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ABSTRACT
Some special functions are particularly relevant in applied probability and statistics.
For example, the incomplete beta function is the cumulative central beta distribu-
tion. In this paper, we consider the inversion of the central Student’s-t distribution
which is a particular case of the central beta distribution. The inversion of this dis-
tribution function is useful in hypothesis testing as well as for generating random
samples distributed according to the corresponding probability density function. A
new asymptotic representation in terms of the complementary error function will
be one of the important ingredients in our analysis. As we will show, this asymp-
totic representation is also useful in the computation of the distribution function.
We illustrate the performance of all the obtained approximations with numerical
examples.
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1. Introduction

There is a very close relationship between some special functions and some of the most
popular distribution functions in statistics. For example, the incomplete beta function
[1, §8.17] is the central beta distribution. Particular cases include other well-known dis-
tributions such as the geometric, binomial, negative binomial or the central Student’s-t
distribution. Therefore, standard methods for the computation and inversion of spe-
cial functions [2] can also be applied to evaluate and invert distribution functions. The
problem of inversion appears, for example, when computing percentage points of the
distribution functions; also, it is closely related to the generation of random variates
from a continuous probability density function needed, for example, in Monte Carlo
or quasi-Monte Carlo methods.

We considered the central beta distribution Ix(p, q) in a previous publication [3].
For the asymptotic analysis of Ix(p, q), we considered large values of p and q. In this
paper, we focus on the computation and inversion of the central Student’s-t distribu-
tion, which has multiple applications in science and engineering (for an application in

This is an Accepted Manuscript of an article published by Taylor & Francis in Integral Transforms 
and Special Functions on August 2022, available online: 

http://www.tandfonline.com/10.1080/10652469.2021.2007906



physics, see for example [4]). For this distribution, the parameters p or q of the central
beta distribution take the value 1

2 (see Eq. (5)). Therefore, the case of the Student’s-t
distribution requires a particular study. An asymptotic representation in terms of the
complementary error function will play a key role in our analysis. The performance of
the approximations obtained will be illustrated with numerical examples.

There is a vast literature on Student’s t distribution. An extensive overview can be
found at [5]; see also the references contained therein. For an historical account and
the origin of this distribution, we refer to [6]. For a generalization from the viewpoint
of special functions, see [7].

Some useful expressions for the analysis of the central Student’s-t distribution are:

a) Probability density function:
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where t ∈ R and B(p, q) is the Beta integral; n > 0, not necessarily an integer.
b) Cumulative distribution function:

Fn(x) =

∫ x

−∞
fn(t) dt, x ∈ R. (2)

c) Incomplete beta function:

Ix(p, q) =
1

B(p, q)

∫ x

0
tp−1(1− t)q−1 dt, B(p, q) =

Γ(p)Γ(q)

Γ(p+ q)
. (3)

From the integral representation, we have:

Ix(p, q) = 1− I1−x(q, p). (4)

d) Cumulative distribution function in terms of the incomplete beta function:
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(5)

e) Cumulative distribution function in terms of the Gauss hypergeometric functions:
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where y = x2/(n + x2). The first formula in (6) is given in [8], the other ones
follow from well-known relations between the incomplete beta function and the
hypergeometric function; see [1, §8.17(ii)].

2. Asymptotic expansion of the Student’s t cumulative distribution
function

The second and third representation in (6) can be used for large values of x by
using the standard power series of the hypergeometric functions. It is not necessary
that x2 > n, but a condition x2/n = O(1) is needed. To obtain a large-n asymptotic
representation, whether or not x is large, we use a method that we have used for other
cumulative distribution functions; see [9, Chapter 36].

