 (3.47 log pg/ml 
[0.36]) showing higher levels compared to controls (2.45  log pg/
ml [0.53]; p < 0.001). Adjusted differences between ataxic SCA3 
patients and controls were greater for younger subjects. The model 
to measure NfL classification performance yielded an AUC of 0.97 
(95% CI 0.91, 1.00).

Different variables predict plasma NfL in pre-
ataxic and ataxic ATXN3 mutation carriers

The predictors of plasma NfL were investigated in ataxic and pre-
ataxic carriers separately. In ataxic SCA3 patients, both age (0.012 log 
pg/ml per 1-year increase; 95% CI 0.002, 0.022; p = 0.022) and num-
ber of CAG repeats (0.034 log pg/ml per 1-repeat increase; 95% CI 
0.004, 0.064; p = 0.025) accounted only for 4.2% of the variability in 
NfL. In contrast, in pre-ataxic carriers, the effects of age (0.051 log 
pg/ml per 1-year increase; 95% CI 0.018, 0.084; p = 0.005) and num-
ber of CAG repeats (0.090 log pg/ml per 1-repeat increase; 95% CI 
0.018, 0.163; p = 0.018) were greater and explained 30.63% of NfL 
variation.

The effect of variables quantifying disease progression in 
ataxic patients was then investigated. Thus, it was found that the 
SARA score was associated with NfL (0.025 log pg/ml per 1-point 
increase; 95% CI 0.015, 0.034; p < 0.001), yielding a percentage 

of explained NfL variability of 20.38% (Figure 3e). The effect of 
the INAS in NfL levels was non-significant (p = 0.309). In the case 
of ADL, its effect (0.016  log pg/ml per 1-point increase; 95% CI 
−0.001, 0.025; p  =  0.082) was close to the threshold of signifi-
cance and showed similar magnitude to the relationship found with 
SARA. The effect of the SCAFI was also significant (−0.173  log 
pg/ml per 1-Z-score increase; 95% CI −0.257, −0.089; p < 0.001), 
although this estimation was calculated with only 80.8% of the 
patients.

DISCUSSION

The quantification of four different brain-enriched proteins in a large 
SCA3 cohort composed of patients with diverse origins, ages and 
stages of the disease has been presented here. Our comprehensive 
control group allowed us to describe changes depending on age and 
define which subsets of patients were more likely to display signifi-
cant changes.

Our results suggest that tau levels could be increased in 
ATXN3 mutation carriers in early stages of the disease. First, in 
our main cohort, mutation carriers under 50 years of age showed 
higher plasma t-tau concentrations compared to controls and their 
plasma levels decreased with increasing age. Secondly, CSF t-tau 
and p-tau181 concentrations could be elevated in pre-ataxic ATXN3 
mutation carriers compared to ataxic patients. Finally, higher cer-
ebellar t-tau levels were found in early stages of the disease in 
MJDTg mice compared to young WT animals and MJDTg mice at a 
more advanced stage.

Increased CSF t-tau has been found in various neurological 
conditions, such as AD [10,11,47], CJD [10–14], multiple system 
atrophy [18,47], HD [15] and cases of encephalopathy/enceph-
alitis [10,11,47]. Therefore, CSF t-tau is considered a marker of 
neuronal damage elicited by different insults. In a recent report 
[48], CSF tau and p-tau181 levels were similar between SCA3 pa-
tients and controls. However, in that study, the mean age of the 
two groups differed, pre-ataxic carriers were not included and the 
differences were not age-adjusted. Interestingly, our results might 
indicate that tau levels are elevated early in the disease course 
and decrease over time. In a previous study in AD, CSF t-tau and 
p-tau181 showed a reduction over time in a cohort of AD patients, 
which differed from the increase in the control and the mild cogni-
tive impairment groups [49].

