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Abstract

El Fondo Cósmico de Microondas (FCM) codifica información clave que conecta de

forma directa las observaciones que realizamos aquí y en el presente con el estado del

universo temprano. Además, de acuerdo con nuestros modelos teóricos, el conocimiento

de las propiedades estadísticas del FCM conduce al conocimiento sobre las característi-

cas de nuestro Universo en el límite de los instantes iniciales, y a predecir su futuro. La

información relevante que nos transmite el FCM está codificada en su espectro angular

de potencias. Este trabajo está dedicado al estudio del Estimador Cuadrático de Máx-

ima Verosimilitud (QML), un método óptimo de estimación del espectro de potencia.

Analizamos sus propiedades, las condiciones de tipo matemático que se han de cumplir

para utilizarlo, soluciones en el caso en el que alguna no se cumpla y estudiamos el

rendimiento del método en múltiples situaciones de interés práctico en el presente y

el futuro inmediato. El método QML conlleva una alta carga computacional. Tras un

análisis detallado de los entresijos matemáticos propios del método, hemos desarrol-

lado una implementación óptima que formalmente permite aplicarlo con los medios

técnicos actuales en situaciones que hasta ahora eran inviables. Para ponerlo en prác-

tica, hemos escrito un código que implementa nuestra formulación del método, capaz

de aprovechar la potencia de cálculo de los supercomputadores. El código es de acceso

público y libre.

The Cosmic Microwave Background (CMB) encodes key information that directly

connects the observations we make here and now with the state of the early universe.

Moreover, according to our theoretical models, knowledge of the statistical properties

of the CMB leads to knowledge about the characteristics of our Universe in the limit

of the initial instants, and to predict its future. The relevant information provided by

the CMB is encoded in its angular power spectrum. This study is devoted to the ex-

ploration of the Quadratic Maximum Likelihood Estimator (QML), an optimal method

of estimating the power spectrum. We analyze its properties, the mathematical con-

ditions that must be fulfilled to use it, solutions in the case that some of them are not

fulfilled and we study the performance of the method in multiple situations of practical

interest in the present and the immediate future. The QML method is computationally

intensive. After a detailed analysis of the mathematical intricacies of the method, we

have developed an optimal implementation that formally allows it to be applied with

current technical means in situations that were unfeasible until now. To put it into

practice, we have written a code that implements our formulation of the method, ca-

pable of taking advantage of the computing power of supercomputers. The code is

publicly and freely available.
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Chapter 1

Introduction

1.1 The cosmic microwave background

Once the expansion of the universe [1] was mostly accepted as an experimental fact, two

cosmological visions radically different in their philosophical conceptions (prejudices
could be more adequate) were formulated.

According to the steady state theory [2, 3] the universe is eternal and with proper-

ties that remain constant in time: the decrease of the density caused by the expansion

is compensated by the constant creation of matter. This theory states that the cosmos

has always been as we observe it in the present time.

According to the Big Bang theory [4, 5, 6, 7] the universe evolves with time. In this

context, since in the present time the galaxies are moving apart, in the past all the ele-

ments that conform the universe must be closer and more concentrated. If we project

this scheme up to a remote past and assume the principle that the laws of physic are

the same for the whole universe, among the consequences that can be deduced, we find

that there was an epoch in which matter was in the state of plasma in thermodynamic

equilibrium with radiation. Under these conditions, it must follow the frequency dis-

tribution of a black body at the temperature of the thermodynamic fluid. Starting from

that equilibrium state, the densities of matter and radiation and the temperature of the

fluid must gradually decrease as a consequence of the expansion. At some point, the

density of photons and their energy distribution fall below the threshold at which ra-

diation keeps matter in the plasma state. As a consequence, the electrons are captured

by the atomic nucleus, and matter and radiation decouple. According to the principle

that there are no privileged observers in the universe, the wavelength of the decou-

pled radiation increases, at each place in the universe, at the same proportion as the

expansion factor grows. In turn, the combination of the photon density decreasing and

the growth of the wavelength drives the radiation to conserve a black body distribu-

– 1 –



2 chapter 1. introduction

tion. Therefore, after the decoupling, the nature of the frequency distribution of the

radiation does not change with time, it just changes its temperature. According to this

theory, a nearly homogeneous and isotropic radiation field with a black body spectral

distribution and low temperature must be filling the universe at the present time: the

Cosmic Microwave Background (CMB).

Therefore, originally the CMB was a prediction of the theoretical physics —year

1948 [4]— within the framework given by the Big Bang theory paradigm as a conse-

quence of the observation of the expansion in the universe. It was detected for the

first time in 1964 (in 1965, the detection was published in [8] and the interpretation

as a Big Bang remnant in [9]). Currently, we can assert that the theoretically expected

isotropy is a contrasted experimental fact (e.g. [10]) that shows a black body tempera-

ture of 2.7260 ± 0.0013 K [11]. On the other hand, since we can only observe the CMB

from our planet and its immediate proximity, we assume homogeneity both as a conse-

quence of the principle that there are no privileged observers and by consistency with

other observables in cosmology.

The CMB pervades the entire universe, but we can only detect and measure the

properties of radiation incident on us from a particular region, the surface of a sphere

whose radius is the distance that photons have traveled since they last scattered at the

recombination epoch; for obvious reasons, we call it the last scattering surface (LSS).

The observed frequency distribution of the CMB over the surface shows that, indeed,

it follows a black body spectrum at all points. However, the temperature of the CMB

is not perfectly isotropic. The largest anisotropy observed in the CMB crosses diamet-

rically the sky from a slightly warmer region to a slightly colder region in the opposite

region of the sky. The amplitude of this temperature dipole is 3.3621 ± 0.0010 mK. The

CMB temperature dipole is a consequence of the Doppler shift caused by the movement

of the observer with respect to the CMB rest frame.1 Removing the distortion caused by

motion, we find that the temperature of the radiation is practically isotropic, although

it presents deviations relative to the mean temperature of the order of 1 in 100 000.

These anisotropies are directly connected with the state of the plasma at the moment

of the decoupling, and this in turn to the physical laws and the initial and boundary

conditions that took place at the origin of our universe. Therefore, it could be possible

to obtain useful information about the physics of the early universe by observing the

CMB.

1In the next section, we show how the CMB as seen by an observer at rest can be determined from the
CMB measured by an observer in motion.
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1.1.1 The CMB as seen from a reference frame at rest

Applying special relativity one can find the relationship between the temperature T of

the radiation of a black body as seen by an observer at rest and the temperature T ′ as

seen by another observer that moves with velocity v with respect to the first one (more

details in [12] and [13])

T ′ =
T

γ(1− β cosθ′)
, (1.1)

where we find the usual γ factor of special relativity and the β = v/c factor. The variable

θ′ is the angle between the direction of the point of the sky towards which the observer

moves and that where the observer is measuring the temperature radiation T ′.

If v≪ c, the last expression can be transformed into

T ′ = T (1 + β cosθ′). (1.2)

Assuming that the anisotropies caused by the Doppler effect are dominant, we can

fit β if we assume that T is equal at all points. With this procedure, it is found that

we move with respect to the CMB with a velocity close to 400 km s−1 (more precisely,

in a detailed analysis taking into account the Doppler and aberration effects, Planck
Collaboration2 found a component in the dipole direction of 384 km s−1± 78 km s−1

(stat.) ± 115 km s−1 (syst.) [13]). Finally, once we have the value of the velocity, we can

compute T from T ′. Figure 1.1 shows the map of the anisotropies of the CMB as seen

by an observer at rest (details about the figure can be found in [15]).

1.2 The angular power spectrum

1.2.1 The scales of the anisotropies

Let us assume that we have removed the Doppler effect in the observed CMB caused by

our movement and that we have the data of the temperature T (r̂) of the CMB at each

point r̂ of the sky. The deviation with respect to the mean value T0 = ⟨T (r̂)⟩ is

δT (r̂) = T (r̂)− T0. (1.3)

Because of two fundamental reasons, it would not be appropriate to try to connect

directly the specific observed values with the physical laws and with the parameters

that characterize our universe. First, because by the principle that states that all the

2Planck was a European Space Agency mission [14] launched in 2009 that observed the CMB in a
frequency range from 30 to 857 GHz over the whole sky with unprecedented resolution and sensitivity.
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Figure 1.1: Full-mission cleaned temperature CMB map from the SEVEM pipeline, pub-
lished in the 2018 Planck release. The signal shown in the map has been inpainted
in the regions where in practice the foregrounds blur the CMB signal. The map is
shown at 5 arcmin FWHM resolution (more information and figures can be found at
https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps)

points of the sky are equivalent, there is nothing in a specific pair of coordinates that

gives them a special characteristic with respect to the other points. Second, because the

values of the anisotropies at each point are given by random variables, and therefore

to pretend to assign a specific value to the anisotropies of a collection of points would

be something like trying to advance the sequence of numbers that will come out when

rolling a dice several times. Therefore, the most convenient procedure is to translate

the information contained in the anisotropies in pixel space into another format that

could be connected directly with physics. Since the data is distributed over the surface

of the sphere, it is reasonable to express it as an expansion in spherical harmonics

δT (r̂) =
∑
ℓm

aℓmYℓm(r̂). (1.4)

Given the precise realization of the anisotropies that has emerged from our universe

and the specific pattern that we measure from our position today, each coefficient aℓm
has a precise value. However, within the framework of the theory, ours is only one of

the infinite possible realizations of the universe. Since the theory can only advance

statistical predictions about the characteristics of the possible universes compatible

with it and, furthermore, a fundamental element in its principles is that there are no

privileged points or directions, we have

⟨aℓm⟩universes = 0. (1.5)

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
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For the moment, we have variables of zero mean, but if there are indeed anisotropies,

their variances cannot be zero. Appealing again to the symmetries, if there are no priv-

ileged directions for the anisotropies, the average of the crossing of two different terms

in the harmonic expansion has to cancel

⟨aℓma∗ℓ′m′⟩universes ∝ δℓℓ′δmm′ . (1.6)

If the above were not correct and there were correlations between the different com-

ponents of the spherical harmonic expansion, then there would be privileged zones on

the surface of the sphere. On the other hand, since the index m refers to the orientation

in space, fixed the index ℓ, by symmetry, the values of the auto-correlation of elements

of different m must be equal

⟨aℓma∗ℓm⟩universes = ⟨aℓm′a∗ℓm′⟩universes. (1.7)

Therefore, the only remaining non-null variances are the auto-correlation terms,

and their values only depend on the index ℓ. From a theoretical point of view in which

we have multiple realizations of likely universes according to the physical laws that

we try to infer, we define the angular power spectrum of the anisotropies C̃ℓ as the

variances of the coefficients of the spherical harmonic expansion computed over the

realizations

C̃ℓ = ⟨aℓma∗ℓm⟩universes. (1.8)

The ℓ index makes reference to the size of the oscillations of the Legendre polyno-

mials and, in particular in our case, to the size of the contribution to the anisotropies of

the spherical harmonic coefficients. Therefore, the power spectrum registers the power

of the anisotropies in the different angular scales.

In practice, we only have one realization of the universe to observe and only one

point and one instant to do it —our planet, its vicinity and the last decades—. In short,

the averages over universes of the previous expressions are a theoretical entelechy, and

we can only have access to the spherical harmonic coefficients of a single sample of

CMB.

Therefore, we need an alternative definition of the power spectrum that can be used

in practice. Assuming that the symmetry properties with respect to the orientation in

the space of the anisotropies of a collection of universes are satisfied, we define the

measurable power spectrum on the ℓ scale as the average in m of the absolute values of

the coefficients of the expansion in harmonics, i.e.,

Cℓ = ⟨aℓma∗ℓm⟩m. (1.9)
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The average of the last expression over universes, yields

⟨Cℓ⟩universes = ⟨⟨aℓma∗ℓm⟩m⟩universes = ⟨⟨aℓma∗ℓm⟩universes⟩m = ⟨C̃ℓ⟩m. (1.10)

Since C̃ℓ is independent of m, we get

⟨Cℓ⟩universes = C̃ℓ. (1.11)

1.2.2 The two-point correlation function

The power spectrum is directly related to the average over the surface of the sphere of

the product of the temperature of pairs of points at a fixed angular distance, what is

typically referred as the two-point correlation function. Given a realization and being

r̂ and r̂ ′ two directions such that r̂ · r̂ ′ = cos(θ), the function is

C(θ) = ⟨δT (r̂)δT (r̂ ′)r̂·r̂ ′=cos(θ)⟩surface (1.12)

For a continuous random field on the sphere, the correlation function is

C(θ) =
∑
ℓ

1
4π

∑
m

aℓma
∗
ℓm

Pℓ(cos(θ)). (1.13)

That by eq. (1.9) yields

C(θ) =
∑
ℓ

2ℓ + 1
4π

CℓPℓ(cos(θ)). (1.14)

Details about the discretized two-point correlation function can be found in [16].

1.2.3 Cosmic variance

If we could observe infinite universe realizations, in theory,3 we could limitlessly re-

duce the statistical contribution to the error with which we measure the power spec-

trum. Since in practice we have only one realization, we must consider the theoretical

statistical contribution to the error of this fact.

To determine the error, one must first know or assume the statistical nature of the

fluctuations. Let us assume that the fluctuations are Gaussian. This is a common as-

sumption for two main reasons. From a theoretical perspective, the models describing

the origin of the fluctuations, which are closely related to the CMB anisotropies, are

expected to be Gaussian since they are caused by quantum fluctuations stretched up to

3Leaving aside technical and experimental issues.
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cosmological scales. From an experimental point of view, the data also seem to indicate

that the CMB anisotropies follow a Gaussian distribution. As an added advantage, the

mathematical apparatus associated with the study of the CMB is simpler when assum-

ing Gaussianity with respect to other possibilities regarding its statistical nature.

In this context, the coefficients of the expansion in spherical harmonics are also

Gaussian random variables. Our goal is to find the variance of the power spectrum

measured from one realization (eq. (1.9)). In more detail

Cℓ =
1

2ℓ + 1

ℓ∑
m=−ℓ

|aℓm|2. (1.15)

To find the statistical error with which we can compute the power spectrum of a

given realization, we need to resort to the variance of the aℓm coefficients assuming

infinite realizations, i.e., C̃ℓ. By dividing both sides of the above expression by C̃ℓ and

rearranging some terms, we have

(2ℓ + 1)
Cℓ
C̃ℓ

=
ℓ∑

m=−ℓ

|aℓm|2

C̃ℓ
. (1.16)

Note that at the right side of the equality we have the sum of the variances of inde-

pendent Gaussian random variables of zero mean and unit variance. Therefore, on the

left side of the equality, we have a variable that follows a χ2 distribution with 2ℓ + 1

degrees of freedom.4 Thus, we have the variance

Var
(
(2ℓ + 1)

Cℓ
C̃ℓ

)
= 2(2ℓ + 1). (1.17)

Finally, we can solve from the last expression what we call cosmic variance, the vari-

ance of the power spectrum

Var(Cℓ) = 2(2ℓ + 1)
C̃2
ℓ

(2ℓ + 1)2 =
2

2ℓ + 1
C̃2
ℓ . (1.18)

It is customary to write the expression of the cosmic variance in the form of the

expected statistical error of the values of the power spectrum obtained from one real-

ization

∆Cℓ =
C̃ℓ√

(2ℓ + 1)/2
. (1.19)

4Actually we do not have 2ℓ + 1 independent aℓm variables because the aℓm’s of m < 0 are not indepen-
dent of those of m > 0, but since they are complex quantities, counting real and imaginary parts it is true
that we have 2ℓ + 1 independent variables.
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In short, as a result of having only one realization of the universe, for statistical

reasons, the values of the power spectrum are affected by an error given by the expres-

sion (1.19). In practice, the error can be increased by other effects, such as not having

data over the full-sky or the presence of instrumental noise.

The way the cosmic variance depends on ℓ causes the error in Cℓ to increase as ℓ

decreases –larger error in larger scales–. This is an effect due to the fact that the average

by which the power spectrum is calculated counts with fewer elements for smaller ℓ.

It is interesting to mention that the value of the cosmic variance, eq. (1.19), corre-

sponds to the case in which we have only one realization of the universe. Although

this does not have practical effects, if we could have access to data from n independent

samples, the value of the cosmic variance would be

∆C
nmaps
ℓ =

C̃ℓ√
n(2ℓ + 1)/2

. (1.20)

1.3 Polarization

When an electromagnetic wave is scattered by a free electron there is a change in the

direction of wave propagation. Since the electric and magnetic fields oscillate in a plane

perpendicular to the propagation direction, the oscillation amplitude in the plane given

by the incident and the outgoing directions is reduced after scattering, while the am-

plitude in the direction perpendicular to the plane remains unchanged. Figure 1.2

illustrates this process, usually referred to as Thomson scattering when the photons

are of low energy. In an extreme case, when the two directions of propagation become

perpendicular, the wave becomes completely polarized.

However, polarized radiation cannot be produced in an isotropic medium with

abundant scattering because, by symmetry, there are no privileged directions; thus,

the combination of the polarization induced in each direction of propagation will tend

to cancel each other out. That is, polarized radiation can only be produced in an

anisotropic fluid. A detailed analysis shows that the quadrupole term of the Fourier

expansion of the fluid density acts as the source of the CMB polarization (for more

details on polarization see [17, 18, 19]). The underlying idea is that when unpolar-

ized radiation coming from two perpendicular directions with different intensity —

anisotropic radiation— incides on a point and, for simplicity, assuming that both waves

are scattered in the direction perpendicular to the plane given by the incident direc-

tions, Thomson scattering will eliminate the incident oscillations of the electric and

magnetic fields E⃗ and B⃗ oriented in the direction of scattering and will let pass the os-
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Propagation direction
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Propagation direction
of the scattered wave

Amplitude of oscillation
of the scattered wave

Amplitude of oscillation
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Figure 1.2: Thomson scattering. The incident wave is unpolarized (in the figure, the ampli-
tude space is disk-shaped) and the deflected wave is partially polarized (the disk becomes
an ellipse). The two blue semi-axes —perpendicular to the two propagation directions—
have the same length in the disk and in the ellipse. The red semi-axis —which is in the
plane given by the two directions of propagation— is shorter in the ellipse than in the
disk. When the two directions of propagation are perpendicular, the minor semi-axis of
the ellipse is of zero length and the wave is completely polarized.

cillations in the other two directions. Since we are assuming anisotropies, the radiation

coming from each of the two directions is of different intensity, so the amplitudes in

the fields of the filtered oscillations in one direction will be higher than the amplitudes

in the other direction, and the scattered radiation will be polarized.

On the other hand, even having quadrupole-type anisotropies, a continuous scat-

tering constantly creates and erases polarization. The polarization that we can observe

at present can only be the trace of the anisotropies in the moments prior to —or si-

multaneous with— the decoupling between radiation and matter, when a large part of

the electrons have already been captured by the atomic nuclei, so the amplitude of the

CMB polarization is expected to be smaller by about an order of magnitude than the

fluctuations of temperature [20].

The radiation temperature is a scalar and its description in terms of the spherical

harmonics is as simple as shown in eq. (1.4). The description of polarization is a bit

more complicated.

Polarization is usually represented by the well-known Stokes parameters, the set of

observables I , Q, U and V . Suppose that we have an electromagnetic wave propagat-
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ing in the z-direction. The electric field of the wave can oscillate in the x − y plane.

Decomposing it in these two directions, we get

Ex(t) = ax(t)cos(2πνt −θx(t)) Ey(t) = ay(t)cos
(
2πνt −θy(t)

)
(1.21)

In the last expression, the amplitudes on each axis, the frequency and the phases can

be identified. The Stokes parameters are defined (for simplicity, the time dependence

is not explicitly shown) as

I ≡ ⟨a2
x⟩+ ⟨a2

y⟩ Q ≡ ⟨a2
x⟩ − ⟨a2

y⟩

U ≡ ⟨2axay cos(θx −θy)⟩ V ≡ ⟨2axay sin(θx −θy)⟩,
(1.22)

where the averages are computed over time, extending over a time much longer than

1/ν.

The parameter I is always positive and describes the intensity of the radiation.

When the Ex and Ey components are uncorrelated, the radiation is unpolarized and

the averages of Q, U and V cancel.

The parameter V depends on the sine of the phase shift between the x and y compo-

nents. Since the sine takes its maximum value at the argument π/2, V is favoured when

the components are shifted ninety degrees, which means circular polarization. Due to

the characteristics of the physical process, Thomson scattering does not produce this

type of polarization, so, as far as the CMB is concerned, V is zero. Figure 1.3 shows the

CMB Q and U maps of the 2018 version of the Planck collaboration [15].

If we fix the direction of propagation on the z-axis and rotate the x and y axes by

an angle ψ, such that ex′ = ex cosψ+ ey sinψ, ey′ = −ex sinψ+ ey cosψ, the ax(t) and ay(t)

components of the oscillation amplitude will change in the same way as the ex′ and ey′
vectors do. Due to the existence of the products of the sine and cosine functions of ψ in

the averages defining Q and U , referred to the new axes, the functions sine and cosine

with a 2ψ argument appear in the computation of Q and U, specifically

Q′ =Qcos(2ψ) +U sin(2ψ) U ′ = −Q sin(2ψ) +U cos(2ψ). (1.23)

From the above, we find that two quantities of spin ±2 can be built from Q and U

(Q ± iU )′ = e∓2iψ(Q ± iU ). (1.24)

Therefore, we can write an expression related to the elements of the CMB polariza-

tion as an expansion on spherical harmonics, in this case of spin +2 and -2

(Q+ iU )(r̂) =
∑
ℓm a2,ℓm 2Yℓm(r̂)

(Q − iU )(r̂) =
∑
ℓm a−2,ℓm −2Yℓm(r̂),

(1.25)
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Figure 1.3: Full-mission cleaned Q and U CMB polarization maps from the SEVEM
pipeline, published in the 2018 Planck release. The signal shown in the maps has been in-
painted in the regions where in practice the foregrounds blur the CMB signal. In order to
suppress instrumental noise, the maps are shown at 80 arcmin FWHM resolution (more in-
formation and figures can be found at https://wiki.cosmos.esa.int/planck-legacy-archive/
index.php/CMB_maps)

where Q and U are measured with respect to the unit vectors of the specific coordinate

system located at the point on the surface of the sphere in the direction of observation.

Instead of a2,ℓm and a−2,ℓm is convenient to use lineal combinations

aE,ℓm = −(a2,ℓm + a−2,ℓm)/2

aB,ℓm = −(a2,ℓm − a−2,ℓm)/2
(1.26)

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps


12 chapter 1. introduction

The Q and U quantities in eq. (1.25) can be separated by mean of linear combina-

tions, thus getting

Q(r̂) =
∑
ℓm

−aE,ℓmX1,ℓm(n̂)− iaB,ℓmX2,ℓm(n̂),

U (r̂) =
∑
ℓm

iaE,ℓmX2,ℓm(n̂)− aB,ℓmX1,ℓm(n̂), (1.27)

where X1,ℓm and X2,ℓm are a combination of the s = ±2 spin-weighted harmonics

X1,ℓm(r̂) = (2Yℓm + −2Yℓm)/2,

X2,ℓm(r̂) = (2Yℓm − −2Yℓm)/2. (1.28)

Therefore, eq. (1.4) and (1.27) define the quantities aT ,ℓm, aE,ℓm and aB,ℓm, that de-

scribe in harmonic space the temperature and polarization of the CMB maps.

Even if we have a model describing the physics of the universe, if it includes the

principle of non-existence of privileged directions, we cannot predict the values of

aT ,ℓm, aE,ℓm and aB,ℓm. But we can predict the angular power spectrum in the framework

of a model that includes this symmetry principle. The statistical isotropy determines

for the six quadratic quantities

⟨a∗T ,ℓmaT ,ℓ′m′⟩ = CT Tℓ δℓℓ′δmm′ ⟨a∗E,ℓmaE,ℓ′m′⟩ = CEEℓ δℓℓ′δmm′

⟨a∗B,ℓmaB,ℓ′m′⟩ = CBBℓ δℓℓ′δmm′ ⟨a∗T ,ℓmaE,ℓ′m′⟩ = CT Eℓ δℓℓ′δmm′

⟨a∗T ,ℓmaB,ℓ′m′⟩ = CT Bℓ δℓℓ′δmm′ ⟨a∗E,ℓmaB,ℓ′m′⟩ = CEBℓ δℓℓ′δmm′ ,

(1.29)

where the averages are computed over the set of universe realizations. Figure 1.4 shows

a summary of current measurements of the TT, EE and BB CMB power spectra. The

principal goal of this thesis is the estimation of the power spectrum of the anisotropies

from maps of temperature and polarization.

Because of parity considerations, the cross-correlation between B and the other two

quantities vanishes. Therefore, if the sources of the anisotropies were invariant un-

der parity inversion, the components CT Bℓ y CEBℓ are expected to cancel. If non zero

values of some of these components were measured that could not be explained by

the presence of spurious signals such as instrumental effects or foregrounds contami-

nation, we would be finding exotic effects indicating beyond-standard-model physics

(e.g. [23, 24, 25, 26]).

1.4 The sources of the CMB anisotropies

As a first approximation, the CMB blackbody radiation is isotropic. However, it shows

small local deviations, which give rise to the pattern of anisotropies. The deviations
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Figure 1.4: Summary of current measurements of CMB power spectra. Solid lines corre-
spond to the Planck best-fit model, but assuming r=0.004 [21], while points give measure-
ments from different experiments. Figure adapted from [22], where details and references
can be found.

from the mean value are caused by local perturbations in the fluid density, which have

many consequences on the spatial distribution of the CMB [27, 28, 29]. First, differ-

ences in fluid density cause the equilibrium temperature to be different at different

points. Second, density differences introduce dynamics in the fluid leading to material

displacements and oscillations, which introduces a Doppler shift in the radiation. Fi-

nally, density differences introduce inhomogeneities in the gravitational potential. In

general, it can be said that photons loose energy when they leave the potential wells

and gain energy when they fall into them; as a result, the difference in potentials at

the point where the photon was emitted and at the point where the observer is located

introduces shifts in the temperature of the radiation. Since all the photons we observe

fall to the same potential, the one we inhabit, the anisotropies associated with this ef-

fect depend only on the potentials at the LSS at the directions from which they arrive.

On the other hand, the potentials that photons pass through on the way from the LSS

to the observer may vary as a function of the time from the time the photon enters the

well until it leaves it, which introduces new elements in the temperature variation. The

following expression shows the observed temperature fluctuation measured from the

radiation coming from the direction given by the unitary vector r⃗ and accounts for all
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these effects

∆T
T

(r⃗) ≈ 1
4

δργ
ργ

(r⃗) + r⃗ · (v⃗o − v⃗e) +
φe(r⃗)−φo

3
+
∫ o

e

∂φ

∂t
dt. (1.30)

The first term corresponds to the intrinsic fluctuations in the density of the plasma

located in the direction r⃗ on the LSS and it is connected to the fact that the energy den-

sity of a black body is proportional to T 4. The second term is the Doppler effect. The

third and fourth terms give account of the gravitational redshift: the contribution of

the local potential at the emission point (Sachs-Wolfe effect) and the contribution of the

variation with time of the potentials the photons are going through (integrated Sachs-

Wolfe effect, ISW), respectively [27]. The first three terms are related to properties on

the LSS, and we usually refer to them as primary anisotropies. The last term belongs to

the category of secondary anisotropies, which are related to the properties of the points

in the path between the emission and absorption points.5

There are other sources of secondary anisotropies, such as the Rees-Sciama effect [30],

the Ostriker–Vishniac effect [31], the deviation of the photons caused by gravitational

lensing, that redistribute the power and smooth the sharp features in the CMB power

spectrum [32], the modification of the black body spectrum due to the scattering of

CMB photons by electrons on regions of hot gas, the thermal Sunyaev-Zeldovich ef-

fect [33] and the kinetic Sunyaev-Zeldovich effect [34], that appears when photons pass

through a plasma with bulk velocity, which introduces also Doppler shifts in the CMB.

There are other dispersive processes that affect the anisotropies due to the scattering of

photons by free electrons after the reionization of the universe [35].

What we observe from the CMB is consistent with anisotropies caused by local den-

sity perturbations affected by secondary anisotropies, something that can be considered

as an established fact, so what remains is to explain the causes of these perturbations.

1.5 The inflationary paradigm

The inflationary models appear as a theoretical solution to some of the classical prob-

lems in Cosmology. Two issues stand out in particular. First, the fact that we can

observe very distant regions in the sky that, in principle, have not been in causal con-

tact, but that have very similar properties. A condition that can not be easily explained,

unless we impose some very specific initial conditions in the early universe.

5There are actually two contributions to the ISW effect, the early one, that occurs around recombina-
tion, and the late one, after recombination. The early one is in essence a primary anisotropy.
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The second critical issue is the observed flatness of the universe at present time,

which leads to a very fine tuning of the values of some cosmological parameters in

the past, in order to be able to observe the current values. This, again, leads to a very

unsatisfactory explanation. Both issues lead us to make arrangements to make our

theories conform to what we observe.

Of course, as it always happens, to explain certain facts one must assume some

hypotheses, which in this case are embedded in elements of particle physics. Besides

solving the mentioned issues, the inflationary models provide a natural explanation

of the inhomogeneities in the gravitational potentials, that in turn are the sources of

the CMB anisotropies. When inflation comes into play, they become a consequence of

basic physical principles and can also be easily characterized statistically. As a bonus,

inflation also predicts a background of primordial gravitational waves that would leave

its imprint in the B-mode of CMB polarization, which may be detectable with current

technology. That is, inflation explains known facts and predicts new ones, a very valu-

able circumstance.

The inflationary model introduces a quantum field, the inflaton field, whose energy

in the initial moments of the Big Bang —even before nucleosynthesis— dominated over

the other components of energy of the universe. Basically, it can be said that the field

evolved towards a lower energy state and, while it did so, quantum oscillations were

produced locally in all places of the universe. Under certain conditions, the scale factor

of the universe evolves during inflation growing exponentially. Meanwhile, the quan-

tum oscillations get stretched and its physical size is increased —in the sense of how

long it takes for light to travel through them— and, simultaneously, the field causing

inflation oscillates quantumly in the points of the new physical space.

One of the results is that regions of space small enough to have interacted and

reached equilibrium before inflation end up being stretched to sizes that currently

exceed that of the observable universe. This explains the homogeneity in the global

properties that we observe at present in areas of the universe at distances that make it

impossible for them to have been in causal contact without resorting to inflation.

After being stretched by a superluminal expansion up to the point of exceeding

the causal contact limit, the quantum fluctuations stop evolving physically and end

up frozen. Once inflation has ended and the exponential growth stops, the horizon of

light starts to grow over time, such that regions start to enter again within the horizon;

the physics starts to play again and the regions that have reached causal contact start

evolving together.
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As the field fluctuated quantumly as it was stretched, the new points of space gen-

erated by inflation in turn fluctuated quantumly; the final result of inflation, which

we now observe, is a space with the same properties at first order at all places —

homogeneity— but that shows local deviations. The global and homogeneous contri-

bution to the local properties is derived from those of the small zone of the universe in

equilibrium before inflation started, that grew until it became the observable universe

we see; the local deviations are the effect of the sum of successive layers of quantum

fluctuations stretched up to various scales while the universe was inflating. The inter-

section of the evolution of the local deviations in the three-dimensional space with the

last scattering surface is the origin of the anisotropies we see at the present.

In the span of time since inflation ended, the physical interaction has introduced

dynamics on the small scales and has altered the trace of inflation at those scales. But

the large scales remain out of causal contact and the inflation trail remains frozen there.

Certain inflationary models predict very flat spectrum for low ℓ, in the sense ℓ(ℓ +

1)CT Tℓ ∼ const. This prediction has been confirmed by CMB anisotropy measurements.

In inflationary models, the fluctuations in the field introduce fluctuations in the

space-time metric. Furthermore, since the origin of the fluctuations is quantum, the

perturbations are Gaussian. The perturbations of the metric can be decomposed as the

contribution of three components: scalar, vector and tensor, that evolve independently

in the linear regime. Vector perturbations are not created during inflation [36] (and in

any case decay with the expansion of the universe) but inflation does produce the other

two type of perturbations. The scalar component couples with the gravitational field

and induces density fluctuations. The tensor component produces gravitational waves.

Regarding the effects on the CMB, both scalar and tensor perturbations induce E

mode. In theory, the contribution to E of each of the components could be differenti-

ated by analyzing the variation with ℓ of the power spectrum and correlating it with

the forms of the contributions to the spectrum of the scalar and tensor components pre-

dicted by the models. However the foregoing procedure presents serious difficulties,

because of degeneracies in the cosmological parameters with respect to the contribu-

tion of scalar and tensor components to the E-mode.

In linear theory the scalar perturbations produce E-mode of polarization only. How-

ever, tensor perturbations produce also B-mode. Since we only have a theoretical mech-

anism that gives rise to the primordial B-mode of CMB polarization, a detection would

represent a very powerful evidence in favor of the inflationary theory. Moreover, the

measurement of the ratio between the power of the tensorial and the scalar perturba-
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tions, known as the parameter r, would allow one to determine essential characteristics

of the inflationary field.

In short, the situation is as follows: the inflationary theory explains, among others,

the flatness problem and of the homogeneity at large scales of the universe, it also

explains the origin of the anisotropies; besides, it predicts other effects that could be

observed in the CMB. If the effects of gravitational waves were detected, it would be a

great support for the theory. Conversely, the primordial B-mode may never be detected.

If this were the case, one could not be sure whether the theory is not right or the power

of the tensor modes is too low to be detected.

1.6 The cosmological parameters

According to current knowledge, from what we observe in the present and the physi-

cal theories, the universe can be described by a model that contains several parameters

whose values cannot be determined by the theory and that, instead, we have to deter-

mine experimentally.

The Standard Cosmological Model is based on the cosmological principle. It as-

sumes that the dynamics of the universe is described by general relativity and that

there were initial deviations from homogeneity that gave rise later to the anisotropies

in the CMB and were the germ of the large-scale structures we observe. The model in-

cludes dark matter in the form of non-relativistic particles as an element to explain the

excess gravity that we cannot account for from ordinary observable matter. In addition,

it includes a dark energy term as a driver of the acceleration of the expansion of the uni-

verse. We refer to a model that describes the universe on the basis of these ingredients

as the Standard Cosmological Model, the Concordance Model or the ΛCMD model. In

this context, inflation is considered to be the preferred mechanism for introducing the

initial perturbations. In particular, the observed CMB spectra are well described by a

standard spatially-flat six-parameter ΛCMD cosmology with a power-law spectrum of

adiabatic scalar perturbations [21, 37].

The cosmological model parameters can be sorted into three classes: some of them

describe the spacetime background (its content and current kinematics); others, the

initial conditions, and there is a set of miscellaneous parameters.

Current estimations of the cosmological parameters obtained from Planck data are

shown in table 1.1. The parameter h characterizes the current kinematic state of the

universe, it specifies the Hubble constant in units of 100 km s−1 Mpc−1. The parameter

Ωb is the ratio to the critical density of the mass density given by the existing parti-
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TT,TE,EE+lowE+lensing

Parameter 68% limits

Ωbh
2 0.02237 ± 0.00015

Ωch
2 0.1200 ± 0.0012

100θ∗ 1.04110 ± 0.00031

τ 0.0544 ± 0.0073

ln(1010As) 3.044 ± 0.014

ns 0.9649 ± 0.0042

Table 1.1: Parameter constraints assuming the ΛCDM cosmology with a power-law initial
spectrum, no tensors, spatial flatness, a cosmological constant as dark energy, and the sum
of neutrino masses fixed to 0.06 eV. The legend of the second column makes reference to
the data used to fit the parameters: Planck primary CMB data plus the Planck measurement
of CMB lensing (Table 2, column 5 of [21]).

cles of the Standard Model (it is traditional in Cosmology to refer to both leptons and

baryons simply as baryons). The parameter Ωc is the ratio of the dark matter density

to the critical density. The parameter θ∗ is the angular scale of the sound horizon at re-

combination, a measure of the distance a sound wave has traveled through the plasma

since inflation ended to the instant of decoupling. The parameter τ , optical depth, is

the probability that a CMB photon undergoes a scattering process on its travel from

the LSS to the point where it is captured by a detector. The parameters As and ns are

related to the initial conditions of the perturbations. Assuming purely adiabatic scalar

perturbations at very early times, the curvature power spectrum follows a power law;

As is the (dimensionless) base amplitude and ns, the spectral index, is the exponent.

The data are consistent with a flat universe in accelerated expansion with a Hubble

constant H0 = (67.36 ± 0.54) km s−1 Mpc−1, matter density parameter Ωm = 0.3153 ±
0.0073 and a dark energy parameter ΩΛ = 0.6847 ± 0.0073. On the other hand, they

provide strong support to density perturbations caused by the simplest inflationary

models: adiabatic, Gaussian and nearly-scale invariant perturbation and spatial flat-

ness [37]. Referred to primordial gravitational wave signals, the data establish an

upper limit to the tensor-to-scalar ratio of r0.05<0.032 at 95% CL [38].

1.7 Summary and next steps

As noted in the previous sections, CMB anisotropies are related to plasma density per-

turbations during the decoupling process. These, in turn, are related to the distribution
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of perturbations of the metric resulting from inflation. Of course, once that inflation

ended, and up to the time of decoupling (and further), the density fluctuations that

re-entered the causality horizon evolved physically and did so following well-known

physical laws. The specific details of the type of perturbations and their probability

distribution after inflation ended —and those of the subsequent evolution— depend,

according to our theory, on the cosmological parameters, that encapsulate the char-

acteristics of our universe. As the perturbations are connected with the pattern of

CMB anisotropies, it can be expected that a precise knowledge of the strength of the

anisotropies at different angular scales can help to gain crucial insight into essential as-

pects of the nature of our universe. In addition, it should be mentioned that, as noted,

the detection of the primordial polarization B-mode would be a special indicator of

inflation.

Assuming that the fluctuations are Gaussian, all the information about the proba-

bility distribution of the anisotropies is encapsulated in the two-point correlation func-

tion or, equivalently, in the angular power spectrum. Therefore, it is clear that the de-

termination of the power spectrum of the anisotropies of our universe is essential to

characterize it. Indeed, it is one of the most valuable observables that nature can offer

us.

Unfortunately, the precise knowledge of the power spectrum does not lead to a un-

ambiguous knowledge of the cosmological parameters since, roughly speaking, differ-

ent sets of values of the cosmological parameters can lead to the same power spectrum,

but it is still an essential source of knowledge. On the other hand, if the anisotropies

were not of Gaussian nature, the power spectrum would not contain all the informa-

tion, although it would still remain as a crucial source of data.

The next sections will be dedicated to analyze our options to determine the CMB

power spectrum.

The context and the goal

The pattern of anisotropies that we can observe comes from the only realization that

we have available from a probability distribution that is fixed by the physical laws that

govern our universe and that would govern the other infinite number of possible re-

alizations that could occur instead of ours. That is, the situation is as follows: our

universe exists and has physical laws. The laws that are derived from its observation

indicate that our universe is a particular case among the infinite possibilities, whose

possible existence is determined by laws of probability. From observing this available
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case, we try to infer the laws and the parameters of those laws, which govern all of

them. As with all probability laws, information about the general law can be inferred

from a sample of realizations, but the inference is accompanied by an intrinsic statis-

tical uncertainty that depends on the size of the sample and the characteristics of the

distribution.

Therefore, at this point, our goal is, from the information encoded in the anisotropies

of a particular realization and of a particular region, the LSS, to find the power spec-

trum leading to the general statistical law, and its uncertainty.

As shown in Section 1.2.3, we know that the uncertainty will be at least as large

as the cosmic variance. But, since we have assumed a complete knowledge of the aℓm
of the CMB map to deduce it and this is certainly not guaranteed, we can expect the

uncertainty to be greater than the cosmic variance.

In the following sections, we will work on the possibilities of determining the power

spectrum and the degree of accuracy with which this can be done. But before we con-

tinue, let us introduce some mathematical tools that we will need in our study of CMB.

1.8 A mathematical interlude

In this section, we will introduce certain expressions and mathematical tools that will

be useful in the rest of this work. To do so, we will delve into the connection between

pixel and harmonic spaces and analyze the form and structure of the covariance matri-

ces of the maps in both spaces.

1.8.1 Connection between pixel and harmonic spaces

Equations (1.4) and (1.27) show the relationship between the data expressed in the pixel

space (T , Q and U ) and in the harmonic space (aT ,ℓm, aE,ℓm and aB,ℓm). Arranging the

observed Npix pixels of a CMB signal map in a signal vector s in pixel space of length

3Npix, being the first Npix elements of the vector the values of the map in intensity, the

next Npix elements the values of Q and finally the values of U , eq. (1.4) and (1.27) can

be expressed in a matrix form as

s = Ys̃, (1.31)

where the vector signal s̃ in harmonic space is a vector of elements aT ,ℓm, aE,ℓm and

aB,ℓm of size 3L (where L =
∑
ℓ=2,ℓmax

(2ℓ + 1)). The matrix Y has dimensions 3Npix × 3L

and has the structure given by



chapter 1. introduction 21


T

Q

U

 =


YT T 0 0

0 YQE YQB
0 YUE YUB



aTlm
aElm
aBlm

 . (1.32)

The elements of each of the columns of the block YT T are the values of each of the

spherical harmonics Yℓm evaluated at each of the pixels of the map. Similarly those of

the columns of the blocks YQE , YQB, YUE and YUB are related to the spherical harmon-

ics X1,ℓm and X2,ℓm, as shown in eq. (1.27).

The covariance matrix S of the signal map in pixel space is related to the covariance

matrix S̃ in harmonic space as

S ≡ ⟨sst⟩ = Y⟨s̃s̃†⟩Y† = YS̃Y†, (1.33)

where † denotes the conjugate transpose of a matrix. The matrix S̃ has dimension

3L×3L, and it is constituted by 3×3 diagonal blocks of length L related to the auto and

cross-spectra of the intensity and polarization

S̃ =


S̃T T S̃T E S̃T B
S̃T E S̃EE S̃EB
S̃T B S̃EB S̃BB

 . (1.34)

For instance, the TT block represents the correlations between all the (ℓ,m) coefficients

for intensity.

The off-diagonal elements of each block are zero since for an isotropic random field,

as expected in the standard cosmological model, the values of the six different blocks of

eq. (1.34) are given by eq. (1.29). In addition, in the standard cosmological model, we

expect the TB and EB cross-correlations to vanish. Therefore, the corresponding four

blocks of the S̃ matrix are also zero.

Note also that since each block runs over all the values of (ℓ,m), we have 2ℓ + 1

repetitions of the corresponding CXYℓ , up to a total of L elements in the diagonal of each

block. Therefore, each block S̃XY can be written as the sum over ℓ of CXYℓ multiplying

a diagonal matrix whose diagonal is made of zeroes except at 2ℓ + 1 positions that are

occupied by ones. As an illustration, let us write S̃T T in a very simplified case —that is

of no cosmological interest— in which ℓ goes from 0 to 1

S̃Toy
T T =


CT T0 0 0 0

0 CT T1 0 0

0 0 CT T1 0

0 0 0 CT T1

 , (1.35)
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then

S̃Toy
T T = CT T0


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+CT T1


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.36)

Then, we can define the easily generalizable matrices P̃ℓ, such that

S̃Toy
T T = CT T0 P̃0 +CT T1 P̃1. (1.37)

In a case of interest in cosmology, the matrix S̃T T could be

S̃T T =
∑
ℓ

CT Tℓ P̃ℓ. (1.38)

The rest of the blocks of the covariance matrix in harmonic space can be constructed in

the same way

S̃XY =
∑
ℓ

CXYℓ P̃ℓ. (1.39)

The covariance matrix in the pixel space has the following structure

S =


ST T STQ STU
SQT SQQ SQU
SUT SUQ SUU

 . (1.40)

From eq. (1.33) and assuming CT Bℓ = CEBℓ = 0, six of the blocks are given by

ST T = YT T S̃T TY†T T
STQ = YT T S̃T EY†EQ
STU = YT T S̃T EY†EU
SQQ = YQES̃EEY†EQ + YQBS̃BBY†BQ
SQU = YQES̃EEY†EU + YQBS̃BBY†BU
SUU = YUES̃EEY†EU + YUBS̃BBY†BU , (1.41)

where the matrices S̃XY are the —diagonal— blocks of matrix S̃, and the remaining

blocks SQT , SUT and SUQ are the transpose of their symmetric partners of S.

Let us focus on ST T . By eqs. (1.41) and (1.38) we get

ST T =
∑
ℓ

CT Tℓ YT T P̃ℓY
†
T T . (1.42)
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Therefore, we can define the matrices in the pixel space equivalent to the matrices

P̃T Tℓ
PT Tℓ = YT T P̃ℓY

†
T T . (1.43)

Because of the structure of P̃ℓ, the product P̃ℓY†T T is a matrix made of zeroes except at

2ℓ + 1 rows whose values are the conjugates of the 2ℓ + 1 spherical harmonics of index

ℓ. Then, the product YT T P̃ℓY†T T is a matrix of size Npix×Npix whose values are, for each

pair of pixels

PT Tℓ (ij) =
ℓ∑

m=−ℓ
Yℓm(r̂i)Y

∗
ℓm(r̂j ) (1.44)

By the addition theorem of the spherical harmonics, we have

PT Tℓ (ij) =
2ℓ + 1

4π
Pℓ(r̂i · r̂j ), (1.45)

where Pℓ are the Legendre polynomials. Therefore, the block ST T of the covariance

matrix is a sum in ℓ of the power spectrum multipole multiplied by a matrix of index ℓ

ST T =
∑
ℓ

CT Tℓ PT Tℓ . (1.46)

A similar reasoning will lead to equivalent conclusions for the blocks STQ, STU (and

their transposes)

STQ =
∑
ℓ

CT Eℓ PTQℓ (1.47)

and

STU =
∑
ℓ

CT Eℓ PTUℓ , (1.48)

where the elements of the matrices PTQℓ and PTUℓ can be computed in a similar way to

those of PT Tℓ , eq. (1.44), but mixing the harmonics Yℓm with X1,ℓm and X2,ℓm.

The blocks that mix Q and U with Q and U can be found in the same way, for

example

SQQ =
∑
ℓ

[
CEEℓ PQQEEℓ +CBBℓ PQQBBℓ

]
, (1.49)

where two matrices of the kind PQQℓ have been defined

PQQEEℓ = YQEP̃ℓY
†
EQ PQQBBℓ = YQBP̃ℓY

†
BQ (1.50)

The two remaining blocks are

SQU =
∑
ℓ

[
CEEℓ PQUEEℓ +CBBℓ PQUBBℓ

]
(1.51)
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and

SUU =
∑
ℓ

[
CEEℓ PUUEEℓ +CBBℓ PUUBBℓ

]
. (1.52)

Now we can move from the blocks of the covariance matrix expressed as a sum on ℓ

to the whole matrix S expressed as a double sum on the components of the power spec-

trum and on ℓ. For example, let us focus on the component EE of the power spectrum.

The multipoles values CEEℓ appear as a factor on eq. (1.49), (1.51) and (1.52). Arranging

the matrices PQQEEℓ , PQUEEℓ , PUUEEℓ and the transpose of PQUEEℓ of size Npix ×Npix in a

matrix of the size of the covariance matrix in pixel space, 3Npix × 3Npix in the position

of the blocks QQ, QU , UU and UQ, we can define the new matrices PEEℓ

PEEℓ =


0 0 0

0 PQQEEℓ PQUEEℓ

0 (PQUEEℓ )t PUUEEℓ

 (1.53)

Proceeding in a similar way with the matrices PXYBBℓ , that multiply coefficients of the

class CBBℓ in eq. (1.49), (1.51) and (1.52), the matrix PBBℓ can be defined. The matrices

PT Tℓ and PT Eℓ can be defined in the same way. Finally, the matrix S can by written as6

S =
∑
ℓ

[
CT Tℓ PT Tℓ +CT Eℓ PT Eℓ +CEEℓ PEEℓ +CBBℓ PBBℓ

]
. (1.54)

Finally, defining an index i that includes the component of the power spectrum and the

index ℓ, that is, if ℓ = 2 . . . ℓmax, i runs from i = 1 to i = 4× (ℓmax − 1), we get

S =
∑
i

CiPi , (1.55)

that is, the covariance matrices of intensity and of intensity and polarization are for-

mally identical. Furthermore, the covariance matrix only depends on the angular

power spectrum, and this dependence is linear. It is important to mention that this

fact is independent of whether the fluctuations are Gaussian or not. It only depends on

the absence of privileged directions.

On the other hand, the covariance matrix in harmonic space is formally identical

S̃ =
∑
i

CiP̃i , (1.56)

but being the P̃i matrices much simpler, since they consist of many zeros and a few ones

in strategic positions. Obviously this form of the covariance matrix is simpler because

the properties of the anisotropies in our theoretical model are simpler in this space.

6We are assuming that CT Bℓ = CEBℓ = 0
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The specific pattern of each matrix P̃i depends on the component of the power

spectrum and on ℓ. The matrices P̃ℓ, of size L × L, conform the blocks of the matrices

P̃i , of size 3L× 3L, conveniently located. For example

P̃T Eℓ =


0 P̃ℓ 0

P̃ℓ 0 0
0 0 0

 . (1.57)

With the help of these matrices, we can write

S =
∑
ℓ

[
CT Tℓ YP̃T Tℓ Y† +CT Eℓ YP̃T Eℓ Y† +CEEℓ YP̃EEℓ Y† +CBBℓ YP̃BBℓ Y†

]
. (1.58)

By observation of this expression, one can see in action the elements that determine

the covariance matrix of the signal in pixel space: it is a sum of the contributions of the

components of the power spectrum at different angular scales. The power of each com-

ponent at each angular scale multiplies a kind of covariance matrix atoms in pixel space

—we can see those matrices as a basis of the covariance in pixel space—. Therefore, the

covariance is a weighted sum of covariance atoms.

The elements of each of the covariance matrix atoms are the result of a computation

similar to that shown in eq. (1.44), but in which different columns of the matrix Y are

combined. The selection matrix P̃XYℓ —the basis of the covariance matrix in harmonic

space— determines the columns to mix. By this property, selection, the matrices P̃XYℓ
play a crucial role in the efficient implementation of the power spectra estimator that

we have developed (see Chapter 5).

Finally, with the help of the index i which includes the component of the power

spectrum and the scale index ℓ, we get

S =
∑
i

CiYP̃iY
†. (1.59)

In a real experiment, the observed data is a combination of signal and noise. As-

suming that both components are independent, the data yielded by an experiment can

be expressed as a sum of both components

d = s + n, (1.60)

where d is the data vector, s is the signal vector, and n is the noise vector .

Assuming ⟨s⟩ = ⟨n⟩ = 0, the covariance of the data is

⟨ddt⟩ = ⟨sst⟩+ 2⟨snt⟩+ ⟨nnt⟩. (1.61)
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By statistical independence between signal and noise, the cross product vanishes, there-

fore, being C the covariance matrix of the data and N the covariance of the noise we

have

C = S + N. (1.62)

Finally, by eq. (1.55), the covariance matrix of the data is

C =
∑
i

CiPi + N. (1.63)

1.8.2 The need for an estimator

Equations. (1.4) and (1.27) allow us to straightforwardly calculate the values of the

CMB maps in pixel space from the coefficients of the harmonic expansion. In this

section, we will analyze the possibility of transforming the information in the data

in the opposite direction, from pixel to harmonic space. We will see that in realistic

situations it is not possible to do this directly, which means that we will have to give

up the idea of a straightforward computation of the power spectrum as being defined

in eq. (1.9), so we will have to resort to parameter estimation techniques.