We use in (1) the substitution t = s
√
n. This gives
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(7)

We write u2 = ln(1 + s2), with the condition sign(u) = sign(s), and obtain

Fn(x) =
1

B
(

1
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1
2n
) ∫ ξ

−∞
e−
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2
nu2

g(u) du, (8)

where

g(u) =

√
u2

1− e−u2 , ξ2 = ln

(
1 +

x2

n

)
, sign(ξ) = sign(x). (9)

Using the method of [9, §36.1] we find that Fn(x) can be written in the form

Fn(x) = 1
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2
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where we have introduced the complementary error function

erfc z =
2√
π

∫ ∞
z

e−t
2

dt. (11)

The function Bn(ξ) has the asymptotic expansion

Bn(ξ) ∼
∞∑
k=0

Ck(ξ)

nk
, n→∞, ξ ∈ R, (12)

where the coefficients follow from the recursive scheme

Ck(ξ) =
gk(ξ)− gk(0)

ξ
, gk+1(u) =

d

du

gk(u)− gk(0)

u
, (13)

with g0(u) = g(u) defined in (9). The first coefficients are

C0(ξ) =
g(ξ)− 1

ξ
,

C1(ξ) = −4g(ξ)3 − 4g(ξ)ξ2 + ξ2 − 4

4ξ3
,

C2(ξ) =
96g(ξ)5 − 128g(ξ)3ξ2 + 32g(ξ)ξ4 − ξ4 + 8ξ2 − 96

32ξ5
.

(14)

The function β(n) has the expansion

β(n) ∼
∞∑
k=0

Dk

nk
, n→∞, Dk = gk(0). (15)

The first coefficients are

D0 = 1, D1 = 1
4 , D2 = 1

32 , D3 = − 5
128 . (16)

These coefficients can be expressed in terms of the coefficients ak of g(u) =

∞∑
k=0

aku
k.

We have (see [9, Remark 36.2])

Dk =
(

1
2

)k
2ka2k, k = 0, 1, 2, . . . . (17)

Examples of the performance of the expansion (10) for three values of n (n =
10, 100, 1000) are shown in Figure 1. Five Ck coefficients in the series (12) have been
considered in the computations. The relative errors were obtained comparing the ex-
pansion (10) with the values of the distribution function given in (6), which is computed
with Maple.
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Figure 1. Relative errors obtained when computing the Student’s t cumulative distribution function using

the expansion (10).

3. Inversion of the Student’s t cumulative distribution function

The inversion problem is: find x that satisfies the equation

Fn(x) = p, 0 < p < 1. (18)

We consider three different approaches, the first one is for small values of p− 1
2 , which

will give small values of x. The second method is for small values of p, which gives
large negative values x. Thirdly we use the uniform approximation of §2, which will
be valid for a large range of x, including the values near x = 0.

3.1. Inversion for small values of p − 1
2

We use the first representation in (6), and write the inversion problem in the form

x

∞∑
k=0

ckx
2k = q, q =

(
p− 1

2

)√
nB

(
1
2 ,

1
2n
)
, (19)

and the ck follow from the coefficients of the hypergeometric function:

ck =

(
1
2

)
k

(
1
2n+ 1

2

)
k

k!
(

3
2

)
k

(−1)k

nk
. (20)

The solution of the equation in (18) has the expansion

x = q

∞∑
k=0

xkq
2k, (21)

and the first coefficients are

x0 = 1, x1 =
n+ 1

6n
, x2 =

(n+ 1)(7n+ 1)

120n2
,

x3 =
(n+ 1)(127n2 + 8n+ 1)

5040n3
, x4 =

(n+ 1)(4369n3 − 537n2 + 135n+ 1)

362880n4
.

(22)
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Figure 2. Performance of the expansion for small values of p− 1
2

for three values of n. The five coefficients

given in (22) for the expansion have been considered in the computations.

We see that the shown coefficients are bounded for large values of n. Also, q =(
p− 1

2

)√
2π β(n) (see (10)) with an expansion of β(n) given in (15). This shows that

the inversion considered here for small values of
(
p− 1

2

)
is rather well conditioned for

large values of n. In Figure 2 we show examples of the performance of the expansion
(using the four terms given in (22)) for three values of n. The values of p considered
in the calculations are p = 1

2 − ∆, for ∆ = 10−14, 2 × 10−12, 3 × 10−10, 4 × 10−8,
5× 10−6, 6× 10−4. The results obtained with the expansion have been compared with
the Matlab function for the inversion of the central Student’s-t distribution (function
tinv). As can be seen, a relative error better than 10−13 is obtained in all cases.

