1) Title: Mosquitonet 2) Author(s): Saúl Cano Ortiz 3) Contact: - e-mail: saul.cano@unican.es - adress: Av. de Los Castros, 44, 39005 Santander, Cantabria 4) Brief description: Mosquitonet is an open-source pavement distress dataset collected with a low-cost vehicle-mounted system for pavement distress detection through Deep Learning algorithms. There are 7099 images with 13 distress classes, annotated by experts in 12 formats: COCO, PASCAL VOC, YOLO/YOLOv4-v7 PyTorch, TF Object Detection, TFRecord, YOLOv3 Keras, Retinanet Keras and CreateML. 5) Data collection date: From 01/06/2022 to 30/10/2022 6) Geographical location: Cantabria (Santander, Spain) 7) Spatial coverage: This dataset has been created to enable the worldwide scientific community to make progress in the area of pavement distress detection from images. 8) Collection methodology: The images were gathered by means of a low-cost, high-resolution and fast-acquisition system, Mosquito. The Mosquito system is an unmanned aerial vehicle mounted on a 3D-printed structure that is attached to a vehicle using a suction cup system. The Mosquito system provides images and GPS coordinates per image for speeds up to 120 km/h, where its remote control allows the co-pilot to adjust its parameters in real time for better capture. Annotations for training Deep Learning models were performed manually by pavement experts. 9) Format: - The images are: .jpg - The annotations are: COCO (.json), PASCAL VOC (.xml), YOLOvx (.txt), TF Object Detection (.csv), TFRecord (.tfrecord), YOLOv3 Keras (.txt), Retinanet keras (.csv), CreateML (.json). 10) Data structure Each format contains around 2.48 GB, where train/validation/test split is 77/15/8. The structure for each dataset format is: COCO (mapsia.v11i.coco.zip): README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.coco.json valid/ 1072 images (.jpg) _annotations.coco.json test/ 543 images (.jpg) _annotations.coco.json PASCAL VOC (mapsia.v11i.coco.zip): README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) 5484 annotations (.xml) valid/ 1072 images (.jpg) 1072 annotations (.xml) test/ 543 images (.jpg) 543 annotations (.xml) YOLO PyTorch (mapsia.v11i.darknet.zip) README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) 5484 annotations (.txt) valid/ 1072 images (.jpg) 1072 annotations (.txt) test/ 543 images (.jpg) 543 annotations (.txt) YOLOv3 Keras (mapsia.v11i.yolokeras.zip) README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.txt _classes.txt valid/ 1072 images (.jpg) 1072 annotations (.txt) _annotations.txt _classes.txt test/ 543 images (.jpg) 543 annotations (.txt) _annotations.txt _classes.txt YOLOv5 PyTorch(mapsia.v11i.yolov5pytorch.zip): README.dataset.txt README.roboflow.txt data.yaml images/ train/ 5484 images (.jpg) valid/ 1072 images (.jpg) test/ 543 images (.jpg) labels/ train/ 5484 annotations (.txt) valid/ 1072 annotations (.txt) test/ 543 annotations (.txt) YOLOv6 PyTorch(mapsia.v11i.mt-yolov6.zip): README.dataset.txt README.roboflow.txt data.yaml images/ train/ 5484 images (.jpg) valid/ 1072 images (.jpg) test/ 543 images (.jpg) labels/ train/ 5484 annotations (.txt) valid/ 1072 annotations (.txt) test/ 543 annotations (.txt) CreateML (mapsia.v11i.createml.zip): README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.createml.json valid/ 1072 images (.jpg) _annotations.createml.json test/ 543 images (.jpg) _annotations.createml.json TFRecord (mapsia.v11i.tfrecord.zip): README.dataset.txt README.roboflow.txt train/ distress.tfrecord distress.label_map.pbtxt valid/ distress.tfrecord distress.label_map.pbtxt test/ distress.tfrecord distress.label_map.pbtxt TF Object Detection (mapsia.v11i.tensorflow.zip): README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.csv valid/ 1072 images (.jpg) _annotations.csv test/ 543 images (.jpg) _annotations.csv YOLOv4 PyTorch (mapsia.v11i.yolov4pytorch.zip) README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.txt _classes.txt valid/ 1072 images (.jpg) 1072 annotations (.txt) _annotations.txt _classes.txt test/ 543 images (.jpg) 543 annotations (.txt) _annotations.txt _classes.txt YOLOv7 Pytorch (mapsia.v11i.yolov7pytorch.zip): README.dataset.txt README.roboflow.txt data.yaml train/ images/ 5484 images (.jpg) labels/ 5484 annotations (.txt) valid/ images/ 1072 images (.jpg) labels/ 1072 annotations (.txt) test/ images/ 543 images (.jpg) labels/ 543 annotations (.txt) Retinanet keras (mapsia.v11i.retinanet.zip) README.dataset.txt README.roboflow.txt train/ 5484 images (.jpg) _annotations.csv valid/ 1072 images (.jpg) _annotations.csv test/ 543 images (.jpg) _annotations.csv 11) Abbreaviations None 12) Requirements (software to visualize data) None