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Abstract

Changes in equipment and production demand cannot be predicted at the design stage. Therefore,  decision 
taking mechanisms must rely on real time information collected from the shop floor. To perform schedul-
ing and routing optimization, not only modifications in values of parameters of interest, but also in the 
flow itself must be accounted for. This paper addresses this problem and proposes a method to formally 
model, at runtime, the flow within a service-oriented manufacturing line. The resulting representation assists 
 deadlock- free dynamic scheduling of the system.
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1. Introduction

Frequent production demand changes are reflected 
in corresponding modifications of a manufacturing 
line. The required adjustments range from PLC-level 
program changes to machine/robot replacements and 
sometimes even reorganization of the entire line. The 
constant increase in time-to-market pressure imposes 
an additional critical constraint on the feasible duration 
of these modifications.

The bridging of production engineering with other 
domains has been recognized to have a huge potential 
for addressing these problems [1,2]. In particular, Service 
Oriented Architecture (SOA), as a philosophy, and Web 
Services (WS), as a technology to support it, provide the 
necessary solutions.

Services are encapsulations of processes and can be 
thought of as interfaces. A service provides a clear 
separation between the way the encapsulated process 
is executed and the view other entities have of the pro-
cess from the outside. Services are loosely coupled and 
can be (de)composed to whichever level of granularity 
may be required. Moreover, if annotated semantically, 
a service may be automatically discovered, invoked and 
composed.

From a SOA perspective, a manufacturing line is seen 
as a set of service encapsulations of provided and 
requested processes. The provided processes are the 
equipment skills. The requested processes are the 

product needs. Each product can be described in terms 
of its  orchestrator. The orchestrator specifies the order 
of execution (the flow) of its needs – the services that 
should operate upon the raw material to obtain a final 
product. Following the SOA pattern [Figure 1], pal-
lets (service requestors) search and locate the needed 
services in the order specified by their corresponding 
orchestrators. The devices (the service providers) pub-
lish the processes that they can offer. Selections of each 
device to execute upon a pallet are made gradually, as 
the orchestrator executes it task. Each time a device 
is selected for execution, the transportation services 
needed to carry the pallet to its chosen destination are 
subjected to discovery and selection as well. These steps 
take place for each service specified in the orchestrator 
of a pallet, until all product needs are satisfied and the 
pallet exits the line.

Service-oriented manufacturing systems allow both 
changes in the values of parameters of interest (online 

Figure 1: The service oriented architecture pattern.
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equipment modifications) and the flow itself (variations 
in product type demand order) to be recognized and to 
be responded to in a natural way. However, optimal sup-
port of re-configurability and adaptability through WS 
technology is ensured only if dynamic decision taking 
mechanisms rely on formal flow representations that are 
obtained at runtime.

This paper extends previous results on automatic 
 representation of formal models of standalone orchestra-
tors [3]. The contents are organized as follows: Section 2 
presents the background of this work. In particular, a 
brief overview of the state of the art in dynamic schedul-
ing is presented, to illustrate the importance of making 
use of real time information in such decision taking 
mechanisms. The review is followed by an introduction 
to the syntax and semantics of the Petri Net–derived 
formalism that is used for modeling here [4,5]. The sec-
tion concludes with a summary of the earlier reported 
research [3] and a comparison of the presented approach 
with related efforts. Section 3 gives details on the runtime 
modeling of flow. Section 4 discusses the application of 
traditional PN-based scheduling search procedures on 
the reachability graph of the dynamically constructed 
model. Section 5 presents the conclusions and the scope 
for future research.

2. background

2.1 Dynamic Scheduling – An Overview

A production schedule is a specification, for each resource 
required for production, of the planned start time and 
end time of each job assigned to that resource.

Scheduling is the process of creating a production 
 schedule for a given set of jobs and resources, while 
optimizing some performance measure (increase of 
productivity, minimization of operation costs, etc.). 
Based on production schedules, resource conflicts can 
be identified and the release of jobs to the shop can be 
controlled, for a better overall coordination of the activi-
ties in the manufacturing line.