Remark 1. By using the definition in (2), it is easily verified that the function Fn(x)
becomes for n = 1

F1(x) =
1

2
+

1

π
arctan x, (23)

and for the inversion problem Fn(x) = p we have q =
(
p− 1

2

)
π. The equation to be

inverted becomes arctanx = q, with solution x = tan q. The shown coefficients in (22)
correspond with those of the expansion x = q + 1

3q
3 + 2

15q
5 + . . . . This expansion

converges for 0 < p < 1.

3.2. High-order iteration

It should be mentioned that it is also possible to obtain numerical approximations for
the inversion problem for small values of p− 1

2 using the fixed point iterations giving
sharp error bounds for the central beta distribution described in [3]. For example,
iterating the fixed point iterations y = g(y) or y = h(y) where

g(y) =
(
2(p− 1

2)B(1
2 ,

1
2n)(1

2 − (1
2 + 1

2n)y)
)2

(1− y)−n,

h(y) = 225

(
p− 1

2

)2

B

(
1

2
,
1

2
n

)2

(1− y)−n(
y2(n2 + 4n+ 3) + 5y(n+ 1) + 15

)2 ,
(24)
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Figure 3. Relative errors obtained when using (25) to approximate the solution to the inversion problem

(18) for n = 2, 10, 100.

starting from y = 0, approximations to the values of x in (18) are obtained with

x =

√
ny

1− y
. As an example, using 2 iterations of the fixed point iteration y = h(y)

for n = 10, p = 0.5+10−5 we find x = 0.00002569978035 with a relative error 5×10−12.
An explicit expression for the x value obtained in the second iteration is

x = 120

(
nZ(1− (1/4)Z)−n

Z4A4 + Z3A3 + Z2A2 + ZA1 + 57600

)1/2

, (25)

where Z =
(
2(p− 1

2)B(1
2 ,

1
2n)
)2

and

A1 = −14400(1− (1/4)Z)−n + 9600n+ 9600,
A2 = 880n2 + 2720n+ 1840,
A3 = 40n3 + 200n2 + 280n+ 120,
A4 = n4 + 8n3 + 22n2 + 24n+ 9.

(26)

This approximation can be also used for not so small values of p− 1
2 , as can be seen

in Figure 3.
A comparison of (25) with the expansion given in Section 3.1 for few values of p

close to 1
2 is given in table 1. The five coefficients given in (22) have been considered in

the computations. In the table, we show the accuracy for two values of n (n = 10, 100).
As can be seen, the results obtained with the methods are very similar. Also, we have
checked that the average CPU time spent by the methods (implemented in Fortran
90) are very close. As an example, the computations for p = 1

2 + 10−4, n = 10 took
1.37µs and 1.52µs, when using (21) and (25), respectively. For n = 100 (using the
same value of p), the computations took 0.81µs and 0.96µs, respectively. As can be
seen, both methods are very efficient.
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Rel. Error Rel. Error

p, n Method in Section 3.2 Method in Section 3.1

p = 1
2 + 10−12, n = 10 2.22× 10−15 2.00× 10−15

p = 1
2 + 10−10, n = 10 1.55× 10−15 1.55× 10−15

p = 1
2 + 10−8, n = 10 4.44× 10−16 4.44× 10−16

p = 1
2 + 10−6, n = 10 1.11× 10−16 2.22× 10−16

p = 1
2 + 10−4, n = 10 4.44× 10−16 6.66× 10−16

p = 1
2 + 10−12, n = 100 3.26× 10−14 3.24× 10−14

p = 1
2 + 10−10, n = 100 3.26× 10−14 3.24× 10−14

p = 1
2 + 10−8, n = 100 3.15× 10−14 3.13× 10−14

p = 1
2 + 10−6, n = 100 3.22× 10−14 2.98× 10−14

p = 1
2 + 10−4, n = 100 2.77× 10−14 3.02× 10−14

Table 1. Comparison of the accuracy obtained when using (25) and (21) to approximate the solution to the

inversion problem (18).