The problem

Without loss of generality, let us refer to the only temperature case in this section. In an

ideal situation, making use of the orthogonality property of the spherical harmonics,

from eq. (1.4) it is easy to compute the coefficients aℓm from a temperature map

aℓm ≡
∫
dΩ(r̂)Y ∗ℓm(r̂)δT (r̂), (1.64)

where the integral is done over the whole sphere. Having computed the aℓm’s, the

power spectrum can be obtained from eq. (1.9).

In a real situation, there are two facts that make the above expressions impractical.

Because of the high contamination of the CMB observations by emission from other

types of microwave sources and because some experiments can only capture data from

a fraction of the sky, the CMB data maps do not cover the whole sphere. Therefore

the integral of eq. (1.64) can only be computed over a fraction of the sky. That means

that the essential orthogonality property of the spherical harmonics is lost. Therefore,

the aℓm’s computed from eq. (1.64) with partial sky coverage, ãℓm, become a linear

combination of the true coefficients of the map

ãℓm =
∑
ℓ′m′

Kℓ
′m′
ℓm aℓ′m′ . (1.65)
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The matrix Kℓ
′m′
ℓm gives account of the coupling of the harmonics over the observed

fraction of the sky.

There is another issue that makes expression (1.64) unfeasible. As defined mathe-

matically, the integral is a continuous sum, in this case over the spherical surface; but

real CMB maps are made of sampling of data at Npix locations. This means that, even

if the data covered all the sky, the integral of eq. (1.64) cannot be computed as it is

defined. The integral has to be transformed into a summation, and some approxima-

tions must be taken to solve the problem caused by the leap from the continuum to a

discretized sum, as for example the ones that drive to the HEALPix [39] pixel window

function. Because of the previous reasons, apparently, there is no way to compute the

exact aℓm’s that describe an observed pixelized CMB map.

A possible solution

Arranging the values δTi of each pixel of the observed temperature map in the vector

m, the values of each spherical harmonic on each of the observed pixels as a column of

the matrix Y and the coefficients aℓm of the expansion in the vector a, eq. (1.4) can be

expressed in matrix form

m = Ya. (1.66)

Multiplying by the left by the matrix product (Y†Y)−1Y† on both sides of the equa-

tion, we get

(Y†Y)−1Y†m = (Y†Y)−1Y†Ya. (1.67)

Therefore

a = (Y†Y)−1Y†m. (1.68)

According to the last expression, in principle, one can compute exactly the coeffi-

cients aℓm of a given map using eq. (1.68) regardless of whether the map is masked or

full-sky or whether the data is pixelized. The mechanism of this expression is simple.

The product Y†m is the matrix form of the inverse harmonic transform. Since the co-

efficients given by Y†m are the true aℓm’s coupled because of the mask (i.e., the ãℓm’s

coefficient), one needs to disentangle them. The elements of the matrix product Y†Y
give account of the coupling of the spherical harmonics —they are the scalar product

computed over the observed fraction of the sky—. Multiplying the coupled aℓm’s by the

inverse of the coupling matrix gives place to the true aℓm’s. But this expression leads to

two problems. The first is technical. One has to compute and invert the matrix product

Y†Y, which can be very computationally demanding due to the size of the matrix Y.

The second one appears when we look at the situation from the perspective of a system
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of linear equations: because the number of spherical harmonics needed to correctly de-

scribe a realistic signal is greater than the number of pixels in the map, to solve a from

eq. (1.66) will be equivalent to solving a system of equations with more variables than

equations. This implies that the matrix Y†Y is not regular.

Since we cannot invert the product matrix, the mathematical problems we have

encountered tell us that we cannot unravel the power leakage between the coefficients

aℓm. We will see below that there are methods to compute the power spectrum without

first computing the coefficients of the spherical harmonic expansion and that in some

of them the leakage is completely disentangled.

On the other hand, the product matrix could be inverted if the observed signal were

described by a small number of spherical harmonics —for example, a signal affected

by a large beam—. In this case, if the number of variables is smaller than the number

of equations, at least there would be mathematical options to solve the system.

The conclusion

This means that, since we cannot directly compute the power spectrum from the data

in the map —in the sense of solving a set of equations— we have to resort to estimation

methods.

1.9 Parameter estimation

Given a theory, it is assumed that one has a probabilistic model that describes the data

yielded by an experiment. Usually, the model includes some parameters —in our case

of physical significance— and it is supposed that we need a method to obtain the values

of the parameters from the observed data.

For simplicity, let us consider a single parameter θ and let us assume we have a

model that defines the probability distribution f (x;θ), that depends on θ, of the data

samples x1, x2, . . . , xn given by the experiment. Thus the probability of that an experi-

ment yields a particular value to the sample xi depends on the true value of θ. A single

sample of data xi can be just one single value or a collection of numbers —a vector—,

as is the case of a CMB temperature map, in which a single sample is made up of the

collection of values δTj in the observed pixels.7

7In this section, we are trying to describe the size of the data sample with some generality. However,
when applying these techniques to a realistic CMB experiment the sample size would be one —our uni-
verse is the only realization of the underlying probability distribution, and the anisotropies we see on the
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Conceptually, an estimator Θ̂ is a mathematical operation on random variables Xi
whose output is a numerical value of the parameter θ

Θ̂ = h(X1,X2, . . . ,Xn). (1.69)

In practice, an experiment yields the data samples xi of the random variables Xi and

the estimator Θ̂, operating on the values xi yields a particular value θ̂ of the parameter

θ

θ̂ = h(x1,x2, . . . ,xn). (1.70)

Note that according to this definition, classical estimators in cosmology (maximum

likelihood estimator, quadratic maximum likelihood, Pseudo-Cℓ methods, etc.) fall

into this category. In all of them, after a certain pre-processing of the data, calculations

are made on the data given by an experiment that can be described as a mathematical

function h.

If we perform the experiment again, it is expected that another data sample would

be measured and, therefore, the estimator would likely catch another value. Since the

data sample is made up of random numbers, the estimated parameter is also a random

number. In this context, let us make the simple assumption that the random variables

xi yielded by repeated experiments are statistically independent.

There are some criteria that can be used to define the quality of an estimator. A

desirable property is that, if it were to operate on all possible data to estimate the value

of a parameter of the probability distribution, the result would be the true numerical

value of the parameter driving the probability distribution, whatever the true value of

θ is. Consequently, an estimator Θ̂ is said to be unbiased if the expected value of θ̂ is

θ when the estimator operates on the totality of possible values, taking into account

the probability density of the values. Being h(x1, . . . ,xn) the calculation performed by

the Θ̂ operator to determine the estimated value θ̂ of the parameter θ given the data

samples x1, . . . ,xn, under the assumption of statistical independence, for the estimator

to be unbiased it is expected that

θ =
∫ ∞
−∞
. . .

∫ ∞
−∞
h(x1, . . . ,xn)f (x1;θ) . . . f (xn;θ)dx1 . . .dxn. (1.71)

In practice, for example, when performing simulations, when we sum and take the

means of the estimated parameters, we do not apply weights given by the probability

distribution but assume the elementary principle that the most probable realizations

last scattering surface are the only sample we can measure—. This is, again, the limitation that leads to
the concept of cosmic variance.
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are the most frequent. From this point of view, if the number of realizations is suffi-

ciently large for the probability law to be fulfilled, an estimator is unbiased when

⟨Θ̂⟩ = θ. (1.72)

Thus, this property is associated with the mean of the estimations on a representa-

tive set of realizations.

Another desirable property is that the values given by the estimator tend to the

true value as the sample size grows, a large-sample concept. An estimator is said to be

consistent when

lim
n→∞

Θ̂(x1, . . . ,xn)→ θ. (1.73)

Therefore, the consistency property is associated with the behavior of the succession

of estimations as the sample size increases. By definition, a consistent estimator is un-

biased when the estimation is calculated from a sufficiently large sample. In principle,

no further claims can be made related to one property implying the other.

Since the estimated value is a random number, it is assumed to be affected by ran-

dom fluctuations. It is to be expected that for a well-defined estimator the variance of

the parameter depends on the intrinsic fluctuations of the data and on the sample size.

There is a surprisingly general property applicable to all unbiased estimators of the

form of eq. (1.70), the Cramér-Rao inequality, which sets a minimum variance bound to

the variance of the estimated parameter. Assuming eq. (1.71) it can be shown that (see

e.g. [40, 41])

Var(Θ̂) ≥
n〈(∂lnf (x;θ)

∂θ

)2〉−1

. (1.74)

Where the average is made as in eq. (1.71). Note that since the bound on the variance

does not depend on the function h, it is valid for all unbiased estimators. Note also that

it shows that the variance decreases with the sample size n.

In the case in which the estimator gives the value of multiple parameters, being

θ a vector of parameters θ1, θ2, . . . , θm, the inverse of the covariance matrix of the

parameters is related to the expectation value shown in the expression[
Cov−1(Θ̂)

]
ij
≤ n

〈
∂lnf (x;θ)

∂θi

∂lnf (x;θ)
∂θj

〉
, i, j = 1,2 . . .m. (1.75)

The minimum bound to the covariance can be computed when the matrix whose

elements are given by the expression at the right side of the inequality is regular. In

this case, it would be limited by

Cov(Θ̂) ≥ 1
n
Λ−1, (1.76)
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where Λ is a matrix whose values are the expectations of eq. (1.75).

It is common to find in the texts the previous expressions given in terms of the

likelihood function. For a collection θ of parameters and independent data samples x1,

x2, . . . , xn the likelihood function L is the product of the probability densities

L ≡ L(x1,x2, . . . ,xn;θ) = f (x1;θ)f (x2;θ) . . . f (xn;θ). (1.77)

The Cramér-Rao inequality for several parameters in terms of the likelihood is of

the form [
Cov−1(Θ̂)

]
ij
≤

〈
∂lnL
∂θi

∂lnL
∂θj

〉
= −

〈
∂2lnL
∂θi∂θj

〉
, i, j = 1,2 . . .m (1.78)

The expectations of the last expression are the elements of the well-know matrix in

theory of information, the so-called Fisher information matrix

Fij =
〈
∂2L
∂θi∂θj

〉
, (1.79)

where L ≡ −lnL. If F is regular, for any unbiased estimator ∆θi ≥
√

(F−1)ii .

In statistics jargon, a BUE estimator, which stands for Best Unbiased Estimator, is an

unbiased estimator and of minimal variance, that is, unbiased and efficient.

1.9.1 On the flux of the information

In this section, we want to analyze how information flows, particularly whether it is

conserved, when we estimate a set of parameters directly from the data or from inter-

mediate parameters estimated from the data.

We will measure the amount of information in terms of the Fisher matrix. In partic-

ular, we will analyze whether we can compute the Fisher information matrix expressed

in terms of some parameters —for example, λ— once we have the matrix expressed in

terms of other parameters —for example, θ.

The Fisher matrix defined in terms of the parameters λ is

Fλij ≡ −
〈 ∂2

∂λi∂λj
lnL

〉
. (1.80)

Since we want to analyze whether the matrix can be computed in terms of the pa-

rameters λ from the matrix expressed in terms of the parameters θ, we will transform

the derivatives of the likelihood with respect to λ into derivatives with respect to θ. By

the chain rule
∂ lnL
∂λj

=
∑
α

∂ lnL
∂θα

∂θα
∂λj

. (1.81)
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In the last expression there are two implicit conditions to be mentioned: we are

assuming that the likelihood can be expressed completely in terms of the variables

θ and we are assuming that we have complete knowledge of the dependence of the

variables θ on the variables λ. When we apply the results of this section to the CMB we

should check whether these conditions are met.

By applying the chain rule to the expression within the expected value in eq. (1.80),

we get
∂2 lnL
∂λi∂λj

=
∑
αβ

{
∂2 lnL
∂θα∂θβ

∂θβ
∂λi

∂θα
∂λj

+
∂ lnL
∂θα

∂2θα
∂λi∂λj

}
. (1.82)

The Fisher matrix is the expected value of the second derivative, so let us analyze

the effect of computing the average. Since the likelihood is a probability∫
L(x;λ)dx = 1 (1.83)

Taking the derivative with respect to λ of the last expression and taking into account

that the derivative affects neither the space nor the integration variables —it affects

only the dependence of the likelihood on the λ variable—, we get

∂
∂λ

∫
L(x;λ)dx =

∫
∂L(x;λ)
∂λ

dx =
∫
∂lnL(x;λ)

∂λ
L(x;λ)dx =

〈∂lnL(x;λ)
∂λ

〉
= 0. (1.84)

Computing the expected value of eq. (1.82) and taking into account that the rela-

tionship between λ and θ is independent of the data values x, so that the derivatives of

the variables θ can come out of the integrals, we get〈 ∂2 lnL
∂λi∂λj

〉
=

∑
αβ

〈 ∂2 lnL
∂θα∂θβ

〉∂θβ
∂λi

∂θα
∂λj

+
〈∂ lnL
∂θα

〉 ∂2θα
∂λi∂λj

. (1.85)

By eq. (1.84) the last term of eq. (1.85) vanishes. Therefore, we get

Fλij =
∑
αβ

JβiF
θ
αβJαj (1.86)

Expressed in matrix form, where the matrix J is the jacobian of the transformation,

and taking into account that the Fisher matrix is symmetric, we get

Fλ = JtFθJ (1.87)

The interesting thing about this result is that Fλ can be computed from Fθ, which

means that information is preserved when parameters are changed.
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Applied to the CMB, if λ represents the cosmological parameters and θ, the power

spectrum, the previous result means that if it is easier or faster to estimate the power

spectrum instead of the cosmological parameters, we can efficiently obtain knowledge

about them from the power spectrum data without losing information, because the

Fisher matrix expressed in terms of the cosmological parameters can be calculated from

the matrix expressed in terms of the power spectrum, as if it were calculated directly.

For this to be possible, two conditions must be fulfilled: we need to know the Jaco-

bian of the transformation, i.e., the dependence of the power spectrum on the cosmo-

logical parameters. In addition, the probability must be fully described in terms of the

power spectrum. Assuming that the fluctuations are Gaussian, the second condition

is satisfied: the probability density of the data is a multivariate Gaussian distribution

in which the covariance matrix is determined by the power spectrum —plus the noise

model—, as shown in Section 1.8.1. Therefore, the theory describing the CMB fluctua-

tions and their probability can be written in terms of these parameters.

On the other hand, if the Jacobian matrix is regular, eq. (1.87) allows us to compute

Fθ in terms of Fλ. Applied to the CMB, one might wonder whether, in the case where we

know the Fisher matrix expressed in terms of the cosmological parameters, one could

calculate the corresponding matrix expressed in terms of the power spectrum. Due to

the degeneracies in the estimation of these parameters from the power spectrum, one

would expect the Jacobian matrix to become a singular matrix: therefore, it cannot be

calculated.

1.9.2 Maximum likelihood estimator

Reading f (x;θ) for a fixed value of x as a function of θ that drives the probability of the

parameters given the data, we define the likelihood of the values of the parameters θ as

L(θ;x) ≡ f (x;θ), (1.88)

that can be computed by making use of the theory.

The maximum likelihood estimator attempts to find the parameter values that max-

imize the likelihood, that is, it is an estimator focused on finding the mode of the pa-

rameters distribution.

The likelihood in the case of having many independent data samples xi , i = 1 . . .n

is8

L(θ; {x1,x2, · · · ,xn}) ≡ f (x1;θ) · f (x2;θ) · · ·f (xn;θ). (1.89)

8The following expression is the same as eq. (1.77) but with slight changes in the notation.
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Note that, although the latter expression is useful in general, when estimating the

CMB parameters one has only a sample, so the likelihood reduces to that of eq. (1.88).9

By definition, being the vector parameters θ made of m parameters θi , the maxi-

mum likelihood estimator reduces to solving a set of m simultaneous equations

∂L(θ̂; {x1,x2, · · · ,xn})
∂θ̂i

= 0, i = 1, . . . ,m. (1.90)

It is usually easier to solve the equivalent expression in terms of the logarithm of

the likelihood
∂ lnL(θ̂; {x1,x2, · · · ,xn})

∂θ̂i
= 0, i = 1, . . . ,m. (1.91)

The expressions (1.90) and (1.91) encode a concrete example of the function h of

Section 1.9, particularly the function h of the maximum likelihood estimator.

In some cases, the above systems of equations can be solved analytically. In other

cases, it is necessary to resort to numerical methods to solve the equations. In addition,

there are maximization techniques for finding the maximum likelihood in parameter

space that are very useful in heavy computations, in a brute-force approach.

Regarding the properties (see e.g. [40, 41]) of the estimator, the MLE is asymptoti-
cally efficient. That is, if the sample size n tends to infinity, the estimator is unbiased and

saturates the minimum variance bound inequality. Therefore, under this condition, the

MLE is a BUE estimator. Moreover, the covariances can be easily calculated

Cov−1(θ̂i , θ̂j ) = − ∂
2 lnL

∂θ1∂θj

∣∣∣∣∣∣
θ=θ̂

. (1.92)

That is, the Fisher matrix can be computed without resorting to integrals by cal-

culating the value of the second derivatives on the numerical values of the estimated

parameters —which, being MLE unbiased when n→∞, are equal to the true values of

the parameters.

Nevertheless, these are large-sample properties. Thus very little can be said when

the sample size is small; MLE can be biased and not efficient in this case. Note that this

is not a particular feature of the estimator but is due to the fact that a small sample may

not be representative of the underlying distribution.

9It is important to note that if one wants to write a likelihood that incorporates data from different
independent experiments, one cannot use the expression (1.89) because the intrinsic data sample is the
same —the particular realization of our universe—; that is, the experiments may be independent, but the
data are not.
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CMB maximum likelihood

Turning to the estimation of the CMB power spectrum, assuming that the signal and

noise are statistically independent and that both are Gaussian, two conditions are sat-

isfied. First, the probability distribution depends exclusively on the covariance matrix

of the data. Second, by eq. (1.63) the covariance matrix depends only on the angular

power spectrum10 (of course, plus the noise model). Therefore, the likelihood depends

exclusively on the power spectrum.

Assuming that we have a CMB data map x drawn from a statistical distribution of

mean zero and being c the vector power spectrum,11 under the Gaussian assumption

and without assuming any prior for the power spectrum, the likelihood is

L(c;x) =
1

(2π)Npix/2|C|1/2
exp

[
−xtC−1x

2

]
, (1.93)

where C, the covariance matrix of the maps C = ⟨xxt⟩, introduces the dependence on

the parameters c (see eq. (1.63)).

Referred to the error of the estimation, the elements of the Fisher matrix, eq. (1.79),

of a likelihood given by a Gaussian probability distribution [42] are

Fii′ =
1
2

tr
[
C−1 ∂C

∂Ci
C−1 ∂C

∂Ci′

]
, (1.94)

where the variables Ci are the elements of the vector c. Of course, C and the partial

derivatives have to be evaluated at the values of the estimated vector ĉ that maximizes

the likelihood.

Combining equations (1.94), (1.62) and (1.55), we get

Fii′ =
1
2

tr
[
C−1PiC

−1Pi′
]
. (1.95)

Determining the numerical values ĉ that maximize L is a gigantic task when the

number of pixels is large. Some techniques have been developed to speed up the com-

putation of the likelihood function. The Karhunen-Loève technique is based on a de-

composition of the covariance matrix into a sum of modes followed by a selection of

those that provide the most information in the sense of the signal-to-noise ratio [42].

10Note that the signal term of the covariance matrix depends on the power spectrum, whether the data
are Gaussian or not.

11Although so far we have used θ to refer to the vector of parameters, since in this section the parameters
that fix the probability distribution are the multipoles Ci of the power spectrum, we will use c to refer to
the vector of parameters. Therefore, in this section Ci is a parameter, c the vector of parameters and C the
covariance matrix.
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Although it allows to reduce the number of operations, it is not practical to apply this

technique to maps with a large number of pixels. So the data that the current experi-

ments are generating cannot be processed in this way. In a later chapter it will be shown

that the maximun likelihood power spectrum can be found without resorting to brute-

force maximization using a quadratic method on the data (QML) [43]. It should be

noted, however, that although QML can be used to compute the spectrum of maximum

likelihood by reducing the number of operations with respect to a brute-force maxi-

mization, the method is still very computationally intensive, so it cannot be applied to

very large maps.

1.10 Pseudo-Cℓ methods

Due to the lack of orthogonality of the spherical harmonics, when the maps are masked,

the coefficients of the spherical harmonics expansion cannot be calculated directly us-

ing the inverse transform. However, an unbiased estimator can be defined by means

of this operation. The estimator relates the observed power spectra to the true under-

lying one by means of a coupling matrix reflecting the effect of the cut-sky applied to

the data. It is not of minimum variance but is computationally optimal. Let us focus

initially on the estimation of the intensity power spectrum. Subsequently, we will show

how the estimator operates in the case of intensity and polarization.

The field δT (r̂) defined over the full-sky can be expanded as a sum of spherical

harmonics weighted by the coefficients

aℓm =
∫
δT (r̂)Y ∗ℓm(r̂)dΩ(r̂). (1.96)

In the case of CMB observations, (reliable) measurements in all directions of space are

not available and, therefore, the above integral cannot be performed over the entire

surface of the sphere. However, by introducing a function that assigns a weight to each

direction, W (r̂), we can formally retain the integral over the entire surface. In this

condition, the coefficients we would compute are no longer the true coefficients of the

signal map, but a kind of pseudo-coefficients

ãℓm =
∫
W (r̂)δT (r̂)Y ∗ℓm(r̂)dΩ(r̂). (1.97)

Assuming that the true coefficients of the map are aℓm, we get

ãℓm =
∑
ℓ′m′

aℓ′m′

∫
W (r̂)Yℓ′m′ (r̂)Y

∗
ℓm(r̂)dΩ(r̂), (1.98)
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where the integral defines the coupling coefficients Kℓ
′m′
ℓm of eq. (1.65). The pseudo

power spectrum can be defined as

C̃ℓ =
1

2ℓ + 1

∑
m

|ãℓm|2. (1.99)

Our goal is to find the relationship between the pseudo power spectrum thus measured

and the power spectrum of the signal. Since the function that determines the weighting

is itself a field on the sphere surface, it can be expanded on spherical harmonics with

coefficients

wℓm =
∫
W (r̂)Y ∗ℓm(r̂)dΩ(r̂), (1.100)

where the last integral can be calculated over the entire surface. Therefore, the weight-

ing function has a power spectrum

Wℓ =
1

2ℓ + 1

∑
m

|wℓm|2. (1.101)

Introducing eq. (1.100) into eq. (1.98) we get

ãℓm =
∑

ℓ′m′ℓ′′m′′

aℓ′m′wℓ′′m′′

∫
Yℓ′′m′′ (r̂)Yℓ′m′ (r̂)Y

∗
ℓm(r̂)dΩ(r̂). (1.102)

Therefore, we get

ãℓm =
∑
ℓ′m′

aℓ′m′Kℓmℓ′m′ (W ), (1.103)

where Kℓmℓ′m′ is the coupling kernel resulting from the sky weighting, W

Kℓmℓ′m′ (W ) =
∑
ℓ′′m′′

wℓ′′m′′

∫
Yℓ′′m′′ (r̂)Yℓ′m′ (r̂)Y

∗
ℓm(r̂)dΩ(r̂). (1.104)

Note that we have managed to take the dependence on the weighting function in the

kernel out of the integral, so that what remains are integrals over the complete surface,

whose values can be computed independently of the weighting scheme, and are related

to the Wigner 3-j symbols (or Clebsch-Gordan coefficients).

It can be shown (see details in [44]) that the assemble averaged power spectrum is

⟨C̃ℓ⟩ =
1

2ℓ + 1

∑
m

∑
ℓ′

⟨Cℓ′⟩
∑
m′
Kℓmℓ′m′ [W ], (1.105)

that can be expressed as

⟨C̃ℓ⟩ =
∑
ℓ′

Mℓℓ′⟨Cℓ′⟩. (1.106)



38 chapter 1. introduction

Making use of the orthogonality relation of the Wigner symbols and the definition of

the power spectrum of the weighting function, the coupling kernel reads

Mℓℓ′ =
2ℓ′ + 1

4π

∑
ℓ′′

(2ℓ′′ + 1)Wℓ′′

ℓ ℓ′ ℓ′′

0 0 0

 . (1.107)

If we assume that the map given by δT (r̂) contains signal and noise and also the statis-

tical independence of both components, eq. (1.106) becomes

⟨C̃ℓ⟩ =
∑
ℓ′

Mℓℓ′⟨Cℓ′⟩+ ⟨Ñℓ⟩, (1.108)

where ⟨Ñℓ⟩ is the average pseudo power spectrum of the noise that has to be determined

by Monte Carlo simulations.

If theM kernel were non-singular, the next unbiased estimator could be defined

Ĉℓ =
∑
ℓ′

(M−1)ℓℓ′ (C̃ℓ′ − ⟨Ñℓ′⟩). (1.109)

Either to minimize the correlations or because theM kernel is singular, it is convenient

to bin the power spectrum in ℓ. In this case, an unbiased binned power spectrum

estimator can be defined (see details in [44]).

Regarding polarization, similar expressions to eq. (1.102) can be found for the coef-

ficients ãEℓm and ãBℓm, which mix aEℓm and aBℓm. The ratios are given by the coefficients of

the weighting function of the polarization map, wPℓm, and integrals of products of the

spin 0 and spin ±2 spherical harmonics (see details in [45, 46]). That is

ãEℓm =
1
2

∑
ℓ′m′ℓ′′m′′

wPℓ′′m′′
[
aEℓ′m′Φℓmℓ′m′ℓ′′m′′ + a

B
ℓ′m′Ψℓmℓ′m′ℓ′′m′′

]
ãBℓm =

1
2

∑
ℓ′m′ℓ′′m′′

wPℓ′′m′′
[
aBℓ′m′Φℓmℓ′m′ℓ′′m′′ − a

E
ℓ′m′Ψℓmℓ′m′ℓ′′m′′

]
(1.110)

where

Φℓmℓ′m′ℓ′′m′′ =
∫
Yℓ′′m′′ (r̂)

(
2Yℓ′m′ (r̂)2Y

∗
ℓm(r̂) + −2Yℓ′m′ (r̂)−2Y

∗
ℓm(r̂)

)
dΩ(r̂) (1.111)

and

Ψℓmℓ′m′ℓ′′m′′ = i
∫
Yℓ′′m′′ (r̂)

(
2Yℓ′m′ (r̂)2Y

∗
ℓm(r̂)− −2Yℓ′m′ (r̂)−2Y

∗
ℓm(r̂)

)
dΩ(r̂). (1.112)

As for the intensity case, eq. (1.106), the pseudo-Cℓ spectra measured from a finite

region of the sky are related to the full-sky power spectra by a kernel coupling

⟨C̃XYℓ ⟩ =
∑
X ′Y ′ℓ′

MXYX ′Y ′
ℓℓ′ ⟨CX

′Y ′
ℓ′ ⟩, (1.113)
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were the pairs XY are related to the six components of the power spectrum. The el-

ements of the blocks of the kernel can be found in [46] and are again related to the

Wigner 3-j symbols.

The covariance matrix of the estimated power spectrum can be estimated by Monte

Carlo simulations [45] or computed analytically [46].

As defined, the estimator is unbiased, but not of minimum variance because nothing

guarantees that it saturates the Cramér-Rao inequality. Moreover, the covariance and

the estimation itself depend on the intensity and polarization weighting functions. The

function can take values 0 and 1 to discriminate between observed and unobserved

pixels, although the usual way to avoid aliasing is to introduce apodization, a smooth

transition between observed and unobserved areas. When it is specifically adapted to

analyze polarization, it ends up with a vanishing value of the first derivative at the

boundary of the cut sky region.

The fact that the estimator is not of minimum variance is associated with power

leakage between the different multipoles and components of the estimated power spec-

trum. Although it cancels on average, it contributes to increasing the variances. To

minimize this, E/B mode purification techniques have been developed. They are based

on the application on the measured Q and U fields of projection functions within or-

thogonal spaces with respect to the E and B contributions to the polarization field (see

details in [47]).

1.11 On the motivation of this work

During the last decades, Cosmic Microwave Background observations have provided

very valuable information to put together our current picture of the universe. In par-

ticular, among many other efforts, the Planck satellite has obtained the best full-sky

CMB data in intensity and polarization over a large range of frequencies (30-857 GHz)

up to date, allowing to impose constraints, in many cases at sub-percent level, over the

cosmological parameters [10].

Given that CMB experiments usually produce a huge amount of data in the form of

pixelized maps (T for intensity and the Q and U Stokes parameters for polarization), a

crucial step in their analysis is the compression of this information in a more tractable

way. In particular, since CMB fluctuations are expected to be nearly-Gaussian, most of

their statistical information is contained in the 2-point correlation function (or equiva-

lently in the power spectrum). Therefore, estimating the power spectrum is a key point

in order to extract all the valuable cosmological information encoded in the CMB.
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Different approaches have been developed for power spectra estimation, which

differ in their efficiency and computational cost. In particular, maximum-likelihood

based-methods (e.g. [48, 49]) provide optimal results in the sense that the estimator

is unbiased and of minimum variance, but they are computationally very expensive

and can not be implemented for high-resolution data. A particular case of this type

of methods is the Quadratic Maximum Likelihood (QML), first introduced by [43] for

intensity and extended to deal with polarization by [50] (see also [48, 51, 52, 53, 54]).

Another popular approach are the pseudo-Cℓ algorithms (see e.g. [55, 56, 44, 57, 58, 59]

and references therein), which are much faster than maximum-likelihood methods and

can therefore be used at the resolutions provided by current and planned experiments.

They are also unbiased and their efficiency is comparable to that of the optimal meth-

ods at high multipoles, but not at large scales.

Although the utility of the pseudo-Cℓ methods is out of discussion, the use of es-

timators which are optimal at large and intermediate scales is becoming increasingly

important since they are critical for the detection of the primordial CMB polarization

B-mode, whose main contribution is present at those scales. Note that having a QML

method that can cover the full range of the reionization and the recombination peaks

of the B-mode (even if a pseudo-spectrum method could be close to optimal in a part

of this range) will provide not only a consistent optimal estimation of the relevant

multipole range of the spectra but also of the corresponding full covariance matrix.

Detection of primordial B-modes, which are parametrized by the tensor-to-scalar ra-

tio r, would be a major breakthrough in Cosmology, since they are sourced by tensor

perturbations, and its detection would constitute a definitive proof of the existence of

a background of primordial gravitational waves, as predicted by inflationary models

[60, 61, 62]. The best current constraint is given by r0.05<0.032 at 95% CL obtained by

combining Planck, BICEP/Keck2018 and BAO [38] (see also [63, 64, 65]), showing the

faintness of the signal and the difficulty of its detection. Indeed, a large number of B-

mode polarization experiments are currently ongoing or planned, such as for example

the BICEP array [66], the Simons Observatory [67], the CMB-S4 experiment [68] or the

JAXA LiteBIRD satellite [69], whose goal is to reach a sensitivity σr(r = 0) ≤ 10−3.

This work presents ECLIPSE (Efficient Cmb poLarization and Intensity Power Spec-

tra Estimator), an efficient implementation of the QML algorithm in Fortran, that al-

lows us to compute the full power spectra with a very significant reduction of com-

putational time, allowing us to work at higher resolution than before. To illustrate

the performance of the method, we present results for a space-based B-mode mission

and for a typical ground-based experiment. Although the QML method is well-known,
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there are several practical issues that should be taken into account when applying it

to real data, such as the regularity of the covariance matrix of the data (of interest in

many astrophysical problems in addition to the quadratic estimator), the regularity of

the Fisher matrix, the choice of an initial guess for the power spectra or the perfor-

mance of an iterative scheme. In particular, depending on the observed sky fraction,

the Fisher matrix can become singular. To solve this problem, we construct a binned

version of the QML estimator to be used when the Fisher matrix is not invertible.





Chapter 2

The Quadratic Maximum Likelihood estimator

2.1 Motivation

The goal of this section is to show that an optimal estimator of the CMB power spectra

and its covariance matrix, which operates in the space of pixels without appealing to

the Fourier transform —thus, well suited to deal with incomplete sky coverage—, can

be found. To do that, we will follow the steps shown in [43], offering both an in-depth

description of the mathematical development and a didactic focus.1

2.2 The approach

Before starting, it is important to note that formally the deductions and the final formu-

lations of the method for both the only intensity case and the intensity and polarization

case are identical. This is because the covariance matrices of the maps for both cases

are also formally identical. By eq. (1.63), in the intensity case the matrix is

C =
∑
ℓ

CℓPℓ + N (2.1)

and the matrix for intensity and polarization is

C =
∑
µ

CµPµ + N, (2.2)

where µ is an index that, if we compute the spectrum from ℓ = 2 to ℓ = ℓmax, takes, in

principle, 6× (ℓmax −1) values; that is, it runs through the six components of the power

spectrum and all the values of ℓ of each component.

1An alternative derivation of the quadratic maximum likelihood estimator is given in [48]. It is based
on truncating in the vicinity of the maximum the Taylor series of the maximum likelihood function up to
order two and in approximating the curvature matrix by the Fisher matrix.

– 43 –
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For simplicity, in the next sections we are going to deduce the method as if it were

an only intensity case. The method will be derived in two steps: first, we will try to

find an estimator that satisfies very restricted conditions. We will check that a BUE can

not be found under those conditions. In a second step, taking advantage of what we

have already learned in the previous step, we will show how to find a BUE if we are less

restrictive about how the estimator operates.

2.3 First tentative

Our goal in this section is to find an unbiased quadratic estimator of minimum vari-

ance. We are going to try an estimator of the form

Ĉℓ = xtEℓx− bℓ, (2.3)

where x is the CMB map, Eℓ is a symmetric matrix to be determined and bℓ is a term

that corrects the bias introduced by the noise.

Taking averages over the realizations, we get

⟨Ĉℓ⟩ = ⟨xtEℓx⟩ − ⟨bℓ⟩. (2.4)

The noise bias is determined by our model of the noise of the experiment, and it

does not depend of the realizations themselves, therefore ⟨bℓ⟩ = bℓ.

Analyzing the quadratic function operating on the maps, we get

xtEℓx =
∑
ij

xiE
ℓ
ijxj =

∑
ij

Eℓij(xixj ) =
∑
ij

Eℓij(xjxi) =
∑
i

[∑
j

Eℓij(xjxi)
]
, (2.5)

and the sum on i in the last expression is the sum of the diagonal elements of the

product –sum on j– of the Eℓ matrix by the matrix (xxt). Thus

xtEℓx = tr
[
Eℓ(xxt)

]
. (2.6)

Moving back to the averages

⟨xtEℓx⟩ = tr
[
⟨Eℓ(xxt)⟩

]
= tr

[
Eℓ⟨xxt⟩

]
, (2.7)

where we have taken into account that, being part of the estimator, the Eℓ matrices are

independent of the realizations. Since the average of the cross-product of the pixels of

the maps is the covariance matrix, we get

⟨xtEℓx⟩ = tr
[
EℓC

]
. (2.8)
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At this point, it is important to highlight an essential aspect: in the last expression,

⟨xxt⟩ has been replaced by C, which means that C is the mathematical modelization

of the information that one has about the statistical characteristics of the map to be

analyzed. On the other hand, since S, N and Cℓ must be known to compute C, it is

required to dispose of an a priori model of the signal and the noise that characterizes

our map.

Once the model is fixed, QML is going to provide an estimation of the power spec-

trum based on this model.2 In the rest of this chapter we assume that we know the

true spectrum —and that we have a correct model of the noise—. Once the deduction of

the method is finalized, we will offer some considerations regarding what might arise

when, previously to apply QML, we do not have a precise knowledge of the character-

istics of the statistical distribution from which our map derives from (see more details

about this question in Section 6.5.1).

Now we substitute eq. (2.8) in eq. (2.4), and it is found that the averages on the

estimated spectrum are

⟨Ĉℓ⟩ = tr
[
EℓC

]
− bℓ. (2.9)

Introducing the sum of signal and noise matrices in the eq. (2.9), yields

⟨Ĉℓ⟩ = tr
[
Eℓ(S + N)

]
− ⟨bℓ⟩ = tr

[
EℓS

]
+ tr

[
EℓN

]
− bℓ, (2.10)

and we have found the value that we can assign to the noise bias

bℓ = tr
[
EℓN

]
. (2.11)

Therefore, by substituting eq. (2.11) in eq. (2.10), we find an expression in which all

that rest is CMB signal

⟨Ĉℓ⟩ = tr
[
EℓS

]
. (2.12)

Writing the explicit form of S, we get

⟨Ĉℓ⟩ = tr
[
EℓS

]
= tr

[
Eℓ

∑
ℓ′

Cℓ′Pℓ′
]
, (2.13)

thus

⟨Ĉℓ⟩ =
∑
ℓ′

Cℓ′ tr
[
EℓPℓ′

]
=

∑
ℓ′

Wℓℓ′Cℓ′ . (2.14)

2In essence, this is the same as occurs in other situations, as with the Maximum Likelihood Estimator, in
which we need to dispose of an a priori model that describes our map; or with the Wiener filter, in which
we need to know the statistical characteristics of the observed maps previously, that is, the matrix C.
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Therefore the estimated power spectrum, in this way, is a linear combination of the

elements of the true spectrum, being the Window function, Wℓℓ′

Wℓℓ′ = tr
[
EℓPℓ′

]
(2.15)

the mixing matrix. Therefore, for the estimator to be unbiased, it must be true that

Wℓℓ′ = δℓℓ′ (2.16)

and, to be optimal, the covariance matrix of the estimated spectra

Vℓℓ′ ≡ ⟨ĈℓĈℓ′⟩ − ⟨Ĉℓ⟩⟨Ĉℓ′⟩ (2.17)

must be equal to the inverse of the Fisher information matrix given by the Gaussian

likelihood that describes the properties of the maps, which are encoded in C.

Our goal now is to find the matrices Eℓ that minimize the variance Vℓℓ. To do that,

we need to write the eq. (2.17) in terms of Eℓ.
Before inserting the Eℓ matrices expressly, let us go back to the eq. (2.3), that is

telling us that the value of the estimated multipole is the difference between the total

power of the map minus the noise power. Using Gℓ to describe the power in the map,

Gℓ = xtEℓx, we will show that the covariance matrix of the estimated spectrum does not

depend on the terms of the noise bias. Writing Ĉℓ = Gℓ − bℓ, we get

Vℓℓ′ = ⟨(Gℓ − bℓ)(Gℓ′ − bℓ′ )⟩ − ⟨Gℓ − bℓ⟩⟨Gℓ′ − bℓ′⟩. (2.18)

Expanding the products and taking into account that the noise bias term bℓ does not

depend on a particular realization of the maps, we get

Vℓℓ′ = ⟨GℓGℓ′ −Gℓbℓ′ −Gℓ′bℓ + bℓbℓ′⟩ − (⟨Gℓ⟩ − bℓ)(⟨Gℓ′⟩ − bℓ′ )

= ⟨GℓGℓ′⟩ − ⟨Gℓ⟩bℓ′ − ⟨Gℓ′⟩bℓ + bℓbℓ′ − ⟨Gℓ⟩⟨Gℓ′⟩+ ⟨Gℓ⟩bℓ′ + ⟨Gℓ′⟩bℓ − bℓbℓ′

= ⟨GℓGℓ′⟩ − ⟨Gℓ⟩⟨Gℓ′⟩. (2.19)

Therefore, we can compute the covariances leaving aside the noise term. Let us now

insert the Eℓ matrices in the expression that gives the covariances. From eq. (2.5) we

get

Vℓℓ′ =
〈(∑

ij

Eℓij(xixj )
)(∑

uv

Eℓ
′
uv(xuxv)

)〉
−
〈∑
ij

Eℓij(xixj )
〉〈∑

uv

Eℓ
′
uv(xuxv)

〉
. (2.20)

From the distributive property, the fact that averages and sums commute and taking

into account that the Eℓ matrices are independent of the realizations, we get

Vℓℓ′ =
∑
ijuv

EℓijE
ℓ′
uv⟨xixjxuxv⟩ −

(∑
ij

Eℓij⟨xixj⟩
)(∑

uv

Eℓ
′
uv⟨xuxv⟩

)
. (2.21)



chapter 2. the quadratic maximum likelihood estimator 47

The averages of the kind ⟨xixj⟩ are the elements of the covariance matrix, indepen-

dently of which is the statistical distribution of the CMB. The four-point covariances

are more complicated. Nevertheless, under the assumption of Gaussian fluctuations

with vanishing mean, they become a function of the two-point covariances

⟨xixjxuxv⟩ = ⟨xixj⟩⟨xuxv⟩+ ⟨xixu⟩⟨xjxv⟩+ ⟨xixv⟩⟨xjxu⟩. (2.22)

Inserting eq. (2.22) in eq. (2.21) and substituting the averages at two points by the

covariance matrix, yields

Vℓℓ′ =
∑
ijuv

EℓijE
ℓ′
uv

[
CijCuv + CiuCjv + CivCju

]
−
(∑
ij

EℓijCij

)(∑
uv

Eℓ
′
uvCuv

)
. (2.23)

By the distributive property applied to the last product, we get

Vℓℓ′ =
∑
ijuv

EℓijE
ℓ′
uv

[
CijCuv + CiuCjv + CivCju

]
−
∑
ijuv

EℓijE
ℓ′
uvCijCuv . (2.24)

Simplifying, we find the final expression of the covariances

Vℓℓ′ =
∑
ijuv

EℓijE
ℓ′
uv

[
CiuCjv + CivCju

]
. (2.25)

The last expression can be simplified taking into account that the matrices Eℓ are

symmetric. Breaking it up into two summations

Vℓℓ′ =
∑
ijuv

EℓijE
ℓ′
uvCiuCjv +

∑
ijuv

EℓijE
ℓ′
uvCivCju . (2.26)

Interchanging the dummy indices u and v in the second summation and making

use of the symmetric property of the matrices Eℓ, we get

Vℓℓ′ = 2
∑
ijuv

EℓijE
ℓ′
uvCiuCjv . (2.27)

Reordering the matrices and making use again of the symmetric property, we find

Vℓℓ′ = 2
∑
ijuv

CuiE
ℓ
ijCjvEℓ

′
vu . (2.28)

And we get that the covariances are related to the sum of the diagonal elements of the

product matrix EℓCEℓ
′
C. That is

Vℓℓ′ = 2tr
[
CEℓCEℓ

′ ]
. (2.29)
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We can, now, find the matrix Eℓ that minimizes the variance. To do that, in the case

ℓ′ = ℓ, the derivative of Vℓℓ with respect to Eℓ must vanish. But because of the form

in which the variance depends on Eℓ in the eq. (2.29), the unique solution to set the

derivative to zero, i.e.,

2× 2×CEℓC = 0 (2.30)

is Eℓ = 0, which it is the minimum variance trivial solution —the power spectrum and

their variances are zero.

To find an interesting solution, let us introduce a Langrange multiplier which adds

an extra addend to the derivative. According to eqs. (2.14), (2.15) and (2.16), we recall

that the estimator must satisfy the following condition to be unbiased

Wℓℓ = tr[EℓPℓ] = 1. (2.31)

Therefore, being λ a parameter to be determined, in this case we can write

Vℓℓ = 2tr
[
CEℓCEℓ

]
− 4λ

(
tr

[
EℓPℓ

]
− 1

)
. (2.32)

By taking the derivative and set it to zero, we get

4CEℓC− 4λPℓ = 0. (2.33)

In this way, the term 4λPℓ introduced by the Lagrange multiplier makes the solution

different from the trivial one. The equation leaves to the —as expected— symmetric

matrix

Eℓ = λC−1PℓC
−1. (2.34)

And it only remains to find the value of λ that satisfies the eq. (2.31), that is, substitut-

ing Eℓ

λ tr[C−1PℓC
−1Pℓ] = 1. (2.35)

Therefore, we have the matrix that makes the estimator of minimum variance

Eℓ =
1

tr[C−1PℓC−1Pℓ]
C−1PℓC

−1. (2.36)

Having arrived at this point, we have two pending questions. First, we can not

be sure whether the estimator is unbiased. Let us recall that for this condition to be

fulfilled, eq. (2.16) must be accomplished. As it has been defined, it is true when ℓ′ = ℓ.

But when they are different, we get

Wℓℓ′ =
1

tr[C−1PℓC−1Pℓ]
tr[C−1PℓC

−1Pℓ′ ]. (2.37)
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Equation (1.95) indicates us that the trace in the last expression is related to the ele-

ments of the Fisher information matrix

Fℓℓ′ =
1
2

tr
[
C−1PℓC

−1Pℓ′
]
. (2.38)

Therefore

Wℓℓ′ =
Fℓℓ′
Fℓℓ

. (2.39)

And there is no guarantee that the elements outside the diagonal of the Fisher matrix

are equal to zero. Note that this would actually mean that the covariances of a hy-

pothetical BUE defined in this form would be equal to zero, a desirable but unlikely

property.

Second, looking back to the eq. (2.29) and computing the covariances of the estima-

tor, we get

Vℓℓ′ =
Fℓℓ′

FℓℓFℓ′ℓ′
, (2.40)

thus the covariances do not match the inverse of the Fisher matrix, but they are related

to the elements of this matrix.

Therefore, we have found that an estimator as defined in eq. (2.3) does not match a

BUE. However, making use of the knowledge acquired, the next section will be devoted

to find an estimator that accomplishes all the required properties.

2.4 Second tentative: quadratic BUE

Instead of estimating the power spectrum in just one step, as in expression (2.3)

Ĉℓ = xtEℓx− bℓ, (2.41)

where we tried to compute each of the Ĉℓ directly, we will construct an estimator de-

fined in two steps.
Keeping the formal structure of the last expression, we will assume that our oper-

ator on the maps does not supply the values of the power spectrum directly, but some

intermediary magnitudes in the harmonic space, that we will call yℓ. Next, we will an-

alyze the relation of those magnitudes with the power spectrum. That is, we are going

to define

yℓ ≡ xtEℓx− bℓ. (2.42)

In the previous section we have found the formal structure of the Eℓ matrices, that

translate the power of the anisotropies in the pixel space to the harmonic space

Eℓ ∝ C−1PℓC
−1. (2.43)
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Let us consider in this section Eℓ matrices with that structure but introducing a 1/2

factor —we will show that this drives to a BUE—. That is, let us define

Eℓ ≡ 1
2

C−1PℓC
−1. (2.44)

Having made this choice, eq. (2.42) becomes

yℓ ≡
1
2

xtC−1PℓC
−1x− bℓ. (2.45)

Independently of the form of the Eℓ matrices, we know how to eliminate the noise bias,

eq. (2.11). Taking averages and following the steps of the previous section, we find an

expression similar to (2.14), but in which instead of Ĉℓ we find yl , that is

⟨yℓ⟩ =
∑
ℓ′

Cℓ′ tr
[
EℓPℓ′

]
. (2.46)

Substituting our Eℓ matrix, we get

⟨yℓ⟩ =
∑
ℓ′

Cℓ′
1
2

tr
[
C−1PℓC

−1Pℓ′
]
, (2.47)

where we can recognize the elements of the Fisher information matrix. Therefore

⟨yℓ⟩ =
∑
ℓ′

Fℓℓ′Cℓ′ . (2.48)

Arranging the elements yℓ in the vector y and the Cℓ values of the true spectrum in

the vector c, we get

⟨y⟩ = Fc. (2.49)

And we can define the unbiased estimator

ĉ = F−1y. (2.50)

Certainly

⟨ĉ⟩ = ⟨F−1y⟩ = F−1⟨y⟩ = F−1⟨Fc⟩ = F−1Fc = c. (2.51)

Let us now analyze the covariances of the vector y and, later, the covariances given

by our estimator. Going back to the eq. (2.17) and substituting in it Cℓ by yℓ, using the

eq. (2.29) and substituting the matrices Eℓ, we get

⟨yℓyℓ′⟩ − ⟨yℓ⟩⟨yℓ′⟩ = 2tr[CEℓCEℓ
′
] =

1
2

tr[PℓC
−1Pℓ′C

−1]. (2.52)
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By the invariance of the trace of the product of matrices under cyclic permutations,

the last term is the element ℓℓ′ of the Fisher matrix. Written in matrix form, the last

expression is

⟨yyt⟩ − ⟨y⟩⟨yt⟩ = F. (2.53)

Making use of the last expression, we can compute the covariance of our estimator. By

the definition of covariance, the definition of our estimator and the symmetric property

of the Fisher matrix, we get

⟨ĉĉt⟩ − ⟨ĉ⟩⟨ĉt⟩ = F−1
[
⟨yyt⟩ − ⟨y⟩⟨yt⟩

]
F−1 = F−1FF−1 = F−1. (2.54)

And we have found that the covariances of our estimator match the inverse of the Fisher

matrix. That is, the estimator defined by the eq. (2.50) plus the eq. (2.42), (2.11), (2.44)

and (2.38) is a BUE.

It is important to note that this shows that there are no estimators of a superior order

to the quadratic that could yield better estimations than those given by the QML esti-

mator because the latter produces estimations that reach the limit given by the Fisher-

Chramér-Rao inequality. On the other hand, being a BUE, QML matches the maximum

likelihood estimator.

2.5 Description in terms of alternative variables

When estimating the power spectra, one usually needs to explicitly consider the effects

of the instrumental beam and of the pixel window function. In addition, it is also quite

common to describe the angular power spectra per logarithmic interval as Dℓ = ℓ(ℓ +

1)Cℓ/2π. Therefore, it may be convenient to implement the QML method in terms of

theDℓ variables and/or including the instrumental resolution effects. This can be easily

done by introducing some additional factors in the Pi matrices of eqs. (2.1) and (2.2).

Let us first denote by Bℓ the beam and pixel instrumental effects, such that the har-

monic coefficients of eq. (1.32) of the observed signal are given by aObserved
ℓm = Bℓa

Signal
ℓm .

Analogously, let us define Wi = BXℓ B
Y
ℓ , which encodes these effects in the power spec-

tra. In this way, we can write the covariance matrix of the observed (smoothed) signal

as (see eq. (1.55))

S =
∑
i

CiWiPi . (2.55)

We can also write the previous equation in terms of the Di variables

S =
∑
i

Di
2π

ℓ(ℓ + 1)
WiPi =

∑
i

DiP̌i , (2.56)
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where we have defined the new matrices P̌i . It becomes apparent that by replacing Ci
and Pi by Di and P̌i , respectively, in the equations of the previous section, we have an

implementation of the method such that the Di quantities are estimated. Let us remark

that these estimated spectra are corrected from the beam and pixel effects.

Of course, one could also easily write the equivalent expressions to estimate the

power spectra in terms of the variables Ci or Di and/or including the experimental

beam. Along this Thesis we will use the QML in terms of different variables, as con-

venient, but note that this does not imply any loss of generality since all results can be

straightforwardly obtained for any of the previously considered variables.