Rescheduling is the process of updating an existing 
production schedule in response to disruptions such 
as machine failures and repairs, urgent job arrival, job 
cancelation, due date change or change in job priority.

Three main types of rescheduling strategies have been 
identified in the literature: completely reactive schedul-
ing, predictive-reactive scheduling and robust pro-active 
scheduling:

Completely reactive rescheduling methods do not generate 
firm schedules in advance, but use dispatching rules 
to assist real time execution. (Panwalkar and Iskander 

[6] have provided an extensive list and classification of 
such rules. A comparative study in this field is provided 
by Rajendran and Holthaus [7]). The main problem 
 associated with these techniques is the difficulty in 
predicting system performance, because the decisions 
are taken locally.

Predictive/Reactive scheduling is an iterative process of 
repairing previously-created schedules [8,9] or com-
pletely regenerating schedules [10]. Depending on the 
implemented rescheduling policy, the revisions may be 
triggered in response to unexpected events, altering the 
system status (event-driven) periodically, or in a hybrid 
manner.

Robust pro-active scheduling refers to the construction of 
predictive schedules that satisfy performance require-
ments predictably in a dynamic environment.

Several researchers have discussed the existing gap 
between scheduling theory and scheduling practice 
[11,12,13,14,15]. Only a small percentage of factories 
use scheduling tools or theories [13], because schedul-
ing models and algorithms fail to consider the dynamic 
characteristics of a manufacturing system. As stated by 
Cowling and Johansson [14], ‘scheduling research has 
failed to keep pace with technological developments 
in process control and monitoring systems.’ Real time 
data is monitored and processed for control purposes; 
however, it is insufficiently used to improve schedules 
dynamically. This real time information should not 
only account for changes in the values of parameters 
of interest (online equipment modifications), but also 
in the flow itself (variations in product type demand 
order), and should be used by the dynamic scheduling 
system as it arrives.

A wide variety of dynamic scheduling techniques have 
been discussed in the literature [12,16,17,18].

Heuristics are schedule repair methods that target the 
finding of reasonably good solutions in a short time. 
Heuristic dispatching rules are defined based on experi-
ence and are assessed through simulation, with respect 
to various performance criteria (e.g. tardiness, flow time 
etc.). The choice of policies is problem specific, and no 
rule performs well for all performance criteria [8]. Dis-
patching rules are used extensively in multi-agent based 
dynamic scheduling [19,20]. Multi-agent architectures 
address the drawbacks of central and hierarchical sched-
uling through a network of individual problem solvers 
that cooperate. The system behavior is influenced by 
concurrent independent local decisions. In this manner, 
system complexity and cost are reduced and flexibility 
and fault tolerance are increased.
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Mathematical programming techniques ignore  practical 
constraints such as material handling capacity and 
 complex resource sharing/routing, and, therefore, have 
only a few real applications in industry [16,17].

Meta-heuristics seek to avoid entrapment in poor local 
optimums obtained through local neighborhood search 
methods. The most popular meta-heuristic techniques 
include tabu search, simulated annealing and genetic 
algorithms [18].

Knowledge based systems, genetic algorithms (e.g. [9]), 
fuzzy logic, case-based reasoning and neural networks 
have also been considered as potential solutions to the 
scheduling problem. However, most of these techniques 
have been found to entail considerable computational 
effort.

Petri Nets can finely describe shared resources, 
 synchronization, lot sizes and routing flexibility [21,22]. PN-
based scheduling implies a search in the state space of the 
system for a sequence of feasible transition firings from an 
initial state to a goal state. The found schedule is deadlock 
free (one of the main advantage of Petri Nets over the other 
discussed dynamic scheduling techniques). Additionally, 
it is event-driven, which makes this type of scheduling 
perfectly suitable for real time implementation.

2.2 Timed Net Condition Event Systems: Syntax 
and Semantics

This work uses a Petri Net (PN) [23] derived formalism 
called Timed Net Condition Event Systems (TNCES) 
[4,5].