3.3. Inversion for small values of p

For this case we use1 the representation in the third line of (6) and introduce

η =
n

x2
, δ =

(
pnB

(
1
2 ,

1
2n
)) 2

n . (27)

Then we can write the equation Fn(x) = p in the form

η(1 + η)
1

n
−1S(η)

2

n = δ, (28)

where S(η) is the standard power series of the hypergeometric function in the third
line of (6) .

We see that for small values of δ the wanted variable η behaves as η ∼ δ, and
substituting the expansion

η =

∞∑
k=1

ηkδ
k, (29)

we find the following first few coefficients

η1 = 1, η2 =
n+ 1

n+ 2
, η3 =

(n+ 1)
(
2n2 + 9n+ 6

)
2(n+ 2)2(n+ 4)

,

η4 =
3n6 + 35n5 + 134n4 + 328n3 + 1174n2 + 2100n+ 1152

3n(n+ 2)3(n+ 4)(n+ 6)
.

(30)

When we have computed η, x follows from (27): x = −
√
n/η.

1The approach of this section is similar to that of one of the inversion methods discussed in [10].
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p x Rel. Error

1× 10−50 −256452.5718769479 6.5× 10−15

2× 10−40 −23927.87084268530 3.2× 10−15

3× 10−30 −2297.706518629116 1.0× 10−13

4× 10−20 −223.234400503956 1.1× 10−09

5× 10−10 −21.62201646469524 1.2× 10−05

Table 2. Inversion values x obtained (for n = 10) using the series in (29) for small values of p. The coefficients
given in (30) have been considered in the calculations. Relative errors in comparison to Maple, are also shown

in the table.

Again, we see that the coefficients satisfy ηk = O(1) for large values of n, which
also happens for all coefficients that we have evaluated. The first 10 coefficients satisfy
ηk = 1 +O(1/n) as n→∞.

When n is large, the only problem is that δ tends to 1, When n is large, the only
problem is that δ tends to 1, which is a bad condition for convergence of the series in
(29).

For example, when p = 10−8 and n = 10, we have δ
.
= 0.038193186. With 5

terms in the series in (29) we find η
.
= 0.039576861, giving x

.
= −15.8956879. Then,

Fn(x) = 9.9999981×10−9, with relative error 1.92×10−7. For n = 25 we find δ
.
= 0.281,

x
.
= −8.0759 and a relative error 0.011. Other examples of the performance of the series

for small values of p are given in Table 2, where we show the values and relative errors
obtained for n = 10 and few values of p. The four coefficients given in (30) have been
considered in the calculations. Since the Matlab function tinv seems to fail for very
small values of p, the tests have been performed comparing with Maple. Testing is done
by checking whether the composition of the function with its inverse is the identity:
using the inversion value xinv obtained with the method, we compute Fn(a, xinv) given
in Eq. (6). Next, we calculate the relative error |1− Fn(a, xinv)/p|.

Remark 2. When we take n = 1 and use (23), the inversion problem becomes

x = − cot(pπ), η = tan2(pπ), δ = p2π2, 0 < p < 1. (31)

The expansion in (29) becomes for p < 1
2 and δ < 1

4π
2

tan2(pπ) =

∞∑
k=1

ηkδ
k, η1 = 1, η2 = 2

3 , η3 = 17
45 . (32)

These values of ηk correspond with those given in (30) for n = 1.