2.6 Discussion

Once we have found the method, it is worth making some remarks regarding the as-

sumptions that we have made to develop it as well as discussing some issues that may

arise when applying it.

2.6.1 Assumptions

We recall that the following assumptions were made to develop the method:

• Gaussianity: we have assumed that the fluctuations are Gaussian, which is ex-

pected in standard cosmology. Therefore, the method is applicable to CMB maps

and other Gaussian maps. But, in principle and strictly speaking, it is applicable

only to Gaussian fluctuations.

• Absence of privileged directions: we have assumed that the covariance matrix is

characterized by the power spectrum, which means that there are not privileged

directions in the space. In principle, difficulties can arise if we want to apply the

method to maps of anisotropic signals —such as Galactic emissions—, because

neither their statistical characteristics nor their covariance matrices will be given

by eq. (2.1) or eq. (2.2).

• Noise properties: we have assumed that signal and noise are uncorrelated and

that the noise is Gaussian.

In practice, QML can be applied to signals that do not completely fulfill those re-

quirements, but one should take into account that the method is not working under

the ideal conditions, especially if the data place us far from the previous assumptions.

Therefore, in that case, the results have to be carefully interpreted.
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2.6.2 Issues

It is also worth mentioning some issues that one needs to face when applying the

methodology. First of all, we need to compute the inverse of the covariance matrix.

However, there is no guarantee that this matrix will be regular under all circumstances;

in Chapter 3 we analyze the conditions that must be accomplished for the matrix to be

regular.

From the definition of the estimator, eq. (2.49), it becomes apparent that the inverse

of the Fisher matrix needs to be computed. Again, there is no guarantee whether this

matrix will be regular under all the considered circumstances. In Chapter 4 we analyze

the issues associated with the lack of regularity of F. We will also show that the method

can be used to estimate a binned power spectrum and that, choosing carefully the way

to estimate the power in the bins, we can define a BUE for the binned power spectrum.

The eqs. (2.50), (2.42), (2.11), (2.44) and (2.38) contain the essence of the computa-

tions needed to apply the method. In Chapter 5 we will show that they can be trans-

formed into equivalent expressions such that the number of required mathematical

operations is significantly reduced. In Section 5.5 we describe ECLIPSE, a parallelized

implementation of the efficient version of QML written in Fortran language designed

to take advantage from the capabilities of a supercomputer to tackle large scale prob-

lems.

2.6.3 On the fiducial models of power spectrum and noise

According to equations (2.1) and (2.2), we need the power spectrum of the maps to

compute the covariance matrix, but the power spectrum is precisely what we want to

find using QML. In practice, we compute C from a fiducial power spectrum that we

introduce by making use of the previous knowledge that we have of the map we want

to analyze. Let us show that deviations of the fiducial model from the underlying true

power spectrum will not introduce a relevant bias.

The coupled power of the anisotropies in the harmonic space is

yℓ ≡ xtEℓx− bℓ. (2.57)

Since we are assuming that we start from a fiducial model to apply QML that differs to

the model in the maps, we must differentiate the true covariance matrix of maps, Cm,

from the covariance matrix given by our fiducial, Cf . The matrices Eℓ are defined in

eq. (2.44) and taking into account that they are computed from the fiducial model, in
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fact, they become

Eℓ ≡ 1
2

C−1
f PℓC

−1
f . (2.58)

Inserting eq. (2.58) into eq. (2.57) we get

yℓ ≡
1
2

xtC−1
f PℓC

−1
f x− bℓ. (2.59)

Taking averages and since ⟨xtx⟩ = Cm, we get

⟨yℓ⟩ ≡
1
2

tr
[
C−1
f PℓC

−1
f Cm

]
− bℓ. (2.60)

Since the true covariance matrix of the maps is the sum of signal and noise, we get

⟨yℓ⟩ ≡
1
2

tr[C−1
f PℓC

−1
f (Sm + N)]− bℓ, (2.61)

where Sm is the true signal covariance matrix. Later on, we will make some consider-

ations referring to the noise matrix but, for the time being, let us continue to refer to

it only as N, without distinguishing the true and fiducial noise matrices. From the last

expression, as we did before, one can find the expression that cancels the noise bias

bℓ =
1
2

tr[C−1
f PℓC

−1
f N]. (2.62)

Writing the explicit form of Sm in terms of the true power spectrum, we get

⟨yℓ⟩ =
∑
ℓ′

Ctrue
ℓ′

1
2

tr
[
C−1
f PℓC

−1
f Pℓ′

]
. (2.63)

In the last expression one can recognize the element of the Fisher matrix given by our

fiducial model, then

⟨yℓ⟩ =
∑
ℓ′

Ctrue
ℓ′ Ffid

ℓℓ′ . (2.64)

In vector form

⟨y⟩ = Ffidctrue. (2.65)

Therefore, from our fiducial, we can compute the estimator

ĉ =
(
Ffid

)−1
y, (2.66)

that is unbiased

⟨̂c⟩ =
(
Ffid

)−1
⟨y⟩ =

(
Ffid

)−1
Ffidctrue = ctrue. (2.67)

In eq. (2.62) we have assumed that N is the true noise matrix. Otherwise, the bℓ term

will not cancel the bias. That is, while there is some freedom in choosing the starting

fiducial model, in principle, there is no freedom with respect to the noise.
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On the other hand, QML is not optimal when the fiducial differs from the model on

the maps. By distinguishing Cm from Cf , eq. (2.52) becomes

⟨yℓyℓ′⟩ − ⟨yℓ⟩⟨yℓ′⟩ =
1
2

tr[CmC−1
f PℓC

−1
f CmC−1

f Pℓ′C
−1
f ]. (2.68)

Since the covariances of the yl do not fit the elements of the Fisher matrix, the co-

variances of the estimated power spectrum do not fit the elements of the inverse of

the Fisher matrix, so the estimator is unbiased but not of minimum variance when the

fiducial differs from the model in the maps.

In Chapter 6, we analyze the effect of the choice of the fiducial in the recovered

power spectra. In particular, we have studied how the estimations change when vary-

ing the fiducial model and, applying an iterative scheme, we have analyzed the conver-

gence to a final and stable estimation starting from different initial models.

Most of the work presented in the next chapters is part of the results published

in [70] and [71].





Chapter 3

The regularity of the covariance matrix

3.1 Motivation

With the advent of the precision era of Cosmology and ‘big data’ astrophysical exper-

iments, data analysis techniques have risen to a prominent role in modern Astron-

omy. In particular, the treatment of very large matrices is a challenge from the point

of view of algebraic and numerical methods, data storage and software implementa-

tion. For example, many astrophysical problems require the manipulation of large

covariance matrices and their inverses. But it is often the case that such matrices are

ill-conditioned and their inverse matrices cannot be calculated; when this happens,

the problem must be attacked either by means of clever algorithms that calculate the

pseudo-inverse of the matrix (see, e.g.,[72]) or by ad hoc regularizers such as the addi-

tion of a small amount of uncorrelated noise to the diagonal of the covariance matrix.

The literature is rich in situations where the regularity of the covariance matrix

plays a fundamental role. For example, the inverse of the covariance matrix is neces-

sary for the study of the statistics of the Cosmic Microwave Background (CMB), the

Quadratic Maximum Likelihood (QML) power spectrum estimator [43], the maximum

likelihood cosmological parameter estimation [73, 74], to study the topology of the uni-

verse [75] and for many CMB foreground removal/component separation methods (see,

e.g., [76, 77, 78, 79]). Beyond the mere characterization of the second-order statistics

of the CMB temperature or polarization fluctuations, covariance matrices are also fun-

damental for the study of non-Gaussianity [80, 81] and the statistical analysis of CMB

anomalies such as the Cold Spot [82]. But the covariance matrix is often ill-conditioned

even for low-resolution sky maps.

The typical solution consists on the regularization ‘by hand’ of the covariance ma-

trix. For example, a small level of white noise is added to the noise covariance matrix

of the CMB temperature data involved in the construction of the low-multipole Planck

– 57 –
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likelihood [74]. Another possibility is to deal with ill-conditioned covariance matri-

ces by using a principal component analysis approach to remove the lowest degenerate

eigenvalues, as is done for instance to study the multi-normality of the CMB [83] or in

the estimation of primordial non-Gaussianity using wavelets [81]. The main problem

with this kind of approaches is the ad hoc nature of the regularization. For example,

the amount of uncorrelated artificial noise to be added to the covariance matrix must

be carefully chosen: if the level of the noise is too small, it may not suffice to make the

matrix regular, but if it is too large, the quality of the data is sorely compromised. One

must find the correct amount of noise by trial and error.

A more fundamental question is why and how covariance matrices become ill-

conditioned. By definition, all covariance matrices should be positive-semidefinite and

symmetric. Therefore, a covariance matrix can be singular if it has, at least, one eigen-

value equal to zero. However, in practice it is often assumed that if a covariance matrix

arising from CMB data is singular, it must be so because of numerical issues related

to the way the inverse is computed and to limits in computer precision. In this chap-

ter we will focus on the interesting case of observations on the sphere, and we will

make a comprehensive study on how the regularity and rank of the covariance matrix

depend on how it is built, the pixelization scheme, the sky coverage and the regular-

izing noise. We will show that, even with arbitrary high precision, CMB covariance

matrices can be singular due to the way the CMB is sampled. As we will see in the

following sections, the way the sphere is pixelized can introduce symmetries that affect

the regularity of covariance matrices. This is a purely algebraic effect that, as far as

we know, has not been explored in the literature before. We investigate these effects

for five different pixelizations that have been used in the context of Cosmic Microwave

Background (CMB) data analysis: Cube, Icosahedron, Igloo, GLESP and HEALPix, find-

ing that, at least in the considered cases, the HEALPix pixelization tends to provide a

covariance matrix with a rank closer to the maximum expected theoretical value than

the other pixelizations. The effect of the propagation of numerical errors in the regu-

larity of the covariance matrix is also studied for different computational precisions, as

well as the effect of adding a certain level of noise in order to regularize the matrix. In

addition, we investigate the application of the previous results to a particular example

that requires the inversion of the covariance matrix: the estimation of the CMB temper-

ature power spectrum through the Quadratic Maximum Likelihood algorithm. Finally,

some general considerations in order to achieve a regular covariance matrix are also

presented.
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For simplicity, most of the chapter is focused on an only temperature case, and some

considerations related to the full case —intensity and polarization– are made.

The structure of the chapter is as follows: Section 3.2 enunciates a general con-

straint in the rank of the covariance matrix. Section 3.3 presents further upper limits

on the rank under the presence of some specific symmetries of the pixelization. These

constraints are tested for five different pixelization schemes in Section 3.4. Section 3.5

studies the effect of introducing a realistic CMB model when computing the covariance

matrix as well as the degrading effect of numerical precision. Section 3.6 investigates

the addition of noise as a regularizer of the covariance matrix. The effect of the pres-

ence of a mask in the rank of the covariance matrix is addressed in 3.7. As an example,

Section 3.8 applies the results of the previous sections to the Quadratic Maximum Like-

lihood method, which, as shown in Chapter 2, requires the calculation of the inverse of

the covariance matrix. Concluding remarks are offered in Section 3.9. Finally, technical

points related to the covariance matrix are presented in the appendices A, B and C.

3.2 The rank of the covariance matrix

If a discretized scalar field on the sphere arises from isotropic random fluctuations,

the elements of the covariance matrix C ≡ ⟨xxt⟩ can be written in terms of the angular

power spectrum Cℓ as (see eqs. (1.46) and (1.44))

Cij =
∞∑
ℓ=0

Cℓ

ℓ∑
m=−ℓ

Yℓm(θi ,φi)Y
∗
ℓm(θj ,φj ), (3.1)

where Yℓm are the spherical harmonics given by

Yℓm(θ,φ) =

√
2ℓ + 1

4π
(l −m)!
(l +m)!

Pℓm(cosθ)eimφ, (3.2)

and Pℓm are the associated Legendre polynomials. In real-life applications, the sum

over multipoles does not extend to infinity, but it has a cutoff at some ℓmax instead. If

the value of ℓmax is not sufficiently large, the covariance matrix can be singular. This is

a problem for all numerical applications that require the inversion of C. On the other

hand, a too large value of ℓmax can lead to extremely heavy computational costs. Be-

sides, there is a limit in the spatial resolution that can be explored, which is determined

by the lowest angular distance between points in the pixelization, as established by the

Nyquist’s theorem. Therefore, one must be very careful with the choice of ℓmax. In this

section we will make a thorough study of the rank of C as a function of ℓmax.
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Let ℓmin and ℓmax be the summation limits in the finite version of eq. (3.1). Let us

also consider a pixelization of the sky such that the unit sphere is sampled at a set of

n positions {r̂i} and angular coordinates {(θi ,φi)}, i = 1, . . . ,n. In order to simplify the

notation in the following expressions, we introduce the univocal index change (ℓ,m)↔
µ for the spherical harmonics such that

µ (ℓ,m) =
ℓ−1∑
k=ℓmin

(2k + 1) + ℓ +m+ 1 = ℓ2 − ℓ2
min + ℓ +m+ 1. (3.3)

This change assigns a unique µ to each pair (ℓ,m) in ascending m order, that is,

µ(ℓmin,−ℓmin) = 1, µ(ℓmin,−ℓmin + 1) = 2 (3.4)

and so on. The index µ runs from 1 to N , the total number of spherical harmonics,

given by

N =
ℓmax∑
ℓ=ℓmin

(2ℓ + 1) = ℓ2
max − ℓ2

min + 2ℓmax + 1. (3.5)

We will also use the same index µ for the power spectrum, such that Cµ corresponds to

the power of the multipole ℓ obtained as

ℓ = floor
(√
ℓ2

min − 1 +µ
)
, (3.6)

where floor(x) is the largest integer not greater than x. Using this notation, we can write

Yℓm(θi ,φi) = Yµ(θi ,φi) = Yµi , (3.7)

and thus

Cij =
ℓmax∑
ℓ=ℓmin

Cℓ

ℓ∑
m=−ℓ

Yℓm(θi ,φi)Y
∗
ℓm(θj ,φj ) =

N∑
µ=1

CµYµiY
∗
µj , (3.8)

where µ makes reference to the harmonic indexes, and i and j make reference to the

pair of points on the sky at which the sum is being calculated. Using this notation, the

jth vector column of C is

CColj
=

∑
µj

Cµj


Yµj1
Yµj2
...

Yµjn


Y ∗µj j , (3.9)
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and therefore C is

C =

 ∑
µ1
Cµ1


Yµ11
...

Yµ1n

Y ∗µ11 · · ·
∑
µn
Cµn


Yµn1
...

Yµnn

Y ∗µnn
 . (3.10)

Using eq. (3.10) and the properties of matrix determinants, we can write the determi-

nant of C as

|C| =
N∑

µ1···µn=1

 n∏
i=1

CµiY
∗
µi i


∣∣∣∣∣∣∣∣∣∣
Yµ11 · · · Yµn1
...

...

Yµ1n · · · Yµnn

∣∣∣∣∣∣∣∣∣∣ . (3.11)

We are interested in knowing whether or not |C| = 0. A sufficient condition for this

determinant to be zero is that all the determinants of the previous equation are null.

If we calculate C on n points on the sphere using N spherical harmonics, the num-

ber of elements of the sum given in eq. (3.11) is Nn. Any of those determinants can be

different from zero if its columns are linearly independent. Since the necessary con-

dition for this to be achieved is that each column corresponds to a different spherical

harmonic, we have a first constraint on ℓmax: N must be equal or greater than n. In

other words, the number of spherical harmonics must be at least as large as the num-

ber of considered pixels on the sphere. The rank of the covariance matrix C is thus

constrained by

rank(C) ≤min
(
n,ℓ2

max − ℓ2
min + 2ℓmax + 1

)
. (3.12)

Hereinafter we will refer to this constraint as R0.

According to eq. (3.11), if one determinant in the sum is not null, there will be

other n! − 1 terms that are not zero as well, which correspond to the permutations of

its columns. However, we may wonder if the sum of all these elements could be zero.

In Appendix A we show that the sum of these terms is a real positive number and,

therefore, if there exists at least one non-null determinant, then |C| > 0 is satisfied.

Nonetheless, note that having N ≥ n does not guarantee that this is fulfilled. In par-

ticular, even if all the columns of the determinants correspond to different spherical

harmonics, they can still be linearly dependent. A particular case when this can hap-

pen is under the presence of certain symmetries in the considered pixelization of the

sphere. This is studied in more detail in the next section.

Referred to the full case —intensity and polarization— by inspecting eqs. (1.42) and

(1.59), it is apparent that the intensity and polarization covariance matrices are of the

same structure. This means that we can apply the same procedure to analyze the lower

bound on the range. Note that, in this case, the columns of the determinants are taken
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from the the columns of the matrix Y of eq. (1.31) and eq. (1.32). Therefore, for the

matrix S to be regular, the number of columns of the spherical harmonics matrix Y must

be greater or equal than the size of the covariance matrix. Since the number of columns

of Y is three times the number of columns of the matrix of spherical harmonics of

intensity (see eq. (1.32)), and the size of the covariance matrix of the full case, eq. (1.40),

is three times —T, Q and U parts— the size of the covariance matrix of intensity, the

conclusion is that the rank is limited, again, by eq. (3.12).

3.3 The effect of symmetries on the rank of C

It is possible that the rank of C is reduced if the positions where the covariance matrix

is calculated have certain symmetries. In this section we will study several of these

symmetries, which appear in some commonly used pixelizations of the sphere, and

their effect on the rank of C.

As detailed in Section 3.2, the determinant of C can be expanded as the sum of the

determinants of several matrices according to eq. (3.11). It is easy to see that many of

these matrices will have a null determinant but, if the sum runs up to a sufficiently large

ℓ, some of them might have non-zero determinants. Rather than inspecting the rank

of each individual matrix, it is possible to determine the existence (or non existence)

of full-rank matrices in eq. (3.11) by inspecting the (non necessarily square) matrix,

whose elements are given by

Y =


Y1,1 · · · YN,1
...

...

Y1,n · · · YN,n

 , (3.13)

where the harmonics are calculated for all the n pixels andN is the number of spherical

harmonics. Therefore, Y is an n ×N matrix, with as many rows as pixels and as many

columns as spherical harmonics. For convenience, the value of the element ij of Y is

the value of the spherical harmonic of index µ = j on the pixel r̂i , Yij = Yji = Yj(r̂i).

It is easy to see that rank(C) = rank(Y). In particular, if N ≥ n, the maximum pos-

sible rank of Y will be n. If this rank is achieved, this implies that there exists at least

n linearly independent columns in Y and, thus, there is at least one determinant in

eq. (3.11) together with its permutations which are different from zero.

With the help of the matrix Y and defining a diagonal signal matrix S, Sµν = Cµδµν ,

we can get to the same conclusion by a different route. The expression (3.8) can be
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written as a product of matrices, C = YSY†.1 Since the rank of the product of matrices

is lower than or equal to the minimum rank of the factors, for C to be regular the

number of columns of Y (the number of spherical harmonics) has to be equal to or

greater than the dimensions of C (the number of pixels).

In the next subsections we will study how the rank of Y is affected by some specific

symmetries.

3.3.1 SI symmetry: r̂→−r̂

First of all, we will consider a pixelization such that all points on the sphere have a di-

ametrically opposed point. For full-sky coverage, one would expect that this condition

is in general fulfilled since it is reasonable that two symmetrical hemispheres are pix-

elized in the same way. However, this may not be the case when only partial coverage

of the sky is considered.

Let us make the variable change cosθ = z in Yℓm(θ,φ). The spherical harmonics

Yℓm(z,φ) have a well-defined parity with respect to the change (z,φ)→ (−z,φ+π) (i.e.,

r̂→−r̂)
Yℓm(−z,φ+π) = (−1)ℓYℓm(z,φ). (3.14)

Assuming that we have a pixelization and sky coverage such that for each pixel with

direction r̂ there exists a pixel in the direction −r̂, eq. (3.14) allows us to transform the

matrix of eq. (3.13) into a block-diagonal matrix with the same rank as the matrix Y

Y→
 Ye 0

0 Yo

 , (3.15)

where Ye is a block of spherical harmonics of even ℓ calculated on half of the points of

the pixelization, and Yo contains the spherical harmonics with odd ℓ (see Appendix B.1

for details).

Therefore, we can write rank(Y) = rank(Ye) + rank(Yo). Since the rank of each block

is limited by the minimum value of the number of rows and the number of columns,

the following constraint must be satisfied

rank(Y) ≤min(Ne,n/2) + min(No,n/2) , (3.16)

where

Ne =
ℓmax∑
ℓ=ℓmin
(ℓ even)

(2ℓ + 1), No =
ℓmax∑
ℓ=ℓmin
(ℓ odd)

(2ℓ + 1). (3.17)

1This expression can also be found in eq. (1.41).
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Hereinafter we will refer to the relationship (3.16) as R1. As will be shown below, this

additional constraint can lead in certain cases to the reduction of the maximum rank

that the covariance matrix can achieve. In particular, this could yield to a singular

covariance matrix even in the case N ≥ n.

3.3.2 SII symmetry: φ→ φ +π

Let us assume that we have a pixelization that, in addition to the previous symmetry

SI , satisfies that for each point with coordinates (z,φ) there is a point with coordinates

(z,φ+π).

Taking into account the following expression of the spherical harmonics

Yℓm(z,φ+π) = (−1)mYℓm(z,φ), (3.18)

we can further expand the matrix Y in blocks (see Appendix B.2 for details)

Y→


Yeo 0
0 Yee

0

0
Yoo 0
0 Yoe

 , (3.19)

where, for example, Yeo denotes the block made up of the spherical harmonics of even

ℓ and odd m. The size of the blocks depends on the number of pixels at z = 0 in the

pixelization. The reason is that the pair of points at z = 0 that satisfy the symmetry SII
also satisfy SI , so they have to be accounted for in a slightly different way. In particular,

Appendix B.2 shows that if the map contains u pixels at z = 0 and 0 ≤ φ < π, and k

pixels at z > 0 (note that k + u = n/2), then the blocks Yeo and Yoe have k/2 rows each,

and the blocks Yee and Yoo have k/2 + u rows each (note that if u = 0, the number of

rows of each block defaults to n/4). Therefore, the rank of the matrix will be limited by

the following expression (R2)

rank(Y) ≤min(Neo, k/2) + min(Nee, k/2 +u)

+ min(Noo, k/2 +u) + min(Noe, k/2), (3.20)

whereNeo is the number of spherical harmonics of even ℓ and oddm, Nee is the number

of spherical harmonics of even ℓ and even m, and so on.

3.3.3 SIII symmetry: φ→ φ +π/2

Let us assume that we have a pixelization that satisfies the symmetry SI and that for

each pixel at (θ,φ) there is a corresponding pixel at (θ,φ+π/2). Note that, under these
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conditions, SII is also fulfilled. Under the transformation φ→ φ+π/2 we have

Yℓm (θ,φ+π/2) = imYℓm (θ,φ) , (3.21)

which can be used to transform each non-null block in eq. (3.19) into a new block-

diagonal structure (see Appendix B.3). For example, the block Yeo can be transformed

Yeo→
 Ye1 0

0 Ye3

 . (3.22)

At the end of this process we have decomposed matrix Y into a matrix with eight blocks

in the diagonal

{Ye1,Ye3,Ye0,Ye2,Yo1,Yo3,Yo0,Yo2}. (3.23)

The corresponding rank is limited by the expression (R3)

rank(Y) ≤min(Ne1, k/4) + min(Ne3, k/4)

+ min(Ne0, k/4 +u/2) + min(Ne2, k/4 +u/2)

+ min(No1, k/4 +u/2) + min(No3, k/4 +u/2)

+ min(No0, k/4) + min(No2, k/4), (3.24)

where k and u have the same meaning as in Section 3.3.2. Neq is the number of spherical

harmonics of even ℓ and q = mod(m,4).2 Noq is the number of spherical harmonics of

odd ℓ and q = mod(m,4). Note that the sum of the eight Npq adds up the total number

of spherical harmonics
3∑
q=0

Neq +
3∑
q=0

Noq =
ℓmax∑
ℓ=2

2ℓ + 1. (3.25)

Similarly, the sum of the pixels involved in the eight terms of eq. (3.24) adds up to

2k + 2u, i.e., the total number of pixels n.

3.4 Results for different pixelization schemes

The particular way in which the sphere is pixelized gives rise to different symmetries

and sets of pairs (θ,φ), and therefore will have an impact on the rank of the covari-

ance matrix. In this section we will compare the theoretical ranks imposed by the

2mod(i, j) = i − j × floor(i/j) denotes the modulo of i and j. In our case, q = mod(m,4) can take four
different values corresponding to {0,1,2,3}. Note that for positive m, this quantity is simply given by the
rest of m divided by 4.
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Npix 12 48 192 768

ℓmax 2 3 4 5 6 7 12 13 14 26 27 28

Cons.

R0 5 12 12 32 45 48 165 192 192 725 768 768
R1 5 11 12 32 42 48 165 186 192 725 761 768
R2 5 11 12 32 42 48 165 186 192 725 761 768
R3 5 11 12 32 42 48 165 186 192 725 761 768

Npix 3072 12288 49152

ℓmax 53 54 55 56 109 110 111 220 221 222

Cons.

R0 2912 3021 3072 3072 12096 12288 12288 48837 49152 49152
R1 2912 3018 3072 3072 12096 12246 12288 48837 49106 49152
R2 2912 3017 3071 3072 12096 12246 12288 48837 49106 49152
R3 2912 3017 3071 3072 12096 12246 12288 48837 49106 49152

Table 3.1: Theoretical maximum ranks Rth of the covariance matrix, for a generic pix-
elization of the sphere, imposed by the constraints given in the previous section. Different
number of pixels (Npix) and maximum multipole (ℓmax) are considered.

constraints introduced in the previous sections with those obtained for different pix-

elization schemes. In particular, we will consider five different pixelizations that have

been used to analyze CMB data: Cube [84], Icosahedron [85], Igloo [86], GLESP [87]

and HEALPix [39].

However, before considering these particular pixelization schemes, let us study the

case of a generic pixelization that successively fulfills symmetries SI , SII and SIII . We

can easily calculate the maximum rank for the covariance matrix for a certain maxi-

mum multipole ℓmax given by the corresponding constraints. Table 3.1 shows the the-

oretical maximum ranks achieved by the covariance matrix for different values of Npix

and ℓmax, depending on which symmetries are satisfied. In particular, for all cases, the

minimum ℓmax necessary to achieve a non-singular matrix (i.e., whose rank is at least

as large as Npix) is given. To allow for an easier comparison, we have chosen values for

Npix equal to the number of pixels of the first resolutions of the HEALPix and Igloo pix-

elizations (see sections 3.4.5 and 3.4.3 for details). In addition, the constraints imposed

by the SII and SIII symmetries also depend on the particular number of pixels at z = 0.

For the sake of simplicity, we have decided this generic pixelization to have the same

number of pixels at z = 0 as HEALPix. As one would expect, including symmetries in

the pixelization implies, at least in certain cases, that a higher ℓmax is needed in order

to achieve a regular covariance matrix.
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Although the ranks given in table 3.1 correspond to the maximum ranks that the

covariance matrix can achieve under the presence of the corresponding symmetries, in

practice, a specific pixelization may have additional properties or cancellations. This

reduces even further the rank for a given multipole, which implies that we need a

higher ℓmax for this matrix to become regular. In the following subsections we will

study the actual rank of the covariance matrix for five specific pixelizations, consider-

ing different resolutions. To carry out this analysis, we have calculated numerically the

rank of C using the MatrixRank function of the symbolic computation software Math-

ematica. Hereinafter we will refer to this value as RN . For comparison, this value is

confronted with that obtained from the theoretical constraints, taking into account the

symmetries present in each of the considered pixelizations, which we will denote Rth.

It is worth noting that the particular elements of the covariance matrix depend on

the power spectrum of the fluctuations but, according to eq. (3.11), its rank does not

(except in the null case of a blank image).3 This allows us to choose the Cℓ’s and, for the

sake of simplicity, in this section we will compute C for a flat spectrum Cℓ = 1. For this

simplified case, making use of the addition theorem for spherical harmonics, eq. (3.8)

takes the form

Cij =
ℓmax∑
ℓ=2

2ℓ + 1
4π

Pℓ(r̂i · r̂j ) =
ℓmax∑
ℓ=2

Pℓ(r̂i · r̂j ). (3.26)

As expected, in all the considered cases we have found RN ≡ rank(C) = rank(Y).

3.4.1 Cube

The Cube pixelization [84], represented in figure 3.1, maps the pixels from the surface

of a cube to the unit sphere in such a way that their areas are approximately equal. The

successive resolution levels are attained by recursive subdivision of the projected faces

of the cube, controlled by the resolution parameter res, which can take positive integer

values. The number of pixels is given by Npix = 6×4res−1. The minimum resolution, six

pixels at the centers of the six faces of the cube, is given by res = 1. This pixelization

has been extensively used during the processing of the COBE experiment [88].

In this pixelization all pixels have a SI -symmetric pixel. They also satisfy the SIII
symmetry, except for two pixels on the poles for the first resolution level. Table 3.2

shows the values of the rank of the covariance matrix obtained numerically (RN ) and

the maximum theoretical rank (Rth) as a function of ℓmax. The pixels of resolutions

3Note also that, in practice, very small values of the power spectrum can introduce numerical errors in
the calculation of the rank of C, giving rise to ill-conditioned matrices in cases expected to be non-singular
from theoretical arguments (see Section 3.5 for details).
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Figure 3.1: Cube pixelization corresponding to res = 5 and Npix = 1536.

(res, Npix) (1,6) (2, 24) (3,96)

ℓmax 2 3 4 2 3 4 5 5 6 7 8 9 10 11

RN 2 5 6 5 12 19 24 32 45 60 75 88 94 96
Rth 3 6 6 5 12 19 24 32 45 60 77 92 96 96

Table 3.2: Numerically calculated rank for the covariance matrix (RN ) compared to the
maximum expected theoretical rank (Rth) for different configurations of the Cube pixeliza-
tion.

2 and 3 satisfy the SIII symmetry, thus the maximum theoretical rank is given by R3.

For res = 1, the theoretical ranks have been calculated taking into account that the SI
symmetry is satisfied and that there are two pairs of pixels that also satisfy SIII .

The table shows that for some ℓmax we have RN ≤ Rth. In order to understand why

the maximum range is not always achieved, let us consider as a workable example the

case res = 1, ℓmax = 2, where we find RN = 2 versus Rth = 3. For this resolution level

we have six pixels located at (±1,0,0), (0,±1,0), (0,0,±1) in Cartesian coordinates. Since

C is calculated using the harmonics of ℓ = 2, Y is a matrix with 6 rows (number of

pixels) and 5 columns (number of harmonics). Following the arguments of the previ-

ous section, it is convenient to order the spherical harmonics following the sequence

{e1, e3, e0, e2} (note that odd values of ℓ are not considered since ℓmin = ℓmax = 2). For

our case, this corresponds to an ordering of m of {1,−1,0,−2,2}. Pixels are ordered (0,

0, 1), (1, 0, 0), (0, 1, 0), (-1, 0, 0), (0, -1, 0), (0, 0, -1). In this way, carrying out the
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corresponding operations, we get the matrix Y

Y =



0 0
√

5
π

2 0 0

0 0 −
√

5
π

4
1
4

√
15
2π

1
4

√
15
2π

0 0 −
√

5
π

4 −1
4

√
15
2π −1

4

√
15
2π

0 0 −
√

5
π

4
1
4

√
15
2π

1
4

√
15
2π

0 0 −
√

5
π

4 −1
4

√
15
2π −1

4

√
15
2π

0 0
√

5
π

2 0 0


. (3.27)

The first two columns of zeros occur because Y 1
2 and Y −1

2 contain the product sinθ cosθ,

which becomes null for the 6 considered pixels. All points are symmetric in the sense

r̂ → −r̂, and therefore we can use eq. (3.14) and transform Y into a matrix with 3 rows

of zeros. Choosing the pixels (0,0,1), (1,0,0) and (0,1,0) when applying the symmetry

we get

Y→



0 0
√

5
π

2 0 0

0 0 −
√

5
π

4
1
4

√
15
2π

1
4

√
15
2π

0 0 −
√

5
π

4 −1
4

√
15
2π −1

4

√
15
2π

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (3.28)

Then, the maximum rank we could ever achieve is 3. Note that Y 2
2 = Y −2

2 = 0 at (0,0,1),

so the first row in Ye has only one non zero term, at the column that corresponds to Y 0
2 .

Taking into account that the other two points are SIII symmetric, we can get more zero

blocks in Ye. Therefore, the first three rows of the matrix become

Ye→


0 0

√
5
π

2 0 0

0 0 −
√

5
π

4 0 0

0 0 0 −1
4

√
15
2π −1

4

√
15
2π

 , (3.29)

which yields to a matrix of rank 2, a unit of rank lower than expected taking into ac-

count the size of Ye after applying SI . The reason for this lower rank for this particular

pixelization is that two columns of spherical harmonics, Y −1
2 and Y 1

2 , are zeros and the

columns of Y 2
2 and Y −2

2 are equal. This illustrates how in some cases the rank can be

lower than expected by the theoretical expressions when computing the rank of matri-

ces Y calculated on particular sets of pixels.
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Figure 3.2: Icosahedron pixelization corresponding to res = 5 and Npix=812.

(res, Npix) (1, 12) (2, 92)

ℓmax 2 3 4 5 6 3 4 5 6 7 8 9 10 11 12

RN 5 8 8 11 12 12 21 32 45 60 77 87 88 91 92
Rth 5 11 12 12 12 12 21 32 45 60 77 90 92 92 92

Table 3.3: Numerically calculated rank for the covariance matrix (RN ) compared to the
maximum expected theoretical rank (Rth) for different configurations of the Icosahedron

pixelization.

3.4.2 Icosahedron

The Icosahedron pixelization [85], shown in figure 3.2, is constructed by subdividing

the faces of an icosahedron into a regular triangular grid, starting from a first resolution

of 12 pixels situated at the vertices of the icosahedron. The pixels are projected onto

the sphere in such a way that their areas are approximately equal. Similarly to the

Cube pixelization, the resolution of the pixelization is controlled by an integer positive

parameter res, being the number of pixels given by Npix = 40× res× (res− 1) + 12.

This pixelization satisfies the SI symmetry. However, since the vertices of the Icosa-

hedron, which are the starting point of the subsequent resolutions, do not fulfill sym-

metries SII or SIII , no further symmetries are expected to be found. In particular, we

have tested that this is the case up to resolution res = 9. Table 3.3 shows the values of

the rank of the covariance matrix obtained numerically (RN ) and the maximum theoret-

ically expected range (Rth) as a function of ℓmax for two different resolutions. Note that

for the shown resolutions the SI symmetry is satisfied and, therefore, Rth = R1. As for

the Cube pixelization, RN ≤ Rth is always satisfied. The reason why the maximum rank

is not always achieved can be easily seen in the lowest resolution (res = 1, Npix = 12).
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If we sum up to ℓmax = 2, the rank of the matrix is limited by the number of spherical

harmonics, which is 5, and we have found RN = 5. If we sum up to ℓmax = 3, there

are 7 new harmonics, thus the rank could increase, in principle, up to 12. However,

due to the presence of the SI symmetry, we have that the maximum theoretical rank is

Rth = 11. Nevertheless, the numerical rank RN is found to be eight. One of the reasons

for the reduction of the rank is that the z-coordinate of all pixels take one of the values

z = {−1,1,− 1√
5
, 1√

5
} and the Legendre polynomials for ℓ = 3 and m = ±1,

P −1
3 (z) =

1
8

√
1− z2

(
5z2 − 1

)
, P 1

3 (z) = −3
2

√
1− z2

(
5z2 − 1

)
, (3.30)

happen to cancel at these points, which leads to two zero columns in the Yo block.

Thus we are left with only five non-zero columns instead of seven for this block, which

means that the covariance matrix rank could be ten as maximum. However, due to

the particular positions of the pixels in this pixelization scheme, other columns of this

block happen to be linearly dependent. In particular, the column that corresponds to

m = 0 is linearly independent of the other four columns, but the m = −3 column is

proportional to the m = −2 column and the same relation applies to columns m = 3 and

m = 2. Therefore, the rank of the odd block is reduced to three, and adding up the rank

of the even block, which is five, we finally get rank eight for the covariance matrix as

found. Note that adding multipoles up to ℓmax = 4 does not change the situation, but

going up to ℓmax = 5 raises the rank to 11. Finally, adding multipoles up to ℓmax = 6

provides enough independent columns to get a non-singular covariance matrix.

3.4.3 Igloo

The Igloo pixelation [86] divides the sphere into bands of variable width in θ. Each

band is divided into a different number of pixels at constant intervals of φ, and the

interval varies from band to band. Thus, the edges of the pixels are of constant latitude

and longitude. Among the different options, the one presented here consists of a base

resolution of twelve pixels, three on each of the poles and six on the central band. The

angles have been chosen in such a way that the resultant pixels are of equal area. The

subsequent resolutions were obtained by recurrent subdivisions of each pixel into other

four pixels of equal area, always having three pixels at each pole.

The number of pixels is Npix = 12 ×N2
side. The resolution is controlled by the Nside

parameter, which can take as values integers that are a power of 2. Figure 3.3 shows the

Igloo pixelization for Nside = 2. The Igloo pixels are symmetric in the SI sense. More-

over, for all resolutions there are couples of SII -symmetric pixels in the central area.



72 chapter 3. the regularity of the covariance matrix

Figure 3.3: Igloo pixelization corresponding to Nside=2 and Npix=48.

(Nside,Npix) (4, 192)

ℓmax 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RN 5 12 21 32 45 60 77 96 117 140 162 179 187 191 192
Rth 5 12 21 32 45 60 77 96 117 140 165 186 192 192 192

Table 3.4: Numerically calculated rank for the covariance matrix (RN ) compared to the
maximum expected theoretical rank (Rth) for different configurations of the Igloo pix-
elization.

For resolutions 2 and higher, there are also some pixels with SIII symmetry. Taking

into account these particular symmetries, we find that RN = Rth = R1 for all ℓmax for

resolutions Nside = {1,2}. For Nside ≥ 4 the numerical rank of the covariance matrix is

found to be smaller than the maximum theoretical rank in some cases. Table 3.4 shows

the results for Nside = 4 and different values of ℓmax.

3.4.4 GLESP

The Gauss-Legendre Sky Pixelization (GLESP) [87] (figure 3.4) makes use of the Gaus-

sian quadratures to evaluate numerically the integral with respect to z of the expression

aℓm =
∫ 1

−1
dz

∫ 2π

0
dφ∆T (z,φ)Y ∗ℓm(z,φ), (3.31)

which can be formally expressed with this method in an exact form as a weighted finite

sum. The surface of the sphere is divided into N rings of trapezoidal pixels with values

of θ at the centers of the pixels according to the Gauss-Legendre quadrature method.

There is some degree of freedom to fix the number and size of the pixels on the rings,

but preferentially they are defined to make the equatorial ones roughly square. The
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Figure 3.4: GLESP pixelization corresponding to a resolution parameter N = 10. In this
figure the rings have been rotated to make the pixels SI -symmetric.

number of pixels on the rest of the rings is chosen in such a way that all the pixels have

nearly equal area.4 Finally, polar pixels are triangular. Note that this pixelization is not

hierarchical.

Regarding the presence of symmetries, those pixels belonging to rings which have

been divided into a number of pixels which is a multiple of two or four will satisfy

SII or SIII . However, this is not always the case and, therefore, the GLESP pixelization

does not fulfill these symmetries as a whole. Referring to the SI -symmetry, it can be

fulfilled in certain cases if the rings are rotated with respect to the z-axis (note that this

rotation does not change the essence of the pixelization). In particular, if the number of

rings is even, each of the rings on one hemisphere can be positioned with respect to the

opposite ring on the other hemisphere in such a way that the SI -symmetry is satisfied.

If N is an odd number, there is an unmatched ring on the equator, and the symmetry

is only fulfilled if this ring is divided into an even number of pixels. Fig. 3.4 shows the

GLESP pixelization for N = 10 in a SI -symmetric configuration.

Table 3.5 shows the values of the rank for the case with four rings. The number

of pixels is 22, eight on each of the central rings and three on each of the poles. For

the sake of simplicity and in order to allow for a better comparison with the other

considered pixelizations, we have rotated the rings in such a way that all the pixels

have their SI -symmetric pair. The pixels on the two central rings have a SI , SII and SIII -

4It is interesting to note that to study the CMB polarization and with the aim of obtaining a better
evaluation of the 0,±2aℓ,m-coefficients, two additional over-pixelization versions of this scheme have been
proposed [89]. In this case, there is a larger number of pixels on the rings than in the nearly equal area
scheme considered in this chapter, with decreasing area of the pixels on the rings as they get closer to the
polar caps. Since our work is oriented to the scalar field case, we will study the nearly equal area version
of the pixelization.
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(N,Npix) (4, 22)

ℓmax 2 3 4 5 6

RN 5 12 17 21 22

Rth 5 12 18 22 22

Table 3.5: Numerically calculated rank for the covariance matrix (RN ) compared to the
maximum expected theoretical rank (Rth) for the GLESP pixelization for N = 4.

symmetric partner, but the pixels on the poles do not have a SII and SIII -symmetric one.

In this situation, the RII and RIII expressions are not strictly valid. However, if we find

that RI = RII = RIII , i.e., that the matrix rank is not reduced under the presence of SII
and SIII , we can conclude that the same is valid when the symmetries are only partially

fulfilled, as for the GLESP pixelization. For the considered case, we have indeed found

RI = RII = RIII for all the values of ℓmax. Table 3.5 shows that for ℓmax = 4 and ℓmax = 5

the rank of C is one unit lower than the theoretical rank. Let us try to explain where

this unit is lost. Since the SI -symmetry is fulfilled, we have two diagonal blocks in

Y. For ℓmax = 4, the block of odd ℓ has 11 rows and seven columns, and its rank is

seven. The block of even ℓ, 11 rows and 14 columns, and its rank is ten. Due to the

way in which the values of θ are chosen in this pixelization scheme, the roots of the

Legendre polynomial with ℓ = 4 in the case of N = 4, the column of Y that corresponds

to the harmonic Y4,0 is made up of zeros. Aside from this column, among the other

13 columns there are only 10 linearly independent columns. We have found that the

group of ten that corresponds to the five harmonics of values of ℓ = 2 and the other five

of ℓ = 3 and values of m : -4, -3, -1, 1 and 3 are linearly independent. When ℓmax = 5,

we get 11 new columns on the odd block of Y, and the rank in this block saturates

to 11, but the block of even ℓ still has 11 rows and 14 columns but only ten linearly

independent columns; thus the rank is a unit lower than the theoretical value. When

ℓmax = 6 we get new linearly independent columns in the block of even ℓ, and the rank

saturates.

3.4.5 HEALPix

The most extensively used pixelization for CMB analysis is HEALPix, which stands for

Hierarchical Equal Area iso-Latitude Pixelization [39]. HEALPix divides the sphere into

twelve spherical diamond-shaped pixels on three rings, one of them on the equator

and the other two towards the poles. The four pixels forming each ring have the same
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Figure 3.5: HEALPix pixelization corresponding to Nside = 8 and Npix=768.

(Nside,Npix) (8, 768)

ℓmax 25 26 27 28

RN 672 724 760 768

Rth 672 725 761 768

Table 3.6: Numerically calculated rank for the covariance matrix (RN ) compared to the
maximum expected theoretical rank (Rth) for the HEALPix pixelization for Nside = 8 in the
multipole regime in which C becomes regular.

latitude and each diamond is then subdivided recursively in order to get the pixels for

the different resolution levels. The total number of pixels is Npix = 12 ×N2
side, where

Nside is the resolution parameter, which is always an integer power of 2. Figure 3.5

shows the HEALPix pixelization for Nside=8. By construction all the pixels satisfy the

SI , SII and SIII symmetries. We find that for the three lowest resolutions (Nside = 1,2

and 4), the covariance matrix always achieve the maximum possible rank, i.e., RN =

Rth = R3 for all ℓmax. The first reduction of rank occurs for Nside = 8 and ℓmax = 26

(see table 3.6). In particular, when ℓmax = 26 we have Rth = 725 and RN = 724. Let us

focus on this case in more detail. We have found that the loss of rank of the covariance

matrix is found to lie in block Ye2. The number of rows in block Ye2 is determined

by the quantity k/4 + u/2, while the number of columns is given by the number of

spherical harmonics with even ℓ and mod(m,4) = 2 (see Appendix B.3 for details). In

particular, for Nside = 8 we have a total of 768 pixels. Among these, 32 have z = 0,

one half of them with 0 ≤ φ < π (i.e. u = 16). We also have 368 pixels with z > 0

(i.e., k = 368). Therefore, the block Ye2 has k/4 + u/2 = 100 rows. For ℓmax = 26, the

number of spherical harmonics with ℓ even and mod(m,4) = 2 is 98. So the block has
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size 100 × 98, but rank 97. We have also checked that the rank of all the sub-blocks

that can be formed by removing any particular column of Ye2 is 97. This means that

any group of 97 out of the 98 spherical harmonics are linearly independent, but the 98

columns taken as a whole are linearly coupled. This shows, again, how some units of

rank can be lost by properties related to the particular values of the pixels of the chosen

pixelization.

So far we have demonstrated, for five different pixelization schemes, that for a given

resolution parameter, it is possible to determine the lowest ℓmax needed to make C
regular. Furthermore, a detailed analysis of the pixel properties allows us to detect

linear combinations of spherical harmonics that lead to reductions of the maximum

theoretical rank. When this happens, it is necessary to raise ℓmax in order to regain

regularity.

Among the five pixelization schemes we have considered, HEALPix is particularly

interesting because of two nice properties. On the one hand, from the tests we have

presented, it seems to be the pixelization in which the reduction of the rank of the

covariance matrix with respect to the maximum expected theoretical value is lowest.

On the other hand, since it presents the three types of considered symmetries for all

the resolution levels, it is easy to divide the Y matrix into eight blocks, which in turn

makes it easier to study the linear independence of the columns of the matrix. For these

reasons, together with the fact that HEALPix is the most commonly used pixelization for

CMB analysis, we will only consider this pixelization along the rest of the chapter.

The discussion so far has focused on an idealized case. In particular, there is a

number of real-life issues we have not taken into account yet:

• Until now, we have used Cℓ = 1 and neglected the window function Bℓ.

• In many real-life applications, C is calculated for a masked area of the sky.

• We have not considered the effect of noise.

We will discuss the impact of these effects on the regularity of C in the next sections.

3.5 Effect of the power spectrum and the beam transfer func-
tion

Up to now we have studied the rank of C according to eq. (3.8) using a simplified angu-

lar power spectrumCℓ = 1. In a realistic CMB analysis, we would use the corresponding
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ℓmax 24 25 26 27 28 29 30 31

RN (1) 621 672 724 760 768 768 768 768

RN (2) 621 671 709 735 752 761 766 768

Table 3.7: Numerically calculated ranks of C for a HEALPix resolution of Nside = 8 and
different values of ℓmax. RN (1) is the rank of C using Cℓ = 1 and not including any beam
window function. RN (2) is the rank of the same matrix when considering a realistic CMB
power spectrum and beam.

Cℓ’s and the beam transfer function Bℓ which encodes the response of the beam of the

experiment (see Section 2.5). Therefore

Cij =
∑
ℓ

2ℓ + 1
4π

CℓB
2
ℓPℓ(r̂i · r̂j ). (3.32)

The beam transfer function usually drops quickly for high multipoles and the sum of

eq. (3.32) is dominated by low-ℓ terms. As we mentioned before, theoretically this

should not affect the rank of C. However, in practice, since the sums are computed

numerically, it is possible that the regularity of C is affected by machine precision limi-

tations. In table 3.7 we compare the rank of C as calculated in the previous section (i.e.,

Cℓ=1 for all multipoles and not including any window function) with that calculated

using a realistic CMB power spectrum, for the HEALPix pixelization with resolution

Nside = 8. In particular, we have considered the Planck ΛCDM best-fit model that in-

cludes also information from the Planck lensing power spectrum reconstruction and

Baryonic Acoustic Oscillations [90],5 a Gaussian beam with a FWHM corresponding to

2.4 times the pixel size at the considered resolution (FWHM=17.6 degrees forNside = 8)

and we have also taken into account the corresponding HEALPix pixel window func-

tion. This model will be used along the chapter, unless otherwise stated. As before,

we have estimated the rank of the covariance matrix using Mathematica with its de-

fault machine precision (which corresponds to the standard double precision). From

the results of table 3.7, we see that the rank estimated for the covariance matrix can be

significantly smaller when working under realistic conditions for the power spectrum,

indicating that numerical errors may have an important effect in real-life applications.

We can further study the effect of numerical precision on the effective rank of C by

means of the Mathematica software. Mathematica can operate the sums of spherical

5More specifically we have used model 2.30 described in the document https://wiki.cosmos.esa.int/
planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf from the Planck Explanatory Sup-
plement

https://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf
https://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf
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ℓmax Machine 50 200 400 800

26 −7.70× 10−615 2.95× 10−2713 −2.49× 10−9329 1.44× 10−18046 1.05× 10−35734

27 −9.50× 10−390 −4.58× 10−759 4.90× 10−1979 −1.74× 10−3545 −4.80× 10−6767

28 6.91× 10−255 3.12× 10−256 3.12× 10−256 3.12× 10−256 3.12× 10−256

29 1.64× 10−174 2.62× 10−174 2.62× 10−174 2.62× 10−174 2.62× 10−174

30 5.54× 10−136 5.66× 10−136 5.66× 10−136 5.66× 10−136 5.66× 10−136

31 4.39× 10−122 4.40× 10−122 4.40× 10−122 4.40× 10−122 4.40× 10−122

Table 3.8: Determinant of C computed with different precisions and ℓmax.

harmonics symbolically and convert the result into numerical format with any desired

number of decimals. Those quantities which are available with a limited precision (e.g.

the power spectrum or the pixel window function) can be rationalized in Mathematica,

which helps to control the propagation of numerical errors.6 In this way, calculating

the covariance matrix given by eq. (3.32) with a precision of 200 decimals we recover

the ranks given by RN (1) in table 3.7. This confirms that the loss of rank observed in

table 3.7 is, in fact, a matter of numerical errors.

The effect of numerical precision can be observed in more detail in table 3.8. We

have calculated the determinant of C for a realistic power spectrum for different values

of ℓmax and different numerical precisions: the machine native precision and 50, 200,

400 and 800 decimals. For ℓmax = 26 and ℓmax = 27 the determinant must be zero be-

cause the theoretical rank is lower than 768. This fact is easily seen at higher numerical

precisions, where the value of the determinant quickly drops to zero. Conversely, at

ℓmax = 28, 29 and 30, the determinant is non-zero, and, even if very small, we see that

its value is stable when sufficiently high precision is used. In particular, the default

machine precision is not enough to get the correct value of the determinant (consid-

ering a precision of two decimal places), although it gets closer to the correct value as

ℓmax increases. This relates to our previous finding showing that the estimated rank is

lower than expected for these values of ℓmax when using the default machine precision,

and it becomes correct for higher numerical precisions.