Plasma t-tau has been shown to be elevated in AD patients com-
pared to mild cognitive impairment and control participants and is 
associated with worse progression in different clinical and radio-
logical variables in the AD group [9]. In CJD, plasma t-tau showed 
a better classification performance than NfL comparing patients 
with CJD to patients with non-prion rapidly progressive demen-
tias, and higher plasma t-tau levels were associated with a shorter 
survival in sporadic CJD patients for the subtype VV2 [12]. In this 
study, it was found that younger ATXN3 mutation carriers showed 
higher t-tau concentrations that decreased with increasing age. In 
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F I G U R E  3  Neurofilament light-chain (NfL) in SCA3 (main cohort). (a) Plasma NfL concentrations in the control, pre-ataxic and ataxic 
SCA3 groups. NfL values are expressed in the natural logarithmic scale. (b) Scatterplot showing the relationship between plasma NfL 
concentrations (in the natural logarithmic scale) and age for the different participant groups, with best fitting line for each group (black 
squares, controls; red triangles, pre-ataxic SCA3; blue dots, ataxic SCA3). The shaded areas represent the 95% CI of the best fitting lines. 
(c) Predicted probabilities of being classified as ataxic SCA3 (compared to controls), with logNfL as predictor, stratified for different age 
groups. The black dashed line indicates a probability of 0.42, the cut-off threshold to be classified as ataxic SCA3. (d) ROC curve for the 
discrimination between ataxic SCA3 patients and controls, with NfL levels as predictor (adjusted by age and its interaction). The diagonal 
light blue line represents the null effect (AUC = 0.5). (e) Scatterplot showing the relationship between plasma NfL concentrations (in the 
natural logarithmic scale) and the SARA total score for ATXN3 mutation carriers, with best fitting line and its 95% CI for ataxic patients (blue 
dots). SARA was not investigated as a predictor in the pre-ataxic group (red triangles) due to its small range of variation (0–3) and its floor 
effect [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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our cohort, the INAS count was associated with plasma t-tau levels. 
This might represent a relationship between plasma t-tau and the 
complexity of the phenotype in SCA3. In addition, female carriers 
showed higher plasma t-tau concentrations compared to males. In 
a previous natural history study, female ATXN3 carriers were found 
to have a faster progression in the number of non-ataxia signs com-
pared to males [50]. This difference was only present for SCA3, and 
not for SCA1, SCA2 or SCA6. Therefore, the effect of the carrier's 
sex in plasma t-tau could also be related to the complexity of the 
SCA3 phenotype.

Our results suggest an interesting link between tau and SCA3, 
and could represent a potential use of this protein as a marker of 
early disease stages. The pathogenic role of tau is being progres-
sively unravelled for other polyglutamine disorders. In HD brains, 
different studies have found an increase in the 4R/3R isoform tau 
ratio [51,52], with hyperphosphorylated tau nuclear rods in stria-
tum and cortex (which partially co-localize with mutant huntingtin) 
[51,52]. In addition, the MAPT H2 haplotype was associated with a 
higher rate of cognitive decline in an HD cohort [52]. Several hy-
potheses could explain why tau levels are preferentially higher in 
early stages in SCA3. First, the neurodegenerative process might be 
more pronounced in early stages of the disease, with a subsequent 
stabilization when patients reach the fully symptomatic stage. A 
previous study found that several CSF markers of neuronal injury 
(including t-tau) decreased over time in AD [49]. The authors con-
sidered whether this could be a consequence of the slowing of the 
neurodegenerative process or a result of the reduced number of 
neurons over time. In addition, they pointed out the discrepancies 
between imaging and biofluid markers, as the latter do not repre-
sent cumulative changes. Secondly, increased tau levels could reflect 
early pathophysiological changes in the neurodegenerative process. 
Tau has been shown to interact with vesicle-associated proteins at 
presynaptic terminals and with proteins involved in mitochondrial 
bioenergetics [53]. Hypothetically, early synaptic and mitochon-
drial failure, as well as the cytoskeletal dysfunction in SCA3 [54–
56], could elicit an increase in tau concentrations. In later stages, 
these phenomena would be sequentially overridden by axonal 
loss (mirrored by a progressive rise in NfL) and neuronal cell loss. 
Finally, there could be a progressive dysregulation of tau expression 
in the SCA3 disease course, as shown in a preliminary study [19]. 
Nonetheless, for its implementation as a biomarker in SCA3, further 
studies in tau kinetics in CSF and blood will be required, as well as 
longitudinal clinical studies in large patient cohorts.