3.4. Inversion by using the uniform expansion

We use the representation given in (10) and first try to find ξ, then x follows from the
relation in (9). We assume that n is large and use the asymptotic method as described
in [9, §42.1] and in our papers [3], [11], [12].
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Let ξ0 satisfy the equation

1
2erfc

(
−ξ0

√
n/2

)
= p. (33)

Then we assume for ξ the expansion

ξ ∼ ξ0 +
ξ1

n
+
ξ2

n2
+
ξ3

n3
+ . . . , (34)

where ξk have to be determined. When we have this approximation for ξ we compute
x from (9).

From (18), (33) and (8) we find

dp

dξ0
=

√
n

2π
e−

1

2
nξ20 ,

dp

dξ
=

√
n

2π

g(ξ)

β(n)
e−

1

2
nξ2 , (35)

where β(n) is defined in (10).
Dividing the two derivatives, we find

g(ξ)
dξ

dξ0
= β(n)e

1

2
n(ξ2−ξ20), (36)

We substitute the expansion given in (34), use β(n) = 1 + O(1/n), and obtain, con-
sidering equal large-order terms of n, the next term in the expansion:

g(ξ0) = eξ0ξ1 =⇒ ξ1 =
1

ξ0
ln g(ξ0). (37)

Because

g(u) = 1 + 1
4u

2 + 1
96u

4 +O
(
u6
)
, (38)

it follows that ξ1 is well defined when ξ0 tends to zero (that is, when p ∼ 1
2).

We can find higher-order terms ξj , j ≥ 2, of the expansion in (34) using more
coefficients in the asymptotic expansion of β(n) (see (16)). Also, we need the expansion

g(ξ) = g(ξ0) + (ξ − ξ0)g′(ξ0) + 1
2(ξ − ξ0)2g′′(ξ0) + . . . . (39)

By using (36) and algebraic manipulations we find a few other coefficients:

ξ2 = −
(

2gξξ2
1 + 4 (g − ξg′) ξ1 + ξg − 4g′

)
/(4ξ2g),

ξ3 =
(

2ξ2g2ξ3
1 +

(
2ξ3gg′′ − 2ξ3g′2 − 6ξ2gg′ + 8ξg2

)
ξ2

1+(
12g + ξ2g − 16ξg′ + 4ξ2g′′

)
gξ1+

ξg2 + 4ξgg′′ + 2ξg′2 − ξ2gg′ − 12gg′
)/

(4ξ4g2),

(40)

where ξ = ξ0 and g, g′ and g′′ are evaluated at ξ0.
For small values of ξ0 (that is, when p ∼ 1

2), we need expansions. We have
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Figure 4. Performance of the asymptotic inversion method using four terms of the expansion for small values

of ξ0 given in (41). Three values of n are considered in the computations.

ξ1 = 1
4ξ0 − 1

48ξ
3
0 + 1

5760ξ
7
0 − 1

362880ξ
11
0 + 1

19353600ξ
15
0 + . . . ,

ξ2 = 1
32ξ0 − 5

192ξ
3
0 + 7

2560ξ
5
0 + 1

2560ξ
7
0 − 407

5806080ξ
9
0 − 13

1451520ξ
11
0 + . . . ,

ξ3 = − 5
128ξ0 − 11

1536ξ
3
0 + 63

10240ξ
5
0 − 823

2580480ξ
7
0 − 5291

23224320ξ
9
0 + . . . ,

ξ4 = − 21
2048ξ0 + 37

2048ξ
3
0 + 179

81920ξ
5
0 − 22711

10321920ξ
7
0 + . . . ,

ξ5 = 399
8192ξ0 + 219

32768ξ
3
0 − 3679

327680ξ
5
0 + . . . ,

ξ6 = 869
65536ξ0 − 6877

131072ξ
3
0 + . . . .

(41)

Example 3.1. We summarise the algorithmic steps for the inversion method. We take
n = 10, p = 0.44 and two terms in the expansion in (34).

(1) Compute ξ0 from equation (33). We have ξ0
.
= −0.047746.