3.6 Effect of noise

Another common complexity on CMB data is the presence of instrumental noise. Let

us now consider the effect of adding a zero-mean noise n to the signal s. Given that

6Of course this comes at the cost of increasing the computational time.
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noise and signal are expected to be statistically independent, the covariance matrix of

the data x = s + n is simply given by the sum of the signal (S) and noise (N) covariance

matrices. Moreover, if the noise is not spatially correlated, the matrix N is diagonal. In

that case

Cij = Sij + Nij =
ℓmax∑
ℓ=ℓmin

2ℓ + 1
4π

CℓB
2
ℓPℓ(r̂i · r̂j ) + σ2

i δij . (3.33)

Taking into account that each column of C is given by the sum of two columns, we can

expand by columns its determinant. In this way, the expansion takes the form of the

sum of 2n determinants, one of them containing only columns from S, a second one

containing only columns from N and the rest containing columns from both matrices.

The determinants that contain columns from S can be either positive or null, depending

on the value of ℓmax and the pixel configuration, but the term that depends only on

columns from N is always positive. It can also be easily shown7 that the terms with

columns from both matrices are also greater or equal than zero. Therefore, we have

detC ≥ detN > 0. (3.34)

This shows that the presence of noise regularizes the covariance matrix.8 This is a well

known fact, and in many applications it is common to use a small amount of artificial

noise to help regularizing a numerically ill-behaved covariance matrix [74, 91]. The

question arising in these cases is what is the optimal noise level to be introduced in

order to make the matrix regular without degrading too much the quality of the data.

We have carried out some tests in order to illustrate the regularizing effect of adding

noise to the covariance matrix for four different resolutions (Nside = 4, 8, 16 and 32) of

the HEALPix pixelization. We have used the same Planck ΛCDM model as in the previ-

ous section for the CMB power spectrum and a Gaussian beam with FWHM equal to 2.4

times the pixel size at each resolution. The pixel window function given by HEALPix

has also been taken into account. For each case we have performed the summations

up to the ℓmax value for which C is regular according to the constraint R3. We have

also added different levels of isotropic white noise according to σ2 = 10−fn (µK)2, to be

compared with the CMB variance given in the fourth column of table 3.9. As in the

previous section, the rank of the covariance matrix for each of the considered cases has

been obtained using Mathematica with its default machine precision and is given in

table 3.9.
7By interchanging rows and columns and computing the resultant determinant.
8Note that although this reasoning has been made for the only intensity case, it also holds for the full

—intensity and polarization— case, because it is still true that C = S + N.
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Nside Npix lmax Sii No noise fn = 9.5 9.0 8.5 8.0 7.5 7.0

4 192 14 487 192 192 192 192 192 192 192
8 768 28 1057 752 752 756 768 768 768 768

16 3072 56 1655 2937 2937 2937 2938 3072 3072 3072
32 12288 111 2308 11518 11518 11518 11518 11518 12288 12288

Table 3.9: Rank (RN ) of C for several HEALPix resolutions after adding different levels of
noise. The columns show, from left to right: the resolution parameter, the corresponding
number of pixels, the ℓmax used for the calculation of C (which is the theoretical multipole
that makes the matrix regular), the value of the diagonal element Sii (i.e., the CMB vari-
ance, in units of (µK)2), the matrix rank without noise and the one obtained after adding
noise with different values of the fn parameter such that σ2 = 10−fn . The boldface indicates
the level of noise at which the matrix C becomes regular.

We find that for Nside = 4, the covariance matrix is regular even without the pres-

ence of noise, whereas for higher resolutions it becomes necessary to add a certain level

of noise for the matrix to be regular. Note that the required level of noise grows with

Nside, although it is always very small in comparison to the value of the CMB variance

and, therefore, it is not expected to compromise the quality of the data.

In many scientific applications, as for example the estimation of the power spec-

trum through the Quadratic Maximum Likelihood method (Chapter 2) it is necessary

to perform operations with C or its inverse. Such operations propagate numerical er-

rors and may lead to instabilities even if one starts with a regular matrix. In figure 3.6

we show the result of the operation − log
(
abs

(
1− |CC−1|

))
, with C calculated using the

theoretical ℓmax value that makes the matrix regular (third column in table 3.9), as a

function of the noise level. Positive values of this quantity indicate approximately the

decimal place at which the determinant |CC−1| departs from unity, while negative val-

ues show how many orders of magnitude this determinant (in absolute value) is greater

than unity. This gives an indication of the level of noise required to operate with the

covariance matrix and its inverse within the required precision.

3.7 Effect of masking

The first effect of masking is a reduction of the number of pixels over which the co-

variance matrix is computed, and therefore a smaller dimension of C. Consequently,

a lower value of ℓmax will be needed in general to obtain a regular matrix. A second

more subtle effect is the possible breaking of pixel – spherical harmonic symmetries.
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Figure 3.6: Measurement of the departure of the numerical value of |CC−1| from unity
versus the level of added noise, for Nside= 4, 8, 16 and 32 (see text for details).

In Section 3.3 we studied the effect of three kinds of symmetries, SI , SII and SIII . We

showed that, among them, SI has the greatest impact on the rank of the covariance

matrix. Therefore, for the sake of simplicity, in this section we will study the effect of

masking only under the presence of the SI symmetry.

Let us consider that, for a fixed resolution parameter and a given mask geometry,

we have n valid pixels. Let us also consider that, among these pixels, np have their

symmetric pixel inside the region allowed by the mask, while nu pixels do not have it.

Taking into account the symmetries of the np pixels the matrix Y can be transformed as

described in Section 3.3

Y→



Yevennp/2×Ne 0np/2×No

0np/2×Ne Yoddnp/2×No

Yevennu×Ne Yoddnu×No


, (3.35)

where, for example, Yevennp/2×Ne stands for a block with np/2 rows and Ne columns, whose

elements are the spherical harmonics of even ℓ calculated over the independent half of

symmetrical pixels inside the mask. For the matrix of eq. (3.35) to be of maximum rank

(see Appendix C for details), it is necessary that

Ne ≥ np/2, No ≥ np/2, (3.36)

due to the pixel symmetry, and

Ne +No ≥ np +nu , (3.37)
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Figure 3.7: Location of the pixels outside the SEVEM mask for Nside = 8. The pixels allowed
by the mask with an SI symmetrical partner are red, while those without a symmetric
partner are blue. The light and dark gray pixels are discarded by the mask. In particular,
the light gray pixels show the points symmetrical to the unpaired blue ones.

so that there are at least as many spherical harmonics as pixels. The previous expres-

sions allow us to find the minimum ℓmax that makes the matrix regular in a case with

mask and SI symmetry.

We can also calculate the maximum rank of a matrix given the number of pixels,

the mask, the number of pixels with and without a symmetric partner and the value

of ℓmax. Transforming the matrix of eq. (3.35) into diagonal blocks, in Appendix C we

show that the rank matrix is constrained by

rank(Y) ≤min(np/2,Ne) + min(np/2,No) + min(nu ,L), (3.38)

were L = Ne −min(np/2,Ne) +No −min(no/2,Ne). The expression (3.38), RM hereafter,

generalizes expression (3.16) for any mask configuration.

As an example, let us consider the case of Nside = 8 in the HEALPix pixelization and

the mask produced by the SEVEM component separation method [79] corresponding to

the first Planck data release.9 The SEVEM mask removes 154 pixels of the sky at this

resolution level. Among the 614 remaining pixels, 590 have a SI symmetrical pixel,

whereas 24 do not have a symmetrical partner. Figure 3.7 shows the locations of paired

and unpaired pixels for this case.

Table 3.10 shows the maximum expected rank Rth of the covariance matrix accord-

ing to RM and those calculated with Mathematica using a realistic CMB power spec-

trum and beam (RN ). In addition, two different precisions are considered: the native

precision of the machine and a 100-digit precision. We find that the rank estimated

with Mathematica coincides in all the considered cases with the maximum allowed

9All Planck products are publicly available at the Planck Legacy Archive, http://pla.esac.esa.int/pla.

http://pla.esac.esa.int/pla
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lmax 21 22 23 24 25 26

Rth 480 525 572 614 614 614

RN (default) 480 525 571 602 611 614

RN (100) 480 525 572 614 614 614

Table 3.10: Rank of C for the HEALPix pixelization at the Nside = 8 resolution using the
SEVEM mask for different values of ℓmax. Rth is the maximum theoretical rank according to
RM , and RN is the rank of C calculated with Mathematica using the default and 100-digit
precisions.

theoretical rank when using the higher precision, whereas numerical errors affect the

calculation using the default precision.

3.8 Application to the QML method

As a working example, let us consider the case of HEALPix pixelization at resolution

Nside = 32 and full-sky. The total number of pixels is 12288 and, according to the

theoretical values given in table 3.1, it is necessary to sum up to ℓmax = 111 in order to

get the maximum rank of C. However, from table 3.9 we know that with this ℓmax the

numerical matrix is not regular. A solution for this problem is to add a small amount

of noise to make C regular. However, what does small mean in this context? If the

artificial noise is too large, the performance of the QML method will suffer degradation,

particularly at high multipoles, but if the noise level is too small the matrix will pose

numerical instabilities. Therefore the choice of the correct noise level is not trivial.

In this section we will study in detail the effect of noise addition and investigate the

optimal small amount of noise to be added.

In particular, we will study the value of the determinant |CC−1|, the statistical prop-

erties of the product η = xtC−1x (which, since both the simulated CMB and noise are

Gaussian, should follow a χ2 distribution with the same number of degrees of free-

dom as of pixels in the map), and the estimation and error bar of the power spectrum

given by the QML method after the addition of different levels of noise. In order to do

this, we first compute the matrix S in eq. (3.33) using the Planck best-fit model (and

including the beam and pixel window function) with ℓmax = 111 and, secondly, we add

isotropic white noise with variance σ2 = 10−fn ; CMB maps are then simulated with the

HEALPix package atNside = 32, and noise is added following a normal distribution with

dispersion parameterized by fn.
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fn % noise ⟨σQMLℓ /σCVℓ ⟩ℓ p-value |CC−1| − log
(
abs

(
1− |CC−1|

))
0 2.08 2.54 0.63 1.00000000006 10.22
1 0.66 1.16 0.93 1.0000000007 9.13
2 0.21 1.02 0.66 1.000000003 8.49
3 6.6× 10−2 1.01 0.73 0.999999993 8.16
4 2.1× 10−2 1.01 0.73 1.000001 5.98
5 6.6× 10−3 1.01 0.73 0.999998 5.95
6 2.1× 10−3 1.01 0.73 1.000009 5.05
7 6.6× 10−4 1.01 0.60 1.0002 3.66
8 2.1× 10−4 1.01 0.11 0.97 1.50
9 6.6× 10−5 1.01 ∼ 10−15 1.27× 1036 -36.10

9.25 4.9× 10−5 1.13 ∼ 10−15 −1.12× 10299 -299.05
10 2.1× 10−5 ∼ 7× 105 ∼ 10−14 ∞ −∞

Table 3.11: Summary of statistical tests obtained from 10000 CMB simulations (at Nside =
32) with different levels of regularizing noise. The first column shows the value of the noise
parameter fn, σ2

noise = 10−fn . The second column gives the percentage of noise with respect
to the dispersion of the CMB signal, i.e., 100 × σnoise/

√
Sii . The third column shows the

average over ℓ of the errors on the estimation of Dℓ divided by those corresponding to the
cosmic variance, eq. (3.39). The p-value corresponds to the probability that the quantity
xtC−1x follows the expected χ2 distribution according to the Cramér-von Mises test. The
two last columns show the results in relation to the determinant of |CC−1|.

Table 3.11 shows the value of the determinant |CC−1| (fifth column) for different lev-

els of regularizing noise as well as the quantity − log
(
abs

(
1− |CC−1|

))
(sixth column),

introduced in Section 3.6. It is apparent that for very low levels of noise, the covari-

ance matrix becomes singular and the determinant produces values which are very far

from unity. Conversely, for values of fn ≲ 5, the determinant departs from its theoret-

ical value approximately in the sixth decimal place (or even better). Note that fn = 5

corresponds to a very small level of noise compared to the signal (second column) and,

therefore, it is not expected to imply a degradation of the data. Of course, the more

noise we include, the closer the determinant gets to unity, but at the price of degrading

the data.

The product η = xtC−1x should follow a χ2 distribution with 12288 degrees of free-

dom. However, if there are numerical instabilities in C−1, this quantity will depart

from its theoretical distribution. In figure 3.8 we show two histograms of η obtained

from 10000 simulations of CMB plus noise with two different levels of noise in compar-

ison with the expected χ2 distribution. The fn = 5 noise results in a regular covariance
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Figure 3.8: Distribution of numerical values of xtC−1x compared with the theoretical dis-
tribution, for noise levels fn = 5 and 9.25 obtained from 10000 simulations.

matrix, and fn = 9.25 is in the limit in which the tests fail dramatically. It clearly shows

how the distribution of η departs from the theoretical distribution when the level of

the noise is low. This can be quantified, for instance, by applying the Cramér-von

Mises goodness-of-fit hypothesis test [92], which determines the p-value of the data to

be consistent with the theoretical distribution. The p-values obtained for the different

considered cases are given in table 3.11 (fourth column). As one would expect, the data

are consistent with a χ2 distribution only when the covariance matrix is regularized by

adding a certain level of noise to the simulated data.

So far, we have studied two generic statistics directly related to the covariance ma-

trix. We will now investigate how the possible singularity of C propagates through the

QML estimator. Figure 3.9 shows the average and 1σ error for D̂ℓ when considering

three different levels of regularizing noise, namely, fn = 0, 5 and 9.25. If the noise

level is too small, the estimation of the low multipoles is systematically biased down-

wards. If the noise is too high, the performance of the estimator degrades at high ℓ

and the error bars grow quickly. At intermediate noise levels, the estimator is unbiased

and the performance of the method is basically limited only by cosmic variance, up to

ℓ ≈ 3Nside.

To further quantify the performance of the QML method under the presence of

different levels of regularizing noise, we have calculated the following quantity〈
σQMLℓ

σCVℓ

〉
=

1
3Nside − 1

3Nside∑
ℓ=2

σQMLℓ

σCVℓ
, (3.39)

where σQMLℓ corresponds to the dispersion of the QML estimator and σCVℓ to that in-

ferred from the cosmic variance. This average ratio gives information on how much
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Figure 3.9: Power spectrum estimation given by the QML method for three different levels
of noise, fn = {0,5,9.25}.The average and 1σ error bars have been obtained from a set of
10.000 simulations.

the error in the estimation of the QML degrades with respect to the optimal case. Ta-

ble 3.11 shows this ratio for different levels of added noise. For a very low level of noise,

the performance of the estimator is clearly degraded due to the singularity of C, while

for a high level of noise, its effect in increasing the error of the estimator at high multi-

poles also becomes apparent. There is an intermediate region at which the error in the

estimation is very close to the error expected by cosmic variance, i.e., ⟨σQMLℓ /σCVℓ ⟩ ≈ 1.

By looking simultaneously at the results for the three previous tests, we can get a

better idea of which is the optimal level of noise to be added in order to regularize the

covariance matrix without degrading the data for the particular case studied in this

section. The hypothesis test based on xtC−1x and the determinant |CC−1| probe similar

properties, since both of them focus directly on the inverse of C. As one would expect,

the values in table 3.11 show that the results from both statistics are consistent. In

particular, when the noise is high, both tests show that the covariance matrix is regular,

while, when the noise is reduced, the determinant departs from unity and the p-value

of the Cramér-von Mises test gets close to zero. Note that the more noise is added,
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the better the discriminant is, but this does not indicate the level of noise at which the

quality of the data starts to get compromised. Therefore, it is necessary to look at other

complementary statistics (such as the one based on the QML method) in order to find

the appropriate range of noise, sufficiently high as to regularize the covariance matrix

but also as low as possible so that the data is not degraded. By studying the error bar

in the estimation of the power spectrum with QML with respect to that expected by

cosmic variance, we find that very low values of regularizing noise (fn = 9) can give an

apparent good result in this test but a bad value for the determinant. Thus, for the sake

of consistency and being conservative, one should choose a value of noise that achieves

both a good value for the determinant and a minimum error for the QML method. In

this sense, table 3.11 shows that values of fn between 3 and 5 are the most appropriate;

the error bar criterion gives the lowest value for the error size, the determinant departs

from unity at the sixth decimal position (in the worst case), and the hypothesis test

shows consistency with the expected theoretical distribution.

For a generic application, one could give some general considerations to proceed in

order to have a regular covariance matrix and to help establishing the appropriate level

of regularizing noise, if necessary, in each case:

1. Taking into account the number of pixels, the symmetries and if there is a mask,

calculate the minimal theoretical multipole ℓtm up to which is necessary to sum in

the calculation of C in order to get a regular matrix, using the adequate theoretical

expression among the ones given in this chapter.

2. If the real value up to which we sum in the calculation of C, ℓmax, is lower than the

previously determined multipole, ℓtm, noise certainly needs to be added. Even if

it is not lower, we might need to add some regularizing noise due to numerical

errors.

3. If necessary, add an amount of noise. Table 3.11 may help to choose an initial

guess.

4. Calculate the determinant of CC−1 and evaluate how much it deviates from unity.

One should bear in mind that a very good determinant can also be the conse-

quence of adding an excessive amount of noise.

5. If the determinant is good, study the performance of the considered application

(in our case the QML method) for this covariance matrix and compare it with the

expected theoretical result.
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6. If either the value of the determinant or the performance of your application is

not as good as expected, iterate by changing the amount of regularizing noise

until both goals are achieved.

3.9 Conclusions

We have presented a comprehensive study of the regularity of the covariance matrix

C of a discretized intensity field on the sphere. For a general case, we have shown

that a necessary condition for the determinant of C to be different from zero is that

the number of considered harmonics is equal or greater than the number of pixels. The

presence of specific symmetries for the considered pixelization or the use of a mask that

excludes some regions of the sphere also impose additional constraints on the rank of

C. Along this work, five different expressions that establish limits on the maximum

rank achieved by the covariance matrix are presented; they depend on the number of

pixels, the number of spherical harmonics, the kind of symmetries of the considered

pixelization and the presence of a mask.

When putting in practice these expressions for five different pixelizations proposed

within the context of CMB analysis (Cube, Icosahedron, Igloo, GLESP and HEALPix),

we have found that the particular properties of the location of the pixels can lead to

a reduction of the rank of the covariance matrix with respect to the maximum rank

allowed by the previously derived constraints. Interestingly, among the five studied

pixelizations, HEALPix seems to present a lower reduction of the rank than the rest

of pixelizations, which should help to achieve the regularity of the covariance matrix

more easily.

We have also tested that numerical error propagation can give rise to a loss of rank,

which would produce a singular covariance matrix in cases where this is not expected

theoretically. By studying this effect with different numerical precisions, it is possible

to differentiate whether the reduction of the rank is due to the propagation of numerical

errors or to an intrinsically singular covariance matrix. As it is well known, a possible

solution to mitigate the effect of numerical errors is to add some level of uncorrelated

noise in order to regularize the covariance matrix. We have tested that even small

levels of noise can be sufficient, although the particular value of the required noise will

depend on the considered case.

We have also considered a practical case in which the calculation of the inverse of

C is required, namely, the estimation of the CMB temperature power spectrum using

the QML estimator. In particular, we have considered simulations containing CMB and
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different levels of noise using the HEALPix pixelization at resolution Nside = 32. The

optimal level of noise which needs to be included to obtain a regular matrix without

degrading the quality of the data has been investigated in detail. We have studied

particularly the behavior of three different statistics in order to evaluate the quality of

the results versus different levels of regularizing noise: the value of the determinant

of CC−1, a hypothesis test to study the distribution of the quantity η = xtC−1x (which

should follow a χ2 distribution if x represents Gaussian random fields) and the incre-

ment in the error of the estimation of the power spectrum with respect to the ideal

case (given by the cosmic variance). The first conclusion from this particular exercise

is that some level of noise, even if small, must be introduced in order to get a regular

matrix, since numerical errors make the matrix singular even if this was not expected

from the theoretical point of view. As the level of noise increases, the determinant and

the hypothesis test indicate that the covariance matrix becomes more regular (for in-

stance, it is observed that the determinant of CC−1 departs less from unity). However,

increasing the level of noise also degrades the quality of the data, which is reflected in

the increment of the error in the estimation of the CMB power spectrum with the QML

estimator. Also note that the error of this estimator can give good results even if the

determinant criterion is bad. Therefore, for the sake of consistency, it becomes neces-

sary to look simultaneously at all the statistics in order to establish the optimal level

of noise for the error in the QML estimation to be as small as possible, while ensuring

the covariance matrix is well behaved. For this particular case, this can be achieved

with a level of noise as small as ∼ 0.01 per cent with respect to the CMB dispersion (see

table 3.11), although the particular value will depend on the considered case as well as

on the required precision for the covariance matrix.

Some general guidelines concerning the steps to follow to get a regular matrix for a

generic application are given in Section 3.8.

Finally, referred to the full case —intensity and polarization— it can also be inferred

that the rank of the covariance matrix is limited by ℓmax in the same fashion as the

intensity matrix and that the addition of noise regularizes the matrix.
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The binned QML estimator

4.1 Motivation

It is well known that when working with an incomplete sky coverage, coupling appears

between the different multipoles and the errors in the estimation of the power spectrum

increase. In addition, there is a limit in the achieved angular resolution ∆ℓ that depends

on the size of the considered patch. As the mask grows, we are left with less information

due to the pixels discarded. At some point, this leads to the Fisher matrix becoming

singular. For instance, this is usually the case when applying QML to a typical ground

configuration.

As shown in Section 2.4, the QML method consists on two stages: (i) compute the

vector y from the anisotropies of the map that contains the coupled power of harmonic

space (eq. 2.45) and (ii) decouple the mixing of power making use of the inverse of

the Fisher matrix (i.e., ĉ = F−1y). If this matrix is singular, the last step cannot be

completed. However, we will show that an optimal estimator of a reduced number of

variables (binned spectra) can still be defined. This can be understood as an extension

of the method to estimate bandpower spectra.

4.2 Description of the estimator for binned spectrum

Let us assume that we have computed all the quantities in the harmonic space required

by QML, but that we cannot invert the coupling in the y variables (see eq. (2.49)) be-

cause F is singular. From the point of view of a system of linear equations, eq. (2.49)

defines a problem where c is the vector of variables to be solved. When F is singular,

the system has more variables than linearly independent equations and, therefore, is

under-determined. To reduce the number of variables, we can consider a set of band-
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powers BXYb , which are linear combinations of the original DXY
ℓ variables, and solve for

them.

For the sake of simplicity, let us consider for the rest of the section the case of only

temperature. Note that the process is the same in the full temperature and polarization

case, but working with a higher dimension.

Let us take Nbins, indexed by b, with boundaries ℓblow < ℓbhigh = ℓb+1
low − 1, and define

Lb = {ℓblow, ℓ
b
low + 1, . . . , ℓbhigh} the set of values of ℓ corresponding to bin b. To define the

bandpower of a given bin, one usually calculates the weighted mean of the multipoles

in the bin. If this is the case, the variables Bb will be the mean power of the multipoles

in each one of the bins weighted by their theoretical errors [93], taking into account

cosmic variance, noise and sky fraction (see Appendix D for a discussion on the validity

of this error with regard to the sky fraction). In this case, we also have to compute the

mean value of the ℓ ∈ Lb to find the position of the value representative of the bin,

ℓ∗b. Therefore, assuming that the fiducial is described in terms of the variables Dℓ —

and therefore, that we are implementing QML to get the estimation in terms of these

variables— we can define the bandpowers of the binned fiducial as

Bb =

∑
ℓ∈Lb

Dℓ
(∆Dℓ)2∑

ℓ∈Lb
1

(∆Dℓ)2

(4.1)

where ∆Dℓ corresponds to the theoretical error of the power spectrum. The position of

the representative value of the bin is given by

ℓ∗b =

∑
ℓ∈Lb

ℓ
(∆Dℓ)2∑

ℓ∈Lb
1

(∆Dℓ)2

. (4.2)

Let us note that other choices for Bb are possible. For example, one could pick the

Dℓ of the fiducial corresponding to the central value of ℓ in the bin (Bb = Dℓc ) or use

an unweighted mean of the values of the multipoles. As we will see, the binned QML

constructed consistently with these different definitions will provide as output the con-

sidered binned power. Whichever the choice for the variables Bb, once they are fixed,

the next step is to define a set of factors f bℓ , making use of the information in the fiducial

model, Dℓ as

f bℓ =Dℓ/Bb. (4.3)
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Introducing the factors f bℓ and the variables Bb in eq. (2.49) we get (assuming again

that QML is implemented in terms of the variables Dℓ)

⟨yℓ⟩ =
∑
ℓ′

Fℓℓ′Dℓ′ =
∑
b′

∑
ℓ′∈L′b

Fℓℓ′f
b′
ℓ′ Bb′

=
∑
b′

Bb′
∑
ℓ′∈L′b

Fℓℓ′f
b′
ℓ′ . (4.4)

Now this system of linear equations has ℓmax−1 equations and Nbins variables Bb. Thus

it contains more equations than variables. To reduce the number of equations accord-

ingly, we can simply combine them linearly. Although, as it will be shown later, the

most efficient estimator can be obtained by a particular combination of the equations,

for the purpose of illustration, let us combine them now by just summing together the

ℓbhigh − ℓ
b
low + 1 equations of each bin. This leads to Nbins equations∑

ℓ∈Lb

⟨yℓ⟩ =
∑
ℓ∈Lb

∑
b′

Bb′
∑
ℓ′∈Lb′

Fℓℓ′f
b′
ℓ′

=
∑
b′

Bb′
∑
ℓ∈Lb

∑
ℓ′∈Lb′

Fℓℓ′f
b′
ℓ′

=
∑
b′

Bb′Gbb′ , (4.5)

where in the last step we have defined the matrix G. Defining zb ≡
∑
ℓ∈Lb yℓ, we get

⟨zb⟩ =
∑
b′

Gbb′Bb′ , (4.6)

or, arranging Bb and zb, respectively, in the vectors b and z, we can write the previous

equation in matrix notation as

⟨z⟩ = Gb. (4.7)

Note that the matrix G is square. Since we can reduce the number of variables as needed

to make it regular, we can take as our estimator of the power in the bin

b̂ ≡G−1z, (4.8)

that by eq. (4.7) and (4.8) is unbiased, i.e., ⟨̂b⟩ = b.

Expressions (4.7) and (4.8) are analogous for the binned case to equations (2.45) and

(2.50), respectively. It is important to note that the matrix G is not symmetric. Thus it

is not the Fisher matrix expressed in terms of the variables Bb.
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4.3 Covariance matrix for the binned estimator

To determine the covariance matrix of the binned estimator, let us define the rectangu-

lar matrix A of dimensions Nbins × (ℓmax − 1) as

Abℓ =

 1 if ℓ ∈ Lb
0 otherwise

, (4.9)

such that for a given bin (row) it has non-null values only for those multipoles (columns)

belonging to the considered bin b. Using this definition, the sum zb =
∑
ℓ∈Lb yℓ can be

expressed as z = Ay. Therefore, combining this expression with eq. (2.45) and replacing

the vector c by a vector d that contains the variables Dℓ, we have

⟨z⟩ = A⟨y⟩ = AFd. (4.10)

Let us also define a matrix R of dimensions (ℓmax − 1) ×Nbins to transform the set {Bb}
into the set {Dℓ}

Rℓb =

 f bℓ if ℓ ∈ Lb
0 otherwise

, (4.11)

so d = Rb. Expression (4.10) then becomes

⟨z⟩ = A⟨y⟩ = AFRb. (4.12)

The matrix AFR is a square matrix. By choosing an appropriate binning, this matrix is

regular and therefore we can compute the estimator

b̂ ≡ [AFR]−1Ay, (4.13)

which is the same of eq. (4.8), and is unbiased. Finally, we can find the covariance

matrix for the estimator

⟨(̂b−b)(̂b−b)t⟩ = [AFR]−1A[⟨yyt⟩ − ⟨y⟩⟨y⟩t]([AFR]−1A)t

= [AFR]−1AFAt[Rt FAt]−1. (4.14)

4.4 Fisher matrix of the binned spectrum

In order to calculate the Fisher matrix corresponding to the Bb variables, let us first

write the covariance matrix in terms of the binned power spectrum Bb and the factors

f bℓ
C =

∑
ℓ

DℓP̌ℓ + N =
∑
b

∑
ℓ∈Lb

f bℓ BbP̌ℓ + N =
∑
b

Bb
∑
ℓ∈Lb

f bℓ P̌ℓ + N. (4.15)
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The Fisher matrix expressed in terms of the variables Bb is then given by1

FBbb′ =
1
2

tr
[
C−1 ∂C

∂Bb
C−1 ∂C

∂Bb′

]
=

1
2

tr

C−1

∑
ℓ∈Lb

f bℓ P̌ℓ

C−1

 ∑
ℓ′∈Lb′

f b
′

ℓ′ P̌ℓ′




=
∑
ℓ∈Lb

∑
ℓ′∈Lb′

f bℓ f
b′
ℓ′ Fℓℓ′ = RtFR, (4.16)

where in the last step we have used the definition of matrix R. To avoid confusion,

it is important to note that the matrix F in the previous equation is the Fisher matrix

corresponding to the power spectrum Dℓ, while FB is the Fisher matrix corresponding

to the binned quantities Bb. For the covariance of the estimator to be minimum, the

last term of (4.14) has to be equal to the inverse of FB, thus at first sight the estimator b̂
does not have minimum variance.

4.5 Method of minimum variance

We recall that in the previous sections, we have simply added sets of linear equations

eq. (4.5) to reduce the dimensionality of the problem. However, as we have seen, this

leads to a non-optimal estimator. Therefore, we have to look for the appropriate way

of combining the equations (i.e., to determine the appropriate A) in order to obtain an

estimator with minimum variance. In particular, if we choose A ≡ Rt, we find

⟨(̂b−b)(̂b−b)t⟩ = [Rt FR]−1RtFR[Rt FR]−1 = [Rt FR]−1, (4.17)

where the last expression is the inverse of FB. Therefore, we find the optimal estimator

for the binned case to be

b̂ = [RtFR]−1Rty. (4.18)

In summary, to construct the optimal and unbiased binned version of QML, one

first has to compute F and y as in the standard case. The next step is to define the set

of bins as well as to obtain the value of the considered bandpowers from the full set of

1Since we are binning in terms of the variables Dℓ , in the next expression we write explicitly the ma-
trices P as P̌. The Fisher matrix should also be written as F̌ in that expression and the rest of the section,
but we will keep the notation F for simplicity.
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Dℓ (usually as a weighted mean of the power spectrum in the bin). The binned QML

will provide as output estimations of these bandpowers. Once this is established, one

needs to compute accordingly the f bℓ values using the information of the fiducial model,

which will allow us to construct the R matrix (given by eq. (4.11)). Using this matrix,

it is straightforward to estimate the binned power spectrum according to eq. (4.18).

Finally, the Fisher matrix of the binned estimation is given by eq. (4.16).

4.6 Conclusions and limitations

This chapter shows that when the Fisher matrix becomes singular, by binning, the QML

method can also be applied to get an optimal estimation of the power of the bins, but

it does not show how to find the best binning scheme. In fact, as far as we know, there

is not a simple answer to that question; this will depend on the specific characteristics

of the data (sky coverage, noise, resolution) and also what the bins are going to be used

for. A smaller number of bins will reduce the error bars in each of them and will reduce

the correlation between bins, but at the price of possibly losing some specific features of

the spectra because of the averaging. Therefore, this is an exercise that needs to be done

carefully for each specific experiment and its objectives. In this work, we have tried to

answer an equally important question: Given a fixed binning scheme (i.e., the number

and size of bins are known), which is the best estimator of the binned power spectra?

In particular, we have shown that our binned QML provides an unbiased and optimal

estimation of the power of the bins. Moreover, this estimator provides a solution for the

case in which the Fisher matrix is singular (as it can happen, for instance, for ground

experiments with a small sky coverage), allowing to get an optimal estimation of binned

power spectra even in this case. Once the Fisher matrix is computed, multiple binning

schemes can be tried with very low additional computational cost.

On the other hand, given that the binned estimator is a BUE, one might wonder

whether there is no loss of information when binning, which is counterintuitive. To

analyze it, we would have to look at the expression (1.87) and replace the variables λ

by the power spectrum D of this chapter and θ by the binned spectrum B. Using the

expression (4.1) or the more general (4.3), we can compute the Jacobian of the transfor-

mation and, then, the Fisher matrix referred to the D variables from the Fisher matrix

referred to the binning variables. So, apparently there is no loss of information. How-

ever, the binning —optimal or not— does not fulfill one of the prerequisites to arrive

at the expression: we know that under the assumption that the CMB fluctuations are

Gaussian all the information is contained in the power spectrum. But, even under the
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assumption of Gaussianity, the binned power spectrum variables no longer contain all

the information. Therefore, they do not give a complete description of the probability

distribution of the fluctuations. Hence, by binning we are losing information. This is

another issue to take into account when choosing the binning scheme.





Chapter 5

Efficient implementation

5.1 Motivation

The QML method is computationally intensive. To implement it, it is necessary to

compute numerous matrix operations, which can be time-consuming and memory-

intensive when the size of the maps is large. Therefore, it may be useful to analyze

the mathematical expressions in Chapter 2 to see whether they can be implemented in

a way that reduces the number of operations to be performed and the memory require-

ments.

In this chapter, we show an approach to matrix operations that allows one to re-

duce very significantly the number of operations. Although the method will always

remain computationally intensive, our formulation reduces significantly the computa-

tional costs associated to this technique, allowing one to estimate the power spectra up

to higher multipoles than previous implementations. In particular, for a resolution of

Nside = 64, ℓmax = 192 and a typical Galactic mask, the number of operations can be

reduced by approximately a factor of 1000 in a full analysis including intensity and

polarization with respect to an efficient direct implementation of the method.1

Once we have an optimal mathematical formulation, it is necessary to translate it

into practice, embedded in a code that takes advantage of the power of today’s super-

computers. Furthermore, it is very useful to make the code accessible to the entire

scientific community and to provide it with a user’s manual and some application ex-

amples. Our public code ECLIPSE (Efficient Cmb poLarization and Intensity Power

1We refer as "efficient direct implementation of the method" to an efficient implementation based on
the equations in Chapter 2, i.e., an optimal implementation but carrying out the computations in the pixel
space.
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Spectra Estimator), an optimized implementation of the Quadratic Maximum Likeli-

hood (QML) method,2 implements a parallelized version of this implementation.

5.2 Different approaches and efficiency

A key element in an efficient implementation of the method is the connection between

the pixel and harmonic domains, established by

x = Ya, (5.1)

where x are the data in the pixel domain, a are the data in the harmonic domain, and

Y is a matrix that connects both (see Section 1.8.1). The vectors and matrices involved

in this method can be constructed in any of these domains, and so the corresponding

numerical implementation. Depending on which domain they are calculated, the time

and memory required can be significantly different.

First, we will discuss the implementation in pixel space, which follows directly from

the expressions given in Section 2.4. As we will see, some simple algebraic manipula-

tion allows one to reduce the computational time in this case. However, the harmonic

implementation, that we will outline below, is significantly more efficient.

A straightforward approach to implement the first step of the QML method, the

calculation of the yi vector, is to compute the matrices of eq. (2.2), (2.44) and (2.38)

and, subsequently, the vectors of components bi , xtEix and yi . However, it is easy to

show that the quantity yi can be obtained without the need of calculating explicitly

the Ei matrices, reducing significantly the number of operations. In particular, from

eqs. (2.11), (2.42) and (2.44), we can write

yi =
1
2

[
(C−1x)tPi(C

−1x)− tr((C−1NC−1)Pi)
]
. (5.2)

For the second step of the method, we need to construct the Fisher matrix as well

as its inverse. The calculation of the Fisher matrix is the part that involves the high-

est computational cost. From eq. (2.38), for each element of the matrix, one needs to

compute the trace of a matrix product, having a total number of elements of the order

of (6 × (ℓmax − 1))2/2. Since the trace of the product of two matrices can be calculated

without computing the product of the matrices (see eq. (5.15)), the number of opera-

tions can be considerably reduced, but one still has to compute —and keep stored in

the memory of the computer— 6× (ℓmax − 1) products of matrices of the kind C−1Pi . If

2ECLIPSE is available at https://github.com/CosmoTool/ECLIPSE

https://github.com/CosmoTool/ECLIPSE
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the number of pixels in the map is large, this may require high computational resources

regarding memory and CPU time (note that the number of operations to compute the

product of two square matrices is of the order of the dimension of the matrices to the

third power).

Alternatively, if we take into account in certain parts of the calculation the trans-

formation from real to harmonic space given by eq. (5.1), it is possible to construct a

significantly more efficient implementation of the QML, that we will refer as imple-

mentation in harmonic space, which is the base of our ECLIPSE code. The essence of

the reduction in the number of operations is that, while in real space the Pi matrices are

dense, their analogues in harmonic space are sparse, with a reduced number of ones in

strategic locations. To take advantage of this property, we have performed a symbolic

analysis of the results of the matrix operations involved and found analytical expres-

sions of these results that can be easily implemented for a general case, reducing the

number of operations tremendously. Moreover, the code can also be parallelized, fur-

ther increasing the efficiency of the algorithm. We give the details of this approach in

the next section and mention here only some of the improved aspects of the calculation.

First of all, it is possible to show that the yi quantities can be computed avoiding the

calculation of the Pi matrices. The quantities xtEix can be obtained taking the vector

product Y†(C−1x) and afterwards the sum of products of subsets of its elements. To get

bi one needs to compute the product C−1Y —a highly demanding operation that can not

be avoided—. If the noise is spatially uncorrelated, the noise matrix is diagonal and the

quantities bi can be obtained through simple (non-matrix) operations with sub-blocks

of elements of C−1Y. Regarding the computation of the Fisher matrix, one only has to

compute the product Y†(C−1Y) (actually only six square blocks out of the nine blocks

of that matrix product). Once these blocks are calculated, the only work left in order

to compute the Fisher matrix is collecting sub-blocks of the resultant blocks, multiply

them and sum the elements of the product sub-block. This considerably reduces both

the number of calculations —orders of magnitude— and the memory required to store

the intermediate matrices. Therefore, the only highly demanding computer operations

in our optimal implementation are the calculation of C, C−1, C−1Y and six blocks of

Y†C−1Y. The rest of operations consist in taking sub-blocks of the matrices, multiplying

pairs of elements and summing the resulting numbers.

To quantify better the difference in the computational cost of the direct approach

and the more efficient implementation of ECLIPSE, let us make an analysis of the num-

ber of operations involved in the calculation. For simplicity, we will focus only in the

computation of the matrices needed to calculate the Fisher matrix, which is the most
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demanding step of the algorithm and will provide us with an approximated factor of

the improvement gained with our approach.

In the straightforward implementation one has to compute the mentioned C−1Pi
matrices multiplications. Since both matrices are of dimension 3Npix, the 6 × (ℓmax −
1) multiplications C−1Pi require 6(ℓmax − 1)(3Npix)3 operations. In fact, the number

of operations would be even larger since, in this approach, one would need first to

compute the Pi matrices.

In our efficient implementation one has to compute instead Y†C−1Y. The matrix Y
has 3Npix rows and 3L columns, where L =

∑ℓmax
ℓ=2 (2ℓ + 1). Therefore, the product C−1Y

requires 3Npix × 3Npix × 3L operations. A complete computation of the last product,

Y†(C−1Y), takes 3L×3Npix ×3L operations. Therefore the total number of operations is

the sum, i.e., 27(N2
pixL +NpixL

2). In practice, the number of operations can be further

reduced taking into account the structure of Y (see eq. (1.32)) and the fact that one

needs to compute only six out of the nine blocks of this product. This takes the number

of operations needed to compute the product C−1Y down to 15N2
pixL while to compute

Y†C−1Y one needs in this case 18NpixL
2 operations. These expressions are summarized

in table 5.1.

The specific number of required operations will depend on the values taken by the

relevant parameters (resolution, number of pixels, maximum multipole) for the con-

sidered case. To have a better insight on how the different implementations scale with

these parameters, let us consider the case ℓmax = 3Nside and Npix = 12N2
side (i.e., full

sky), such that the number of operations depend only on Nside through a polynomial

expression. It is straightforward to show that the leading term of the direct implemen-

tation scales as N7
side while the optimal implementation goes as N6

side. Moreover, this

term is multiplied by a different factor that increases even further the number of oper-

ations in the direct approach. This leading term including the specific factor is given in

table 5.1. For comparison, an implementation in which only polarization is computed

is also shown (this implementation is described in detail in Section 6.3).

The table also shows the number of operations in the case of a map at Nside=64,

ℓmax = 192 and a Galactic mask allowing for the use of Npix = 29009 pixels, corre-

sponding to the space Configuration, for the direct and efficient approaches. As seen in

the table, in order to compute the matrices needed to calculate the Fisher matrix, our

efficient implementation requires around three orders of magnitude fewer operations

than the straightforward approach for the considered case.

We can compare the performance of our code with those presented in the litera-

ture. Ref. [94] reports that it took roughly one day, using 16384 cores, to estimate the
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# operations
(generic)

# operations
ℓmax = 192
Npix = 29009

Ratio
# operations (leading term)

ℓmax = 3Nside

Npix = 12N2
side

Direct 6(ℓmax − 1)(3Npix)3 7.55× 1017 634 839808N7
side

Efficient TEB 15N2
pixL+ 18NpixL

2 1.19× 1015 1 36936N6
side

Efficient EB 8N2
pixL+ 6NpixL

2 4.92× 1014 0.41 16200N6
side

Table 5.1: Number of operations to compute the matrices needed to calculate the Fisher
matrix in three different approaches: the direct estimation, our efficient implementation
ECLIPSE and a case in which only polarization is computed also efficiently (see Section 6.3).
The second column corresponds to a generic case while the third one refers to the particular
case with Npix = 29009 and ℓmax = 192. The fourth column gives the ratio between the
number of operations of the third column relative to our efficient approach for (T,E,B).
Note that L = 37245 for the considered case. Finally, the last column shows the leading
term of the polynomial expression that defines the number of operations in terms of the
parameter Nside for the case ℓmax = 3Nside and full sky.

intensity power spectrum of 1000 maps at resolution Nside = 64 with a mask excluding

around 20 per cent of the sky. In our case, we computed the six polarization power

spectra up to ℓmax = 191 of 1000 simulated maps at the same resolution and sky frac-

tion in 90 minutes using 144 cores with a parallelized implementation in the Altamira3

supercomputer at the Instituto de Física de Cantabria (IFCA). In [53] an efficient im-

plementation of the QML method also based in the harmonic space is described, that

computes the elements of the Fisher matrix as the trace of the product of two matrices

of the kind (Y†C−1Y)Ii , where Ii represents a sparse matrix. Although this approach is

similar to ours, our implementation takes advantage of the specific details of the pre-

viously mentioned traces and products of matrices, which consequently reduces very

significantly the number of operations, allowing also a parallelization of the code. In

particular, the implementation from [53] can compute an estimation of the polariza-

tion power spectra of a map at resolution Nside = 16 and ℓmax = 32 in 2 CPU minutes.

Our parallelized code can perform a similar computation in 7 seconds in a node of the

Altamira supercomputer (16 cores), and it takes 24 seconds running on a single core

of a laptop. Also note that, since our code is parallelized, it can compute problems of

higher dimensions. We would like to emphasize that, as far as we know, ECLIPSE is the

fastest available implementation of the QML estimator.

3https://www.res.es/en/res-sites/altamira

https://www.res.es/en/res-sites/altamira
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5.3 The efficient QML implementation

An implementation of the QML method requires to compute C, its inverse, xtEix, bi
and the Fisher matrix Fii′ . We calculate these quantities sequentially as shown below.

Computing C and C−1

We recall that C is the sum of the signal and noise covariance matrices, of dimension

3Npix×3Npix. As shown in Section 1.8.1, the signal covariance matrix S can be efficiently

computed using eq. (1.33). In particular, S has the structure

S =


ST T STQ STU
SQT SQQ SQU
SUT SUQ SUU

 . (5.3)

From eq. (1.33) and assuming CT Bℓ = CEBℓ = 0, six of the blocks are given by

ST T = YT T S̃T TY†T T
STQ = YT T S̃T EY†EQ
STU = YT T S̃T EY†EU
SQQ = YQES̃EEY†EQ + YQBS̃BBY†BQ
SQU = YQES̃EEY†EU + YQBS̃BBY†BU
SUU = YUES̃EEY†EU + YUBS̃BBY†BU , (5.4)

where the matrices S̃XY are the diagonal blocks of matrix S̃, and the remaining blocks

SQT , SUT and SUQ are the transpose of their symmetric partners of S. There are some

properties of the mathematical elements of eq. (5.4) that allow to reduce the number

of computations. Since the matrices S̃XY are diagonal, the products S̃XYY†ZY can be

computed quickly without resorting to matrix multiplication. In addition, given that

the elements of the covariance matrix are real numbers, one can reduce the number

of calculations of eq. (5.4) by considering only those terms that produce real numbers

(since the imaginary part will cancel). Once that the covariance matrix of the signal is

computed, the covariance matrix of the noise has to be added.

The next step in the code is to compute the inverse of C. We accomplish this step

using efficient routines for symmetric definite positive matrices of the ScaLAPACK li-

brary [95].
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Computing xtEix

As mentioned in Section 5.2, we can obtain xtEix avoiding the direct calculation of

the matrix Ei by computing instead the product xtC−1PiC−1x. In particular, the matri-

ces Pi can be computed from eq. (1.33) introducing a matrix basis P̃i (more details in

Section 1.8.1) such that

S̃ =
∑
i

CiP̃i . (5.5)

The P̃i are matrices of dimension 3L×3Lwith a structure of nine blocks (corresponding

to the different combinations for the spectra of T,E,B) and constituted mostly by zeroes

except for some selected elements of value 1 at the adequate positions. In particular,

for an i index corresponding to a case of auto-spectra and to a multipole ℓ, we have

2ℓ + 1 non-null elements in the diagonal of the corresponding block, which are related

to the m-elements of the considered multipole. For the case of cross-spectra, there are

again 2ℓ+1 non-null elements but in two of the blocks corresponding to the considered

cross-spectrum.

To illustrate better the structure of these matrices, let us consider as a toy model a

map with signal only at multipoles ℓ = 0 and ℓ = 1.4 In this case, the index i of eq. (5.5)

runs from 1 to 12, corresponding to ℓ = 0,1 for each of the 6 possible power spectra

(TT, EE, BB, TE, TB and EB). The ordering of the indices is such that i=(1, 2, 3, ..., 12)

→ (ℓ = 0, TT; ℓ = 1, TT; ℓ = 0, EE; ... ; ℓ = 1, EB).5 As an example the P̃i matrix for i = 8,

corresponding to ℓ = 1 and the TE cross-spectrum is given by

4Although in a realistic case ℓmin = 2 is usually assumed (in fact, the polarization signal is not even
defined for ℓ < 2), for the sake of simplicity, we will present some examples assuming that those multipoles
actually exist in order to illustrate the calculations in a simple case. Whenever necessary, we will also
indicate general results for the case ℓmin = 2.

5To avoid confusion, we remark that, just by chance, in our simple example, the P̃i matrices have
dimension 12× 12 (since this is fixed by the quantity 3L and we have L=4) and there are also 12 values of
the i index, which is given by the number of considered multipoles times the number of different power
spectra (i.e., 2× 6 = 12). However, in a general case, these two numbers will be different.
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P̃8 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



. (5.6)

Equation (5.5) is the analogous in the harmonic space to S =
∑
iCiPi in the pixel

space. Combining eqs. (5.5) and (1.33), we have

S = YS̃Y† = Y

∑
i

CiP̃i

Y† =
∑
i

CiYP̃iY
†. (5.7)

Where we can identify

Pi = YP̃iY
†. (5.8)

Thus

xtC−1PiC
−1x = xtC−1YP̃iY

†C−1x. (5.9)

To get the value of the last expression, we compute first the vector Y†(C−1x). The last

operation transforms information in the pixel space to information in harmonic space.

The next step is to collect it adequately taking into account the effect of multiplying

by the P̃i matrices. When P̃i is one of the matrices associated to the cases TT, EE and

BB, the vector product P̃iY†(C−1x) is a vector of zeroes, except the values of Y†C−1x
at the positions of the 1’s in the diagonal of P̃i . Therefore the product of eq. (5.9) is

directly the sum of the square of the real part plus the square of the imaginary part of

the values of Y†(C−1x) at the adequate positions, what allows for a fast computation of

these elements.

When P̃i is one of the matrices associated to the cases TE, TB and EB, the vector

product P̃iY†(C−1x) is also a vector of zeroes, except for some values of Y†(C−1x) moved

to other positions (since the non-null values of P̃i are not in the diagonal in these cases).

To illustrate this, let us consider again the toy model of a map with signal only at
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multipoles ℓ = 0 and ℓ = 1. In this case the vector has 12 elements grouped in three

blocks of four elements each block; one of T, one of E and another of B. Written as a

row vector

Y†(C−1x) = (T0, T1, T2, T3, E0, E1,E2, E3, B0, B1, B2, B3), (5.10)

where the sub-indices code the pairs (ℓ,m): (ℓ = 0,m = 0)→ 0, . . . and (ℓ = 1,m = 1)→
3. If we wanted to obtain the value of eq. (5.9) for the cross-power TE and ℓ = 1, the

product P̃8Y†(C−1x) would be

P̃8Y†(C−1x) = (0, E1, E2, E3, 0, T1, T2,T3, 0, 0, 0, 0) (5.11)

and, finally, to obtain the product of eq. (5.9) for the value of the index i = 8 all we have

to do is

xtC−1YP̃8Y†C−1x =
3∑
k=1

[TkE
∗
k + T ∗kEk]. (5.12)

This establishes a rule also for a fast computation of all the elements associated to the

cross-power correlation and therefore the expression (5.9) can be efficiently computed.

The previous paragraphs show that by including the matrix Y, we go from working

with the matrices Pi , which implied carry out very demanding computations, to operate

with some kind of matrices of selection P̃i . What makes this approach more efficient is

that, in practice, we do not need to calculate these matrices, and their action on vectors

(on matrices in the next sections) is just to select (or select and move the position of)

certain elements of the vector. Therefore, with our approach, we significantly simplify

this part of the QML calculation.

Note that it is also possible to work with several maps at the same time. In this

case, one just need to replace in Y†C−1x the vector x by a matrix whose columns are the

maps, transform the matrix-vector multiplications into matrix-matrix multiplications

and adequately collect and combine the values of that matrix product.