In our cohort, plasma GFAP levels were not higher in ATXN3 
mutation carriers compared to controls. This could indicate that 
astrocytic activation is not a major component in SCA3 neurode-
generation, or that such activation is not translated into higher 
plasma levels. A previous report found increased plasma GFAP con-
centrations in SCA3 patients using a different methodology [57]. 
However, mean GFAP concentrations in our study were one to two 
orders of magnitude lower, which reflects the higher sensitivity of 
our method. Although there is evidence that GFAP transcription is 
increased with ageing [58], previous studies could not corroborate 

such age dependence of its peripheral levels. Our data confirm that 
plasma GFAP concentrations are age-dependent and that age is an 
important predictor of GFAP. Although UCHL1 has shown some 
value in TBI [26,27], the low reliability of our method with lower 
plasma values prevents valid conclusions being drawn regarding its 
role in SCA3.

The higher plasma NfL levels in ATXN3 mutation carriers, mea-
sured using a multiplexed assay with other biomarkers, reproduced 
the findings of other studies in SCA3 [32–34], replicated the previ-
ously published results of NfL in a subset of samples from the pres-
ent cohort measured with single-plex and duplex assays [4,35] and 
are in agreement with the results in other neurodegenerative dis-
orders [11,28–31]. Interestingly, differences in plasma NfL between 
SCA3 carriers and controls were greater for younger participants. 
This is explained by the fact that NfL concentrations were elevated 
since early stages of the disease, whereas in control subjects NfL 
slowly rises with increasing age. If future treatments achieve a halt 
in the neurodegenerative process, younger patients might show 
greater absolute reductions in their plasma NfL concentrations com-
pared to older patients. This would produce higher effect sizes in 
younger patients and therefore require a smaller sample size. The 
results in our main cohort were supported by the replication cohort, 
in which good classification performance of NfL in differentiating 
ataxic SCA3 from controls was also found.

From the set of variables analysed here, it can be concluded 
that age and number of CAG repeats accounted for almost a third 
of NfL variability in pre-ataxic carriers and therefore that they may 
be important drivers of the neurodegenerative process in this group. 
Surprisingly, in ataxic patients, age and number of CAG were not 
strong determinants of NfL levels (4.2% of explained variability). 
Instead, variables that reflect disease status (e.g., SARA, SCAFI) 
were strongly associated and explained a higher proportion of vari-
ability. Therefore, clinical stage seems to be the main driver of NfL 
concentrations once the carrier has reached the ataxic stage. The 
association between plasma NfL concentrations and SARA has also 
been found in previous studies [33,35]. However, the previously 
reported association between NfL and INAS was not found in this 
study [33], as the effect of the INAS score was not significant after 
adjustment by SARA. A good understanding of the determinants of 
NfL will be necessary for its use as progression biomarkers in future 
clinical trials. Our data suggest that, whilst NfL concentrations are 
likely to change with age in pre-ataxic carriers, such change will not 
be as marked in ataxic patients, where NfL might be more stable over 
time, especially if the subject has a mild disease course. To confirm 
these hypotheses, longitudinal data in large cohorts and collection 
of other variables that inform on the rate of neurodegeneration (e.g., 
magnetic resonance imaging data) will be required. Since the pre-
dictors of NfL in preclinical and clinical phases might diverge, con-
sidering these two phases as separate groups might lead to better 
predictive models than the ones reported so far [32,35].

Our study has some limitations. The cross-sectional design pre-
vented us from exploring changes in biomarker concentrations over 
time. Also, our pre-ataxic group was reduced compared to the ataxic 
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and control groups, and this poses difficulties in studying variables 
that influence biomarker concentrations. The CSF and animal data 
are limited, and these exploratory results should be replicated in 
larger groups. Another caveat is the poor association between CSF 
and plasma tau concentrations, which is in agreement with previous 
studies in other conditions [9,59] and could indicate a different be-
haviour between CSF and plasma tau levels. Plasma t-tau concentra-
tions showed some overlap between ATXN3 carriers and controls, 
and more sensitive methods or the quantification of specific iso-
forms might yield more informative results.

In conclusion, our results suggest that tau is elevated early 
in SCA3, and its levels decrease over time. This warrants fur-
ther research to unravel the role of tau in SCA3 and its potential 
role as a marker of early stages. NfL has shown consistent results 
with other studies, with greater levels in ATXN3 mutation carri-
ers and associations with participants’ characteristics (age, num-
ber of CAG repeats) and clinical variables (SARA score, SCAFI). 
Therefore, NfL shows potential to be a good candidate as a bio-
marker for SCA3, which will need to be confirmed in longitudinal 
studies carried out in large cohorts before it can be implemented 
in clinical trials.
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