TNCES enhances the expression capabilities of Petri 
Nets with typed modularity, and adds to the originally 
defined elements of a PN the notions of event arcs and 
condition arcs. Event arcs report changes in the state of 
the system, while condition arcs carry state informa-
tion. TNCES can model simultaneous start, has a clear 
notion of interfaces (event inputs/outputs and condition 
inputs/outputs) and a modular hierarchy.

An example of a simple TNCES module of name and 
type ‘Atomic Service’ is depicted in Figure 2. Apart from 
sets of places ({p1, p2}), transitions ({t1,t2}) and flowarcs 
({(p1,t1), (t1,p2), (p2,t2), (t2, p1)}), which are present in 
any PN, this TNCES module has event inputs ({start}), 
event outputs ({running, end}) and condition outputs 
(={s_available, s_not_available}). Event arcs ({(start, t1), (t1, 
running), (t2, end)}) link event inputs to transitions / tran-
sitions to event outputs. Condition arcs ({(p1, s_available), 
(p2, s_not_available)}) link places to condition outputs. 
Condition arcs may also link condition inputs to places, 
however this is not illustrated in Figure 2.

Figure 3 illustrates a slightly more complex example of a 
TNCES module (of name ‘orchestrator’) composed of three 
internal modules (of name ‘Sequence’ and type ‘sequence’, 
and of name ‘A’/’B’ and type ‘Atomic Service’). The inter-
nal modules are interconnected by means of module event 
arcs ({(Sequence.start_s_1, A.start), (Sequence.start_s_2, 
B.start), (A.end, Sequence.end_s_1), (B.end, Sequence.
end_s_2)}) and module condition arcs ({(A.A_av, Sequence.
s1_available), (B.B_av, Sequence.s2_available)}).

Condition and event arcs influence the firing rules in a 
TNCES module. A transition that is marking enabled (i.e. 
has at least one token in each of its input places) may fire 
at any point in time in case it is also condition enabled. Con-
sidering the example in Figure 3: Transition Sequence. t2 
may fire at any point in time if there is at least one token 
in the place Sequence. p2 (i.e. the transition is marking 
enabled) and if there is one token in the place A.p1 (i.e. 
the transition is condition enabled through the module 
condition arc (A.A_av, Sequence.s1_available)). A transi-
tion that is marking enabled will fire immediately in case 
it is also event enabled. In the module depicted in Figure 
3, transition Sequence.t3 fires immediately if there is at 
least one token in place Sequence. p3 and once transition 
A.t2 fires (change in state signaled through the module 
event arc (A.end, Sequence.end_s_1)).

TNCES modules may be associated delay times with 
flowarcs outgoing from places.

The extensions provided by TNCES have a fully defined 
mathematical backbone [4]. The notions of condition 
arcs and event arcs, together with their impact on the 
flow of tokens within the net can be derived algebra-
ically. Therefore, extending the modeling power by 
using TNCES instead of an ordinary PN fully preserves 
the capability to perform deadlock-free scheduling and 
verification.

Figure 2: TNCES representation of an atomic service.
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2.3	 Previous	Work	and	Related	Efforts

The modeling of service orchestration is approached in 
a modular manner. A library of typed and composable 
TNCES modules has been defined to represent an atomic 
service and eight flow descriptors capable of expressing 
multithreading and synchronization (Split, Split+Join), 
looping (RepeatUntil and RepeatWhile), sequencing 
(Sequence, AnyOrder) and choice (Choice, If-Then-Else). 
Each of these formal models can be generated auto-
matically as a function of the number of participants (a 
tool for this purpose – a plug-in to an earlier developed 
set of tools - is available online at http://www.pe.tut.
fi/movida3/tools/). The generation procedures are 
detailed in [3].

The clearly defined interfaces facilitate the easy 
 interconnection between the modules. Formal represen-
tations of any kind of flow can be created automatically 
in this way.