Computing bi

The next step is to compute the noise contribution in harmonic space. To do this, we

need to compute just one matrix multiplication, C−1Y, that will also be used to compute

the Fisher matrix. Introducing P̃i in eq. (2.11), we get

bi =
1
2

tr
[
NC−1YP̃iY

†C−1
]
. (5.13)

Let us show how to compute this quantity step by step. The matrix product C−1Y has

as many rows as the vector map (i.e., 3Npix) and as many columns as the matrix Y (i.e.,
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3L). For instance, for our toy model with ℓ ∈ {0,1} and only two pixels in the map, this

is a matrix of six rows and twelve columns of structure

C−1Y =



T T10 T T11 . . . T B13

T T20 T T21 . . . T B23

QT10 QT11 . . . QB13

QT20 QT21 . . . QB23

UT10 UT11 . . . UB13

UT20 UT21 . . . UB23


, (5.14)

where, for example, QB23 means that this element corresponds to a row associated to

the second pixel of the Q component and to the aX,ℓm with X = E, ℓ = 1 and m = 1.

In our model, the noise is assumed to be isotropic and uncorrelated, thus the noise

matrix N is diagonal with values σ2
T and σ2

Q = σ2
U . In this case, the matrix obtained by

the operation NC−1Y is simply the matrix given in eq. (5.14) with each j row multiplied

by the diagonal j element of the noise matrix. Note that this is also valid if the noise is

anisotropic and uncorrelated, since in this case the noise matrix is also diagonal.

In order to calculate the trace of eq. (5.13), let us recall that the trace of the product

of two matrices A and B is

trAB =
∑
ij

AijBji , (5.15)

i.e., we can obtain the trace of the product of a matrix without calculating the actual

matrix multiplication. In this way, the trace can be written as

bi =
1
2

∑
αβ

(NC−1YP̃i)αβ(C−1Y)∗αβ . (5.16)

Given that the matrices P̃i are sparse, the first matrix product in the previous equation

has a large number of null elements what, as we will see, simplifies the calculation of

bi .

Let us show one example, again for our toy model with ℓ = {0,1} and two pixels,

calculated for i = 2 (what corresponds to ℓ = 1 and the component T T ). In this case,

the product NC−1YP̃2 has dimensions 6× 12, and has the structure given by
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NC−1YP̃2 =



0 σ2
T T T11 σ2

T T T12 σ2
T T T13 0 . . . 0

0 σ2
T T T21 σ2

T T T22 σ2
T T T23 0 . . . 0

0 σ2
TQT11 σ2

QQT12 σ2
QQT13 0 . . . 0

0 σ2
TQT21 σ2

QQT22 σ2
QQT23 0 . . . 0

0 σ2
TUT11 σ2

UUT12 σ2
UUT13 0 . . . 0

0 σ2
TUT21 σ2

UUT22 σ2
UUT23 0 . . . 0


, (5.17)

where the first index indicates the pixel number and the second index runs over the

different (ℓ,m) pairs. Therefore, this matrix has 2ℓ+1 columns with non-null elements.

Taking this into account, to compute the required trace, we only need to multiply ele-

ment by element, the second, third and fourth columns of the matrix of eq. (5.17) by the

complex conjugates of the elements of the second, third and fourth columns of C−1Y,

and then sum the results.

From the previous calculations, it becomes apparent that the noise bias of yT Tℓ de-

pends explicitly not only on the temperature noise but also on the noise of the polar-

ization components. This is not surprising because the yi quantities are a combination

of the different power spectra, and not the power spectrum itself. So the noise bias is

also a combination of the noise of the different components.

When computing the terms bi associated to the cross power components, the effect

of multiplying by matrices P̃i is to select and reorder columns of NC−1Y. For example,

for i = 7 in our simple model, which corresponds to ℓ = 0 and the TE component, we

have

NC−1YP̃7 =



σ2
T T E10 0 0 0 σ2

T T T10 0 . . . 0

σ2
T T E20 0 0 0 σ2

T T T20 0 . . . 0

σ2
QQE10 0 0 0 σ2

QQT10 0 . . . 0

σ2
QQE20 0 0 0 σ2

QQT20 0 . . . 0

σ2
UUE10 0 0 0 σ2

UUT10 0 . . . 0

σ2
UUE20 0 0 0 σ2

UUT20 0 . . . 0


. (5.18)

In this case, the number of columns with non-null elements is 2(2ℓ + 1).

Therefore, looking at eqs. (5.14)–(5.17), we can infer that to compute an element

bi corresponding to a given multipole ℓ and an auto spectra XX component, we have

to multiply the elements of the appropriate 2ℓ + 1 columns of the matrix of eq. (5.14)

by their complex conjugates. The next step would be to multiply these terms by the
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appropriate noise variance but, since this quantity is the same for all the elements of a

given row, it is more convenient to construct first a vector with one column, where each

element is given by the sum of the 2ℓ+1 products corresponding to a fixed row. We then

calculate the dot product of this vector by the vector constructed with the diagonal of

the noise matrix N and, finally, the result is divided by two. A similar procedure can be

inferred to calculate bi for the cross-spectra components (X , Y ) taking into account

eq. (5.18).

Thus, in this section we have shown that the only demanding operation needed to

obtain bi is the matrix multiplication C−1Y. Its computational cost can be reduced

by taking into account that, as shown in eq. (1.32), Y is a matrix constituted by two

diagonal blocks. Thus a good strategy to calculate this product is to split the matrix

C−1 in four blocks that fit to the structure of Y and to compute four multiplications of

matrices of smaller dimensions.

Computing the Fisher matrix

Writing eq. (2.38) in terms of Y and the matrices P̃ and taking into account that the

trace is invariant under cyclic permutations, we have

Fii′ =
1
2

tr
[
Y†C−1YP̃iY

†C−1YP̃i′
]
. (5.19)

Since we have already computed C−1Y, the next step is to multiply this matrix by Y†,
another strong consuming operation. The product Y†C−1Y is an Hermitian matrix6

structured on nine squared blocks of length L of the form

Y†C−1Y =


T T T E T B

ET EE EB

BT BE BB

 . (5.20)

Let us define a notation to refer to the elements of the last matrix. For example, in

the framework of our toy model, the element T E02 is located in the T E block in row

number 1, corresponding to the harmonic of index 0 (ℓ = 0 and m = 0) and in column

number 3 of the block, corresponding to the harmonic of index 2 (ℓ = 1 and m = 0).

Note that this corresponds to the element in row number 1 and column number L + 3

of the full matrix.

According to eq. (2.38), each element of the Fisher matrix involves a pair of multi-

poles. Since the power spectrum is composed of the six modes TT, EE, BB, TE, TB and

6Note that in practice this reduces the computational time, since only six out of the nine blocks needs
to be computed.



chapter 5. efficient implementation 111

EB, F is a symmetric matrix of 62(ℓmax − 1)2 elements.7 For convenience, let us arrange

them in a matrix conformed by 36 squared blocks of (ℓmax − 1)2 elements each one

F =



T T T T T T EE T T BB T T T E T T T B T T EB

EET T EEEE EEBB EET E EETB EEEB

BBT T BBEE BBBB BBT E BBTB BBEB

T ET T T EEE T EBB T ET E T ET B T EEB

TBT T T BEE TBBB TBT E T BT B T BEB

EBT T EBEE EBBB EBT E EBTB EBEB


, (5.21)

where, for example, the block TTTE contains the cross terms between the multipoles

CT Tℓ and CT Eℓ′ .

Taking into account eq. (5.15), we can obtain the Fisher matrix without actually

calculating the direct matrix multiplication of eq. (5.19). Moreover, once the product

Y†C−1Y is computed, to obtain a given element of the Fisher matrix Fii′ , we just have

to localize the values and positions of the non null elements of Y†C−1YP̃i and of the

transpose of Y†C−1YP̃i′ (characterized by the positions of the 1’s in P̃i and P̃i′ ), multiply

element by element those pairs formed by two non null elements and sum the result.

In the following, we will show in detail how this technique leads to a fast method to

compute F.

Let us show the procedure by showing how to calculate the elements of the first

block (TTTT) of the Fisher matrix. For example, let us consider the element Fi=1,i′=2 cor-

responding to C1 = CT T0 and C2 = CT T1 of eq. (2.38). In this case, the matrix Y†C−1YP̃T T0 ,

that we will call M0, reads

M0 ≡



T T00 0 . . . 0

T T10 0 . . . 0

T T20 0 . . . 0

T T30 0 . . . 0

ET00 0 . . . 0
...

...
. . .

...

BT30 0 . . . 0


. (5.22)

7For this number we are assuming ℓmin = 2 and, therefore, we have (ℓmax − 1) different multipoles.
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Analogously, the product Y†C−1YP̃T T1 is given by

M1 ≡



0 T T01 T T02 T T03 0 0 . . . 0

0 T T11 T T12 T T13 0 0 . . . 0

0 T T21 T T22 T T23 0 0 . . . 0

0 T T31 T T32 T T33 0 0 . . . 0

0 ET01 ET02 ET03 0 0 . . . 0

0
...

...
...

...
...

. . .
...

0 BT31 BT32 BT33 0 0 . . . 0


. (5.23)

The next step is to calculate the matrix whose elements are the multiplication of the

elements of M0 and the transpose of M1

R01 ≡



0 0 . . . 0

T T10T T01 0 . . . 0

T T20T T02 0 . . . 0

T T30T T03 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


. (5.24)

The sum of the elements of R01 is twice the element F12 of the Fisher matrix.

A more complete analysis shows that, in fact, it is possible to compute, almost si-

multaneously, all the elements of each one of the 36 blocks of eq. (5.21) by means of

adequate sums of the product of elements of certain blocks of Y†C−1Y by elements of

the transpose of certain blocks of the matrix Y†C−1Y. To illustrate this, let us show the

matrices analogous to R01 of eq. (5.24) that emerge when computing with this tech-

nique another elements of the block TTTT of the Fisher matrix. For example, for ℓ = 0

and ℓ′ = 0, R00 reads

R00 =


T T00T T00 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 0 . . . 0


, (5.25)

while for ℓ = 1 and ℓ′ = 0, we have

R10 ≡


0 T T01T T10 T T02T T20 T T03T T30 0 . . . 0

0 0 0 0 0 . . . 0
...

...
...

...
...

. . . 0

0 0 0 0 0 . . . 0


, (5.26)
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and for ℓ = 1 and ℓ′ = 1, R11 is

R11 =



0 0 0 0 0 . . .

0 T T11T T11 T T12T T21 T T13T T31 0 . . .

0 T T21T T12 T T22T T22 T T23T T32 0 . . .

0 T T31T T13 T T32T T23 T T33T T33 0 . . .

0 0 0 0 0 . . .
...

...
...

...
...

. . .


. (5.27)

In each case, the different elements of the first block (TTTT) of the Fisher matrix

can be computed as the sum of the elements of the corresponding R matrices, divided

by two. Moreover, one can infer that these elements of the Fisher matrix can also be

computed by calculating the product, element by element, of the block TT of Y†C−1Y
times its transpose (which would give rise to a dense matrix filled by the non-null

elements of eq. (5.24 – 5.27)) and then sum over the appropriate elements, selected

taking into account the value of ℓ and ℓ′, divided by two. That is, the element of the

Fisher matrix associated to CT Tℓ and CT Tℓ′ is given by

FT T T Tℓℓ′ =
1
2

∑
kℓkℓ′

T Tkℓ′ kℓT Tkℓkℓ′ , (5.28)

where T T on the right hand side refers to the first block of Y†C−1Y, the index kℓ runs

over 2ℓ+1 values and kℓ′ over 2ℓ′+1. If we denote k as the index that runs from 0 to L−1

(L is the size of the TT block in eq. (5.20)), for ℓmin = 2, we have that k = 0 corresponds

to the pair (ℓ,m) = (2,−2). It can be shown that, for a given ℓ, kℓ runs from ℓ2 − 4 to

2ℓ+ℓ2−4, what defines the elements of the block that must be selected to construct the

corresponding Fisher element.

For convenience, let us define the operator { } to symbolize the computation of the

block TTTT of the Fisher matrix eq. (5.21) for all the pairs (ℓ,ℓ′) using the expres-

sion (5.28) as

TTTT = {T T ,T T }, (5.29)

where the first block TT in {T T ,T T } enters as it is and the second one is transposed.

To compute the elements of the rest of the blocks of F, eq. (5.21), one has to apply

the same technique used for the case TTTT but varying the matrices P̃i . Following a

similar procedure as before, one can infer that there are three different cases

1. The blocks of F where the two considered power spectra correspond to autocor-

relations (TT, EE, BB), that is, the blocks TTTT, TTEE, TTBB, EEEE, EEBB, BBBB.
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2. The blocks of F that mix one autocorrelation and one cross-correlation, i.e., TTTE,

TTTB, TTEB, EETE, EETB, EEEB, BBTE, BBTE, BBBE.

3. The blocks that involve two cross-correlations, i.e., TETE, TETB, TEEB, TBTB,

TBEB, EBEB.

For instance, if one derives the equations equivalent to (5.22) - (5.28) for the block

TTEE (case i), it is found that one has to multiply element by element the block ET of

eq. (5.20) and the transpose of the block TE, sum the sub blocks adequately, and divide

by two. That is

TTEE = {ET ,T E}. (5.30)

The rest of the blocks of the case (i) are obtained as

TTBB = {BT ,T B},

EEEE = {EE,EE},

EEBB = {BE,EB},

BBBB = {BB,BB}. (5.31)

Let us show an example to find the rule to compute the blocks of the case (ii), in

particular, we will consider the element of ℓ = 0 and ℓ′ = 1 of the block TTTE of our

toy model, that is, the element Fii′ of Ci = CT T0 and Ci′ = CT E1 of eq. (2.38). In this case,

one has to compute Y†C−1YP̃T T0 and multiply element by element by the transpose of

Y†C−1YP̃T E1 . Given that the P̃T E1 matrix has a total of six elements with the value of 1,

grouped in two sets of three, outside the main diagonal (see eq. (5.6)),8 this gives rise

to two blocks of three non-null elements in R01.

8Note that in the notation used in this subsection P̃T E1 ≡ P̃8
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In particular, the result reads

R01 =



0 0 . . . 0

T T10T E01 0 . . . 0

T T20T E02 0 . . . 0

T T30T E03 0 . . . 0

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

ET10T T01 0 . . . 0

ET20T T02 0 . . . 0

ET30T T03 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 0 . . . 0



. (5.32)

Therefore, following the same reasoning as in previous cases, one can write

TTTE = {T T ,T E}+ {ET ,T T }. (5.33)

The imaginary part of {T T ,T E}+ {ET ,T T } is zero and the real part of {T T ,T E} is equal

to the real part of {ET ,T T }, therefore

TTTE = 2{T T ,T E}. (5.34)

For the sake of clarity, let us write explicitly how to calculate an element of the Fisher

matrix in the block TTTE

FT T T Eℓℓ′ =
1
2
× 2

∑
kℓkℓ′

T Tkℓ′ kℓT Ekℓkℓ′ . (5.35)

Applying the technique to the rest of the blocks of the Fisher matrix of case (ii), we get

TTTB = {T T ,T B} + {BT ,T T } = 2{T T ,T B},
TTEB = {ET ,T B} + {BT ,T E} = 2{ET ,T B},
EETE = {T E,EE} + {EE,ET } = 2{T E,EE},
EETB = {T E,EB} + {BE,ET } = 2{T E,EB},
EEEB = {EE,EB} + {BE,EE} = 2{EE,EB},
BBTE = {T B,BE} + {EB,BT } = 2{T B,BE},
BBTB = {T B,BB} + {BB,BT } = 2{T B,BB},
BBEB = {EB,BB} + {BB,BE} = 2{EB,BB}.

(5.36)
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Finally, for the blocks corresponding to case (iii), we find

TETE = {T E,T E} + {T T ,EE} + {EE,T T } + {ET ,ET }
= 2{T E,T E} + 2{T T ,EE},

TETB = {T E,T B} + {T T ,EB} + {BE,T T } + {BT ,ET }
= 2{T E,T B} + 2{T T ,EB},

TEEB = {EE,T B} + {ET ,EB} + {BE,T E} + {BT ,EE}
= 2{EE,T B} + 2{ET ,EB},

TBTB = {T B,T B} + {T T ,BB} + {BB,T T } + {BT ,BT }
= 2{T B,T B} + 2{T T ,BB},

TBEB = {EB,T B} + {ET ,BB} + {BB,T E} + {BT ,BE}
= 2{EB,T B} + 2{ET ,BB},

EBEB = {EB,EB} + {EE,BB} + {BB,EE} + {BE,BE}
= 2{EB,EB} + 2{EE,BB}.

(5.37)

5.3.1 Discussion on efficiency

We have shown a way of implementing the computations involved in the application

of the QML method that significantly reduces the number of operations. Let us add

some details regarding the extent to which it does so when computing the most com-

putationally intensive mathematical element in the whole method, the Fisher matrix.

The elements of the matrix are

Fii′ =
1
2

tr
[
C−1 ∂C

∂Ci
C−1 ∂C

∂Ci′

]
. (5.38)

As shown in this chapter, and also used in [53], it is more efficient to compute it by

making use of the matrices P̃i

Fii′ =
1
2

tr
[
(Y†C−1Y)P̃i(Y

†C−1Y)P̃i′
]
, (5.39)

where i runs over the six components of the spectra and over multipoles ℓ = 2 to ℓmax.

Since the matrix is symmetric, our method starts by computing 6 out of the 9 blocks

of the product Y†C−1Y. Once this is done, a naive implementation of the product of

matrices would compute one by one each of the independent elements of the Fisher

matrix by performing the large matrix multiplications of eq. (5.39). As an illustration,

for ℓmax = 191, there are a total of 650370 elements to be calculated, corresponding to

the elements of the upper triangle of the Fisher matrix of size 6x190 (note that since

the matrix is symmetric, the lower triangle does not have to be calculated). Since the P̃i
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are sparse matrices, these operations are less demanding than those of a direct Fisher

matrix computation (eq. 5.38) but still entail a large number of operations involving

very large matrices.

In contrast, our method uses a different approach. As explained in this chapter,

after computing the six blocks of the product Y†C−1Y, instead of treating each element

of the Fisher matrix as a product of large matrices, we have developed an algorithm

that allows us to compute each element of the Fisher matrix by multiplying certain

elements of the different blocks and then summing them appropriately. This reduces

the number of operations significantly with respect to an also naive implementation

of the calculation of the Fisher matrix elements based on eq. (5.39) and products of

sparse matrices. Moreover, in our method these calculations do not consist on matrix

operations —for example, for ℓmax = 191 we save 650370 matrices operations— and are

well suited to be parallelized, as we have done in the ECLIPSE implementation.

5.4 Working with variables Di, beam and pixel window

To implement the QML in terms of the variablesDi and to take into account the effect of

the beam of the experiment and the pixel window, one just needs to define adequately

the matrix Y.

Writing an element of the matrix S according to the expression (1.33), we have

Sij =
∑
kk′

YikS̃kk′Y
†
k′j =

∑
kk′

YikCkk′Y
†
k′j , (5.40)

where, taking into account the structure of S̃, Ckk′ is some of the CT Tℓ , CEEℓ , CBBℓ , when

k = k′, while for k , k′ corresponds to CT Eℓ in some cases or to zero otherwise.

Introducing the beam and pixel window functions through Bk and theDkk′ variables

instead of Ckk′ , we have

Sij =
∑
kk′

Yik
2πBkBk′
ℓ(ℓ + 1)

Dkk′Y
†
k′j . (5.41)

We can rewrite the previous equation as

Sij =
∑
kk′

(√
2π

ℓ(ℓ + 1)
BkYik

)
Dkk′

(√
2π

ℓ(ℓ + 1)
Bk′Y

†
k′j

)
. (5.42)

From the last expression we can define a new matrix Y̌ that satisfies

Sij =
∑
kk′

Y̌ikDkk′ Y̌
†
k′j . (5.43)
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That is

Y̌ik =

√
2π

ℓ(ℓ + 1)
BkYik . (5.44)

Hence the columns of Y̌ are just the columns of Y multiplied by the appropriate factor√
2π

ℓ(ℓ+1)Bk .

5.5 The ECLIPSE implementation

The ECLIPSE code, written in Fortran language, implements the QML method and

performs the mathematical operations as described in this chapter.

Matrix operations (multiplications, Cholesky decomposition and inversion) are per-

formed efficiently through calls to ScaLAPACK library routines, so the code is designed

to be executed in parallel. In its design, we have tried to make it efficient when operat-

ing with matrices by means of calls to routines of proven quality. In addition, we have

tried to optimize the operations that act on the blocks of the matrices distributed by

the grid of processors that have been described in this chapter.

Because it is designed as parallelized code, it is not only faster than standard code,

but also allows the method to be applied to large-scale, memory-intensive problems,

which with today’s computers can only be accessed by distributed parallel computa-

tions on a network of processors. Thus, ECLIPSE is designed and optimized to be used

on supercomputers, although it can also run on personal computers — if provided with

the appropriate libraries.

Although the computational procedure is only one, three variants of ECLIPSE have

been written, which differ in the data with which they work and on the spectra that they

calculate. ECLIPSE_TEB operates on intensity and polarization maps, can use the same

or different masks for intensity and polarization, and calculates the six components of

the power spectrum. ECLIPSE_EB operates on polarization-only maps maps and com-

putes the three polarization components of the power spectrum with the advantages

that will be described in the Section 6.3, leading to a reduction in time and computa-

tional resources. The third version, ECLIPSE_T, operates on intensity-only maps and

computes the TT component of the power spectrum. Unlike the other two variants, it

computes the power spectrum starting from ℓ = 1.

The code works with standard maps in cosmology, FITS files written by HEALPix

routines. It can compute the full or binned power spectrum. When estimating it

binned, one can apply the optimal binning estimator described in Chapter 4 or a non-

optimal version that does not include information on the fiducial. Noise can be isotropic
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or anisotropic. Besides, it can compute auto-correlation spectra of individual maps and

cross-correlation spectra of pairs of maps.

The ECLIPSE User guide, given in Appendix G, contains information on how to

build the code and run it on personal computers and supercomputers, how it works,

the data it reads and stores and its configuration, the configuration of the information

that the program reads before loading data and performing calculations, and how to

obtain estimates of the amount of memory needed for a given calculation, among other

things.

Because of the optimized implementation, parallelization and the efficiency of the

Fortran language, we believe that ECLIPSE will be very useful for the community,

allowing to reach higher multipoles and to carry out, in practice, analyses that be-

fore were prohibitively slow. The code, manual and examples are available at https:

//github.com/CosmoTool/ECLIPSE.

The sequence and structure of operations

In this section we briefly describe the sequence and the form in which the ECLIPSE

implementation performs the matrix operations.

Initially, the program loads the data specifying the type of calculation it has to

perform, the location of the files with the data, and the number of cores being used and

their distribution in the processor grid. Next, the program loads, among other data, the

temperature mask, the polarization mask and the fiducial power spectrum.

Once the data has been loaded, the program starts with the calculations. These are

performed in six steps that correspond to the sequence of matrix operations described

in the previous sections of this chapter. The steps are:

1. The computation of the covariance matrix, C.

2. The inversion of the covariance matrix, C−1

3. The computation of the coupled power in harmonic space, xtEix.

4. The computation of the product, C−1Y.

5. The computation of the noise bias, bi

6. The computation of the Fisher matrix.

In all steps we operate with blocks of matrices instead of complete matrices, so that

we do not perform calculations that would be redundant, such as computing parts of

https://github.com/CosmoTool/ECLIPSE
https://github.com/CosmoTool/ECLIPSE
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matrices whose value we already know because they are symmetrical. This saves time

and memory. Moreover, even when working at many places with complex numbers,

part of the calculations are done by separating the real and imaginary parts, and op-

erating with them to produce real numbers. By not operating with complete complex

numbers, we avoid the computation of imaginary parts of blocks of matrices that we

already know are null because they are made up of real numbers. This makes it possi-

ble to halve the number of operations in certain calculations. The messages displayed

by ECLIPSE (see Chapter 8 of the User Guide) inform in detail about the operations it is

performing at each moment, the blocks with which it is operating and the way in which

it is treating the data.

After having performed the previous steps, which are the ones that involve a high

computational workload, the program calculates the power spectrum, either binned or

unbinned. If a binned spectrum is desired, it can calculate the optimal binned spec-

trum making use of the information in the fiducial (as described in Chapter 4) or it can

calculate a simple binned spectrum.

While performing computations, the program displays the elapsed time and, if the

user wishes, it displays the memory used by the processor grid to store the matrix

blocks. The sequence of operations and memory allocation and deallocation for storing

blocks is organized to reduce the memory required. The ECLIPSE code includes a small

auxiliary program that allows to know in advance the memory needed to perform the

matrix operations once the dimensions of the estimation to be performed are known

(Npix and ℓmax). This makes it easier to decide the number of processors to request to

perform the calculations.

There are certain stages in the sequence of calculations when the program performs

validation tests. For example, it checks whether the matrices it has to invert (covari-

ance, Fisher or compacted Fisher) are regular or whether the diagonal of C−1C is made

of ones (for more details see the ECLIPSE User guide given in Appendix G).

5.6 Conclusions

The QML method is very computationally demanding and, therefore, can be applied

only at limited resolution. In this chapter, we have developed a new implementation of

the QML that reduces considerably the required computationally resources (CPU time

and memory).

In its natural mathematical formulation, QML operations are performed in pixel

space. By translating them to harmonic space, a significant reduction in the number of
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operations is achieved. The essence of the reduction lies in the fact that the covariance

matrix of the signal in harmonic space is much simpler than in pixel space, because

it becomes a sum of scalars multiplying sparse matrices with very few ones. By an-

alytically analyzing in detail the effect of those few ones when multiplying by them,

rules can be found that allow predicting the result of the computations leading to the

essential quantities in QML, with consequent savings in the number of matrix opera-

tions and in the computational workload involved in each matrix multiplication. In

addition, the rules for calculating the result of matrix operations can be implemented

in parallel, so that each processor operates independently on the values of the matrix

blocks that it stores in its memory.

The key element connecting harmonic and pixel spaces is the Y matrix. Since it

consists of two diagonal blocks, all the operations in which it participates can be orga-

nized by blocks. In addition, all the numbers that QML ultimately produces are real

numbers, so operations involving blocks of complex numbers can be organized so that

only the real parts are computed.

This yields to a very significant reduction in the number of operations. For instance,

we can compute the intensity and polarization power spectra of 1000 simulated maps

of 39322 observed pixels at resolution Nside = 64 up to ℓmax = 191 in 90 minutes using

144 cores at the Altamira supercomputer, with a reduction in the number of operations

around a factor 1000 with respect to the optimal direct implementation.

Our implementation, ECLIPSE, is published and freely available. It has already been

used by the author or third parties for several works other than this Thesis (for more

information, see Section 6.7).





Chapter 6

Test on the performance of QML

6.1 Motivation

This chapter is intended to illustrate the performance of the QML estimator. We present

results for a space-based B-mode mission and for a typical ground-based experiment.

The QML method is well-known, but there are several practical issues that should be

taken into account when applying it to real data. In particular, depending on the ob-

served sky fraction, the Fisher matrix can become singular. To solve this problem, we

have found a binned version of the QML estimator to be used when the Fisher matrix

is not invertible (see Chapter 4). Another important aspect of this estimator is that the

user must provide an initial guess for the power spectra. However, we may wonder

how the results are affected if this initial model differs from the true power spectra (see

Chapter 2). We present several tests of robustness of QML versus the assumed fiducial

model and show that starting from significantly different initial guesses, through an

iterative scheme map by map, QML drives statistically to the optimal estimator. We

also study the possibility of using the QML method to estimate only the polarization

components with a consequent reduction of computational resources. A comparison

with an advanced pseudo-Cℓ algorithm (NaMaster, [59]) is also presented, showing the

better efficiency of QML at large scales.

6.2 Instrumental configurations

In order to test the performance of the QML method in different situations, we have

mainly considered two different experimental configurations along the text. Showing

results for different cases is interesting since the very existence of the optimal estimator

depends on the sky coverage of the experiment, while the noise level is reflected in the

error of the estimated power spectra.

– 123 –
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Figure 6.1: Sky coverage considered for the space (left) and ground-based (right) experi-
ments, shown at a HEALPix resolution Nside = 64.

fsky (%) Noise IQU (µK · arcmin)

Space 59.0 2.5

Ground 8.4 1.0

Table 6.1: Specifications of the instrumental configurations considered along this work to
test the QML estimator. The sky fraction of each mask has been obtained at a HEALPix

resolution of Nside = 64. A Gaussian beam of FWHM = 2.4 times the corresponding pixel
size is adopted.

In particular, we have considered a spaceborne-like experiment, that provides a

large sky coverage and a ground-based experiment that focuses on certain regions of

the sky. As a typical example, we have considered the sky coverage given by the masks

of figure 6.1 for the space (left panel) and ground-based (right panel) experiments. The

first mask corresponds to the Galactic mask provided by Planck, that allows one to use

the 60% of the sky at full resolution,1 while the second one corresponds approximately

to the three cosmological regions selected by the QUIJOTE experiment [96, 97]. Re-

garding noise sensitivities, for the space mission, we have considered a noise level of

2.5 µK · arcmin, similar to that expected for the JAXA LiteBIRD satellite [69], while for

the ground experiment, a value of 1 µK · arcmin is assumed. This sensitivity is similar

to what could be obtained by the US-led CMB-S4 experiment [68] or by a future Low

Frequency Survey [98]. Table 6.1 summarizes the specifications of the two selected

configurations.

For our tests, CMB simulations have been produced using the HEALPix package

[39], for a standard cosmological model given by the best fit values of the cosmological

1More specifically, we have used the mask file HFI_Mask_GalPlane-apo0_2048_R2.00.fits available at
the Planck Legacy Archive.

http://pla.esac.esa.int/pla
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parameters of the baseline Planck 2018 ΛCDM model [21], but adding a tensor-to-scalar

ratio r = 3 × 10−3. The corresponding power spectra have been obtained using CAMB

[99]. Along the chapter, we will refer to this choice as Planck model and, except when

otherwise stated, it will be the power spectra assumed in this work. A Gaussian beam

of FWHM = 2.4 times the pixel size is also adopted.

6.3 Full and only-polarization implementations

The QML estimator has been usually implemented to compute either only the tem-

perature power spectrum or all the six possible spectra (intensity and polarization)

simultaneously. However, if we ignore the information about the correlation between

temperature and polarization, it is also possible to implement the QML only for the

three polarization spectra, i.e., EE, BB and EB. This is interesting since it implies an im-

portant reduction of the computational requirements, allowing one to work at higher

resolution. Independently of the assumed fiducial model, the QML estimator is un-

biased and, therefore, these different constructions of the QML should produce, on

average, the same results. However, the estimator error is only optimal if we use the

correct fiducial model in the definition of the covariance matrix.

An example in which this partial estimation of the CMB angular power spectra, fo-

cused on the polarization signal, could imply a clear benefit is related to instrumental

calibrations of CMB experiments. In particular, the accurate estimation of the EB an-

gular power spectrum can be used as a capital observable to perform the polarization

angle calibration. This is recognized as one of the most important systematics to have

under control for incoming high-sensitivity CMB polarization experiments. Mismatch

calibrations of the polarization angle (above a few arcminutes) could induce a leakage

from E-modes to B-modes that masks any possible primordial signal with r ≲ 10−3.

This degree of accuracy can not be obtained from astrophysical sources and, up to

date, nulling the observed EB angular power spectrum (as it would be expected from

the standard ΛCDM model), is a clear approach to reach the required degree of accu-

racy on the polarization angle estimation, see, for instance, [100]. This observable is

only useful for this purpose if the EB estimation is unbiased, with optimal error bars,

and up to a large multipole value.

In this section, we study the performance of the QML both when recovering the

complete power spectra and also when recovering only the polarization terms, check-

ing that it provides unbiased results and quantifying the increase in the error of the

estimator when neglecting the correlation between temperature and polarization.
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From eq. (1.40), the structure of the covariance matrix in the temperature and po-

larization case is given by

C =


Block

[
T T

]
Block

[
TQ TU

]
Block

 QTUT
 Block

 QQ QU

UQ UU



 . (6.1)

The matrix is composed of a diagonal block that accounts exclusively for temper-

ature correlations, another diagonal block that encodes polarization correlations and

two off-diagonal blocks that mix temperature and polarization. These off-diagonal

blocks are related to CT Bℓ , which is expected to vanish in the standard cosmological

model, and to CT Eℓ . Therefore, if we impose CT Eℓ = 0 in the fiducial model, the esti-

mations for temperature and polarization are decoupled. Taking this into account, we

have considered three different QML implementations:

1. CIP : estimation of intensity and polarization spectra using a complete covariance

matrix of order 3Npix with CT Eℓ , 0 in the fiducial model.

2. C′IP : estimation of intensity and polarization spectra using a complete covariance

matrix of order 3Npix but with CT Eℓ = 0 in the fiducial model, i.e., containing zero

off-diagonal blocks.

3. CP : a reduced version operating only on Q and U. The covariance matrix is the

second diagonal block of eq. (6.1), of order 2Npix. This version only estimates EE,

BB and EB spectra.

Let us remark that, with regard to the TT, EE, BB and EB spectra, the implementa-

tion C′IP is equivalent to run two independent QMLs, one for intensity and one for po-

larization since, when CT Eℓ = 0 in the fiducial model, the calculations for the estimation

of intensity and polarization spectra are decoupled. Of course, the C′IP configuration al-

lows also the estimation of the TE and TB spectra, that would not be obtained with two

independent QML estimators. Therefore, the C′IP and CP configurations should provide

exactly the same results for the EE, BB and EB spectra map by map, but different from

those obtained with CIP . Also, CIP and C′IP provide, map by map, different estimations

for TT, TE and TB.

It is clear that the lower dimensionality of the problem in the only polarization case

implies a reduction of the required computational resources. Not only the covariance

matrix has a smaller size, but also the number of elements in the Fisher matrix goes
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down from 62(ℓmax−1)2 in the CIP and C′IP cases to 32(ℓmax−1)2 for the CP configuration.

In particular, we can obtain a rough estimation of the reduction of the CPU time, by re-

ferring again to the computation of the matrix Y†C−1Y. In the CP case, the product C−1Y
requires 8N2

pixL operations while the computation of the blocks needed from Y†(C−1Y),

only three blocks in this case, takes 6NL2; thus we have a total of 8N2
pixL + 6NpixL

2

operations. This leads to a reduction of approximately a factor 2.3 in the number of

operations with respect to the full implementation of (T,E,B) for the case considered in

table 5.1. Note that this factor is only mildly dependent on the values of ℓmax and Npix

and will range approximately between 2 and 3.

6.3.1 Comparison of full and only-polarization implementations

We have also compared the performance of the three QML estimators on a practical

example, considering 5000 CMB simulated maps for the space configuration given in

table 6.1, at resolution Nside = 64 and ℓmax = 128. All the calculations were done in the

Altamira supercomputer with 100 processors, with our efficient harmonic implemen-

tation, taking 32 and 18 minutes for the CIP and CP cases, respectively, which means

a factor of improvement of around two. Although, given the high optimization of our

code, this is not as large as one would obtain in the case of a direct implementation of

the method, the CP implementation still provides a significant reduction of computa-

tional time that, together with the smaller memory requirements, can be interesting if

one wants to go to the highest possible resolution.

Figure 6.2 shows the TE power spectrum (right panel) as derived with the CIP and

C′IP QML estimators, and the BB power spectrum (left panel) obtained with the three

different configurations. For all the different power spectra, we find that all the estima-

tions are unbiased and that the corresponding errors are very similar for the considered

configurations. We also checked that, as expected, the polarization spectra is identical

for the C′IP and CP approaches.

In order to quantify the different performance of the three estimators, we have cal-

culated the increase in the error of the C′IP and CP configurations with respect to the

CIP reference case, which gives the best estimation since it uses the complete informa-

tion in the fiducial model. In particular, for the C′IP approach, we have calculated this

increment in the error as

σrel
(
C′IP

)
= 100

σ
(
D
C′IP
ℓ

)
− σ

(
DCIP
ℓ

)
σ
(
DCIP
ℓ

) , (6.2)

where σ (Dℓ) is the dispersion obtained from the 5000 simulations.
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Figure 6.2: Estimated power spectrum for BB (left) and TE (right) obtained with the dif-
ferent QML configurations explained in the text. For comparison the fiducial model is also
plotted (red line). Error bars have been computed as the dispersion from 5000 simulations
(we have tested that in the cases that the fiducial model matches the power in the maps,
i.e., CIP and CP , the error estimated from simulations agrees very well with that obtained
from the Fisher matrix). For a better visualization, the power spectra has been binned and
some of the points have been plotted with a small shift in the multipole value.

Figure 6.3 shows this quantity for TT, EE and BB (left panel) and for TE, TB and

EB (right panel) when estimating the power spectrum with C′IP (note that σrel(CP ) is

identical to that of C′IP for the EE, BB and EB spectra). When excluding the information

about TE in the fiducial model, we are slightly increasing the error bar in the final esti-

mation of the different spectra. However, this increase is very moderate, showing that

the method is close to optimal and that, if one is only interested in polarization spectra,

the method can be implemented specifically for this case with an important reduction

of computational resources. Let us remark that the reduction of computational time

can be important, for instance, if one needs to repeat the process over many data sets

or to iterate over the fiducial model (see Section 6.5). Another important advantage is

that for a given set of computational resources, this implementation can work up to

higher Nside and greater ℓmax than the complete TEB configuration, since the memory

required to store the matrices in the EB implementation is significantly lower.

6.4 Performance of the binned estimator

Figure 6.4 shows the results of the application of this method to an estimation of the

mean power spectrum and its corresponding error using 1000 simulated maps at reso-

lutionNside = 128 for the ground configuration given in table 6.1, up to ℓmax = 256. The

fist bin runs from 2 to 5; the second, from 6 to 10; and the rest of the bins are of length
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Figure 6.3: Relative difference in per cent of the estimation error of the different power
spectra given by the C′IP implementation with respect to that of CIP . These quantities have
been computed with eq. (6.2).

ten. As seen, the agreement between the estimated binned spectrum and the under-

lying true model is very good and we also find a very good match between the errors

estimated from simulations and from the Fisher matrix. Therefore, this confirms that

the method is unbiased and of minimum variance. The values of Bb (and consequently

the values of f bℓ ) and ℓ∗b were calculated from the fiducial model as the mean of the

values in the bins weighted by their theoretical error (according to eqs. (4.1) and 4.2)).

6.5 Performance when the fiducial differs from the model in
the maps

As shown in Chapter 2, the QML method is, under the considered assumptions, un-

biased and of minimum variance. However, this requires the use of the correct fidu-

cial model, what is in general unknown. In Section 2.6.3 we have also shown that the

method is unbiased when the fiducial does not reflect the true underlying model on the

map, but not of minimum variance. In this case, one may use an iterative scheme, such

that the initial fiducial model is updated taking into account the output of the QML.

Therefore, it is interesting to test this approach and to check how the estimator and its

error depend on the choice of the fiducial model.

So far, we have shown results for the QML method using a fiducial model that

perfectly matches that of the simulated maps, with the exception of the calculation of

CT Eℓ in the C′IP implementation, in which CT Eℓ = 0 is assumed for the fiducial model. In

this section, we will study the robustness of the results when the fiducial model differs
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Figure 6.4: Unbiased binned power spectrum estimation in a case when the sky coverage is
such that the Fisher matrix becomes singular. Ground experiment at resolutionNside = 128.
The red line shows the model in the simulated maps used as fiducial; the orange error bars,
the dispersion on the estimated power spectra obtained from the 1000 simulations; the
blue error bars, the error estimated from eq. (4.17).

from that assumed for the simulations in different cases, also checking the convergence

of an iterative approach. We will also show the performance of the binned method and

a comparison of the results for the full and only-polarization approaches described in

Section 6.3.

6.5.1 Robustness of QML with respect to the assumed fiducial model

In Section 2.6.3 we have shown that the method is unbiased even when the fiducial

differs from the model in the maps, but not of minimum variance. In this section we

will check the performance of the method under these circumstances.

In order to test the robustness of the power spectra estimated by QML versus the

initial assumed model, we have generated Nsim = 10000 simulations in the space con-

figuration using our Planck model (i.e., the Planck best-fit ΛCMD model but adding
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Figure 6.5: Power spectra considered to test the robustness of the QML method versus the
assumed fiducial model.

r=0.003) for a resolution of Nside = 16 and ℓmax = 32. We have estimated the power

spectra of each simulation assuming three different power spectra: the Planck model

(i.e., the correct underlying model), an alternative ΛCDM model (with a larger scalar

amplitude than the previous Planck model and r = 0) and a constant value for each

of the six components. The three models are given in figure 6.5. Note that we have

assumed a null TB and EB spectra for the three cases.

We find that the estimated power spectra averaged over the simulations follow the

Planck model closely, for the three considered cases, i.e, as expected, the method is

unbiased even if the power spectrum assumed to calculate the QML estimates differs

from the true underlying model.

To quantify this result, we have calculated the relative bias βℓ between the true and

estimated spectra (averaged over simulations) with respect to the estimated error on

the mean average of the power spectrum, i.e.,

βAltern.
ℓ =

⟨DAltern.
ℓ ⟩ −DPlanck

ℓ

σAltern.
ℓ /

√
Nsim

(6.3)

when assuming the alternative ΛCDM model and analogously for the Planck and con-

stant spectra. Figure 6.6 gives the relative bias for the three considered fiducial models,

showing that there are not significant outliers for any multipole or spectra component,

confirming that the method is unbiased.
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Figure 6.6: Relative bias on the power spectra estimated with QML when starting with
the Planck (blue), alternative ΛCDM (orange) and constant models (green) obtained using
10000 simulations generated with the Planck model.

Regarding the errors of the estimated power spectra, as expected, we find that they

are generally sub-optimal when starting with a wrong fiducial model. This has been

quantified by looking at the ratio between the errors σℓ at each multipole obtained from

simulations with a wrong fiducial (alternative or constant) versus those of the Planck
fiducial, i.e.,

ηAltern.
ℓ =

σAltern.
ℓ

σ P lanckℓ

, (6.4)

when assuming the alternative ΛCDM model and analogously for a constant spectrum.
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Fiducial TT EE BB TE TB EB

Maximum ηℓ
Alternative 1.01 1.11 1.79 1.04 1.37 1.39

Constant 1.02 1.11 1.30 1.05 1.14 1.14〈
ηℓ

〉
Alternative 1.00 1.02 1.08 1.01 1.04 1.05

Constant 1.01 1.07 1.04 1.03 1.02 1.06

Table 6.2: Top: maximum value of ηℓ, the ratio between the errors obtained when the
assumed fiducial is the alternative or the constant model versus those obtained when the
fiducial is Planck. Bottom: average value of ηℓ.

In particular, table 6.2 shows the maximum value of ηℓ for the alternative and con-

stant cases (top) and its average value over multipoles (bottom) for the six components

of the power spectra. The maximum difference is found for the alternative case and

the BB spectra corresponding to a multipole ℓ = 2, with a ratio of 1.79. The TB and EB

spectra are also affected, while for TT, the errors increase only slightly. Regarding the

mean ratio, again the alternative case for the BB spectra gives the largest errors (1.08)

when compared to the case when the correct fiducial model is used. In summary, these

results confirm that the QML estimate is unbiased versus the choice of a fiducial model

but sub-optimal with regard to its errors. This leads naturally to the possibility of using

an iterative scheme, where the assumed fiducial model is updated taking into account

the output of the QML estimator. In the next subsections we will check the validity of

this approach.

We may wonder if the binned QML will also be robust versus the choice of the

fiducial model. As shown in Section 4, we recall that the binned QML makes used of the

information of the fiducial model not only to evaluate the matrix C (as in the unbinned

case) but also to construct the {f bℓ } set which is needed to reduce the dimensionality of

the Fisher matrix in order to make it regular.

To test the performance of the binned estimator, we have applied it to the same

10000 simulations considering the three different fiducial models again and using the

bins limits

ℓbhigh = {4,8,12,16,20,24,28,32}. (6.5)

Figure 6.7 shows the relative bias βℓ for the different assumed fiducial models when

estimating the power spectra with the binned QML. In this case, we find that the

method is unbiased only when starting with the correct fiducial model (Planck), while
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Figure 6.7: Relative bias on the power spectra estimated with the binned QML when as-
suming the Planck (blue), alternative (orange) and constant (green) models obtained using
10000 simulations generated with the Planck model.

significant biases are found when assuming the constant or alternative models. This

reflects the fact that the binned QML is more sensitive to the choice of the initial power

spectra. This could be understood since this quantity appears in a different way in the

binned estimator. In particular, for the standard QML the estimated spectrum is given

by eq. (2.50), therefore the fiducial model enters twice through the inverse of the co-

variance matrix in the matrices Ei (eq. (2.44)) and F (eq. (2.38)). The estimation itself

is given by the multiplication of the vector y and the inverse of the Fisher matrix, be-

ing its effect somehow partially compensated. However, in the binned QML estimation

the fiducial enters also through the matrix R (eq. (4.18)) through the factors {f bℓ }. This

matrix is used twice to reduce the size of the Fisher matrix and only once for the same

process for the vector y and, therefore, the effect of the fiducial is more unbalanced.
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Fiducial TT EE BB TE TB EB

Maximum ηℓ
Alternative 1.01 1.11 1.25 1.05 1.18 1.25

Constant 1.01 1.12 1.08 1.07 1.07 1.30〈
ηℓ

〉
Alternative 1.00 1.02 1.06 1.01 1.04 1.07

Constant 1.00 1.06 1.00 1.04 1.02 1.08

Table 6.3: Top: maximum value of ηℓ, the ratio between the errors obtained when the as-
sumed fiducial is alternative or constant versus those obtained when the fiducial is Planck.
Bottom: average value of ηℓ. Results are obtained for the binned QML.

We may wonder if the situation improves if we do not include the information about

the fiducial model in the binning (i.e., using f bℓ = 1). However, we note that this is ac-

tually equivalent to assume a constant fiducial model for the binning step. Therefore,

when including constant weights in the binning, we are actually considering a extreme

case for the fiducial and, as one would expect, this leads in general to larger biases.

Therefore, once a (reasonable) fiducial model is assumed, it is convenient to include

this information in all the steps.

We should also note that the biases found are well within the error of the estimated

power spectra for a single realization and, therefore, in practice, they are relatively

small. This can be better appreciated in figure 6.8, which, as an illustration, shows that

the three estimations for the EE (left) and BB (right) spectra are actually quite similar

independently of the initial guess. However, the small error in the average power spec-

tra allows to detect the presence of these biases. One can also appreciate that, when

assuming a wrong fiducial spectrum, the output binned QML moves from it towards

the correct model. This is a clear indication that the initial fiducial model does not

reflect the true underlying spectra and, therefore, some kind of iterating scheme is rec-

ommended. This is discussed in more detail for the binned estimator in Section 6.5.3.

Regarding the increase of the estimation error, table 6.3 shows the maximum and

mean value of ηℓ for the binned QML. We find a similar behavior to that of the standard

QML, although with lower ratios, especially for BB whose maximum ratio is found to

be 1.25 (when starting with the alternative fiducial model).
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Figure 6.8: The mean and dispersion of the power spectra for EE (left) and BB (right)
estimated with the binned QML, averaging over 10000 simulations and starting with three
different fiducial models are shown. The used fiducial models (labeled as fidPlanck, fidAlt.

y fidConst.) are also given as solid lines. For comparison, the binned spectra obtained from
the Planck model (labeled as fidBinned), i.e., the model used to generate the simulations, is
also given.

6.5.2 Iterative QML

To test if an iterative process would lead to an unbiased and minimum variance QML

estimator, independently of the initially assumed fiducial model, we have carried out a

further test using 500 simulations with the same characteristics as those of the previous

subsection. In particular, we have estimated the power spectra with three different

initial power spectra (as before, Planck, alternative ΛCDM and constant spectra) for

each of the simulations. After this first estimation, we have iteratively estimated the

spectra another four times modifying the assumed fiducial model taking into account

the output of QML for the previous step. Therefore, in this test, we have applied QML

a total of 3 × 500 × 5 times. In this subsection, we have considered only the standard

(unbinned) QML, while the performance of the binned QML will be explored for a

specific case in the next subsection.

When iterating, one could simply use as the updated fiducial model, the values

of the power spectra directly estimated with QML. However, we have tested that this

may lead to failures in the method, due for instance to the fact that some multipoles

are estimated as negative (especially for BB),2 leading to singular covariance matrices.

Therefore, it is convenient to use a smoothed version of the output spectra as a guess

2Note that, although by definition auto-correlation multipoles are positive, estimators do not neces-
sarily produce these values. An estimator is just a mathematical operation that assigns values to the
parameters. And, in principle, one should not expect the function to assign values that satisfy the theo-
retical mathematical properties of the parameters it estimates. On the other hand, the values given by an
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for the next iterative step. Details about how this smoothing has been implemented are

given in Appendix E. Even with this approach, some instabilities can be present and it

has not been possible to complete the full iterative process for all the simulations and

the three different initial fiducial models. Note that one could complete the full process

for all the simulations by tuning the parameters used in the smoothing. However, we

have seen that this does not affect our results and, for simplicity, we have just discarded

those simulations that have failed at some step. Therefore, we present results for a

total of 453 simulations, for which the full process has been completed without further

tuning.

To test the performance of the iterative QML, we have studied the convergence of

the method independently of the initial fiducial model, the consistency of the results

for the three considered initial spectra and the evolution of the estimation errors with

iterations.

Regarding the convergence of the method, we find that after around five steps (i.e.,

the initial QML plus four iterations), the results are already quite stable. In particular,

we have studied the evolution of the convergence by looking at the relative difference

between two consecutive steps with respect to the spectra estimated with the correct

fiducial model (in this case without iterating), i.e.,

δℓ =
⟨D j+1,Altern.

ℓ −D j,Altern.
ℓ ⟩

⟨DPlanck
ℓ ⟩

× 100, (6.6)

when starting with the alternative ΛCDM model and analogously for the constant

model. Note that j corresponds to the step in the iterative process and that averages

are obtained over simulations. As an example, figure 6.9 shows this quantity for two

cases: TT spectrum starting with the constant model (left) and BB spectrum starting

with the alternative model (right). As one would expect if the method converges, these

differences decrease when advancing in the number of iterations. A similar behavior is

found for the other considered cases.

We have also tested if the results obtained with the QML by the three different start-

ing fiducial models converge to the same values as the iterations progress. To quantify

this point, we have calculated for each simulation and for each iteration the dispersion

between the three estimations obtained with the three different starting models (Planck,

alternative and constant) at each multipole. Therefore we have the function

σ
j
ℓ,i = Dispersion{D j,Planck

ℓ,i ,D
j,Alt.
ℓ,i ,D

j,Const.
ℓ,i } (6.7)

estimator are accompanied by some uncertainty, so there is a certain probability that a parameter that in
principle is positive will end up having a negative value.
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Figure 6.9: Convergence of the iterations for TT when starting with the constant spectra
(left) and BB when starting with the alternative model (right). The different colors indicate
the relative difference (in percentage) between two consecutive steps averaged over simu-
lations with respect to the value estimated with the correct fiducial model.

for each multipole ℓ, simulation i and step j. Figure 6.10 shows the ratio (in percentage)

of this quantity averaged over simulations relative to the estimated spectra obtained

when starting with the Planck model (without iterating), also averaged over simula-

tions, for BB (left) and TE (right). As seen, the dispersion between estimates is signif-

icantly reduced when increasing the number of iterations, showing that the iterative

QML leads to very similar results, not only on average but also simulation by simula-

tion, independently of the chosen initial spectra. Similar conclusions are reached for

the other spectra.