(2) Compute ξ1 from equation (37) by using g(u) defined in (9): ξ1
.
= −0.011933.

(3) Compute ξ by using (34) with the information now available: ξ ∼ ξ0 + ξ1/n
.
=

−0.048934.
(4) Compute x from equation (9). Because ξ < 0, x should be negative: x

.
=

−0.1548354.
(5) Verification: compute Fn(x) by using the first line in (6): F10(x)

.
= 0.4400158.

Relative error: 0.000036.

A test of the performance of the asymptotic inversion method for three values of
n using the expansion for small values of ξ0 given in (41), can be seen in Figure 4.
The terms of the expansion ξ1, ξ2, ξ3, ξ4 given in (41) have been considered in the
computations. For computing the inverse of the complementary error function needed
to compute ξ0 in (33) we use the function inverfc given in [13]. The relative errors
obtained in comparison to the Matlab function tinv are shown in the figure.

It is interesting to compare the performance of the asymptotic inversion method
with the methods given in Section 3.1 (for values of p close to 1

2) and Section 3.3 (for
values of p close to 0). In Figure 5 we show the performance of the method given in
Section 3.1 and the asymptotic inversion method for a few values of p and n = 100.
Four terms in the expansions have been considered in the calculations. As can be seen,
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Figure 5. Comparison of the performance of the method given in Section 3.1 (Method 1) and the asymptotic

inversion method (Method 2) for few values of p and n = 100.

Rel. Error Rel. Error

p, n Method in Section 3.3 Method in Section 3.4

p = 10−10, n = 10 6.7× 10−7 4.4× 10−3

p = 10−8, n = 10 3.9× 10−6 1.5× 10−3

p = 10−6, n = 10 8.0× 10−6 3.4× 10−4

p = 10−4, n = 10 7.2× 10−4 1.9× 10−5

p = 10−3, n = 10 5.3× 10−3 7.3× 10−6

Table 3. Comparison of the accuracy obtained when using the methods given in Sections 3.3 and 3.4 to
approximate the solution to the inversion problem (18).

the expansion in Section 3.1 performs better for the values of p closer to 1
2 (as expected)

but for p > 0.55 the better accuracy is obtained with the asymptotic inversion method.
On the other hand, table 3 shows a comparison of the performance of the method given
in Section 3.3 and the asymptotic inversion method. Relative errors obtained with the
two methods are given for few values of p and n = 10. The results given in the table
show that for the values of p closer to 0, the relative errors are smaller with the method
given in Section 3.3; however as p increases, the asymptotic inversion method becomes
the most accurate method.

4. Concluding remarks

We have presented approximations for the inversion problem (18) of the central
Student-t distributions. To obtain the approximations, different methods have been
considered depending on the values of p. In particular, one of the key elements in
our analysis was the use of an asymptotic representation of the distribution function
in terms of the complementary error function. Numerical tests have shown that the
approximations obtained are, in all cases, accurate. Also, they are easy to compute,
which is an important advantage when using the inverse to generate random variates
distributed according to central Student-t probability density function.

12



Acknowledgements

We thank the reviewer for his/her constructive and helpful remarks. NMT thanks
CWI, Amsterdam, for scientific support.

Funding

Financial support from Ministerio de Ciencia e Innovación, Spain, project PGC2018-
098279-B-I00 (MCIN/ AEI /10.13039/501100011033/ FEDER) is acknowledged.

References

[1] Paris RB. Chapter 8, Incomplete gamma and related functions. In: NIST Handbook
of Mathematical Functions. Washington, DC: U.S. Dept. Commerce; 2010. p. 173–192.
Http://dlmf.nist.gov/8.

[2] Gil A, Segura J, Temme NM. Numerical methods for special functions. Philadelphia, PA:
Society for Industrial and Applied Mathematics (SIAM); 2007.

[3] Gil A, Segura J, Temme NM. Efficient algorithms for the inversion of the cumulative
central beta distribution. Numer Algorithms. 2017;74(1):77–91.
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