The earlier discussed example of Figure 3 illustrates the 
formal representation of a Sequence TNCES module 
engaging two participant atomic services A and B. Tran-
sition t1 of the Sequence module is marking enabled and 
will fire immediately upon receiving a change in state 
notification through the event input Sequence.startSeq. 
The internal functionality of the atomic services A and 
B is not included in the model. The only information 
concerning the atomic services that is available to the 
other TNCES modules is related to their busy/idle 
status. The details on how the processes are executed 
are left aside.

A comparison of this approach to related work 
described in the literature should highlight the 
 following points: Unlike the models of Narayanan and 
McIlraith [24], this approach is modular and hierarchi-
cal. Luo et al. [25] rely on expansion of transitions for 
composition; this approach achieves the goal through 
clearly defined interfaces carrying information about 
states and changes in states. The set of flow descriptors 
is not defined by the authors (see [26]), but taken from 
the accepted OWL-S W3C Note [27]. The works on 
Business Process Execution Language [28] representa-
tions to PNs [29,30] are focused on a lower level, that 
of the peer to peer interactions that take place between 
services. This work aims to dynamically capture only 
the flow of services within the line, for deadlock-free 
scheduling purposes; therefore, it abstracts from these 
interactions. The work of Van der Aalst and colleagues 
([31,32,33,34] is focused on modeling workflow patterns 
in general, and achieves composition of these patterns 
by fusing input and output places. Recently the group 
has directed their efforts at creating a complete speci-
fication of the formal semantics and analysis of control 
flow in WS-BPEL [34] – again, the modeling is taken to 
peer to peer interaction level.

3. Runtime Modeling of Flow

The flow sequence specified by a pallet’s orchestrator 
is automatically translatable to TNCES [3]. Each time a 
pallet is introduced in the line, its standalone orchestra-
tor formal model must be generated and combined with 
the existing overall flow model into a final orchestrator 
mix model.

A simple example is used here to clarify the dynamic 
generation procedure for the orchestrator mix model. 
Consider the situation illustrated in Figure 4 (left side):

A pallet with required sequencing described by 
 orchestrator O1 [Figure 4, top side] is first introduced in 
the line. O1 is a representation of a higher level of granu-
larity of the orchestrator depicted in Figure 4 (ordered 
sequence of two atomic services S1 and S2). The inner 
elements of each internal module are abstracted from for 
simplicity. Upon entering the line, the TNCES model of 
O1 is automatically generated. As there is only one pallet 
in the line, this model is a full formal representation of 
the current orchestrator mix.

Another pallet, characterized by O2 [Figure 4, bottom 
side], follows the first one after some time. O2 is a 
sequence of three atomic services: S1 (the same service 
searched by O1 initially), S3 and S4. The newly generated 
formal model (O2) must be added automatically to the 
already existing orchestrator mix model:

Figure 3: TNCES module. Sequence of two atomic services.
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For each standalone orchestrator, the atomic services are 
first separated from the rest of the model. An example of 
the outcome of this procedure is illustrated in Figure 4 
(right side). The top-left side of the figure depicts orches-
trator O1 as generated automatically in the initial stage. 
After separation (top-right), orchestrator O1 consists of 
only the Sequence module. Additional event input and 
output sets are created to enable the necessary links 
to the external modules Service S1 and Service S2. To 
ensure a correct separation, the order in which the atomic 
services are withdrawn from the initial orchestration 
module is tracked. This order must be consistent with 
the generation order of corresponding additional event 
input –event output pairs.

The TNCES orchestrator mix model obtained by adding 
the model of O2 to the original orchestrator mix model (i.e., 
O1) is illustrated in Figure 5. The generation procedure 
considers the orchestrator model to be added at this step 
[Figure 4, bottom-right side]. A check is performed to 
see whether the atomic services of the newly introduced 
model are already part of the existing mix model or not. 
In this case, service S1 is found to already have been 
included in the orchestrator mix model. Therefore, only 
the necessary connections are added to the mix module 
(i.e., the event arcs connecting O2.start_s1 to S1.start 
and S1.end to O2.end_s1). The other two atomic services 
involved in the formal model of O2 - S3 and S4 - are not 
yet part of the current mix model. Therefore, the corre-

sponding TNCES modules and the necessary connections 
are added to the main module.