We have also checked that, independently of the starting fiducial model, the errors

in the estimated power spectra at the end of the iterative process are very similar to

those obtained for the optimal case (i.e., using the correct fiducial model and not iter-

ating). This is expected since we have seen that the iterative QML converges basically

to the same result for the three considered cases. Note that these conclusions also hold

for the case in which we start with the correct fiducial model, showing that the process

is stable and that there is not danger in iterating even when one is already in the right

initial point.

6.5.3 Robustness of QML with respect to the assumed tensor-to-scalar ratio

In the previous subsections, we have considered the robustness of the QML versus the

initial choice of the fiducial model as well as the performance of an iterative approach

for different initial generic spectra. However, future experiments will focus on the

estimation of the tensor-to-scalar ratio and, therefore, we think it is interesting to study
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Figure 6.10: Ratio (in percentage) of the average dispersion obtained over the three dif-
ferent estimates of the spectra over the average power spectra obtained with the Planck
fiducial (without iterating) for each iterative step j = 1,5 (indicated by different colors) for
BB (left) and TE (right).

specifically the sensitivity of the method to a wrong initial value of r. Given that many

of these experiments observe only a small fraction of the sky, we will also consider the

binned version of the QML. This also allows us to check the consistency between both

approaches and whether information could be missed when using the binned estimator.

In this section, the iterative approach will also be considered, although we will use a

different method to provide an initial guess for the fiducial model. We will assume that

all cosmological parameters are known, except for the tensor-to-scalar ratio r, so we

will consider three different initial fiducial models for QML that differ in the value of r.

Then, rather than smoothing the output spectra of the previous step, we will estimate

r from the QML spectra and use it to construct the guess spectra for the next iteration.

The estimator used for r is described in detail in Appendix F.

In particular, we have carried out the following procedure:

1. We simulate one map (including CMB and noise) with the specifications of the

space case (given in table 6.1) and with a tensor-to-scalar ratio rtrue = 0.003. The

map is generated at Nside = 16, with ℓmax = 32 and smoothed with a Gaussian

beam of 8.79 degrees of full-width half maximum.

2. We apply the unbinned and the binned QML to estimate the power spectrum,

starting with a wrong fiducial model (i.e., r0 , rtrue). More specifically, we con-

sider two cases: r0 = 0 and r0 = 0.03. For comparison, the case r0 = rtrue is also

considered. For the binned estimator, we have used 8 bins with ℓbhigh given by {4,

8, 12, 16, 20, 24, 28, 32}.
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Figure 6.11: Left: evolution through the steps on each one of the five iterations with start-
ing points r0 = 0.03, 0.003 and 0, of the mean and the standard deviation over 200 simu-
lated maps of r̂ estimated from the QML power spectrum. Right: r̂ obtained from the same
maps in the same conditions than in the left part, but from a binned spectra.

3. An estimator r̂ of the tensor-to-scalar ratio is obtained as explained in Appendix F.

4. We update the fiducial model using the estimated value r̂ and apply again the

unbinned and binned QML. A total of five iterative steps are performed.

The full process is repeated for 200 simulations.

Figure 6.11 shows the progression with the number of iterations of the mean value

and dispersion of r̂ obtained over the simulations, for the three values of r0 and for the

unbinned (left) and the binned (right) QML estimator. For the standard (unbinned)

estimator, the results indicate that when starting with a wrong fiducial, even without

any iteration, the estimator is close to unbiased although not of minimum variance.

For the binned estimator, this is also the case when starting with a fiducial model with

r0 = 0.03. However, for r0 = 0 without iterating, we find that the mean of the estimated

values of r is around 1σ below the true value. Since that for the standard QML case we

do not find that deviation (left panel), this indicates again that the binned QML is more

sensitive to the choice of the initial fiducial model. However, we see that ⟨r̂⟩ converges

rapidly with the iterations to the true value, independently of the starting point, for

both the binned and unbinned QML. Also, the error of the estimation of r decreases,

becoming quite stable after around four steps.

The good convergence of the iterative QML can also be confirmed by looking at the

top and bottom-left panels of figure 6.12 that show, for each simulation, the estimated

value of r for one starting point (r0 = 0) versus the one estimated for the other initial

value (r0 = 0.03) for different number of iterations. For both, the unbinned (top panel)
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Figure 6.12: Top: Tensor-to-scalar ratio estimated from the QML spectra starting with a
fiducial model with r = 0.03 (ordinate) plotted against the tensor-to-scalar ratio estimated
starting with a fiducial model with r0 = 0 (abscissa) for different number of iterations.
Bottom-left: same plot using the binned spectra. Bottom-right: r̂ obtained at the last step
of the iteration from the unbinned spectra versus that obtained from binned spectra, for
the three different starting points of r0 considered. In all cases, points from 200 simulations
are shown.

and binned (bottom-left panel) QML, we see that individual values of r̂ tend to mi-

grate to the diagonal of the plot through the steps of the iteration, showing the good



142 chapter 6. test on the performance of qml

r0 ⟨r̂⟩ σr̂
0 3.00× 10−3 1.26× 10−3

Standard QML 0.003 3.02× 10−3 1.26× 10−3

0.03 3.02× 10−3 1.26× 10−3

0 2.98× 10−3 1.26× 10−3

Binned QML 0.003 2.99× 10−3 1.26× 10−3

0.03 2.99× 10−3 1.26× 10−3

Table 6.4: Mean and standard deviation of r̂ from 200 simulated maps (space configura-
tion) at resolution Nside = 16 generated with rtrue = 0.003 at the last of the five steps of an
iterative scheme for the standard and binned QML. In both cases, values obtained after an
iterative process with different starting points are shown.

performance of the iterative approach.3 For the binned QML, it also becomes apparent

that when no iterating, the estimation of r tends to be lower when starting with r0 = 0

versus the values obtained with r0 = 0.03 as reflected in the asymmetric distribution

of blue circles around the diagonal. The bottom-right panel of figure 6.12 shows the

estimated values of r, obtained at the last step of the iterations, from the binned spec-

tra versus those obtained from the unbinned one, for the three different starting points

considered. It is apparent that the two estimations of r (obtained from the binned and

unbinned QML) are very similar, clustering around the diagonal. In addition, we see

again that the position of the points is independent of the value of r0.

Finally, table 6.4 gives the mean value and standard deviation of r̂ in the last it-

erative step for the three starting points for the unbinned (top) and binned (bottom)

spectra, showing an excellent agreement between the different cases. This shows that,

at least in the considered case, no information is lost when using the binned version of

the QML with respect to the standard implementation and that the iterative approach

is robust versus the choice of the initial tensor-to-scalar ratio for the binned and un-

binned QML. For comparison, we note that the theoretical errors (∆r given by eq. (F.5))

for a fiducial model with r = 0.003, are 1.16×10−3 and 1.18×10−3 for the unbinned and

binned spectra, respectively, which are somewhat below those found for σr̂ . This differ-

ence is due to the relatively small number of simulations, which only allows estimating

the error of r̂ with limited precision.

3Note that this test is stronger than that of figure 6.11, since we impose convergence at each individual
simulation, finding that a few values of r̂ still deviate from the diagonal at step 5. Indeed, we tested that
with more iterations (with around ten steps in total), these values also move to the diagonal
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Specification ⟨r̂⟩(×10−3) σr(×10−4) ∆r(×10−4)

CIP 3.00 6.51 6.50

C′IP 3.00 6.52 6.51

CP 3.00 6.52 6.51

Table 6.5: Results on the estimation of r in the configurations CIP , C′IP and CP described in
Section 6.3.

6.5.4 Only-polarization QML

Finally, we may also wonder whether the estimation of r̂ is degraded when using the

only-polarization QML configuration (CP ) versus the full estimator (CIP ) described in

Section 6.3. This is important because of the reduction in CPU time achieved when

working only with polarization. Therefore, we have applied the configurations CIP and

CP (and also C′IP for comparison) to 5000 simulations (space configuration, Nside = 64,

ℓmax = 128) starting from the correct fiducial r = 0.003 and have estimated the mean

value and error for r̂.

Table 6.5 shows the mean value, standard deviation and theoretical error bar of r̂

for the three considered configurations. As one would expect, since CIP includes the

full information from the power spectra, it provides a slightly smaller error on r̂ than

the other two configurations which, at the considered precision, are indistinguishable.

However, the differences are very small and, therefore, in practice, it is perfectly ac-

ceptable to use the CP configuration in order to save computational resources.

6.6 Comparison between QML and NaMaster

The so-called pseudo-spectrum methods (e.g. [44]), have become widely used to es-

timate the CMB power spectra since they require significantly lower computational

resources than QML, allowing their computation up to very high multipoles. These

methods calculate the spherical harmonic transform in a masked sky and try to decon-

volve the effect of this mask through the inverse of the kernel that encodes the coupling

in the harmonic space produced by the loss of orthogonality due to the incomplete sky.

To reduce the effect of the coupling, masks are usually apodized (e.g. [47]). In the po-

larization case, due again to the loss of orthogonality, a leakage between E and B modes

is also present, which adds an additional complexity to the sought of the very weak

primordial B-mode of polarization. The most advanced pseudo-spectrum methods in-
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corporate purification techniques of the E- and B- modes of polarization with the aim to

reduce this transfer of power between them [101]. Although pseudo-spectrum methods

are, in practice, of minimum variance for intermediate and high multipoles, they are

sub-optimal at large scales, which are particularly relevant for a future determination

of the scalar-to-tensor ratio. Therefore, it is interesting to compare the performance of

the QML and pseudo-spectrum estimators, to understand the advantages and limita-

tions of each of them (for previous discussions, see e.g. [102, 94, 54]).

In particular, in this section we compare the results from ECLIPSE, our QML imple-

mentation, to those obtained with NaMaster [59], an advanced public implementation

of the pseudo-spectrum method,4 that incorporates different types of apodization as

well as the purification technique. For our test, we have applied QML and NaMaster

to 10000 simulations in the space configuration at resolution Nside = 64, with the usual

mask (left panel of figure 6.1) and considering ℓmax = 128. In the case of NaMaster, it

is possible to tune several parameters (such as type of apodization, apodization scale,

to include or not purification) in order to improve the estimated spectra. Although a

detailed study of the optimal choice of these parameters is outside the scope of this

chapter, we have explored several possibilities, prioritizing the recovery of the lowest

multipoles for BB. In particular, we find that the C25 option for apodization with a

scale of 22◦ and the use of B-mode purification is well suited for our purpose when the

previous simple Galactic mask is used. However, note that, as it will also be shown,

different configurations may produce better results for other components or scales of

the spectra as well as for different masks.

As expected, we find that both ECLIPSE and NaMaster provide unbiased estimations

of the different components of the spectra (in the case of NaMaster after subtracting the

noise bias). Figure 6.13 (top panel) shows the ratio of the estimation errors (obtained

from the simulations) achieved with NaMaster over those from QML for the considered

case. It becomes apparent that important differences are found up to ℓ around 20, with

maximum values for the ratio of around 5. At the largest multipoles, the ratio is close to

1, but we see that QML still provides better results. This is actually due to our choice

4NaMaster is available at https://github.com/LSSTDESC/NaMASTER
5In this case, pixels are multiplied by a factor f given by

f =

 0.5[1− cos(πx)] if x < 1
1 otherwise

, (6.8)

where x =
√

(1− cosθ)/(1− cosθ∗), θ∗ is the apodization scale and θ is the angular separation between a
pixel and the nearest masked pixel. Note that all pixels separated from any masked pixel by more than
the apodization scale are left untouched.

https://github.com/LSSTDESC/NaMASTER
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of a very large scale of apodization, which in practice reduces the effective available

information, degrading the error of the spectra at higher multipoles. By choosing a

smaller apodization scale, this ratio tends to unity at these multipoles although at the

price of degrading the recovery of BB at large scales very significantly. This is shown

in the left-bottom panel of figure 6.13 where an apodization scale of 4◦ is instead used.

We also note an increase in the estimated error for NaMaster at the highest considered

multipoles. We found that, at the limit of the resolution of the map, QML also per-

forms better than pseudo-spectrum methods. However, in practice, this is not a real

limitation of this technique in comparison to QML, since the pseudo-spectrum method

can recover this range of multipoles from maps with higher resolution (where this ef-

fect will move to the highest considered resolution, that in any case will not usually be

achieved by QML due to computational limitations).

The mask that we have considered in this test is well suited for apodization, since

it only presents one boundary between the included and excluded regions. However,

masks can also exclude regions outside the Galactic plane that, when apodizing, will

introduce a further loss of information for pseudo-spectrum methods. This is not the

case for QML, where only the pixels discarded by the mask are removed from the anal-

ysis. To test this situation, we have repeated the previous exercise considering the mask

given in figure 6.14, which is constructed by excluding additional regions outside the

Galactic plane, that are present in the Planck common confidence mask for polarization

[15]. Note that this extended mask allows the use of 58.6 per cent of the sky versus 59.0

allowed by the original mask (left panel of figure 6.1). For this case, we found that the

use of the B purification technique and the Smooth apodization option6 with a scale of

4.5◦ were giving better results for the lowest multipoles of BB (again we remark that

different configurations could be better suited for other purposes). The bottom panel

of figure 6.13 shows the ratio between the errors obtained with NaMaster versus those

of QML. We see that the behavior is qualitatively similar to that found for the original

mask (top panel) but the differences between both methods are amplified, confirming

that a loss of a small fraction of the sky can degrade the performance of the pseudo-

spectrum methods with respect to QML very significantly if the mask is not compact.

Indeed, we find that for QML the errors of the estimated spectra increase only slightly

(at the subpercent level for all multipoles) with respect to the original mask. However,

for NaMaster, the estimated errors for the case of the extended mask are between 1.4 to

6In this case all pixels closer than 2.5 times the apodization scale to a masked pixel are initially set to
zero. The resulting mask is then smoothed with a Gaussian kernel with standard deviation given by the
apodization scale. Finally, all pixels originally masked are put back to zero.
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Figure 6.13: Ratio of the errors of the power spectra obtained with NaMaster over those es-
timated with QML. For NaMaster, B-mode purification is always used. Top panel and left-
bottom panel, a simple Galactic mask has been considered, whereas for the right-bottom
panel, the extended mask from figure 6.14 was used. The following apodization options
were considered in each case for NaMaster: C2 option with a scale of 22◦ (top), C2 with a
scale of 4◦ (left-bottom), Smooth with a scale of 4.5◦ (right-bottom).

2.0 times larger than those of the original mask (being the largest scales more affected).

A practical way to improve these results for the pseudo-spectrum methods would be

to perform some kind of inpainting in the data that allows the use of a more compact

mask, although this incorporates an additional complication to the procedure, whose

effect should be carefully quantified.

6.7 Some applications of ECLIPSE

ECLIPSE has already been used or is being used in several applications, both to data

and simulations.
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Figure 6.14: Extended mask that covers the Galactic mask from the top panel of Fig 6.1
plus some additional regions outside the Galactic plane constructed at Nside = 64. The
number of valid pixels is 28824.

A general map-making method for ground-based microwave experiments, imple-

mented specifically for QUIJOTE multifrequency instrument (MFI) data, is presented

in [103]. TOD’s containing sky signal have been simulated following the equations of

the MFI instrumental response. The signal contains CMB plus foregrounds, dipoles

(solar and orbital) and noise. The PICASSO map making method has been used to con-

struct the observed CMB map and the other components that constitute the measured

signal. To determine the transfer function at large scales, QML has been used to es-

timate the power spectra of the input map and the recovered map, as it is especially

important to have a good estimate at low multipoles where pseudo-spectra methods

are not optimal.

QML has been applied iteratively, starting from three different initial points. This

process is not straightforward, presenting some subtleties that need to be dealt with

in the analysis. In particular, due to the characteristics of the mask, the Fisher matrix

is singular, so it is only possible to estimate the binned power spectrum. However, to

iterate, it is necessary to generate a full spectrum from the binned spectrum, in order

to calculate, again, the covariance matrix. Although in all tests involving iteration

we have found that QML converges to a final estimate, which is independent of the

starting point, the final result may be sensitive to the binning scheme and the way the

full spectrum is constructed for the next iteration. These points were studied in detail

in order to produce a robust estimation of the transfer function.

In [104], a methodology to determine the miscalibrated polarization angles is de-

veloped. In particular, the miscalibration angles are estimated by nulling the EB com-

ponent of the power spectrum, as expected in the standard model for CMB. With this

method, the miscalibration angles are fitted and corrected (de-rotated) CMB maps are

obtained. To test the method, CMB maps have been simulated from a prefixed model,

and foregrounds and instrumental noise have been added. In addition, the effect of the
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miscalibration polarization angles on the measurement of Q and U for each detector has

also been considered. After applying the techniques developed to remove the system-

atics and recover the CMB maps, the quality of the results has been checked. Among

other tests, our code has been used to study the performance of the proposed methods

by comparing the power spectrum of the recovered and simulated CMB polarization

B-mode as well as the level of residuals left in the output map.

In [105], QUIJOTE intensity and polarization maps in four frequency bands cen-

tered around 11, 13, 17 and 19 GHz, and covering approximately 29 000 deg2 are pre-

sented. Given the multipole range considered in the different analyses, and the low

computational resources required for pseudo-Cℓ, this type of estimators have been used

to analyze the results of the data pipeline processing and to determine the character-

istics of the final maps, in particular, the codes Xpol7 and NaMaster. The tests carried

out throughout the work have shown that both methods produce consistent results. In

addition, taking a reference map and mask, the ECLIPSE code —that implements an

optimal estimator— has been used in order to compare the results obtained with both

methods with the ones given by QML for that reference case. The conclusion is that all

methods provide consistent results for the multipole range considered, so it is justified

to use the pseudo-Cℓ approach for the computations.

6.8 Conclusions and discussion

The QML provides an unbiased and minimum variance estimator of the intensity and

polarization of the CMB power spectra, provided a correct fiducial model is assumed. If

one is only interested in polarization power spectra, we show that it is possible to use an

only-polarization QML implementation reducing further the required computational

resources (roughly a factor of 2 in CPU and memory requirements) while obtaining

basically the same results as those of the full QML implementation (where intensity

and polarization are simultaneously considered).

The method is always unbiased,8 but it is only of minimum variance if the assumed

fiducial model corresponds to the underlying true model of the data, which is in gen-

erally unknown. To overcome this shortcoming, the use of the QML within an iterative

scheme that updates the fiducial model at each step has been tested for different sce-

narios. Our results show that, even when starting with a wrong fiducial model, the

7https://gitlab.in2p3.fr/tristram/Xpol
8Of course, assuming that the noise model matches the one in the maps. Otherwise, the correct noise

bias would not be subtracted and some residual would remain in the estimation, whatever the fiducial.

https://gitlab.in2p3.fr/tristram/Xpol
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estimated power spectrum is, as expected, unbiased without iterating, although its er-

ror is somewhat larger than when starting with the correct value. Moreover, if we

iterate, independently of the starting point, the errors are also consistent with those

obtained when starting with the correct fiducial model. The same behavior is found for

the estimation of the tensor-to-scalar ratio r from the output power spectra (in a sim-

plified case where all other cosmological parameters are assumed to be known), i.e.,

its estimation is close to unbiased independently of the assumed initial power spectra

but its error can be reduced by iterating. In addition, we have also repeated similar

tests for the binned version of the QML, finding that, in certain cases, this may be more

sensitive to the assumed initial fiducial model than the standard QML. However, when

iterating, both the binned and standard QML estimators provide very similar results.

Therefore, when applying the QML estimator to future CMB data is advisable to iter-

ate at least a few steps in order to check the consistency between the assumed fiducial

model and the one estimated with QML, in order to obtain optimal results. Note that

the high efficiency of our code (see Chapter 5) allows the use of this iterative approach

that could not be easily carried out with previous algorithms due to the high required

computational resources.

This leads us to a very important point to keep in mind: the QML method guaran-

tees that the error bars derived from the Fisher matrix obtained by applying the method

match the correct covariances when the fiducial reflects the true underlying model in

the maps. Only in that case we can be sure that the Fisher error bars are accurate. When

we apply QML and get a spectrum that does not match the fiducial, we cannot rely on

the Fisher error bars, and iteration will be necessary.

We have also compared the performance of the QML method with that provided by

a pseudo-spectrum estimator (using the NaMaster implementation). For the configu-

ration of a future satellite experiment, we find that the errors of the estimated power

spectra at low multipoles (ℓ ≲ 20), which are critical for the detection of the tensor-to-

scalar ratio, are significantly higher (up to a factor of 5 for a typical Galactic mask) for

the pseudo-spectrum method. This method is also found to be much more sensitive

than QML to the mask’s geometry, degrading its performance when the mask is not

compact, even if only a small fraction of the sky is removed. Also, the use of large

scales of apodization, which are useful to improve the recovery of the BB spectra at

low multipoles, increases the errors at the smallest scales considered, due to the loss of

information. This also illustrates the fact that different tunings of NaMaster are needed

to obtain the best possible spectra for different components or scale ranges.
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Conclusions

The Cosmic Microwave Background (CMB) is a radiation field incident from all direc-

tions in the sky. The CMB photons we observe nowadays connect us to the state of the

universe when it was around 380 000 years old. In turn, knowledge of the state of the

universe at that epoch connects with the initial state by means of well-known physical

laws. So the CMB helps to establish constraints on the state of the cosmos and on its

behavior at very early times.

The universe is immensely large and has existed for billion years. Therefore, our

ability to observe and experiment is reduced to a very limited region of space and a

portion of the time it has existed as it is. How can we be sure how far in space and how

far forward and backwards in time everything we have learned from observing and

experimenting over such a small time span compared to the life of the universe and

in such a limited region of space is valid? To answer this question, the Cosmological

Principle comes to our aid, which states that the universe is as a whole determined by

the same physics —it all began with Newton and his Law of Universal Gravitation—.

This means that the place we occupy and what we observe have nothing particular and,

ultimately, leads to the conclusion that the universe is isotropic and homogeneous at

sufficiently large scales. The Cosmological Principle is not only an explicit manifesta-

tion of our desire to have the possibility of knowing and understanding beyond what

is directly accessible to our instruments: it also provides a solid methodological frame-

work to formulate and test scientific hypotheses according to Occam’s simplicity rule.

When we combine the knowledge of the laws of physics that we have acquired by ex-

perimenting on our planet and its surroundings with all the information that reaches

us from the immediate vicinity and even the most remote places of the universe, we

find a consistent picture. If this were not true, there would have to be a large number

of coincidences for everything to fit together as it seems to do. Implicitly, the Cosmo-

logical Principle implies that the laws of physics are constant over time. Otherwise,

– 151 –
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we would not be able to explain the past with what we have discovered in the present.

Furthermore, otherwise, again, we would not understand how everything fits together

as well as it does.

When we observe the CMB, we find some patterns of temperature and polarization

anisotropies at different angular scales. According to the Cosmological Principle, these

anisotropies do not represent different physical laws in certain areas of the universe,

but are the manifestation of the intrinsic statistical nature of the realization of physical

processes at different points in the universe.

The ultimate characteristics of our universe are determined at their origin by laws

of probability. In this context, our universe is just one realization of the infinite possible

ones. From its observation, we can infer the laws and the values of the parameters that

govern it. Thus, from what is observed in the present and thanks to the knowledge of

the laws of physics, we can reconstruct its past and predict its future.

Because of their statistical nature, the particular values of the anisotropies in each

area of the sky are of no special interest. The relevant information is encoded in the

power of anisotropies at different angular scales, the angular power spectrum. Models

and physical theory make it possible to connect the laws, which we assume to exist and

whose form and expression we seek, with the power of the spectrum at different scales.

Therefore, the angular power spectrum is a valuable observable of cosmological theory.

The inflationary theory explains the origin of anisotropies in the CMB. According

to it, they are the result of the amplification to macroscopic scales of quantum fluctua-

tions.

On the other hand, when we talk about the CMB, we refer to electromagnetic radia-

tion and, as such, it can be polarized. Inflationary models predict patterns in the polar-

ization of the CMB signal at different angular scales. The polarization power spectrum

thus becomes a crucial observable for the selection of inflationary models and for de-

termining essential aspects in the first instants of our universe. In addition, it contains

valuable information to determine aspects related to the parity of the universe.

Unfortunately, our ability to measure anisotropy values in different regions of the

sky is limited. Satellite-based missions can read data from the full-sky and ground-

based experiments can only observe a small fraction of the sky, the one accessible from

their location. But in both cases, the data recorded by our detectors from the signal

they receive from certain regions of the sky are affected by a high contamination of

emissions in the frequencies occupied by the CMB, as is the case of the area covered

by our galaxy. Therefore, we cannot determine the values of the power spectrum in a

way that is equivalent to solving an unknown or solving an equation. That is, by the
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nature of the data, there are no mathematical methods to solve a problem affecting the

power spectrum. Therefore, we can do no more than resort to mathematical methods

that allow us to estimate the power spectrum.

Whatever the method used, the capacity to estimate parameters is intrinsically lim-

ited by the nature of the statistical distribution from which the data are derived. Thus,

there are constraints that set minimum bounds on the uncertainty with which param-

eters can be estimated.

One of the most widely used mathematical methods to estimate parameters is the

maximun likelihood method. It is an unbiased and minimum variance method, and

we can apply it to power spectrum estimation. But given the computational workload

required to use it, it becomes unfeasible when the data sample size is large. That is,

when applied to CMB, when the size of the data maps is large.

Mathematical methods equivalent to the maximum likelihood in terms of the qual-

ity of the results can be sought, but with a lower computational workload. The quadratic

maximum likelihood method (QML) meets both requirements. It is equivalent and is

internally equipped with a solution search mechanism that leads directly to the best es-

timate. With it, the computational workload is significantly reduced, but still remains

large, making it necessary to search for optimal ways to implement it. In the develop-

ment of the method it has been assumed that the anisotropies are Gaussian. Therefore,

care must be taken when applying it to calculate power spectra of maps that do not

meet this condition.

In applying the method, a number of complex mathematical operations have to be

performed. One of the critical points is the inversion of the covariance matrix. But the

covariance matrix is not regular per se. The necessary condition for the signal covari-

ance matrix to be regular is that the power spectrum used to describe it introduces a

number of spherical harmonics equal to or greater than the size of the maps. However,

the combination of the symmetries between pairs of pixels in the different pixelizations

with the characteristics of the spherical harmonics leads that the range of the harmonic

matrix may be lower than expected. By adding to the signal covariance matrix a diag-

onal noise matrix, a regular covariance matrix is obtained. The noise regularizes the

matrix because, in the end, adding noise is adding a signal that requires a collection of

infinite spherical harmonics to be described. The propagation of errors when perform-

ing floating point calculations can lead to incorrect results in cases where the matrix

is at the limit of being regular. Therefore, it is convenient to incorporate mechanisms

that control the regularity of the matrix when applying any mathematical method that

requires its inversion, as is the case of QML.
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The QML method consists of two steps. In the first, the power of the anisotropies

in pixel space is transformed to harmonic space. All the information of cosmological

interest is already encoded in this space. In the second, operating entirely in harmonic

space, one goes from an expression in which the powers of the six components of the

spectrum and of the different scales appear mixed, to the expression in the form of a

power spectrum. To undo the mixing, one needs to calculate the inverse of the Fisher

matrix. But, again, the Fisher matrix is not regular per se. When this happens, one

cannot calculate the multipole-to-multipole power spectrum. Still, one can calculate

the binned power spectrum. In principle, when binning, information can be lost, the

result may not be unbiased and control of the covariance matrix is lost. In this Thesis,

making use of the model that describes the a priori knowledge that we have of the sta-

tistical characteristics of the maps, we have developed a binning scheme that produces

an unbiased and minimum variance estimate. In short, for a given set of bins, we have

the best form of applying QML to obtain a binned spectra, but that does not mean that

we have the best way to define an optimal set. As far as we know, there is no way to

choose a priori the best binning configuration. But once we have defined a set of bins,

we do know the best way to calculate the power in them. On the other hand, the fact

that we can compute the power in the bins in an unbiased and minimum covariance

way does not mean that we do not loose information: obviously, if we have the power

spectrum and the covariances of a map, we can compute the binned power. But we

cannot go from binned power to multipole-to-multipole power.

Equal in the quality of the results to the maximum likelihood method, the QML

method has less computational workload, although it is still high. Among other things,

it requires calculating the covariance matrix, its inverse and the Fisher matrix. The

structure of the signal covariance matrix is much simpler in harmonic space than in

pixel space. Taking advantage of this fact, the method can be implemented such as

the heaviest calculations (the determination of the Fisher matrix) involve the use of

matrices with a large number of zeros and a few ones. By analyzing in detail the role

played by the location of these ones in the context of matrix multiplications, one can

analytically predict the result to be obtained after complex and time-consuming ma-

tricidal mathematical operations. So we can predict the value of essential matrix el-

ements in the method by significantly reducing the number of operations needed to

find them. In this way, an implementation of the method can be developed that sig-

nificantly saves the number of matrix operations and can also be parallelized when

implementing it in computer language. Thus we have developed an implementation

that reduces the number of operations by several orders of magnitude with respect to
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previous implementations of the method. Moreover, since the organization and struc-

ture of the computations is parallelizable, we have developed an implementation in

Fortran language that takes advantage of pre-existing libraries optimized to perform

unavoidable parallel matrix operations. On the other hand, the calculation of the re-

sult of the matrix operations that we save with our method has been implemented

parallelized with our own algorithms. The result has been a parallel code that imple-

ments an optimal method with optimized algorithms —although probably still with

some room for improvement—. Thus, QML can be applied relatively quickly to large

problems, making use of the computational power and the huge amount of memory of

supercomputers. The ECLIPSE code is a public version of our implementation, freely

available on the Internet. In this Thesis we have incorporated the manual of use of the

code in order to illustrate its ease of use (within the difficulty of providing all the nec-

essary information to accurately determine a situation in which QML can be applied)

and versatility.

In the tests that we have carried out to study the performance of QML, we have

found it to be unbiased and of minimum variance when the fiducial model and the

noise information we supply to the method matches those of the simulated maps, both

when computing the full power spectrum and when doing so by applying the optimal

binning technique developed in this work. If we are only interested in polarization,

QML can be applied to estimate only the related components, reducing the number of

operations by a factor of about two, keeping the results unbiased and with an uncer-

tainty very similar to that found when calculating the full spectrum.

When the fiducial model does not match the signal on the maps, the method is

shown to be unbiased and uncertainties increase. However, the binned method may

introduce some bias in this case. This is an expected phenomenon, associated with an

extra use of the fiducial information when binning. When applying an iterative map-

to-map scheme, the estimates converge to the same values regardless of the starting

fiducial. The above happens both when applied with and without binning; this shows

that the method is robust. When applying the method to a very simple model for the

estimation of the cosmological parameter r —tensor-to-scalar ratio— we have found

the same behavior.

The pseudo-Cℓ methods are unbiased and computationally much faster than the

maximum likelihood methods. However, we found that they produce estimates with

significantly larger uncertainties, especially in the region of low ℓ, which is critical for

the detection of tensor modes. Because reducing aliasing requires apodizing the maps,

they are much more sensitive to the existence of sparse areas where signal is missing.
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Because QML operates with the maps in pixel space, it is not affected by such problems;

missing a few pixels hardly translates into increased error bars.

In short, in this work we present a detailed study of the possibilities and results of

estimating the CMB power spectrum using a quadratic maximum likelihood method.

For this purpose, we have developed a mathematical formulation that significantly re-

duces the number of operations and we have written a code that implements it. The

code is freely available and we hope that it will become a useful and easy-to-use tool

for the scientific community.



Appendix A

Study of the determinant of C

According to eq. (3.11), we can expand the determinant of C as a sum of determinants

of matrices whose columns are the spherical harmonics calculated at the different pixels

of the image. If one determinant in the sum is not null, there will be other n! − 1

terms that are not zero, corresponding to the permutations of its columns. However, in

principle, it could happen that the sum of all these elements is zero. In this appendix

we will calculate this sum and show that the result is a real, positive number.

Let us suppose that we have a particular collection of values
{
µ1,µ2, . . . ,µn

}
such that

the corresponding determinant in eq. (3.11) is not null; of course, the indices must be

different and correspond to a collection of linearly independent spherical harmonics.

For the sake of simplicity, let us reassign labels to the spherical harmonics in such a way

that now Yµi is labeled as Yi , so we have a matrix whose n columns are the n spherical

harmonics Yi , i = 1, . . .n evaluated in the n pixels of the map. Let us define D and M

D ≡ det(M) ≡ det


Y11 Y21 · · · Yn1

Y12 Y22 · · · Yn2
...

...
...

Y1n Y2n · · · Ynn


. (A.1)

In the concatenated summations in eq. (3.11) there are another n!−1 no null terms given

by permutations of the columns of the matrix in eq. (A.1), whose determinants take

values ±D depending on the signature of the permutation. Let S be the contribution

to the determinant of C of the terms coming from those permutations, let Pn be the

collection of permutations of n elements, and let us also relabel Cµi in eq. (3.11) as Ci .

– 157 –
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The summation extends over the permutations Pn, and

S =
∑
σ∈Pn

 n∏
i=1

Ci


 n∏
i=1

Y ∗σi i

sign(σ )D

=D

 n∏
i=1

Ci

det(M∗)

=

 n∏
i=1

Ci

 |D |2. (A.2)

Note that in order to get to the second line of the equation, we have taken out of the

sum the constant D as well as the factors coming from the power spectrum that mul-

tiplies each permutation in eq. (3.11), since these factors only depend on the spherical

harmonics in the permutation and not on its order. In this way we have identified

the remaining sum as Leibniz’s formula for the determinant of M∗. Taking into account

that determinant and conjugate commute, we get to the final expression of the previous

equation.

Therefore, assuming that there are enough non-zero Cℓ’s, if we are able to find a

collection of spherical harmonics such that D , 0, we have

det(C) > 0. (A.3)

Finally, let us calculate the full value of the determinant of C. If we consider n

points on the sphere and N spherical harmonics, we can find as many different sets of

n spherical harmonics as the number of n-combinations of an N -set. Since the expres-

sion (A.2) gives the generic contribution to the determinant of C of a set of n harmonics,

if we call σ to one of the combinations, and Sσ to the sum in eq. (A.2) for this combina-

tion, then

det(C) =
∑
σ

Sσ =
∑
σ

 n∏
i=1

Cσi

 |Dσ |2. (A.4)
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Symmetries on the spherical harmonics matrix

B.1 SI symmetry: r̂→−r̂

The spherical harmonics satisfy

Yℓm(−z,φ+π) = (−1)ℓYℓm(z,φ). (B.1)

If for each pixel with coordinates (z,φ) there exists a pixel with coordinates (−z,φ +

π), the matrix in eq. (3.13) simplifies notably. This can be easily seen considering the

simple case with ℓ = 1 and four pixels

Y =


Y −1

1 (r̂1) Y 0
1 (r̂1) Y 1

1 (r̂1)

Y −1
1 (r̂2) Y 0

1 (r̂2) Y 1
1 (r̂2)

Y −1
1 (r̂3) Y 0

1 (r̂3) Y 1
1 (r̂3)

Y −1
1 (r̂4) Y 0

1 (r̂4) Y 1
1 (r̂4)

 . (B.2)

If the pixels are opposed pairwise, r̂3 = −r̂1 y r̂4 = −r̂2, then the matrix of eq. (B.2) is a

rank 2 matrix, since we have only two linearly independent rows

Y =


Y −1

1 (r̂1) Y 0
1 (r̂1) Y 1

1 (r̂1)

Y −1
1 (r̂2) Y 0

1 (r̂2) Y 1
1 (r̂2)

−Y −1
1 (r̂1) −Y 0

1 (r̂1) −Y 1
1 (r̂1)

−Y −1
1 (r̂2) −Y 0

1 (r̂2) −Y 1
1 (r̂2)

 . (B.3)

With the help of this property we can notably simplify the matrix Y. But let us

first define an operator that will simplify the notation in the coming expression. Sup-

pose that we have selected a certain pixel collection, indexed from 1 to k, and a set of

harmonics, represented by YLM , that contains U elements indexed from 1 to U . The

operator ⊗ constructs the block obtained by applying all the harmonics of the set on
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the selected pixels

YLM ⊗


r̂1
...

r̂k


k×U

≡


Yℓ1m1

(r̂1) · · · YℓUmU
(r̂1)

...
...

Yℓ1m1
(r̂k) · · · YℓUmU

(r̂k)

 . (B.4)

Going back to Y and considering the case of n pixels in the pixelization that fully ac-

complish the SI symmetry, r̂i+n/2 = −r̂i , i = 1 . . .n/2, if we reorder the spherical harmon-

ics in such a way that the ones with even ℓ occupy the first columns and those with odd

ℓ occupy the last columns, Y becomes

Y =



Yℓe ⊗


r̂1
...

r̂n/2


n/2×Ne

Yℓo ⊗


r̂1
...

r̂n/2


n/2×No

Yℓe ⊗


r̂n/2+1
...

r̂n


n/2×Ne

Yℓo ⊗


r̂n/2+1
...

r̂n


n/2×No


, (B.5)

where ℓe and ℓo represent the set of spherical harmonics with even and odd ℓ respec-

tively. The corresponding numbers of harmonics in each block are given by Ne and No
(see eq. (3.17)).

Taking into account the symmetry of pixels and spherical harmonics, we have

Y =



Yℓe ⊗


r̂1
...

r̂n/2


n/2×Ne

Yℓo ⊗


r̂1
...

r̂n/2


n/2×No

Yℓe ⊗


r̂1
...

r̂n/2


n/2×Ne

−Yℓo ⊗


r̂1
...

r̂n/2


n/2×No


. (B.6)

It is possible to substitute the first n/2 rows by the linear combination ri ←− 1
2 (ri +

ri+n/2), i = 1, . . . ,n/2. Similarly, the second half of rows can be replaced by ri ←−
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1
2 (ri−n/2 − ri), i = n/2 + 1, . . . ,n. With this transformation, one finds

Y→



Yℓe ⊗


r̂1
...

r̂n/2


n/2×Ne

0n/2×No

0n/2×Ne Yℓo ⊗


r̂1
...

r̂n/2


n/2×No


. (B.7)

Therefore, the rank of the matrix is equal to the sum of the ranks of the two diag-

onal blocks above. Each of these ranks is less or equal than the minimum between the

number of rows (≤ n/2) and the number of columns (Ne or No), i.e.,

rank(Y) ≤min(Ne,n/2) + min(No,n/2) , (B.8)

which corresponds to the constraint R1 presented in Section 3.3.1.

B.2 SII symmetry: φ→ φ +π

Another interesting property of the spherical harmonics is

Yℓm(z,φ+π) = (−1)mYℓm(z,φ). (B.9)

Let us assume that we have a pixelization that satisfy the previous symmetry SI . If

for each point in the pixelization with coordinates (z,φ) there is another point with

coordinates (z,φ +π), then it is possible to further simplify the matrix of eq. (B.7). In

order to do this, one should first note that the non-zero blocks are evaluated only on

the first half of the pixels. All pixels with z , 0 that are included in these blocks have

their symmetric pair φ → φ + π also in the first half of pixels, which allows one to

use symmetry SII to reduce the size of the non-zero blocks. However, the case with

z = 0 needs to be addressed separately. For these points, the corresponding φ→ φ +π

pixel satisfies also r̂ → −r̂, and therefore it has been removed out of the matrix during

the transformations that led to the matrix of eq. (B.7). Therefore, for those positions

with z = 0, the pixel symmetric with respect to the SII symmetry is not present in the

non-zero blocks and can not be used to further simplify the matrix of eq. (B.7).

Fortunately, there is another interesting property of the spherical harmonics that

can be used when z = 0. If ℓ is even and m is odd, or if ℓ is odd and m is even, then
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Yℓm(z = 0,φ) = 0. Let us assume that when applying the symmetry SI , we have kept

the first n/2 pixels (those with z > 0, and those with z = 0 and 0 ≤ φ < π). Let us now

reorder the spherical harmonics (i.e., the columns of matrix Y) in a sequence such that

the values (ℓ,m) are arranged in the following combinations: (even, odd), (even, even),

(odd, odd), and finally (odd, even). After this rearrangement, the even ℓ block of matrix

of eq. (B.7) becomes

Ye =



Yℓemo
⊗


r̂1
...

r̂k


k×Neo

Yℓeme
⊗


r̂1
...

r̂k


k×Nee

0u×Neo Yℓeme
⊗


r̂k+1
...

r̂k+u


u×Nee


, (B.10)

where we have also separated the rows corresponding to k pixels with z > 0 from the u

positions with z = 0, thus k +u = n/2.

Neo is the number of spherical harmonics with even ℓ and odd m, and Nee is the

number of spherical harmonics with even ℓ and even m. Using eq. (B.9) and dividing

the k pixels with z > 0 in two halves, one with 0 ≤ φ < π and another one with π ≤ φ <
2π, the block of eq. (B.10) can be transformed

Ye→



Yℓemo
⊗


r̂1
...

r̂k/2


k/2×Neo

0k/2×Nee

0k/2×Neo Yℓeme
⊗


r̂1
...

r̂k/2


k/2×Nee

0u×Neo Yℓeme
⊗


r̂k+1
...

r̂k+u


u×Nee



, (B.11)

where we have operated in an analogous way to that used in the transformation that

led to the matrix of eq. (B.7). The odd ℓ block of this matrix can also be simplified in
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the same manner, until Y is finally reduced to a four diagonal block matrix. The total

rank is the sum of the ranks of the four blocks

rank(Y) ≤min(Neo, k/2) + min(Nee, k/2 +u)

+ min(Noo, k/2 +u) + min(Noe, k/2), (B.12)

where Noo y Noe are the number of spherical harmonics with odd ℓ andm and with odd

ℓ and even m, respectively.

B.3 SIII symmetry: φ→ φ +π/2

A third interesting symmetry relation of the spherical harmonics is

Yℓm (θ,φ+π/2) = imYℓm (θ,φ) . (B.13)

Again, let us assume that we have a pixelization that satisfy the symmetries SI and SII
and, therefore, we can transform the matrix Y into a matrix with four diagonal blocks

as the one described in eq. (B.11). If, in addition, for each point in the pixelization with

coordinates (z,φ) there is another point with coordinates (z,φ+π/2), it is then possible

to subdivide each block into two diagonal sub-blocks. To do that, we need to rearrange

the pixels and spherical harmonics properly, and take linear combinations similar to

the ones described in Appendix B.2. We show as an example the transformation of the

block of the spherical harmonics of even ℓ and odd m of eq. (B.11)

Yeo = Yℓemo
⊗


r̂1
...

r̂k/2


k/2×Neo

, (B.14)

into

Yeo→



Yℓem1
⊗


r̂1
...

r̂k/4


k/4×Ne1

0k/4×Ne3

0k/4×Ne1 Yℓem3
⊗


r̂1
...

r̂k/4


k/4×Ne3


. (B.15)

Ne1 andNe3 are the number of spherical harmonics with im = i and im = −i, respectively,

and m1 and m3 indicate the corresponding sets of indices. Note that, in this case, to

obtain zero blocks the imaginary unit i has to be introduced in the linear combinations
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of rows. The block corresponding to the spherical harmonics with even ℓ and m in

eq. (B.11), and those with odd ℓ can be similarly transformed. Finally, the matrix is

divided into eight diagonal blocks whose total rank is constrained by eq. (3.24).



Appendix C

Rank expression under the presence of a mask

In order to prove the constraint given by eq. (3.38), we start from the full matrix Y

Y =


Y1,1 · · · YN,1
...

...

Y1,n · · · YN,n

 . (C.1)

Let us consider that we have n valid pixels allowed by the mask that correspond to np
paired pixels (i.e., that fulfill the SI symmetry) and nu unpaired pixels, n = np + nu .

Let us also assume that there are Ne and No spherical harmonics of even and odd ℓ

respectively. By properly ordering the spherical harmonics and the pixels, and after

taking linear combinations of the np rows as we did in Appendix B.1, the matrix of

eq. (C.1) can be converted into

Y→



Yevennp/2×Ne 0np/2×No

0np/2×Ne Yoddnp/2×No

Yevennu×Ne Yoddnu×No


≡



Yep 0

0 Yop

Yeu You


. (C.2)

If the rank of the block Yep is Re and the one of Yop is Ro, we have

Re ≤min(np/2,Ne), Ro ≤min(np/2,No), (C.3)

since the rank of each block has to be less or equal than the minimum between the

number of rows and the number of columns.

Taking linear combinations, the blocks Yep and Yop of the previous matrix can be

transformed into diagonal blocks with as many no null elements as their respective

ranks, Re and Ro. Showing it explicitly for Yep, and substituting Yop by its diagonal form
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Do
p, we have

Y→



de11 0 · · · 0

0 de22 · · · 0
...

...
. . .

...

0 0 · · · deReRe

0

0 0

0

0
Do
p 0

0 0

Yeu You



. (C.4)

Note that some of the zero blocks around De
p and Do

p will not appear if the equality is

fulfilled in eq. (C.3).

Furthermore, using the diagonal blocks, we can obtain Re zeros in the Yeu block and

Ro zeros in the You block. Therefore, the matrix can be further simplified

Y→



De
p 0

0 0
0

0
Do
p 0

0 0

0 Y′eu 0 Y′ou


, (C.5)

where the Y′eu and Y′ou blocks have Ne −Re columns and No −Ro columns, respectively.

Finally, reordering the rows and columns, we obtain

Y→


De
p 0 0 0

0 Do
p 0 0

0 0 Y′eu Y′ou
0 0 0 0

 . (C.6)

Inspecting this matrix, we can easily derive the constraint given in eq. (3.36). For the

rank(C) to be maximum, i.e., rank(C) = rank(Y) = n, Y needs to have n independent

rows. Therefore, in this case, we would get a matrix like the one of eq. (C.6) but without

the last row of zero blocks. Moreover, given that the block De
p has np/2 rows, it must

also have at least np/2 linear independent columns in order to achieve the maximum



appendix c. rank expression under the presence of a mask 167

rank. Since all of its columns are constructed in terms of spherical harmonics of even

ℓ, then Ne ≥ np/2 must be satisfied. Similarly, the same reasoning applies to block Do
p,

finding No ≥ np/2.

Let us now study the rank of the matrix in eq. (C.6) for any ℓmax. Its rank is the sum

of the ranks of the blocks De
p, Do

p and (Y′eu Y′ou). Taking into account eq. (C.3) and since

the block (Y′eu Y′ou) has nu rows and L∗ =Ne −Re +No −Ro columns, we get the limit

rank(Y) ≤ Re +Ro + min(nu ,L
∗)

≤min(np/2,Ne) + min(np/2,No) + min(nu ,L
∗). (C.7)

However this expression depends through L∗ on the ranks Re and Ro which are, in

principle, unknown. It would be more convenient to have a more general constraint

which did not depend on these ranks. With this aim, let us consider a new parameter,

L, defined as

L =Ne −min(np/2,Ne) +No −min(np/2,No). (C.8)

Taking into account eq. (C.3), it becomes apparent that L∗ ≥ L and min(nu ,L∗) ≥min(nu ,L).

Therefore, it is not obvious whether the expression (C.7) is still valid when replacing

L∗ by L (except in the trivial case L∗ = L).

Let us study in more detail the case L∗ > L. We suppose L∗ = L + t, with t ≥ 1. In

this case, Re or Ro (or both) are lower than their possible maximum value given by the

geometrical dimensions of the corresponding blocks. For the sake of simplicity, and

without loss of generality, let us assume that Re = min(np/2,Ne)− t (note that if both Re
and Ro are lower than their maximum geometrical value, the same reasoning would be

done twice, with te and to, t = te + to). In this situation, we have

rank(Y) ≤ Re +Ro + min(nu ,L
∗)

≤min(np/2,Ne)− t + min(np/2,No) + min(nu ,L
∗). (C.9)

Let us now focus on the value of the last term, min(nu ,L∗), and consider the two possible

complementary cases nu ≥ L∗ and nu < L∗.

1. If nu ≥ L∗, then min(nu ,L∗) = L∗ = L + t, and min(nu ,L) = L. Expression (C.9)

becomes

rank(Y) ≤min(np/2,Ne)− t + min(np/2,No) +L+ t

= min(np/2,Ne) + min(np/2,No) + min(nu ,L). (C.10)
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2. Conversely, if nu < L∗, expression (C.9) becomes

rank(Y) ≤min(np/2,Ne) + min(np/2,No) +nu − t. (C.11)

Since L < L∗, if nu < L∗ we have again two complementary possibilities: nu ≤ L and

nu > L.

(a) Let us first suppose that nu ≤ L, which implies min(nu ,L) = nu . In this case,

from eq. (C.11) we have

rank(Y) <min(np/2,Ne) + min(np/2,No) +nu

= min(np/2,Ne) + min(np/2,No) + min(nu ,L). (C.12)

(b) Finally let us consider the case nu < L∗ and nu > L. Since L < nu < L∗ = L+ t,

then L− t < nu − t < L and min(nu ,L) = L. Therefore we can replace nu − t by

L in expression (C.11) if we substitute the sign ≤ by <

rank(Y) <min(np/2,Ne) + min(np/2,No) +L

= min(np/2,Ne) + min(np/2,No) + min(nu ,L). (C.13)

Since we have covered all the possible cases, this shows that we can write an upper

limit on the rank of the masked case which does not depend on Re and R0 as

rank(Y) ≤min(np/2,Ne) + min(np/2,No) + min(nu ,L). (C.14)

which proves the validity of the constraint (3.38) given in Section 3.7.



Appendix D

Effect of sampling variance on the power spectrum

error

It is well known that, due to sampling variance, the error of the estimated power spec-

trum increases as the observed sky fraction (fsky) is reduced. Its effect can be roughly

approximated by an increment in the variance by a factor 1/fsky [106]. However, it is

also well known that, in practice, the specific geometry of the considered mask will

also affect this error. Although for our purpose (constructing the optimal binning) this

approximation is sufficient, it is still interesting to perform some simple tests in order

to understand the limitations of this assumption.

As an illustration, we have studied how the errors degrade with the considered sky

fraction in different scenarios, in particular for the four masks shown in figure D.1.

The errors have been obtained from the Fisher matrix. A resolution of Nside = 32 and a

binning of ∆ℓ = 3 have been considered in all the cases. Noise has also been included

according to the ground-based or space configurations levels, as it corresponds. Three

of the considered masks correspond to three different geometries but with the same sky

coverage as that of the ground-based scenario, that allows for an observed sky fraction

of around 8.4 per cent (1028 pixels at Nside = 32 resolution). Specifically, the first mask

(top left panel of figure D.1) corresponds to that of the ground-based experiment used

along the Chapter 6. A second toy-model mask contains the observed pixels distributed

uniformly over the sky (top right panel of figure D.1), and we will refer to it as the

uniform mask. A third mask with pixels distributed in the poles (bottom left panel of

figure D.1) has also been added, referred to as poles mask; although this mask is not

expected for a ground-based experiment, it allows us to check the geometrical effect of

an (extreme) Galactic mask and to compare it with the other configurations. Finally,

we have considered the case of the satellite-based experiment (bottom right panel of

figure D.1) at a resolution of Nside = 32 (fsky=0.58).
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Ground Uniform

Poles Satellite

Figure D.1: Masks used to test how the error of the estimated power spectra depends on
the geometry and fraction of the observed sky. All masks are shown at Nside = 32. Top-
left: ground-based mask. Top-right: toy-model mask with pixels distributed uniformly
over the sky. Bottom-left: toy-model mask with the observed pixels distributed on the
poles. Bottom-right: mask for a satellite-based experiment. The first three masks have a
total of 1028 valid pixels, corresponding to a sky fraction of around 8.4 per cent, while
fSky=0.58 for the last mask. Note that the ground and satellite masks correspond to those
of figure 6.1, but at a resolution ofNside = 32, and are repeated here for easiness of reading.

Figure D.2 shows the ratio of the error on the estimation of the power spectrum for

the four masks using the Fisher matrix over the theoretical approximation (according

to eqs. (4-11) from [93]). Therefore values close to one indicate that the theoretical ex-

pression is a good approximation, whereas larger (smaller) values indicate an under-

(over-) estimation of the error. As seen, for the uniform case (blue line), the estimated

errors are smaller than those given by the theoretical expectation at large scales, while

they explode at larger multipoles. This is expected since to estimate the power spectra

at the largest scales, it is only necessary to provide data on a limited number of pix-

els but conveniently distributed, while this configuration can not provide the required

information at small scales. It is also worth noting that the range of scales where this

mask provides better results than the theoretical ones also varies significantly with the

considered component of the power spectrum, working worse especially for BB. The

ground (orange line) and poles (green line) masks have a qualitatively similar behav-
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Figure D.2: Ratio between the error of the estimated power spectrum obtained with
QML from the Fisher matrix, ∆DℓFisher, over that of the theoretical approximation [93],
∆DℓApprox., for the different masks shown in figure D.1.

ior. For TT, EE and TE, the estimated error is better than the theoretical expectation

at low multipoles, while at small scales the error is underestimated by the naive fsky
scaling. The minimum observed at TE at the smallest scales is due to the fact that the

TE spectrum becomes zero at that multipole. For BB, TB and EB, the error estimated by

the Fisher matrix is larger than the approximation at all scales, with a particular large

deviation for the large scales of BB. The theoretical approximation is working better

for the Galactic mask in the space configuration (red line), finding only relatively small

deviations between both estimations.
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Therefore, if a precise estimation of the error introduced by the sky fraction is

needed, it is advisable to carry out a full analysis that takes into account the effect

of the geometry of the mask, especially when a small fraction of the sky is considered,

as is the case in most ground-based experiments.



Appendix E

Smoothing function for the iterative QML

Although the power spectra given by a physical model will follow a smooth curve, a

particular realization of the spectra and its corresponding estimation will in general

be noisy. In fact, if we take directly the power spectra estimated with QML as the

fiducial model for a subsequent iteration, this process may be unstable and does not

necessarily lead to convergence. Therefore, it becomes necessary to apply some kind

of smoothing to the estimated power spectra in order to provide a suitable fiducial

model to the next iteration. An obvious choice would be to fit the estimated spectra to

a cosmological model, and use that as our initial guess for the next step. This has been

the approach used in Section 6.5.3, where we have considered a simplified case where

all cosmological parameters are assumed to be known except the tensor-to-scalar ratio

r. However, in a more general case, it could be computationally very costly to fit all the

cosmological parameters and a simpler approach would be more convenient. With this

aim we have constructed a smoothed version qℓ of each component of the estimated

power spectra Dℓ by minimizing the following function

δ =
ℓmax−1∑
ℓ=2

LℓMℓ , (E.1)

where Lℓ and Mℓ are given by

Lℓ =
(qℓ+1 − qℓ)2

∆D2
ℓ+1 +∆D2

ℓ

+ 1 , (E.2)

Mℓ = wℓ +
1
2

 (qℓ+1 −Dℓ+1)2

∆D2
ℓ+1

+
(qℓ −Dℓ)2

∆D2
ℓ

 , (E.3)

and ∆Dℓ is the error associated to the Dℓ estimation. The aim behind this approach is

to minimize the sum of the length of the segments that join a pair of consecutive points

(controlled by the Lℓ term) but penalizing large differences between the smoothed and
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estimated values of the power spectra (encoded in theMℓ factor). Note that the +1 term

in the first factor avoids that the minimization defaults to a constant straight line (i.e.

qℓ = constant). wℓ are weights that control the relative importance between both effects,

such that larger values of the weights would tend to produce smoother curves and vice

versa, allowing us to modify the level of required smoothing. In particular wℓ = 0

would lead to the solution qℓ = Dℓ, i.e., no smoothing. Note that a particular choice of

the weights could still leave to an unstable iterative process for a given map in which

case the smoothing process to provide a fiducial model for the next step would need to

be repeated with different weights, such that the required number of iterations could

be achieved. For simplicity, in our case we have simply discarded from the analysis

those simulations that do not converge.

For our results in Section 6.5.2, we have chosen weights in the range 0.5 to 7, de-

pending on the considered component of the power spectrum and on the multipole

(larger weights are assigned to higher multipoles). Although the choice of the weights

is somewhat arbitrary, we do not expect that their specific values affect to our conclu-

sions, since they are used only to provide an initial guess at each step of the iterative

process, facilitating convergence. As an illustration, figure E.1 shows a collection of

weights and the TE power spectrum estimated for one simulation (blue points) and its

smoothed version using two different sets of weights w1ℓ (orange line) and w2ℓ = 2w1ℓ

(black line). As expected, greater weights lead to a smoother curve. Although the re-

sults of Section 6.5.2 are presented with the w1ℓ set of weights, we have tested that very

similar results are achieved when using w2ℓ instead.
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Figure E.1: TE smoothing weights (top) and power spectra (bottom) estimated from a sim-
ulation (blue points) with its corresponding error. Two smoothed versions of the spectrum
are plotted obtained with weights w1ℓ (orange line) and w2ℓ = 2w1ℓ (black line). For com-
parison, the fiducial model used to generate the simulation is also given (red line).





Appendix F

Estimator of the tensor-to-scalar ratio

In order to evaluate the performance of the QML technique in some of the considered

cases, it is useful to estimate the value of the tensor-to-scalar ratio from the recovered

power spectra. This will be done in a simplified case, where we assume that all cos-

mological parameters are known but r. In this way, we can write the fiducial power

spectra as a function of r

c(r) = cS + rcT , (F.1)

where c is the vector containing the six different components (temperature and polar-

ization) of the power spectra. cS and cT are the scalar and tensor contributions, includ-

ing lensing effects, which are fixed for a given fiducial model except for the value of

r.

For a given map, let us assume that we have obtained with the QML an estimation

of the power spectra (ĉ) and of the corresponding Fisher matrix (F). If we assume that

the variables c(r) follow a Gaussian distribution,1 the probability density function of ĉ
can be written as a multivariate normal distribution of mean c(r) and covariance matrix

F−1. Therefore, we can obtain r̂ by maximizing the likelihood

logL = −1
2

(ĉ− c(r))tF(ĉ− c(r)) + log((2π)6(1−ℓmax)|F|1/2). (F.2)

Since we are fitting r to the estimated power spectrum, our goal is to minimize the

quantity

χ2 = (ĉ− c(r))tF(ĉ− c(r)). (F.3)

This χ2 variable is a polynomial of degree two, thus it can be maximized analytically

to obtain

r̂ =
ctT F(ĉ− cS )

ctT FcT
. (F.4)

1It is well known that the Cℓ ’s actually follow a χ2 distribution with 2ℓ + 1 degrees of freedom and,
therefore, the Gaussian approximation improves as ℓ increases. However, in our case, this approximation
is sufficient to estimate r and, therefore, enough for our purpose.
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The analytical expression of the error on the estimation (see eq. (1.92)) is

(∆r)2 = −
(
d2 lnL
dr2

)−1

= (ctT FcT )−1. (F.5)

It is interesting to note that since ĉ = F−1y, r can be expressed directly in terms of y,

that is

r̂ =
ctT y− ctT FcS

ctT FcT
. (F.6)

This is useful when the fraction of the sky covered is small and the Fisher matrix be-

comes singular, since it would allow the estimation of r without inverting the Fisher

matrix. This also shows that all the cosmological information is actually encoded into

the coupled power spectrum vector y.

As shown in Section 6.5.3, if the value of the estimated tensor-to-scalar ratio that

minimizes χ2 differs significantly from the value used for the fiducial model (to com-

pute C and F, and to estimate ĉ), one can obtain an updated power spectrum from the

estimated value r̂, that can be used as input for a new QML step in an iterative scheme

until convergence is achieved.

This method can also be used with the binned estimator described in Section 4.

In particular, one would need to replace the quantities F and ĉ in eq. (F.4) by their

analogous binned versions, described in eq. (4.16) and (4.18), respectively. The fiducial

power spectra cS and cT should also be binned in the same way.
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The current ECLIPSE User Guide is shown, integrated into this document,

in the following pages.
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Chapter 1

Introduction

The code ECLIPSE (Efficient Cmb poLarization and Intensity Power Spectra Estimator)
implements an optimized version of the Quadratic Maximum Likelihood (QML) method
for the estimation of the power spectra of the Cosmic Microwave Background (CMB) from
masked skies. It is written in Fortran language and designed to run parallel on many MPI
tasks. Therefore, ECLIPSE can be used in a personal computer but also benefits from the
capabilities of a supercomputer to tackle large scale problems.

The QML method was first introduced in [1] for intensity and in [2] for intensity and
polarization. ECLIPSE implements a very efficient approach of QML, as described in [3].

There are three versions of the code

� ECLIPSE TEB

� ECLIPSE EB

� ECLIPSE T

The first version computes the power spectrum of intensity and polarization, the second
implementation computes the polarization spectrum and the last version provides the spec-
trum of intensity. In addition, the different implementations also differ in the first multi-
pole computed by each of the codes. The first two versions — which compute polarization
spectrum— start at ℓ = 2, while ECLIPSE T starts at ℓ = 1, that is, it allows us to obtain
the dipole in intensity maps.

The three versions analyze masked CMB maps, in which the signal can be affected by
the beam and pixel window functions. The masks of intensity and polarization can be
different and the noise can be isotropic or anisotropic. The program can estimate auto and
cross-correlation power spectrum, that can be binned or unbinned.

The latest version of the ECLIPSE source code, documentation, and example programs are
available on GitHub

https://github.com/CosmoTool/ECLIPSE

Any questions, bug reports, or suggested enhancements related to the ECLIPSE code should
be sent to

bilbao@ifca.unican.es

1
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Chapter 2

Building and running ECLIPSE

As an illustration, we will show in detail how to compile and run the code in a Linux personal
computer as well as in the NERSC1 and Altamira2 supercomputers. Future versions of this
document will incorporate additional systems.3 Note that we do not intend to be exhaustive
or to explore all possible options, but rather show some examples in which the code can be
built and run. The essential point is that it meets the Fortran, ScaLAPACK, BLACS and
FITSIO standards, so it can run in any machine and configuration compatible with them.

2.1 Building the code

The program is written in Fortran language and uses functions of the ScaLAPACK and
BLACS libraries. In addition, it works with maps in FITS format. Thus the FITSIO4

library is also needed.

Regarding ScaLAPACK, BLACS and MPI libraries, these are usually installed in supercom-
puters, as is the case of NERSC at Lawrence Berkeley National Laboratory and Altamira
at IFCA. We offer detailed information about using ECLIPSE in both machines in this doc-
ument. In order to build and run the code in a personal computer equipped with Linux
operating system, the required set of libraries, compilers and instructions can be down-
loaded and installed through Intel® oneAPI Base Toolkit and the HPC Toolkit, among
many other options.

2.1.1 Building ECLIPSE on a personal computer with Linux Operating
System

We will show how to build ECLIPSE assuming that the GCC compiler is installed. To build
the code the user can follow these steps

1NERSC
2Altamira
3To run it in a personal computer equipped with Windows operating system, one can install the Linux

Subsystem for Windows and operate as if it were a Linux machine.
4The latest version of the CFITSIO source code, documentation, and example programs are available on:

http://heasarc.gsfc.nasa.gov/fitsio

3
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1. Build the FITSIO library. To do so, the user has to download the software and follow
the instructions. For example, the FITSIO library can be built on Linux systems by
typing

> ./configure --prefix=your_installation_path [--enable-sse2] [--enable-ssse3]

> make

> [sudo] make install

After these steps, the FITSIO libraries should be built and installed in the selected
folder. In this section we will assume that your installation path is the usual
/usr/local/lib.

2. In the next step the libraries ScaLAPACK and BLACS and the MPI system must be
installed on the computer. For example, we can install Intel® oneAPI Base toolkit
and HPC Toolkit. In this section, we assume that the software development package
is located at /opt/intel/oneapi/.

3. As pointed out in oneAPI HPC Toolkit instructions, once this is installed, the setvars.sh
script must be executed (sourced) to configure the local environment variables in order
to reflect the needs of the installed Intel oneAPI development tools. In our case

> source /opt/intel/oneapi/setvars.sh

Steps 1 and 2 must be done only once. The step 3 script has to be sourced every time
the Linux Bash Shell is launched.

4. ECLIPSE code can be compiled and linked by launching a script that accompanies the
code5

> ./cipLinux.sh ECLIPSE_TEB

Im order to compile any other version of the code, ECLIPSE T or ECLIPSE EB, one has
to type something of the sort

> ./cipLinux.sh ECLIPSE_T

The script contains the code

mpiifort "$1".f90 -o "$1" -O3 -I"${MKLROOT}/include"

-L/usr/local/lib/libcfitsio.a

${MKLROOT}/lib/intel64/libmkl_scalapack_lp64.a -Wl,

--start-group ${MKLROOT}/lib/intel64/libmkl_intel_lp64.a

${MKLROOT}/lib/intel64/libmkl_intel_thread.a

${MKLROOT}/lib/intel64/libmkl_core.a

${MKLROOT}/lib/intel64/libmkl_blacs_intelmpi_lp64.a

-lcfitsio -Wl,--end-group -liomp5 -lpthread -lm -ldl

Bear in mind the root path for libcfitsio.a is assumed to be /usr/local/lib.
Modify your script accordingly should it be placed in any other folder.

5There is another slightly different script, cipLinux Alt.sh, in the repository. It can be useful, if the
previous one does not work.
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There are many other options to compile the code: one can choose among multiple con-
figurations and find the adequate instruction at Intel® oneAPI Math Kernel Library Link
Line Advisor.

If all these steps are successful, an executable version of ECLIPSE TEB will be built. This
can be tested by writing

> mpirun -np 4 ./ECLIPSE_TEB

This should give the following error messages

ERROR, TWO COMMAND-LINE ARGUMENTS REQUIRED, STOPPING

ERROR, TWO COMMAND-LINE ARGUMENTS REQUIRED, STOPPING

ERROR, TWO COMMAND-LINE ARGUMENTS REQUIRED, STOPPING

ERROR, TWO COMMAND-LINE ARGUMENTS REQUIRED, STOPPING

which indicates that we have launched the code incorrectly, but that it was successfully
built.

2.1.2 Building ECLIPSE on the NERSC supercomputer

NERSC provides compiler wrappers on Cori which combine the native compilers (Intel,
GNU, and Cray) with MPI and other libraries. In this section we will show how to com-
pile ECLIPSE using the Cray compiler wrappers, the default (and recommended) compiler
wrappers on the Cori system.

When the user connects to NERSC, the computer sets the environment variables. Thus, to
build ECLIPSE one just has to execute the script cCrayNERSC.sh

> ./cCrayNERSC.sh ECLIPSE_TEB

The code in the script is

ftn "$1".f90 -o "$1"

-L/usr/common/software/cfitsio/3.47/lib -lcfitsio

-Wl,-R//usr/common/software/cfitsio/3.47/lib

The script points out to the actual location of the FITSIO libraries in NERSC.

After following these steps, an executable version of ECLIPSE TEB will be built in our folder
in NERSC.

2.1.3 Building ECLIPSE on the Altamira supercomputer

Altamira is an HPC cluster that belongs to the RES (Spanish Supercomputing Network)
and is located at the University of Cantabria. The main compute nodes are IBM dx360 and
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have two Intel Sandybridge E5-2670 processors, each one with 8 cores operating at 2.6 GHz
and a cache of 20MB, 64 GB of RAM memory (i.e. 4 GB/core) and 500 GB local disk.

Altamira provides with all required software. To build ECLIPSE, follow these steps

1. Load Intel software in Altamira.6

> source /gpfs/res_apps/INTEL/oneapi/2021.3/setvars.sh

2. The next step is to compile the code

> ./cipAltamira.sh ECLIPSE_TEB

The script points out to the actual location of the FITSIO libraries in Altamira.

The previous steps will build an executable version of the code called ECLIPSE TEB.

2.2 Running the code

The code is designed to be executed in parallel and makes use of BLACS,7 a message-passing
library designed for linear algebra in which the computational model consists of a one- or
two-dimensional process grid, where each process stores pieces of the matrices and vectors.
Therefore, in order to execute the program, the number of MPI processes on which to run
the executable and the dimensions of the grid —rows and columns of MPI processes— need
to be specified.

The user also has to indicate the file from which to read the configuration data. That file
specifies all the aspects of the computation, such as the folder from which to read the data,
the resolution of the maps, the ℓmax up to which to estimate the power spectrum, etc.

Let us suppose that we are running the code from a folder that contains a subfolder named
NSide16 in which we have saved a configuration file named Satellite.ini. If we want to
run the program in a personal computer using six MPI processes distributed in a grid made
of two rows of three columns of processes, we must type the sentence

> mpirun -np 6 ./ECLIPSE_TEB 2 NSide16/Satellite.ini

where -np 6 indicates that we want to compute in parallel using six MPI processes, and
the number 2 means that we want to distribute them in two rows —therefore the number
of columns will be 3—. The string NSide16/Satellite.ini indicates the location and
name of the configuration file. Details about the configuration file and how to determine
the required number of processors are given in sections 4 and 6, respectively.

Below we show in more detail how to execute the code in a personal computer, NERSC and
Altamira. For the last two, we show only some of the possibilities since we do not aim to
be exhaustive about all the options offered by those machines. For further detail, we refer
the interested reader to NERSC - Running Jobs and Altamira Users Guide.

6At the moment this manual was written, the chosen Intel compiler version was INTEL/2021.3. Check
Altamira website to find the latest or best match for your configuration.

7BLACS
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2.2.1 Running ECLIPSE on a personal computer with Linux Operating
System

As previously explained, before running the program, the user has to launch the script to
properly configure the local environment variables

> source /opt/intel/oneapi/setvars.sh

The following order executes the program

> mpirun -np n_procs ./ECLIPSE_TEB n_rows <Folder>/<ParamsFile>.ini

where n procs is the number of MPI processors, n rows is the number of rows and Folder

and ParamsFile.ini indicate the names of the folder and the parameters file for the consid-
ered problem. The number of rows has to be equal or a divisor of the number of processors.

2.2.2 Running ECLIPSE on the NERSC supercomputer

Cori at NERSC is a Cray XC40 comprised of two type of processor nodes, Haswell and
KNL. The following script, NERSCJob.sh, shows an example on how to submit a job to be
executed on the Haswell nodes

#!/bin/bash

#SBATCH --job-name=ECLIPSE

#SBATCH --output=ECLIPSE64.out

#SBATCH --error=ECLIPSE64.err

#SBATCH --qos=regular

#SBATCH --time=03:00:00

#SBATCH --nodes=3

#SBATCH --tasks-per-node=32

#SBATCH --constraint=haswell

#SBATCH --mail-user=<user>@<domain>.com

#SBATCH --mail-type=ALL

srun ./ECLIPSE_TEB 12 NSide64/TEB.ini

In the above script, the 32 physical processors of 3 Haswell nodes are reserved. The 96 cores
are distributed in a grid of 12 rows and 8 columns (96/12 = 8). The job is submitted to
the Regular queue, the standard queue for most production workloads. Other lines of the
script set typical job directives such as the process name, the console output files names,
the maximum walltime requested. . . (more details about slurm directives can be found in
Slurm Workload Manager).

To submit the job the user has to type

> sbatch NERSCJob.sh
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Let us mention that the previous example corresponds with a case where the intensity and
polarization power spectrum of 1000 simulated masked maps at resolution Nside = 64 with
29009 observed pixels was estimated up to ℓmax = 192. The full process took 63 minutes.

To see how the number of operations scales approximately with the parameters of the
problem, see Table 2 of [3]. In section 6 we offer some indications to determine the memory
and the number of cores required by a computation.

2.2.3 Running ECLIPSE on the Altamira supercomputer

As previously explained, before running the program in Altamira, the user has to launch
the script to configure the local environment variables

> source /gpfs/res_apps/INTEL/oneapi/2021.3/setvars.sh

An example of a script, AltamiraJob.sh, to execute the code in Altamira is shown below

#!/bin/bash

#

#SBATCH --job-name=qml

#SBATCH --output=qmlsrun.out

#SBATCH --error=qmlsrun.err

#SBATCH --ntasks=64

#SBATCH --mem-per-cpu=3500

#SBATCH --time=1:30:00

# From here the job starts

srun ./ECLIPSE_TEB 8 NSide64/TEB.ini

In this example, the user wants to run the code using 64 cores distributed on a grid of 8
rows and 8 columns.

To submit the job the user has to type

> sbatch AltamiraJob.sh

Let us mention that the previous example correspond to a case where the intensity and
polarization power spectrum of 5000 simulated masked maps at resolution Nside = 64 with
29009 observed pixels was estimated up to ℓmax = 192. The full process took 51 minutes.
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Chapter 3

The QML estimator and ECLIPSE
functionalities

Before describing how to use ECLIPSE and the files the code reads and write, let us describe
the mathematics of the Quadratic Maximum Likelihood (QML) estimator.

3.1 General description of the QML

The QML is a method for obtaining an optimal estimation of the CMB power spectra and
its covariance matrix from a map, which is well suited to deal with incomplete sky coverage.
Assuming that the CMB fluctuations are Gaussian and isotropic, [1] and [2] show that given
a CMB temperature map or CMB temperature and polarization maps x, an estimation of
the power spectra can be found in a two-step process

1. Starting from the pixels in the map, compute an angular quantity yi that is related
to the power spectrum.

2. Given this quantity, define an estimator of the power spectrum.

Before describing the method, let us first establish some basic notation (details can be found
in [2]). In the only-temperature case, the map x is an N -dimensional vector of elements
Ti = T (ri); in the full case, the map is a 3N -dimensional vector of values Ti, Qi, Ui.

1 The
method requires a model of the signal and of the noise, that are both introduced through
the signal S and the noise N covariance matrices, respectively.

The statistical properties of x are characterized by the power spectra Ci, and assuming that
the signal and the noise are uncorrelated, we have

C ≡ ⟨xxt⟩ = S+N =
∑

i

CiPi +N. (3.1)

Note that in the only-temperature case the index i can be directly substituted by the
multipole index ℓ, while in the full case i includes ℓ and one of the six pairs TT, EE, BB,

1Actually, ECLIPSE can work with a different number of pixels in intensity and polarization, but for
simplicity we will assume that they are the same.

9
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TE, TB, EB; thus Ci ↔ CXY
ℓ , XY ∈ {TT, EE, BB, TE, TB, EB}. The Pi matrices (see

eq. (A.13) of [3]) connect the covariance in the harmonic space to the covariance in the
pixel space. Each of them is the product of some subset of the columns of the matrix of the
spherical harmonics by their transpose. Naturally, for each value of ℓ we have six matrices
Pi ↔ PXY

ℓ in the full case.

When estimating the power spectra, one usually needs to explicitly consider the effects of the
instrumental beam and of the pixel window function. In addition, it is also quite common
to describe the angular power spectra per logarithmic interval as Dℓ = ℓ(ℓ + 1)Cℓ/2π.
Therefore, it may be convenient to implement the QML method in terms of the Dℓ variables
and/or include the instrumental resolution effects. This can be easily done by introducing
some additional factors in the Pi matrices of eq. (3.1).

Let us first denote by Bℓ the beam and pixel instrumental effects, such that the harmonic
coefficients (see appendix A of [3]) of the observed signal are given by aObserved

ℓm = Bℓa
Signal
ℓm

. Analogously, let us define Wi = BX
ℓ BY

ℓ , which encodes these effects in the power spectra.
In this way, we can write the covariance matrix of the observed (smoothed) signal as

S =
∑

i

CiWiPi. (3.2)

We can also write the previous equation in terms of the Di variables

S =
∑

i

Di
2π

ℓ(ℓ+ 1)
WiPi =

∑

i

DiP̌i, (3.3)

where we have defined the new matrices P̌i.

In order to estimate the power spectrum of a map x in terms of the variables Di of eq. (3.3),
we first need to obtain the angular quantity yi related to the anisotropies of the map but
translated to the harmonics space, which is achieved by

yi ≡ xtEix− bi, (3.4)

where

Ei ≡
1

2
C−1P̌iC

−1 (3.5)

and bi takes into account the presence of noise

bi = trNEi. (3.6)

Arranging the sets of Di and yi in the vectors d = {D1, D2, . . . } and y = {y1, y2, . . . }
respectively, ref. [1] shows that the intermediate power coefficients yi are related to the
power spectrum as

⟨y⟩ = Fd (3.7)

and the covariances satisfy
⟨yyt⟩ − ⟨y⟩⟨y⟩t = F, (3.8)

where F is the Fisher information matrix, which, from eq. (3.1) and (3.3), can be written
as

Fii′ =
1

2
tr
[
C−1P̌iC

−1P̌i′
]
. (3.9)
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3.1. GENERAL DESCRIPTION OF THE QML 11

If F is regular, the power spectrum estimator can be defined as

d̂ ≡ F−1y. (3.10)

Combining this definition with eq. (3.7), we get ⟨d̂⟩ = d. The covariance matrix of this
estimator is the inverse of the Fisher matrix

⟨(d̂− d)(d̂− d)t⟩ = F−1[⟨yyt⟩ − ⟨y⟩⟨y⟩t]F−1 = F−1. (3.11)

Therefore, the estimator is unbiased and, by the Cramer-Rao inequality, of minimal error
bars: QML is mathematically equivalent to the Maximum Likelihood Estimator, but, since
it does not require a brutal force maximization, it reduces the computational costs.

Note that from eq. (3.1) and (3.3) the covariance matrix of the signal S is computed from
the fiducial model the user provides with. Therefore, an initial guess for the sought power
spectra is required in order to compute the QML estimator. This leads naturally to the
possibility of using an iterative scheme in order to update the initial fiducial model and,
thus, to improve the final estimation of the power spectra.2

It is essential to mention that ECLIPSE incorporates an implementation of the method such
that the covariance matrix of the signal on the observed maps is computed from the last
term of eq. (3.3). Therefore, the fiducial model needed to compute the covariance matrix is
given in the form of the variables Di, and must reflect the power in the signal. In parallel,
ECLIPSE estimates the power spectra of the signal of the maps —corrected from the beam
and pixel effects— in format Di.

3

The QML estimator requires matrices C and F to be regular. If necessary, the covariance
matrix can be regularized by adding a small amount of noise (a detailed analysis on the
conditions on which C is regular can be found in [4]). If the Fisher matrix is singular, an
optimal binned QML can be implemented as described below.

3.1.1 The binned estimator

In section 4 of [3] we describe an optimal binned estimator of the power spectrum

b̂ = [RtFR]−1Rty, (3.12)

where b̂ is the vector of the estimated binned power spectrum, F is the Fisher matrix and
y is the vector of elements yi of eq. (3.4). The matrix R, computed internally by ECLIPSE,
is defined as

Rib =

{
f b
i if ℓ ∈ Lb

0 otherwise
, (3.13)

where i refers to the index of the multipoles, b to the index of the bins and Lb is the
collection of indexes i in the bin, that is, a collection of some consecutive ℓ’s of some of the
six components of the power spectrum. The factors f b

i are

2ECLIPSE does not implement an iterative scheme. Details about iterative QML can be found in section 5.2
of [3].

3Section 3.2.5 shows how to work in terms of the observed power in the maps for both fiducial and
estimated power spectrum.
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12 CHAPTER 3. THE QML ESTIMATOR AND ECLIPSE FUNCTIONALITIES

f b
i = Di/Bb, (3.14)

where Di is the fiducial power spectrum provided by the user and Bb is the fiducial power-
band, computed from the fiducial spectrum. In the configuration file there is a set of key
= value pairs which defines how Bb will be computed.

Considering

Type of Bin Center = 1

the values Bb would be

Bb =

∑
i∈Lb

Di
(∆Di)2∑

i∈Lb

1
(∆Di)2

(3.15)

and the positions of the centers of the bins

ℓ∗b =

∑
i∈Lb

ℓ(i)
(∆Di)2∑

i∈Lb

1
(∆Di)2

, (3.16)

where ∆Di are the theoretical errors [5] taking into account cosmic variance, noise and sky
fraction. ℓ(i) makes reference to the value of ℓ that corresponds to each index i.4

In the case of Type of Bin Center = 0 the means above are computed assuming ∆Dℓ = 1.

The Fisher matrix of the binned spectrum, which we will call G, is computed from the
Fisher matrix of the multipoles and the matrix R

G = RtFR. (3.17)

The covariances of the binned spectrum are

⟨(b̂− b)(b̂− b)t⟩ = [RtFR]−1, (3.18)

that is, they are equal to the inverse of the Fisher matrix of the estimated binned spectrum.

The two binning options in ECLIPSE

Although the optimal binned estimator is achieved being the factors f b
ℓ as defined if eq. (3.14),

there is a key in the configuration file that tells ECLIPSE how to compute them. If
Type Of Grouping = 1, eq. (3.14) is used. If Type Of Grouping = 0, the code assumes
that the non null values of f b

ℓ are equal to 1. This option allows to instruct ECLIPSE to
compute the binned estimation without using the information in the fiducial spectrum.

4For example, in the case of an intensity and polarization estimation there are six different values of i
that point to the same value ℓ(i), one for each component of the power spectrum.

198 appendix g. eclipse user guide v1.02



3.2. HOW ECLIPSE WORKS 13

3.2 How ECLIPSE works

The code computes some of the expressions of the section above, although some of them
are not calculated as described in this document but rather as indicated in the appendix A
of [3], where they are computationally more efficient. In parallel to the description of the
computations, we will refer to some of the files the code reads an writes; details about the
type of data and format of the files are given in another section. The code deals with double
precision floating point numbers.

3.2.1 Covariance matrix

C = S+N (3.19)

To compute the covariance matrix of the signal of the maps S, eq. (3.3), the user has to
provide ECLIPSE with the following data

� The fiducial power spectrum.

� The value of the beam of the experiment.

� The set value of two keys in the configuration file: one which determines whether
the maps are affected by the pixel window of the resolution and a second one which
defines the path to the pixel window data files.

Eq. (3.3) shows that the fiducial spectrum ECLIPSE expects is the fiducial model of the
signal in the maps, variables Dℓ = ℓ(ℓ + 1)Cℓ/2π, as pointed out in section 3.1. The
value of the beam and whether the maps are smoothed by the pixel window function of the
resolution are determined by two keys in the configuration file. Using this information, the
code computes Wi.

5 Of course, matrices Pi are computed taking into account Nside and
the masks.

All the versions of ECLIPSE expect a fiducial containing the six components of the power
spectrum. That is, the components TB and EB can be different from zero. If the code
detects not null values, it computes their contribution to the covariance matrix.

In all three versions of ECLIPSE the noise matrixN of (3.1) is diagonal, made of uncorrelated
noise. It can be isotropic or anisotropic. In the isotropic case the values of the noise per
pixel for both intensity and polarization are read from the configuration file whereas, in the
case of anisotropic noise, the code reads the data from a file pointed to by the user in the
configuration file.

3.2.2 Anisotropies in the harmonics space

The code computes and saves, in this order

1. The part xtEix of eq. (3.4) and saves the data in the file CoupledPower.dat.

5As pointed out, in section 3.2.5 is shown how to work in terms of the observed power in the maps for
both fiducial and estimated power spectrum.
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14 CHAPTER 3. THE QML ESTIMATOR AND ECLIPSE FUNCTIONALITIES

2. The noise bias bi as described in eq. (3.6) and saves the data in the fileNoiseBias.dat.

3. The Fisher matrix, following eq. (3.9), and saves the data in the file FisherMa-
trix.dat.

Although in the next step the code computes the (un)binned power spectrum, making use
of the information in the three files above the user can compute the unbinned estimation of
the power spectrum using any other software, following eq. (3.10). Alternatively, the user
can compute the binned estimation by their own means following the steps described in
section 3.1.1.

In the next section we will illustrate how to configure ECLIPSE with the user’s preferred
type of estimation.

3.2.3 Unbinned or binned estimated power spectrum

Depending on the value of the key Binned in the configuration file, the code computes the
binned or unbinned power spectrum.

If Binned = 0, the code computes and saves

1. The deconvolved power spectrum of the maps, using the estimator of eq. (3.10), and
saves the data in the fileDl.dat. Depending on the value of the key Remove Noise Bias,
the code computes c = F−1y assuming yi ≡ xtEix − bi, if the key takes value 1, or
yi ≡ xtEix, if the key is 0. That is, the user can tell ECLIPSE whether to remove the
noise bias or not.

2. If the number of maps to process is higher than one, the code also computes the
mean and dispersion of the estimated power spectra, and saves the values in the files
MeanDl.dat and SigmaDl.dat.

3. Equation (3.11) states that the covariance matrix of the estimated power spectrum is
the inverse of the Fisher matrix. The code computes the square root of the diagonal
elements of F−1 and saves the data in the file FisherErrorDl.dat.

If Binned = 1, the code computes the binned power spectrum. Depending on the value
of the variable Type of Bin Center, the code estimates the weighted or unweighted mean
of the power spectrum. Depending on the value of the variable Type of Grouping, the
code computes the optimal binned spectrum using the information in the fiducial, or else
performs a reduction of the Fisher matrix size ignoring the data in the fiducial. The data
the code computes and saves are

1. The positions of the bins centers, eq. (3.16), in file Positions.dat.

2. The fiducial powerbands, eq. (3.15), in file BinnedFiducial.dat.

3. The binned estimated power spectrum, eq. (3.12), in file BinnedDl.dat.

4. If the number of maps to process is higher than one, the code also computes the mean
and dispersion of the binned estimated power spectra and saves the values in files
MeanBinnedDl.dat and SigmaBinnedDl.dat.

5. The code computes the square root of the diagonal elements of G−1 and saves the
data in file FisherErrorBinnedDl.dat.
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3.2. HOW ECLIPSE WORKS 15

3.2.4 Auto and cross-correlation power spectrum

The program can both compute the auto-correlation power spectra from a set of maps and
the cross-correlation power spectra from two different sets of maps. In the auto-correlation
case, being m the index of the maps in the files, the code computes the power of the
anisotropies in the harmonic space, map by map, as

xt
mEixm. (3.20)

To compute cross-correlation, two different files with maps should be provided. Thus,
the cross-correlations between the maps in the first file and those in the second file are
calculated. Being xm the maps loaded from the first file and zm the maps from the second
file, the code computes

xt
mEizm. (3.21)

3.2.5 Signal or observed power spectrum?

As pointed out, ECLIPSE loads the fiducial spectrum of the signal on the maps and estimates
the deconvolved power spectrum, i.e. the power of the signal on the maps. In some situations
the user might simply prefer to work with the power spectrum in the observed maps. From
eq. (3.3), setting the variables Wi to value 1 forces the code to work in terms of the power
spectrum in the maps. This can be achieved by setting to 0 both the value of the beam and
the key that instructs the code about the pixel window function in the configuration file
(keys Beam FWHM and Pixel Window). In this configuration both the fiducial and estimated
power spectra reflect the observed power in the maps. Once the observed power in the map
has been estimated, the user can deconvolve it using adequate factors.

3.2.6 Intensity and polarization masks

ECLIPSE TEB differentiates the masks of intensity and polarization. The other two versions
of the code only read the mask that corresponds to the type of data that each version
processes.

3.2.7 χ2 control

If the fluctuations are Gaussian, xtC−1x follows a χ2 probability distribution and, on
average, is expected to have a value close to the dimension of the covariance matrix. ECLIPSE
computes and saves this value in the file ChiSquare.dat and shows the mean value on the
console output. This number can be used as a test on how the covariance matrix matches
the maps. Therefore, this can be used as a test on the fiducial spectrum and the noise
model.
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16 CHAPTER 3. THE QML ESTIMATOR AND ECLIPSE FUNCTIONALITIES

3.2.8 The three versions of ECLIPSE

All the equations of section 3.1 are valid for the three versions TEB, EB and T, which compute
the same mathematical expressions. However, each version works with matrices and vectors
of the size and data related to the type of estimation it computes.

3.2.9 Different limits for the covariance matrix and for the power spec-
trum

ECLIPSE uses different values of the ℓmax to determine the limit up to which to compute
the covariance matrix and the limit up to which to estimate the power spectrum. Although
both values should be the same, this feature provides with versatility to carry out tests.
Two keys in the configuration file keep this information.
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Chapter 4

The configuration file

The program reads the configuration file in the first place. It is written in ASCII format and
contains the information all three versions of ECLIPSE need to launch a computation. It can
contain comments and annotations inserted along the document. Comments are preceded
by the symbol ”#”. The information the program reads from the file is in format key =

value, where key indicates the type of information and value, the information itself. For
a correct reading of the data in the file, it is essential that the character strings key =

remain unmodified.

Some of the keys are read by all three versions of the code, some others are only read by
one or two of the versions. A configuration file can contain more keys than those strictly
required by the version of the code which will read it, but never less. A configuration file
containing all the required keys can be read by the three versions of the code; depending
on which version reads the file, a TEB, EB or T computation will be launched.

4.1 Sections in the file

The file contains the next sections

4.1.1 Principal

With the keys and, for example, the values

#Data folder

Data_Folder = NSide64

#NSide

NSide = 64

#Fiducial spectrum filename

Fiducial_FileName = PlanckModel_Dl.dat

#Lmax covariance matrix

17
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18 CHAPTER 4. THE CONFIGURATION FILE

Lmax_Covariance_Matrix = 128

#Lmax power spectrum

Lmax_Power_Spectrum = 128

#Compute Fisher matrix

# 1 -> Yes

# 0 -> No

Compute_Fisher_Matrix = 1

#Compute power spectrum

# 1 -> Yes

# 0 -> No

Compute_Spectrum = 1

#Binned spectrum?

# 1 -> Yes

# 0 -> No

Binned = 0

The information in this section indicates the folder where the program must read and write
the data, the HEALPix resolution of the maps, the file from which to read the fiducial, the
limits ℓmax up to which to compute the covariance matrix and the power spectrum.

The last three keys indicate whether or not to perform certain calculations.

� Compute Fisher Matrix tells the program whether the Fisher matrix must be com-
puted or not. Compute Fisher Matrix = 0 can be a good choice if one is processing
maps using masks, noise and fiducial identical to those used to process a previous
map: in this case the Fisher matrix and the elements bi are the same as the ones
formerly computed.

� If Compute Spectrum = 0 the code does not compute the power spectrum. It only
computes the Fisher Matrix, the coupled power and the noise bias, then saves the
data. In this case, the user must compute the binned, eq. (3.12), or unbinned power
spectrum, eq. (3.10), by their own means.

� The key Binned tells the program whether to compute a binned or unbinned estima-
tion. In the first case, the program reads data from another section of the configuration
file.

4.1.2 Maps

With the keys and, for example, the values

#Maps section

#Type of analysis
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# 0 -> Auto-correlation spectrum

# 1 -> Cross-correlation spectrum

Type_of_Analysis = 0

#Number of maps to analyze

Number_of_Maps = 2001

#Type of maps file

#This key is only read by ECLIPSE_T and ECLIPSE_EB

#ECLIPSE_TEB ignores it

# 0 -> Maps of TQU

# 1 -> Maps of only T or only QU

Type_of_Data = 0

#Maps filename

Maps_FileName = MapsTQU.fits

#Maps to cross filename

Maps2Cross_FileName = MapsTQU2Cross.fits

#FWHM Beam (ArcMin)

Beam_FWHM = 131.922678213788

#Pixel window

# 1 -> Yes

# 0 -> No

Pixel_Window = 1

The keys tell the program the type of analysis to perform —auto or cross-correlation—, the
number of maps to process, the name of the file containing the maps to read, the name of
the file containing the maps to cross-correlate (required by the code only if the user wants to
estimate cross-correlation), the FWHM size of the Gaussian beam (in arcmin) and whether
the power in the maps has been reduced due to the pixel window function of the resolution.

The key related to the data type functions is explained below

� ECLIPSE TEB ignores the data type key since the code will undoubtedly expect maps
containing TQU data.

� The codes ECLIPSE T and ECLIPSE EB read it. The key tells whether the file contains
maps of TQU data or whether the file contains just T maps or just QU maps. That
is, ECLIPSE EB can read QU maps from a file containing just QU maps —in this case
the key should be Type of Data = 1— or from a file containing TQU maps —in this
case the key should be Type of Data = 0—. The key works the same for ECLIPSE T.

If the key Pixel Window has value 1, the program loads the data from the corresponding
HEALPix1 file (see [6]), according to the resolution fixed in the section above. In the last

1HEALPix

appendix g. eclipse user guide v1.02 205
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section of the configuration file, the user has to tell the program where to find the files.

4.1.3 Masks

With the keys and, for example, values

#Mask section

#Intensity masks filename

Intensity_Mask_FileName = Masks_Intensity.fits

#Number of mask to be read

Intensity_Mask_NumMap = 1

#Polarization masks filename

Polarization_Mask_FileName = Masks_Polarization.fits

#Number of mask to be read

Polarization_Mask_NumMap = 2

The program can use different masks for intensity and polarization. They can be loaded
from different files (or from the same one) and the files can contain more than one mask.
The program loads the masks located in the positions the keys point to.

4.1.4 Noise

With the keys and, for example, values

#Noise section

#Type of noise

# 0 -> Isotropic

# 1 -> Anisotropic

Type_of_Noise = 1

#If the noise is isotropic, noise per pixel in Intensity

Intensity_Noise = 1.0

#If the noise is isotropic, noise per pixel in Polarization

Polarization_Noise = 0.01

#If the noise is anisotropic, noise maps filename

Noise_Map_FileName = NoiseMaps.fits

#Type of noise maps in the file
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# 0 -> TQU

# 1 -> T or QU

Type_of_Noise_Data = 0

#Remove noise bias

# 1 -> Yes

# 0 -> No

Remove_Noise_Bias = 1

This section tells the program the type of noise in the maps. If the noise is isotropic,
the program reads the value of the noise dispersion per pixel (i.e., the square root of the
diagonal elements of the noise covariance matrix). If the noise is anisotropic, the program
reads the name and the type of data in the noise maps file that contains the noise dispersion
per pixel. The key Type of Noise Data operates in the same way as the key Type of Data

of the maps section.

The last key tells the program whether to subtract the noise bias when estimating the power
spectrum.

4.1.5 Binning

With the keys and, for example, values

#Binning section

#File containing the superior limits in \ell of the bins

Binnig_Limits_FileName = BinsLimites.dat

#How to compute the binned fiducial

# 1 -> Weights given by the theoretical error on D_\ell

# 0 -> Weights equal to 1

Type_of_Bin_Center = 1

#How to compact the Fisher matrix: either using the fiducial or not

# 1 -> Using the data in the fiducial: optimal binned estimator

# 0 -> The fiducial is not used

Type_of_Grouping = 0

The key Binnig Limits FileName indicates the file where the superior limits of the bins
are to be found. The key Type of Bin Center tells the program whether to compute
the weighted mean of the fiducial —and, consequently, to estimate the weighted mean of
the power spectrum— or whether to compute the arithmetic mean of the multipoles in
the bins —and, therefore, to estimate the arithmetic mean of the multipoles—. The key
Type of Grouping tells the program whether to compact the Fisher matrix introducing
information from the fiducial model —the optimal binning estimator— or just by setting
all the weights to value 1. The meaning of both options is explained in section 3.1.1.
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4.1.6 Other information

That includes

#Size of the blocks of the distributed matrices

Matrices_Cyclic_Block_Size = 11

#Control of the regularity of the covariance matrix?

# 1 -> Yes

# 0 -> No

Inverse_Covariance_Matrix_Control = 1

#Show memory allocated by matrices?

# 1 -> Yes

# 0 -> No

Show_Memory_Allocated = 1

#Where to find the Pixel Window data

Healpix_Data_Folfer = ’/home/<user>/Healpix_3.70/data/’

The first key tells the program the size of the blocks in which the matrices are dis-
tributed through the grid processors. ECLIPSE breaks the matrices into blocks of size
Matrices Cyclic Block Size and distributes them cyclically through the grid (more infor-
mation in The Two-dimensional Block-Cyclic Distribution). The value of the key needs to
be increased as the size of the matrices increases (with Nside, with the number of observed
pixels and/or with ℓmax) and has to be such that each processor contains several blocks of
the matrices. For example, the parameter cannot be greater than the number of rows in
the covariance matrix divided by the number of rows in the grid of processors, otherwise
the last rows of processors would not participate in the calculations. The user must take
this point into account for two reasons: to achieve the highest efficiency in the calculations
and because otherwise the program could crash.

The key Inverse Covariance Matrix Control tells the program whether to check the reg-
ularity of the covariance matrix as explained in the section 7.1. If we are certain that the
matrix is regular, the key can take the value 0. If we are not or just want to check it anyway,
its value must be set to 1. The ScaLAPACK functions used to invert the matrices execute
a control of the regularity, but our additional control is a good complement and we have
observed it to be stronger.2

The key Show Memory Allocated tells the program to show, in different stages of the cal-
culation, the memory allocated by the entire processors grid to store the matrices. This
information gives a very good estimate of the memory required by the code in each step.
The user must take into account that there are some stages of the computation where the
memory used by the program is larger than the one directly allocated by the ECLIPSE

code: this happens because ScaLAPACK internally allocates temporal memory to compute
matricial operations.

2In some calculations the two ScaLAPACK functions returned value 0, but the product of the diagonal
elements differed significantly from 1, which happens when the covariance matrix is in the limit singu-
lar/regular, evaluated in terms of floating point data.
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The key Healpix Data Folfer tells the program where to find the FITS files with the
HEALPix pixel window function data.3

4.2 About the use of the configuration file

The configuration file is multi-purpose. That is, it contains all the keys can be used by the
three versions of the code. If the maps file contains TQU columns, the user can execute
each versión of ECLIPSE by

ECLIPSE_TEB num_rows Folder/Config.ini

or

ECLIPSE_EB num_rows Folder/Config.ini

or

ECLIPSE_T num_rows Folder/Config.ini

and the code will respectively compute the six, three or one components of the power
spectrum of the same maps using the specific masks, noise and fiducial spectrum.

On the other hand, the user can write a specific configuration file for any of the three
versions of the code, which only needs to contain the keys that version of the code reads.

3The FITS files can be found in the folder HEALPix Data at https://github.com/CosmoTool/ECLIPSE
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Chapter 5

Input and output data files

In this section we describe in detail the format of the files which ECLIPSE works with.

5.1 Input files

The first file the program reads is the configuration file. The name and location are passed
to the program when it is launched, as shown in section 2.2.

All the names of the input files are specified in the configuration file, whereas the names of
the data files the program saves are fixed. The program expects to find and save them in
the folder given by the key Data Folder.

Referred to CMB, masks and noise maps, they are loaded as HEALPix FITS files. All maps
(CMB, noise or mask) read by the program should be in full-sky format (even if null values
are provided for those pixels that are discarded by the mask) and RING ordering. ECLIPSE
first loads the masks for intensity and polarization and selects those pixels with value 1.
Later, after loading the CMB and noise maps, only those pixels allowed by the mask will
be kept in the computer´s memory.

The files and format the program reads are

5.1.1 Masks

� Intensity mask file: the file to which points the Intensity Mask FileName key,
from which the program reads the intensity mask. It is a HEALPix maps file —FITS
format— with type REAL data. The file can have several full sky maps. The maps
are made of ones and zeroes (the NullVall of HEALPix is admitted, and the program
interprets it as zero). The number of masks —maps— in the file must be equal to or
greater than the value of the key Intensity Mask NumMap.

� Polarization mask file: the file to which points the Polarization Mask FileName

key, from which the program reads the polarization mask. It has the same format as
the previous file. The number of masks in the file must be equal to or greater than
the value of the key Polarization Mask NumMap.

The code ECLIPSE TEB loads both masks. Each of the other two codes loads the

25
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relevant mask and ignores —it does not read— the keys that point to the other mask.

5.1.2 Pixel Window

� pixel window nXXXX.fits: A data file from HEALPix. The program loads the
file only when the key Pixel Window takes the value 1. XXXX makes reference
to the resolution (Nside) of the maps. The location of the file is shown in the key
Healpix Data Folder.

5.1.3 Fiducial spectrum

� Fiducial data file: The program loads data from the file to which the key
Fiducial FileName points to. The file contains seven columns of numbers in ASCII
format. The first one contains the value of ℓ, the other six contain the six components
of the fiducial power spectrum of the signal in the maps, in Dℓ format. The order of
the columns is

ℓ DTT
ℓ DEE

ℓ DBB
ℓ DTE

ℓ DTB
ℓ DEB

ℓ

It is mandatory for the fiducial to include the columns TB and EB. These two columns
will typically consist of zeroes but, if the program detects non null values, it will include
these spectrum components in the computation of the covariance matrix. The file must
have rows from ℓ = 0 up to at least the value of the key Lmax Covariance Matrix.
The file cannot contain headers, it can just contain numbers. For example, the first
rows could be

0 0. 0. 0. 0. 0. 0.
1 50.00 0. 0. 0. 0. 0.
2 1017.64 0.03090 0.000046 2.623 0. 0.
3 963.98 0.03971 0.000047 2.940 0. 0.

The ECLIPSE TEB and ECLIPSE EB versions read data from ℓ = 0 to the ℓmax fixed
in the key Lmax Covariance Matrix, but ignore the values that correspond to ℓ = 0
and ℓ = 1. The ECLIPSE T version reads data from ℓ = 0 as well but, unlike the other
two, it saves the value of the spectrum at ℓ = 1, since it estimates the spectrum from
ℓ = 1 and computes the covariance matrix starting from the same value. This is the
reason why the column TT of the example has power at ℓ = 1.

5.1.4 Noise maps

� Noise maps file: The program loads data from files only when the key Type of Noise

gets the value 1. The code expects a FITS file of HEALPix maps. The data in the maps
represent the noise dispersion per pixel. The file must contain one or two columns
of full sky data. In the case of executing ECLIPSE TEB or when Type of Noise Data

= 0 for any version of the code, it will be interpreted that the first column con-
tains the noise dispersion per pixel in intensity and the second one, the polariza-
tion noise. In the latter case, ECLIPSE EB loads the second column and ignores the
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first one and ECLIPSE T loads the first column and ignores the second one. When
Type of Noise Data = 1, both ECLIPSE EB and ECLIPSE T will specifically read the
first column of the file, which then must contain just polarization or just intensity
noise respectively.

5.1.5 CMB maps

� Maps for auto-correlation file: The program loads maps from the file the key
Maps FileName points to, a FITS file of maps in the usual HEALPix format. It must
include, at least, as many maps as the value of the key Number of Maps. The maps
must be full sky.