The mapping of services to resources is also done at 
runtime, to account for online equipment modifications 
or additions. The formal model of the orchestrator mix 
is dynamically combined and updated with TNCES 
modules describing the status and, separately, the usage 

Figure 4: Automatically generated models of standalone orchestrators. Separation of flow-related representation from the 
 atomic services representation.

Figure 5: Formal model of the orchestrator mix of the two 
standalone orchestrators depicted in Figure 4.
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of each existing resource. The separation between sta-
tus and usage is done to ensure that the possibility to 
 represent the cases in which the same resource is located 
by more than one requestor (either to provide the same 
or different services).

A resource_status module [Figure 6a, left side] keeps 
track of whether the depicted resource is busy or idle. 
A resource_usage module [Figure 6b, right side] is a rep-
resentation of whether the depicted resource is located 
or invoked by a requestor [Figure 1]. There can be exactly 
one TNCES resource_status module per resource in the 
mix model. The orchestrator mix model may include 
as many resource_usage modules as necessary, for each 
device in the line (to correspond to the number of times 
the device is actually identified as potential provider for 
a requested service). All modules of both types are to be 
dynamically updated with real time information from 

the shop floor. This information includes, for instance, 
various time delays that are associated with the same 
device performing different processes.

Figure 6a illustrates the model of a resource that is 
located and possibly invoked once. In case the resource 
is idle (i.e., there is one token in place resource_status.
p1; m(resource_status.p1)=1) and identified as potential 
provider of service for a particular requestor/pallet 
(m(resource_usage.p1)=1), transition resource_usage.t1 
may fire at any time. The information regarding the (un)
availability of the resource is carried through the condi-
tion arc that links place resource_status.p1 to transition 
resource_usage.t1. In case resource_usage.t1 fires, a token 
is placed in place resource_usage.p2. At the same time, 
the firing of resource_usage.t1 is announced through the 
module event arc connecting the resource_invoked event 
output and input. The triggering of this event will cause 
the firing of transition resource_status.t1. Consequently, a 
token is placed in place resource_status.p2 as well.

A device may be located more than once. The requests 
may be for the same service or not – the model accounts 
for the situation in which a resource has multiple skills in 
terms of processes (The incoming flowarc of each transi-
tion resource_usage.t2 may be assigned a time interval to 
represent various processing durations).

Figure 6b illustrates the situation in which the same device 
is searched for by two different requestors. In this case, the 
two separate resource_usage modules initialized at m(p1)=1 
reflect the case in which two pallets have discovered this 
particular device to be capable of responding to their cur-
rent demands. Resource invocation can take place only 
once. This point should be reflected when searching the 
reachability graph for scheduling purposes.

Figure 7 shows the formal model of the orchestrator 
mix depicted in Figure 5, in the case both orchestrators 
request Service S1. The needed skill may be provided 
by two different devices: machines R5 and R10. This 
information is collected in real time from the shop floor 
and input to the orchestrator mix model. For each con-
sidered device, a resource_status module is added to the 
flow model (resource5_status and resource10_status). Each 
potential mapping (O1(S1):R5; O1(S1):R10; O2(S1):R5; 
O2(S1):R10) results in the addition of a corresponding 
resource_usage typed module. The modification of the 
formal model is done at runtime, based on online col-
lected knowledge about device skills.

4. Scheduling based on the Runtime 
Constructed Models

The runtime constructed TNCES model of flow mix is 
input to search procedures to find feasible deadlock-free 
schedules. The net marking obtained after each update of 

Figure 6: Combining TNCES models of resource status and  usage: 
(a) TNCES model of a resource that is located once; (b) TNCES 
model of a resource searched for by two different requestors.
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the entire model is the initial marking of the new search.