When ECLIPSE TEB loads the maps or when they are loaded by the other two versions
of the code and Type of Data = 0, each map consists of three consecutive full sky
columns of T, Q and U. If the file contains multiple maps, the order of the columns is

T1, Q1, U1, T2, Q2, U2 . . .

When ECLIPSE EB loads the maps and Type of Data = 1, if the file contains more
than one map, the order of the columns is

Q1, U1, Q2, U2 . . .

On the other hand, when ECLIPSE T loads the maps and Type of Data = 1, if the
file contains more than one map, the order of the columns is

T1, T2 . . .

Due to the limit fixed in the number of columns in the extensions of the FITS files,
each extension of the file to be read by ECLIPSE can only have a maximum of 50
maps. Therefore, a maps file must have as many extensions as the result of dividing
the number of maps by 50 —plus one, if the number of maps is not a multiple of 50—.
Each extension can only contain a maximum of 150 columns if the file is made of maps
T, Q and U, a maximum of 100 columns if the maps are Q and U; and 50 columns
if the maps are T. If one is interested in simulating maps with their own code to be
later processed by ECLIPSE, the maps can be adequately saved by using the function
output map of HEALPix.

In order to compute cross-correlation spectrum, the program correlates the maps in
this file with the maps in the next file of the list.

� Maps for cross-correlation file: The maps to be cross-correlated must be saved in
a different file. The program correlates the first map in one file (a map with three, two
or one columns) with the first map in the other file, the second map with the second,
etc. The format of the file that contains the maps to cross-correlate must obviously
be the same as the format of the previous file.

5.1.6 Bin limits

� Bin limits file: When Binned = 1, the program loads data from the file pointed to by
Binning Limits FileName. The data in the file must be in ASCII format and consist
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of a column of integer numbers in ascending order. Each number in the file indicates
the superior limit of the bin, specifically, the value of ℓbhigh defined in section 4.1 of [3],
Independently of the values provided in the file, the superior limit of the last bin is
given by the value ℓmax of the key Lmax Power Spectrum. For example, if it contains
the data

5

9

13

19

and Lmax Power Spectrum = 16 the versions ECLIPSE TEB and ECLIPSE EB will work
with bins from 2 to 5, from 6 to 9, from 10 to 13 and from 14 to 16. However, the
first ECLIPSE T bin goes from 1 to 5.

5.2 Output files

The program saves the following list of files

5.2.1 QML kernel

The three files which follow contain all the essential information QML generates. They
contain the anisotropies coupled power in the harmonic space, the noise power in the har-
monic space and the Fisher matrix. From the information registered in the maps the power
spectrum can be computed, unbinned (eq. (3.10)) or binned (eq. (3.12)).

All the crucial information can be be found in these files should the user be interested in
computing the power spectrum using some other software.

The files are

� CoupledPower.dat. An ASCII file that registers the values xtEix in an auto-
correlation estimation, or xtEiz in a cross-correlation estimation (see eq. (3.4) and
eq. (3.21)). That is, it contains the information about the coupled power —signal plus
noise— of the anisotropies in the harmonic space. The number of data and structure
of the file depend on the version of the code that generates the file

– ECLIPSE TEB: the file contains a list of Nmaps × 6 × (ℓmax − 1) elements, where
Nmaps is the number of maps. The data are organized as follows: the first
6× (ℓmax−1) numbers are the values xtEix (or xtEixTo cross) computed from the
first map; the next 6× (ℓmax− 1) numbers are the values of the second map, etc.
The structure within the data of any of the maps is: the first ℓmax − 1 numbers
are TT data —from ℓ = 2 to ℓ = ℓmax—, the next group of ℓmax− 1 numbers are
EE data, followed by data groups of BB, TE, TB and EB, in this order.

– ECLIPSE EB: the file contains a list of Nmaps × 3× (ℓmax − 1) elements. The data
are organized as follows: the first 3 × (ℓmax − 1) numbers are, for example, the
values xtEix computed from the first map, the next group contains the values
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obtained from the second map, etc. The structure within the data of any of the
maps is: the first ℓmax − 1 numbers are EE data —from ℓ = 2 to ℓ = ℓmax—,
the next group of ℓmax − 1 numbers are BB data, and the last group of ℓmax − 1
numbers are EB data.

– ECLIPSE T: the file contains a list of Nmaps × ℓmax elements. The data are or-
ganized as follows: the first ℓmax numbers are, for example, the values xtEix
computed from the first map —ordered from ℓ = 1 to ℓmax—; the next group
contains the values obtained from the second map, etc.

� NoiseBias.dat. A file in ASCII format. It contains the values of eq. (3.6). Depending
on the program that saves the file, the data are

– ECLIPSE TEB: a list of 6 × (ℓmax − 1) elements. The first ℓmax − 1 elements are
the TT values —ordered from ℓ = 2 to ℓmax —. The rest of the data are the EE,
BB, TE, TB and EB values, in this order.

– ECLIPSE EB: a list of 3× (ℓmax− 1) elements. The first ℓmax− 1 elements are the
EE values —ordered from ℓ = 2 to ℓmax —. The rest of the data are the BB,
and EB values.

– ECLIPSE T: a list of ℓmax elements, the values of TT ordered from ℓ = 1 to ℓmax.

� FisherMatrix.dat. A file in ASCII format that contains the data given by eq. (3.9).
The saved data do not conform a matrix structure, they must be interpreted as a
simple list of numbers whose structure depends on the version that saves the file

– ECLIPSE TEB: the file — the list of numbers — contains [6 × (ℓmax − 1)] × [6 ×
(ℓmax − 1)] elements. Each group of 6 × (ℓmax − 1) numbers makes up a row of
the matrix. The rows (and columns) of the matrix are organized as follows: six
groups of ℓmax−1 numbers. The groups are ordered: TT, EE, BB, TE, TB, EB.
The ℓmax − 1 numbers in each group range from ℓ = 2 to ℓmax.

– ECLIPSE EB: the file contains [3 × (ℓmax − 1)] × [3 × (ℓmax − 1)] numbers. Each
group of 3 × (ℓmax − 1) numbers makes up a row of the matrix. The rows (and
columns) of the matrix are organized as follows: three groups of ℓmax−1 numbers.
The groups are ordered: EE, BB, EB. The ℓmax−1 numbers in each group range
from ℓ = 2 to ℓmax.

– ECLIPSE T: the file contains ℓmax × ℓmax numbers. Each group of ℓmax numbers
makes up a row of the matrix, from ℓ = 1 to ℓmax.

ECLIPSE saves this file when the key Compute Fisher Matrix takes the value 1.

5.2.2 Control

The program computes and saves xtC−1x, a list of Nmaps numbers. This data can be used
to check the concordance between the maps and the covariance matrix. If cross-correlation
is computed, the program saves xtC−1z, where z is the map to cross. Therefore, another
file saved by the program is

� ChiSquare.dat. A file in ASCII format made of Nmaps numbers.
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5.2.3 Power spectrum

Depending on the value of the key Binned, the program computes the binned or unbinned
form of the power spectra of the maps.

Complete spectrum

If Binned = 0, the code saves

� Dl.dat. A file in ASCII format that contains the deconvolved power spectrum —
according to the values of the keys Beam FWHM and Pixel Window— of the maps in
terms of the variables Dℓ. For the three versions, the number of elements and the
structure of the file are the same as those of the CoupledPower.dat file.

� MeanDl.dat. A file in format ASCII that contains the mean value of Dℓ. The
program saves this file when the number of maps is greater than one. The structure
of the file is the same as that of the one-map Dl.dat file.

� SigmaDl.dat. A file in format ASCII that contains the standard deviation ofDℓ. The
program saves this file when the number of maps is greater than one. The structure
of the file is the same as that of the MeanDl.dat file.

� FisherErrorDl.dat. A file in ASCII format that contains the error bar of the esti-
mation, computed from the Fisher matrix. That is, the data are the square root of
the diagonal elements of the inverse of the Fisher matrix. The structure of the file is
the same as that of the MeanDl.dat file.

Binned spectrum

If the binned spectrum has been estimated, the program saves the files described in this sec-
tion. The data in the files depends on the keys Type of Bin Center and Type of Grouping

and are related to the deconvolved variables Dℓ.

� Positions.dat. A file in ASCII format that contains the positions in ℓ of the bins, cal-
culated according to eq. (3.16). Depending on the version, we may have the following
cases

– ECLIPSE TEB: Saves 6×Nbins elements, in the order TT, EE, BB, TE, TB y EB.

– ECLIPSE EB: Saves 3×Nbins elements, in the order EE, BB y EB.

– ECLIPSE TEB: Saves Nbins TT elements.

� BinnedFiducial.dat. A file in ASCII format that contains the values of the binned
fiducial spectrum computed from eq. (3.15). The number of elements and the structure
are the same as those of the Positions.dat file.

� BinnedDl.dat. A file in ASCII format that contains the binned estimation of the
power spectrum of each map, computed from eq. (3.12), where the elements of the
matrix R depend on the value of the key Type of Grouping. The file contains a
sequence of Nmaps consecutive vectors with the same structure as of the vector saved
in BinnedFiducial.dat, whatever the version of the code.
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� FisherMatrixBinnedDl.dat. A file in ASCII format that contains the data given
by eq. (3.17). The saved data do not conform to a matrix structure, they must be
interpreted as a simple list of numbers whose structure depends on the version that
generates the file

– ECLIPSE TEB. The file contains [6×Nbins]× [6×Nbins] numbers. Each group of
6 × Nbins numbers makes up a row of the matrix. The rows (and columns) of
the matrix are organized: TT, EE, BB, TE, TB, EB. Each group contains Nbins

numbers.

– ECLIPSE EB. The file contains [3 × Nbins] × [3 × Nbins] numbers. Each group of
3×Nbins numbers makes up a row of the matrix. The rows (and columns) of the
matrix are organized: EE, BB, EB. Each group contains Nbins numbers.

– ECLIPSE T. The file contains Nbins×Nbins numbers. Each group of Nbins numbers
makes up a row of the matrix.

� MeanBinnedDl.dat. A file in ASCII format that contains the mean value of the
binned estimation, with the same structure as that of the BinnedFiducial.dat file.

� SigmaBinnedDl.dat. A file in ASCII format that contains the standard deviation
of the binned estimation, with the same structure as that of the BinnedFiducial.dat
file.

� FisherErrorBinnedDl.dat. A file in ASCII format that contains the error bar on
the estimation of the binned power spectrum, computed from the compacted Fisher
matrix. That is, the square root of the diagonal elements of the inverse of the matrix of
eq. (3.17). The structure of the data is the same as that of the BinnedFiducial.dat
file.
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Computer requirements

Depending on the maps dimension and the ℓmax up to which to compute the power spectrum,
the dimensions of the matrices the code stores can vary significantly. The user needs some
rules to determine the memory required and, consequently, the number of processors. The
package ECLIPSE contains a small program, ECLIPSE Memory.f90, which reads any given
configuration file and —according to eq. (6.2)-(6.9)— tells the user the memory required
by all three versions of the code to store matrices at two crucial steps of the computation.
For example, if typing

> ./ECLIPSE_Memory NSide64/Example.ini

the program shows

Loading configuration from: NSide64/TEB.ini

Data_Folder: NSide64

NSide: 64

Lmax_Power_Spectrum: 192

Intensity_Mask_FileName: MascaraSateliteN64.fits

Intensity_Mask_NumMap: 1

Polarization_Mask_FileName: MascaraSateliteN64.fits

Polarization_Mask_NumMap: 1

Inverse_Covariance_Matrix_Control: 1

*******************************************************************

Loading masks

Number of observed pixels in temperature: 29009

Number of observed pixels in polarization: 29009

Lmax power spectrum: 192

Number of spherical harmonics: 37245

*******************************************************************

*******************************************************************

ECLIPSE_TEB - [Gb]

Eq. (6.1): 112.856905594468

Eq. (6.2): 222.766825564206

Eq. (6.3): 252.822962254286

*******************************************************************

ECLIPSE_EB - [Gb]

Eq. (6.4): 50.1586247086525

Eq. (6.5): 121.678194284439

33
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Eq. (6.6): 190.810735747218

*******************************************************************

ECLIPSE_T - [Gb]

Eq. (6.7): 12.5396561771631

Eq. (6.8): 30.4214937761426

Eq. (6.9): 52.8762931823730

Number of spherical harmonics: 37248

*******************************************************************

That is, the program reads the configuration file, determines the number of pixels allowed
by the intensity and polarization masks and takes the value of ℓmax up to which the power
spectrum must be estimated. From these values the program calculates the memory required
to store matrices —at two stages of the computation— by all three versions of the code. In
the example, if one needs to estimate the six components of the power spectrum in a case
determined by the configuration file Example.ini, at least 7.36 Gb of memory are required;
if one needs to compute the intensity power spectrum, at least 1.17 Gb are required.

Note that these values only consider the memory required to store the matrices, and not the
memory required to run the code. However, they can be taken as a very valuable reference
to determine the total memory that needs to be requested.

In order to build ECLIPSE Memory.f90, the user has to run the same script which builds
ECLIPSE. For example, in NERSC

> ./cCrayNERSC.sh ECLIPSE_Memory

For the interested readed, in the next section we explain where these numbers come from.
However, if not interested in the details, one can go directly to section 6.2.

6.1 Determining the memory required

The size of the matrices depends on three principal numbers

� Number of observed pixels in the intensity maps: PI .

� Number of observed pixels in the polarization maps: PP .

� Multipole up to which to compute the power spectrum: ℓmax.

When the code estimates polarization components, the number of spherical harmonics, L,
depends on ℓmax

L =

ℓmax∑

ℓ=2

2ℓ+ 1.

The summation starts from ℓ = 1 when the code estimates only intensity.

In the following sections we detail the critical stages regarding memory requirements for
the three versions of ECLIPSE.
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6.1.1 ECLIPSE TEB

According to these critical quantities, the number of elements of the blocks and matrices
that ECLIPSE TEB stores are

1. Covariance matrix in pixel space: (PI + 2PP )
2

2. TT block of the covariance matrix: PI · PI

3. TQ type block of the covariance matrix: PI · PP

4. QQ type block of the covariance matrix: PP · PP

5. TT type block of the spherical harmonics matrix: PI · L
6. QE type block of the spherical harmonics matrix: PP · L
7. Matrix Y†C−1Y: (3L)2

8. One of the nine blocks of the matrix Y†C−1Y: L · L

The elements of the matrices in cases 1, 2, 3 and 4 are real numbers, whereas the elements
in cases 5, 6, 7 and 8 are complex numbers.

There are tree stages in the code where the number of stored elements can reache the highest
values

� In Step 2: when the program is about to compute the inverse of the covariance
matrix and the key Inverse Covariance Matrix Control takes the value 1. The
code requires to store in memory two covariance matrices. The number of reals is

2 · (PI + 2PP )
2. (6.1)

� In Step 4: when the program is about to compute the imaginary part of the product
C−1Y.

At this point, the code stores the blocks TT, TQ, TU, QQ, QU and UU of the inverse
of the covariance matrix, the imaginary part of the spherical harmonics matrix and
the real and imaginary parts of C−1Y. The number and type of elements are

– Blocks TT, TQ, TU, QQ, QU and UU of the inverse of the covariance matrix:
PI · PI + 2 · PI · PP + 3 · PP · PP elements, real numbers.

– Imaginary part of the spherical harmonics matrix: PI · L + 4 · PP · L elements,
real numbers.

– Matrix C−1Y: (PI + 2PP ) · (3L) elements, complex numbers.

Therefore, multiplying the number of complexes by two, the amount of real numbers
the code stores at this point is

PI · PI + 2 · PI · PP + 3 · PP · PP + PI · L+ 4 · PP · L+ 2 [(PI + 2PP ) · (3L)] . (6.2)

� In Step 6: when the program is about to compute the blocks EE, BB and EB of
Y†C−1Y.
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At this point, the code stores the complex numbers of six blocks of the matrixY†C−1Y
— blocks TT, TE, TB, EE, EB and BB—, the real and imaginary parts of the polar-
ization block of the spherical harmonics matrix —blocks QE, QB, UE and UB— and
the blocks QE, QB, UE and UB of C−1Y. The number and type of elements are

– Blocks TT, TE, TB, EE, EB and BB of Y†C−1Y: 6 · L · L elements, complex
numbers.

– Polarization block of the spherical harmonics matrix: 4·PP ·L, complex numbers.

– Blocks QE, QB, UE and UB of C−1Y: 4 · PP · L, complex numbers.

Therefore, multiplying the number of complexes by two, the amount of real numbers
the code stores at this point is

2 [6 · L · L+ 4 · PP · L+ 4 · PP · L] (6.3)

To get a first estimate of the required memory, one has to calculate the expressions (6.2)
and (6.3) and take the highest value. Since in ECLIPSE TEB the floating point variables are
double precision, in order to estimate the number of gigabytes one has to multiply the said
highest value by 8 and divide the result by 10243.

As an example, in a case where the number of observed pixels in intensity and polarization
is 29009 and ℓmax = 192, eq. (6.1) takes the value 113Gb; eq. (6.2), 223Gb and eq. (6.3),
253Gb.

6.1.2 ECLIPSE EB

According to the critical quantities, the number of elements of the blocks and matrices that
ECLIPSE EB stores are

1. Covariance matrix in pixel space: (2PP )
2

2. Spherical harmonics matrix: (2PP ) · (2L)
3. Matrix Y†C−1Y: (2L)2

4. One of the four blocks of the matrix Y†C−1Y: L · L

The elements of the matrices in case 1 are real numbers, whereas the elements in cases 2, 3
and 4 are complex numbers.

There are two stages in the code where the number of stored elements reaches the highest
values

� In Step 2: when the program is about to compute the inverse of the covariance
matrix and the key Inverse Covariance Matrix Control takes the value 1. The
code requires to store in memory two covariance matrices. The number of reals is

2 · (2PP )
2. (6.4)
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� In Step 4: when the program is about to compute the imaginary part of the product
C−1Y.

At this point, the code stores the inverse of the covariance matrix, the spherical
harmonics matrix and the real part of C−1Y. Therefore, multiplying the number of
complexes by two, the amount of real numbers the code stores at this point is

(2PP )
2 + 2 · (2PP ) · (2L) + (2PP ) · (2L). (6.5)

� In Step 6: when the program is about to compute the blocks EE, BB and EB of
Y†C−1Y.

At this point, the code stores in memory the matrix C−1Y, the spherical harmonics
matrix Y and three blocks of product Y†C−1Y. Since all values are complexes, the
amount of real numbers the code stores at this point is

2 [2 · (2PP ) · (2L) + 3 · (L · L)] . (6.6)

To get a first estimate of the required memory, one has to calculate the expressionss (6.5)
and (6.6) and take the highest value. Since in ECLIPSE EB the floating point variables are
double precision, in order to estimate the number of gigabytes one has to multiply the said
highest value by 8 and divide the result by 10243.

In a case where the number of observed pixels in intensity and polarization is 29009 and
ℓmax = 192, eq. (6.4) takes the value 50Gb; eq. (6.5), 122Gb and eq. (6.6), 191Gb.

6.1.3 ECLIPSE T

According to the critical quantities, the number of elements of the blocks or matrices that
ECLIPSE T stores are

1. Covariance matrix in pixel space: P 2
I

2. Spherical harmonics matrix: PI · L
3. Matrix Y†C−1Y: L2

The elements of the matrices in case 1 are real numbers, whereas the elements in cases 2
and 3 are complex numbers.

There are two stages in the code where the number of stored elements reaches the highest
values

� In Step 2: when the program is about to compute the inverse of the covariance
matrix and the key Inverse Covariance Matrix Control takes the value 1. The
code requires to store in memory two covariance matrices. The number of reals is

2 · P 2
I . (6.7)

� In Step 4: when the program is about to compute the product C−1Y.
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At this point, the code stores the inverse of the covariance matrix, the spherical
harmonics matrix and the real part of C−1Y. Therefore, multiplying the number of
complexes by two, the amount of real numbers the code stores at this point is

P 2
I + 2 · PI · L+ PI · L. (6.8)

� In Step 6: when the program is about to compute Y†C−1Y.

At this point, the code stores in memory the matrix C−1Y, the spherical harmonics
matrix Y and Y†C−1Y. Since all values are complexes, the amount of real numbers
the code stores at this point is

2 [2 · PI · L+ L · L] . (6.9)

To get a first estimate of the required memory, one has to calculate the expressions (6.8)
and (6.9) and take the highest value. Since in ECLIPSE T the floating point variables are
double precision, in order to estimate the number of gigabytes one has to multiply the said
highest value by 8 and divide the result by 10243.

As an example, in a case where the number of observed pixels in intensity and polarization
is 29009 and ℓmax = 192, eq. (6.7) takes the value 13Gb; eq. (6.8), 30Gb and eq. (6.9),
53Gb.

6.2 Computer requirements

ECLIPSE Memory.f90 encodes the equations (6.2)-(6.9). Once the user knows the maximum
memory required to store the matrices, the number of cores needed to compute the problem
can be calculated. As mentioned, it is important to note that the memory required to run
the code is larger than the limit given by the storage of matrices, so the memory requested
for the job must be larger than the value of reference. No further instructions can be given
which determine the total memory, since this will depend on the computer and configuration
we use. As pointed out, the number of gigabytes needed to store the matrices must be taken
as an inferior limit.

To determine the number of nodes and cores, the user needs to know the number of cores
and the memory in the nodes. Once the memory required to store the matrices is stated,
one can estimate the number of cores. For example, a computation requiring 191 Gb to
store the matrices, executed in Haswell nodes of NERSC —with 128 Gb of memory and
32 cores—, can be done requesting 2 nodes and 64 cores. This guarantees 256 Gb to run
ECLIPSE. The cores are best distributed as a 8× 8 grid.

The script could be

#!/bin/bash

#SBATCH --job-name=ECLIPSE

#SBATCH --output=Job.out

#SBATCH --error=Job.err

#SBATCH --qos=regular

#SBATCH --time=03:00:00
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#SBATCH --nodes=2

#SBATCH --tasks-per-node=32

#SBATCH --constraint=haswell

#SBATCH --mail-user=<user>@<domain>.com

#SBATCH --mail-type=ALL

srun ./ECLIPSE_TEB 8 NSide64/Config.ini
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Controls in the code

The code checks the regularity of the matrices to be inverted and whether the fiducial and
noise models match the maps.

7.1 The inversion of the covariance matrix

Once the covariance matrix is computed, ECLIPSE proceeds to invert it. The operation
is performed by two ScaLAPACK subroutines. Both subroutines return a parameter that
indicates whether the operations were successfully accomplished. When the matrices are
regular, the parameter value is zero. At this point the code displays information such as

Cholesky factorization: 0

Inversion result: 0

If one of the parameters is zero, the matrix is singular. In this case, the program displays
a warning message and stops.

The program executes an additional test of the regularity of the covariance matrix: it can
check whether the diagonal of C ·C−1 is made of ones. In particular, the program calculates
the sum and the product of the elements of the diagonal and displays the result. This com-
putation provides an additional test of the regularity which is stricter than the one provided
by the ScaLAPACK functions. The test is run when Inverse Covariance Matrix Control

= 1 in the configuration file.

7.2 The inversion of the Fisher matrix

The program also computes the inverse of the Fisher matrix —when binning, the inverse of
the compacted Fisher matrix—. In both cases the inverse is computed in two steps and the
program displays the values of the parameters given by the ScaLAPACK functions. When
the matrix is singular, it displays a warning message and stops.

41
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7.3 Test χ2 from maps and C−1

As pointed out in section 3.2.7, the code helps the user to check whether the fiducial and
the noise models match the maps.
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Examples of execution of the code

The folder Example NSide8 in https://github.com/CosmoTool/ECLIPSE contains fiducial,
masks, maps, bin limits and configuration files, as well as instructions to practice with
ECLIPSE. The folder also contains an example of the output generated by the code.

On the other hand, the following lines show the output generated by ECLIPSE TEB running
on NERSC on a computation of high dimension.

*****************************************************************************************

Start time: Wed Jul 28 13:12:43 2021

Number of cores: 64

Number of rows: 8

Number of columns: 8

*****************************************************************************************

Loading configuration from: NSide64/TEB.ini

Data_Folder: NSide64

NSide: 64

Fiducial_FileName: ModeloDl_PlanckTodos.dat

Lmax_Covariance_Matrix: 128

Lmax_Power_Spectrum: 128

Type_of_Analysis: 0

Compute_Fisher_Matrix: 1

Compute_Spectrum: 1

Maps_FileName: MapasTQU.fits

Number_of_Maps: 1000

Pixel_Window: 1

Beam_FWHM: 131.922678213788

Intensity_Mask_FileName: MascaraSateliteN64.fits

Intensity_Mask_NumMap: 1

Polarization_Mask_FileName: MascaraSateliteN64.fits

Polarization_Mask_NumMap: 1

Type_of_Noise: 0

Intensity_Noise: 4.548120000000000E-003

Polarization_Noise: 4.548120000000000E-004

Remove_Noise_Bias: 1

Matrices_Cyclic_Block_Size: 677

Inverse_Covariance_Matrix_Control: 1

Show_Memory_Allocated: 1

Healpix_Data_Folfer: /global/homes/j/jdbilbao/Descargas/Healpix_3.70/data/

*****************************************************************************************

Loading masks
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Number of observed pixels in temperature: 29009

Number of observed pixels in polarization: 29009

Loading HEALPix Pixel Window

Loading Fiducial Power Spectrum

*****************************************************************************************

Step 1. Computing covariance matrix

Computing blocks of the spherical harmonics matrix 0s

35.96 GB

Block YTT done 2s

Block YPP done 7s

Computing blocks of the covariance matrix 8s

92.39 GB

Block TT done 57 s

Block TQ done 107 s

Block QT done 109 s

Block TU done 159 s

Block UT done 160 s

Block QQ done 259 s

Block QU done 358 s

Block UQ done 360 s

Block UU done 459 s

Intensity diagonal element: 3073.14818800938

Polarization diagonal element: 5.834018299670649E-002

Covariance matrix already computed

56.43 GB

*****************************************************************************************

Step 2. Inverting the covariance matrix 459s

112.86 GB

Cholesky factorization: 0 728s

Inversion result: 0 1164s

56.43 GB

Diagonal product: 0.999692798028858

Diagonal sum: 87026.9999865500

Matrix size: 87027

Covariance matrix inverted 1167s

56.43 GB

*****************************************************************************************

Step 3. Computing coupled power in the harmonics space

Computing blocks of the spherical harmonics matrix

92.39 GB

Block YTT done 1169s

Block YPP done 1175s

Loading maps

93.04 GB

Computing C^-1 Maps 1211s

<m^t C^-1 m>: 87042.2726098239

Matrix size: 87027

93.79 GB

Maps transformed to harmonis space

Auto-corrrelation power already computed 1273s

92.39 GB

*****************************************************************************************

Step 4. Computing product C^-1 Y

Moving from matrix C^-1 to blocks of the matrix C^-1 1273s

130.01 GB

TT

TQ

TU

QQ
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QU

UU

Matrix C^-1 moved to blocks 1277s

73.58 GB

Computing blocks of the product C^-1 Y

Real part 1277s

105.94 GB

TT 1305 s

TE 1356 s

TB 1407 s

QT 1433 s

QE 1486 s

QB 1539 s

UT 1566 s

UE 1619 s

UB 1673 s

Imaginary part 1673s

120.32 GB

TT 1701 s

TE 1752 s

TB 1803 s

QT 1829 s

QE 1882 s

QB 1936 s

UT 1962 s

UE 2016 s

UB 2070 s

Blocks of product C^-1 Y already computed 2070s

64.72 GB

*****************************************************************************************

Step 5. Computing noise bias 2070s

Noise bias already computed

*****************************************************************************************

Step 6. Computing the Fisher matrix

Moving blocks of C^-1 Y to complex form 2073s

Computing blocks of the harmonic matrix in complex form

and multiplications Y^H (C^-1 Y)

Computing block TT of Y in complex form 2074s

Computing blocks TT, TE and TB of Y^H C^-1 Y 2076s

69.91 GB

TT 2125 s

TE 2175 s

TB 2225 s

Computing blocks QE, QB, UE y UB of Y in complex form 2225s

Computing blocks EE, BB and EB of Y^H C^-1 Y 2231s

82.28 GB

EE 2332 s

BB 2433 s

EB 2535 s

24.75 GB

Moving blocks to real and imaginary part 2535s

Building transposed blocks 2535s

Computing blocks of the Fisher matrix

TTTT

EEEE

BBBB

TTEE

TTBB

EEBB
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TTTE

TTTB

TTEB

EETE

EETB

EEEB

BBTE

BBTB

BBEB

TETE

TETB

TEEB

TBTB

TBEB

EBEB

Blocks of the Fisher matrix already computed 2538 s

Saving the Fisher matrix

Fisher matrix already computed 2568s

0.28 KB

*****************************************************************************************

Computing power spectrum

Loading Fisher matrix

Inverting Fisher matrix

Cholesky factorization: 0

Inversion result: 0

Loading Bl

Loading YlTotal

Computing Dl

Saving Dl

Elapsed time: 2665 s

End: Wed Jul 28 13:57:08 2021

*****************************************************************************************
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Resumen en castellano

El fondo cósmico de microondas (FCM) incide sobre nosotros desde todas las direccio-

nes del cielo. Al observarlo, encontramos una radiación prácticamente isótropa. Pero

debido a que nos movemos respecto al marco de referencia del FCM, las frecuencias de

la señal están afectadas por el corrimiento Doppler. Tras operar sobre los datos para re-

vertir el efecto y determinar el FCM tal como se sería visto por un observador en reposo,

se encuentra que presenta ligeras desviaciones locales, del orden de 1 en 100 000. Esas

pequeñas diferencias codifican información muy valiosa sobre las características del

universo en la época en que la radiación quedó liberada del equilibrio termodinámico

con la materia (desacoplamiento) y comenzó a viajar libremente por el espacio.

Las anisotropías que hoy medimos en el FCM nos hablan de las inhomogeneidades

en el universo en la época del desacoplamiento. El Principio Cosmológico establece

que todo el universo sigue las mismas leyes de la Física y que ningún lugar en él es un

lugar especial. Además, como resultado de experimentos y observaciones realizadas en

el lugar y tiempo que ocupamos en el universo, contamos con un conocimiento extenso

y profundo del comportamiento de la radiación, la materia, los fluidos en equilibrio

y la evolución del espacio-tiempo y de las leyes de la Física en general. Combinando

el Principio Cosmológico con el conocimiento adquirido localmente, podemos dar el

salto a confiar en que tenemos conocimiento sobre las leyes que rigen el conjunto del

universo.

Por lo tanto, a partir del patrón de inhomogeneidades que nos revela el FCM, po-

demos inferir las características fundamentales de nuestro universo en los instantes

iniciales.

Para conectar las anisotropías que medimos con las leyes que determinan las ca-

racterísticas de nuestro universo, tenemos que transformar matemáticamente la infor-

mación codificada en ellas. Podemos descomponer el mapa de anisotropías como suma

de capas superpuestas de oscilaciones de intensidad de radiación en diferentes escalas

angulares. Por otro lado, los valores locales de las anisotropías tienen un origen aleato-
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rio y no nos dicen nada relativo a las características particulares de cada dirección del

cielo. Lo que aporta realmente información valiosa es la potencia de las anisotropías en

las diferentes escalas angulares, el espectro angular de potencias de la radiación.

El espectro angular de potencias encapsula la información esencial codificada en las

anisotropías del FCM, que conecta con las características básicas de nuestro universo.

Pero como la realización del FCM que medimos es, de acuerdo a nuestra teoría, una

de las infinitas posibles de la ley de probabilidad dada por las características básicas y

esenciales de nuestro universo, hay cierta parte de información superflua o arbitraria en

el espectro angular de potencias. En definitiva, la información se puede comprimir en

una colección reducida de parámetros que sí encierran las características esenciales: los

parámetros cosmológicos. Uno de los objetivos clave en Cosmología es determinar las

leyes que definen las características de nuestro universo y los valores de los parámetros

libres de esas leyes.

El espectro angular de potencias caracteriza las propiedades estadísticas del FCM.

Los modelos de inflación favorecidos actualmente predicen que las fluctuaciones son

gaussianas (o muy aproximadamente gaussianas); en ese caso, el espectro de potencia

las determina completamente. A su vez, los valores del espectro se pueden deducir

completamente a partir de los parámetros cosmológicos. Lo anterior conduce a que el

espectro angular de potencias conserva la información registrada en el FCM acerca de

los parámetros cosmológicos. Y, sin llegar a contenerla toda si las fluctuaciones no son

gaussianas, atesora una información muy valiosa, en todo caso. Además, en el camino

desde el instante del desacoplamiento hasta nuestros detectores, el FCM sufre otros

procesos físicos que dejan un rastro en él, desde el que se pueden inferir propiedades

de la evolución y contenido del universo.

Las ondas electromagnéticas del FCM transportan información acerca de la inten-

sidad y polarización, que codificamos mediante los parámetros de Stokes I, Q y U. La

intensidad está relacionada con la temperatura de la radiación del cuerpo negro que

conformaba el fluido en equilibrio formado por radiación y materia. La polarización

que encontramos en cada dirección del cielo conecta con la distribución de las inho-

mogeneidades en la época del desacoplamiento. La intensidad (o temperatura) es un

escalar, mientras que los parámetros Q y U son componentes cuyo valor depende de la

orientación de los ejes de coordenadas locales. Se puede encontrar la forma de transfor-

mar al espacio armónico esa información en forma de los valores de los coeficientes del

desarrollo en armónicos esféricos en intensidad (o temperatura) y de los coeficientes de

las dos componentes de polarización, E y B. Llevado a espectro angular de potencias,

encontramos el espectro angular de potencias de temperatura (TT), las tres componen-
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tes de polarización (EE, BB y EB) y las dos componentes del cruce de temperatura y

polarización (TE y TB).

Las anisotropías en el FCM fueron causadas por inhomogeneidades locales en el

fluido primitivo. Por otro lado, dado el tiempo transcurrido desde el Big Bang, lo limi-

tado de la velocidad a la que se puede propagar la interacción y el tamaño del universo

observable, a priori, no podemos esperar que zonas suficientemente alejadas tengan

las mismas propiedades. Sin embargo, observamos que el FCM es sorprendentemente

isótropo a grandes escalas. Para dar respuesta, entre otros, a este problema, se han de-

sarrollado múltiples modelos teóricos. Los más aceptados por la comunidad científica

son los modelos inflacionarios, que explican la isotropía a gran escala y el origen de

las inhomogeneidades que dieron lugar a las anisotropías en el FCM. Combinando la

relatividad general, el principio cosmológico y la mecánica cuántica, describen posibles

estados iniciales que, tras un periodo muy corto de tiempo de crecimiento exponencial,

finalizan en estados que con el paso del tiempo evolucionan hacia el universo que pu-

do dar lugar al FCM y a las estructuras a gran escala que observamos en el presente a

diferentes corrimientos al rojo. Además, por sus propias características, el modo B de

polarización y la componente BB del espectro angular de potencias juegan un papel

esencial en los modelos inflacionarios; lo que los convierte en un test muy potente para

estos modelos.

Aparte del FCM, hay otras fuentes de emisión de radiación de microondas. Lo que

medimos es la suma de todas ellas. No podemos determinar con precisión las caracte-

rísticas de la señal del FCM en las direcciones del cielo en las que esas otras fuentes

son muy intensas —como, por ejemplo, las que cubre nuestra galaxia—, por lo tanto,

no contamos con el mapa completo del FCM. Lo anterior introduce una seria compli-

cación matemática que nos impide calcular directamente las características de la des-

composición en suma en escalas angulares. Por lo tanto, como no podemos calcularlo

directamente, tenemos que recurrir a métodos de estimación del espectro angular de

potencias.

Los métodos de estimación son herramientas matemáticas que nos permiten infe-

rir valores de parámetros a partir de colecciones de datos que siguen ciertas leyes de

probabilidad. En el caso del FCM, podemos estimar los valores del espectro angular de

potencias: los datos los conforma el mapa parcial de anisotropías, la ley de probabilidad

encapsula las leyes de la Física.

Como herramientas matemáticas, los métodos de estimación tienen ciertas propie-

dades. Esperamos que, en promedio, un estimador proporcione valores correctos de

los parámetros cuando le suministremos datos que siguen la ley de probabilidad que
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le indicamos que siguen esos datos. Si es así, decimos que el estimador es insesgado.

Por otro lado, por tratarse de una cuestión estadística-probabilística, las estimaciones

vienen acompañadas de un error. Cuando utilizamos una distribución de probabilidad

para producir datos que la reflejen, estamos expuestos a fluctuaciones, de modo que

la muestra será tanto más representativa cuanto mayor sea. Y en caso de ser demasia-

do pequeña, es probable que no resulte representativa. En definitiva, los propios datos

arrastran incertidumbre sobre las características de la distribución de probabilidad. La

matriz de Fisher conduce directamente a las cotas mínimas en las incertidumbres en

los parámetros dados por un estimador insesgado como consecuencia de la naturaleza

estadística de los datos. Decimos que un estimador es óptimo cuando es insesgado y de

varianza mínima.

En esencia, esta tesis trata sobre la obtención de la estimación óptima del espectro

angular de potencias del fondo cósmico de microondas, lo que incluye la estimación de

dichos parámetros y su correspondiente matriz de covarianza. Para ello, repasamos las

propiedades generales y las limitaciones de los estimadores, los aspectos esenciales del

estimador de máxima verosimilitud y del estimador pseudo-espectro y nos centramos

en el estimador cuadrático de máxima verosimilitud (QML).

El estimador de máxima verosimilitud (ML) es óptimo: insesgado y de varianza mí-

nima. Se basa en localizar los valores de los parámetros que maximizan la probabilidad

de los datos, por lo que implica la búsqueda de los mejores valores en el espacio de

parámetros, una tarea que implica una gran carga computacional al aplicarlo a la esti-

mación del espectro angular de potencias del FCM, si los mapas son grandes.

El estimador cuadrático de máxima verosimilitud también es óptimo, permite en-

contrar valores del espectro angular de potencias con las mismas propiedades que los

del ML, pero haciéndolo de una forma mucho más directa. Además, garantiza que ya

en la primera tentativa se encuentran valores insesgados, aunque no de varianza óp-

tima. En esta tesis, siguiendo el artículo original en el que fue presentado [43] , mos-

tramos una deducción matemática muy detallada del estimador. Aparte de los propios

datos, tanto QML como ML —y cualquier estimado en general— requieren, para apli-

carlo, que aportemos cierta información. En la deducción de QML se supone que las

fluctuaciones del FCM son gaussianas. Además, al aplicarlo, se supone que tenemos

conocimiento de las características del ruido en los mapas. Por otro lado, necesitamos

aportar un modelo de espectro angular de potencias con el que alimentar el método pa-

ra ponerlo en marcha. En la tesis, demostramos y comprobamos que, suponiendo que

el modelo de ruido sea correcto, el método es insesgado independientemente del mode-
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lo de señal aportado y que, iterando, las estimaciones convergen a los mismos valores

independientemente del punto de partida.

Matemáticamente, la superficie de la esfera es un continuo, y cualquier señal en

ella también lo es. Técnicamente es imposible captar datos en continuo y, aunque pu-

diéramos hacerlo, también técnicamente sería imposible procesarlos. Lo que se hace es

integrar la señal captada en teselas predefinidas de la esfera y convertirla en un ma-

pa discreto. Técnicamente, pixelamos la señal. De este modo, podemos representar los

datos en el espacio armónico sin pérdida de información truncando el desarrollo, sin

sumar infinitos términos. A la forma de teselar la superficie le llamamos pixelación.

Si suponemos que la señal y el ruido son independientes, la matriz de covarianza de

los datos (los mapas) resulta ser la suma de las matrices de covarianza de la señal y del

ruido. El método QML requiere la inversión de la matriz de covarianza de los mapas.

Un estudio de las propiedades de la matriz de covarianza de la señal nos ha permitido

encontrar una condición necesaria para que pueda ser regular: el número de armóni-

cos esféricos requeridos para representarla tiene que ser igual o mayor al número de

píxeles en los mapas. Por otro lado, hemos encontrado que, debido a las propiedades

de los armónicos esféricos y a las simetrías en los puntos que utilizamos para describir

la posición de los píxeles, el rango de la matriz de covarianza puede resultar ser menor

que el que se espera a cuenta del número de armónicos que se utilizan para describirla.

Además, independientemente de que sea isótropo o anisótropo, desde el punto de vis-

ta formal matemático, el ruido no correlacionado espacialmente regulariza la matriz.

Aunque en las pruebas numéricas que hemos realizado se ha encontrado que debe al-

canzar una potencia mínima; en caso contrario, los errores numéricos barren el efecto

regularizador. En esta tesis hemos realizado estudios analíticos que demuestran todo lo

anterior en lo referido a la regularidad de la matriz de covarianza y estudios numéri-

cos detallados que lo ponen a prueba —algunos calculados con diferentes precisiones

numéricas—. Lo hemos hecho en casos a cielo completo y con cobertura parcial, con y

sin ruido, usando señales de FCM simuladas simplificadas y señales realistas, y utili-

zando varias pixelizaciones.

Por otro lado, el método requiere la inversión de la matriz de Fisher, pero en algunos

casos la matriz es singular, y no se puede calcular el espectro angular de potencias

multipolo a multipolo utilizando QML.

Si no se puede calcular la potencia multipolo a multipolo, se puede recurrir a calcu-

lar los promedios en grupos de multipolos; es decir, podemos realizar una estimación
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bineada.1 Por otro lado, según los modelos, la potencia de la señal sigue una curva sua-

ve, pero en la práctica cada realización particular consiste en un conjunto de valores

que fluctúan en torno a la curva central dentro de los límites dados por las barras de

error; es decir, la potencia de un caso concreto forma una figura un tanto errática, que

es conveniente suavizar mediante promedio de grupos de datos vecinos. Por lo tanto,

sea porque la matriz de Fisher es singular o sea porque se prefiere una potencia sua-

vizada, en ocasiones es necesario binear. En esta tesis hemos desarrollado una técnica

que permite encontrar la estimación óptima del espectro angular de potencias bineado

Es decir, hemos desarrollado lo que se puede entender como una extensión de QML al

caso bineado. La técnica permite encontrar el valor insesgado de la potencia en los bi-

nes y la matriz de Fisher de la potencia en los bines, y demostramos que las covarianzas

de la potencia en los bines igualan la que viene dada por la matriz de Fisher. Consi-

derando que lo anterior es suficientemente bueno, hay dos aspectos que es necesario

señalar. Por un lado, lo que tenemos es, dada una elección de bines, solo la mejor for-

ma de calcular la potencia en los bines, pero no tenemos la mejor forma de determinar

previamente cuáles son los mejores bines posibles. Por otro lado, formalmente, el mé-

todo de bineado es insesgado siempre que se cumpla el requisito de que la información

suministrada —parámetros de la ley de probabilidad de la señal y ruido— describan

los mapas. Cuando el modelo de señal no refleja los mapas, se pueden producir ligeros

sesgos (que se pueden compensar iterando).

Aunque QML simplifica mucho la localización de la solución óptima respecto a ML,

sigue siendo un método con una alta carga computacional. Entre otras cosas, requiere

el cálculo de la matriz de covarianza, de su inversa y el cálculo de la matriz de Fisher. La

estructura matemática de la matriz de covarianza es mucho más simple en el espacio

armónico que en el espacio de los píxeles. Haciendo uso de esta propiedad, el méto-

do se puede implementar de tal modo que buena parte de los cálculos con más carga

computacional (como, por ejemplo, la determinación de la matriz de Fisher) se realicen

a partir de matrices con una gran cantidad de ceros y unos pocos unos localizados en

posiciones estratégicas (en vez de a partir de matrices densas). Solo este cambio redu-

ce el número de operaciones y ya ha sido utilizado en publicaciones anteriores [53].

Lo que es novedad en esta tesis es que analizando en detalle el papel que juegan los

unos y su localización en el contexto de las (abundantes) multiplicaciones de matrices,

se puede predecir analíticamente el resultado de operaciones matriciales complejas. Es

1El verbo binear y las palabras derivadas no están reconocidas actualmente por la RAE. Debido a que
se trata de términos suficientemente usados por la comunidad científica y con un significado claro, los
utilizamos en esta Tesis.
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decir, podemos saber cómo calcular de forma rápida y sencilla qué se va a obtener tras

complejas y costosas operaciones computacionales, sin tener que realizarlas. Por lo tan-

to, podemos predecir los valores de los elementos de matrices y vectores esenciales en

el método reduciendo de forma significativa el número de operaciones. En definitiva,

hemos desarrollado una implementación formal del método que reduce el número de

operaciones en varios ordenes de magnitud con respecto a implementaciones óptimas

previas. Además, las operaciones sustitutas de los cálculos con matrices se pueden pa-

ralelizar. Pasando del papel a la práctica, hemos desarrollado una implementación en

el lenguaje Fortran que hace uso de librerías optimizadas preexistentes para realizar

cálculos con matrices en paralelo y que implementa las operaciones propias de nues-

tro método con algoritmos escritos para ser ejecutados en paralelo de forma óptima.

El resultado es un código óptimo en paralelo para aplicar QML que puede hacer uso

de la potencia de los supercomputadores y de la gran cantidad de memoria de que

disponen para realizar cálculos grandes con relativa rapidez. El código ECLIPSE es una

versión pública y de acceso libre de nuestra implementación, disponible en Internet. En

la tesis, incorporamos el manual de uso, para ilustrar la facilidad de uso (por supuesto,

asumiendo la dificultad que supone preparar toda la información necesaria para definir

una situación en la que QML pueda ser aplicado) y versatilidad.

Una vez que tenemos un método matemático, QML, una formulación óptima y un

código que la implementa que permite hacer múltiples pruebas con relativa rapidez y

limitada carga computacional, podemos poner a prueba el método y analizar el efecto

en los resultados de las circunstancias en las que se aplica. En las pruebas que hemos

realizado, hemos encontrado que el método es insesgado y de varianza mínima cuando

los modelos de señal y ruido que le proporcionamos se ajustan a las características de

los mapas simulados, tanto cuando se calcula el espectro angular de potencias completo

como cuando se aplica el bineado óptimo desarrollado en este trabajo.

Si solo estamos interesados en polarización, se puede aplicar QML para estimar solo

las componentes oportunas, reduciendo el número de operaciones, con nuestra imple-

mentación, en aproximadamente un factor dos respecto del cálculo del espectro com-

pleto. Hemos comprobado que los resultados siguen siendo insesgados y que vienen

acompañados de una incertidumbre muy similar a la que obtenemos cuando se calcula

el espectro completo.

Como esperábamos, cuando el modelo de señal no refleja correctamente los mapas,

el método es insesgado, encontrándose cierto incremento en el tamaño de las barras

de error. Sin embargo, se ha observado que el método de bineado insesgado puede in-

troducir algo de sesgo en este caso; un fenómeno esperado, debido al uso extra de la
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información registrada en el modelo de señal que se efectúa al compactar la matriz de

Fisher. Cuando se aplica iterativamente el método (la forma de búsqueda de QML a

diferencia de la más difusa de ML) mapa a mapa, las estimaciones convergen a los mis-

mos valores, independientemente del modelo de señal de comienzo. Esto sucede tanto

cuando se hace bineando como sin binear, lo que muestra que el método es robusto.

Cuando lo hemos aplicado en el marco de un modelo simple para la estimación del pa-

rámetro r –la ratio de las potencias tensorial y escalar de inflación-, hemos encontrado

el mismo comportamiento.

Los métodos pseudo-espectro son insesgados y mucho más rápidos computacional-

mente que los métodos de máxima verosimilitud, pero no son óptimos. En las pruebas

que hemos realizado hemos encontrado que producen estimaciones afectadas por incer-

tidumbres significativamente mayores que las que genera QML, especialmente en las

regiones correspondientes a las escalas grandes, que son críticas para la detección del

modo tensorial de inflación. Además, debido a que se necesita apodizar las máscaras

para crear zonas de transición suave entre los píxeles observados y los no observados

para evitar el solapamiento en los espectros estimados, estos métodos son mucho más

sensibles a la existencia de zonas dispersas en las que no se tiene señal del FCM. Debido

a que QML opera sobre los mapas en el espacio de los píxeles, no está afectado por este

problema, de modo que la pérdida de unos cuántos píxeles apenas supone un aumento

del tamaño de las barras de error.

En definitiva, en este trabajo, presentamos un estudio detallado de las opciones, po-

sibilidades y de los resultados en la estimación del espectro angular de potencias del

FCM utilizando el estimador cuadrático de máxima verosimilitud. Con este propósi-

to, hemos desarrollado una formulación matemática que reduce significativamente el

número de operaciones y hemos escrito un código que la implementa. El código está

publicado y es de acceso libre. Esperamos que se convierta en una herramienta útil de

uso cómodo y sencillo para la comunidad científica.
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El observador universal

El Fondo Cósmico de Microondas (FCM) codifica información clave que conecta de forma directa las
observaciones que realizamos aquí y en el presente con el estado del universo temprano. Además, de
acuerdo con nuestros modelos teóricos, el conocimiento de las propiedades estadísticas del FCM conduce
al conocimiento sobre las características de nuestro Universo en el límite de los instantes iniciales, y a
predecir su futuro. La información relevante que nos transmite el FCM está codificada en su espectro angular
de potencias. Este trabajo está dedicado al estudio del Estimador Cuadrático de Máxima Verosimilitud
(QML), un método óptimo de estimación del espectro de potencia. Analizamos sus propiedades, las
condiciones de tipo matemático que se han de cumplir para utilizarlo, soluciones en el caso en el que alguna
no se cumpla y estudiamos el rendimiento del método en múltiples situaciones de interés práctico en el
presente y el futuro inmediato. El método QML conlleva una alta carga computacional. Tras un análisis
detallado de los entresĳos matemáticos propios del método, hemos desarrollado una implementación óptima
que formalmente permite aplicarlo con los medios técnicos actuales en situaciones que hasta ahora eran
inviables. Para ponerlo en práctica, hemos escrito un código que implementa nuestra formulación del
método, capaz de aprovechar la potencia de cálculo de los supercomputadores. El código es de acceso
público y libre.

The Cosmic Microwave Background (CMB) encodes key information that directly connects the observations
we make here and now with the state of the early universe. Moreover, according to our theoretical models,
knowledge of the statistical properties of the CMB leads to knowledge about the characteristics of our
Universe in the limit of the initial instants, and to predict its future. The relevant information provided by the
CMB is encoded in its angular power spectrum. This study is devoted to the exploration of the Quadratic
Maximum Likelihood Estimator (QML), an optimal method of estimating the power spectrum. We analyze its
properties, the mathematical conditions that must be fulfilled to use it, solutions in the case that some of them
are not fulfilled and we study the performance of the method in multiple situations of practical interest in the
present and the immediate future. The QML method is computationally intensive. After a detailed analysis of
the mathematical intricacies of the method, we have developed an optimal implementation that formally
allows it to be applied with current technical means in situations that were unfeasible until now. To put it into
practice, we have written a code that implements our formulation of the method, capable of taking advantage
of the computing power of supercomputers. The code is publicly and freely available.
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