The update of the flow mix model and its parameters 
is event-driven. The entire model changes as a result of 
machine failure or machine addition. Model  parameters 
are updated in case of machine replacement (e.g. time 
intervals associated with the inner flowarcs of the 
resource_usage typed modules change).

The goal marking is automatically obtainable, as 
the marking corresponding to termination of execu-
tion of each main calling module (in the example of 
 Figure 7, such modules are the Sequence typed modules 
within each orchestrator).

Both backtracking (BT) and best-first (BF) search [21] can 
be used to find feasible schedules based on the runtime-
constructed TNCES models of flow.

Backtracking maintains in storage a single path leading 
to the current marking, without considering optimality. 
Therefore there is no need to unnecessarily increase the 
size of the model input to the search procedure: for each 
service requested by each orchestrator, it is enough to 
incorporate only one of the found resource possibilities 
in the model. For backtracking purposes, in the model 
shown in Figure 7, it is enough to incorporate either 
one of the two resources available to perform Service 
S1 for orchestrator O1 (resource5 or resource10); the 

Figure 7: Linking the mix model to real time information collected from the shop floor: O1 and O2 request service S1, which may 
be provided by either resource 5 or by resource 10.
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orchestrator mix model is thus enhanced with either 
the resource5_usage1 or the resource10_usage1 module, 
and the corresponding connection arcs. The filtering of 
unnecessary paths in the state space of the complete flow 
model can thus be assisted at modeling stage already. 
 Complementary resource  allocation policies can be used 
during model construction to guide a feasible modeling 
phase.

Best-first search examines before each decision the 
entire set of available alternatives (both newly gener-
ated and suspended in the past). Therefore, if optimality 
is desired, all resource possibilities must be included 
in the overall flow model to be input to the search 
procedure (as illustrated in Figure 7). This imposes a 
set of rules to govern the on-the-fly construction of the 
BF search space:

First, a mutual exclusion policy must be followed if 
 multiple resources are feasible to perform the same ser-
vice on an orchestrator (multiple resource_usage typed 
modules are connected to the same start_s_j condition 
output of a calling module). In the example of Figure 7, 
service S1 needed by orchestrator O1 can be performed 
by either resource 5 or resource 10; in case both are 
available only the execution of one of the correspond-
ing resource_usage typed modules must be investigated 
per search path (mutual exclusion condition-enabling 
imposed on the (O1.start_s1, resource5_usage1.available) 
and (O1.start_s1, resource10_usage1.available) condition 
arcs).

Second, if multiple resource_usage typed modules are 
connected to the same resource_status module, a mutual 
exclusion relation must be imposed on them (the same 
resource cannot be used for two different purposes at 
the same time). In the example of Figure 7, either one 
of the two condition arcs {(resource5_status.available, 
resource5_usage1.available), (resource5_status.available, 
resource5_usage2. available) must be allowed to condi-
tion-enable the firing of the corresponding transitions, 
when building the BF search space, per search path.

Module types dictate the type of internal transition 
 firing, when building the search space. In Split or 
Split+Join modules, all transitions that are enabled at 
the same time should fire concurrently. In Choice typed 
modules, the same scenario imposes that only one of 
the eligible transitions fires.

The search for a schedule does not have to start all over 
again each time a new orchestrator is input to the line. 
The model update preserves the current situation of the 
orchestrators already involved in the mix model, while 
adding a new module.

5. Conclusion

Fast and optimal adaptation of production to changes 
in market demand and dynamic modifications of the 
manufacturing line is needed. Service encapsulation 
of devices has been repeatedly identified to respond to 
these needs.

However, online changes must reflect automatically 
in the formal model of the flow mix in a line, to input 
relevant information to the decision taking mechanisms 
immediately.

This paper proposes a modular and composable 
 procedure to automatically build at runtime the flow 
model and to dynamically link this model to real time 
information collected from the shop floor. The resulting 
representation assists deadlock-free scheduling.

Many static PN flow modeling approaches exist in the 
literature. The main contribution of this particular work 
is the possibility to model flow at runtime, automati-
cally, solely based on the standalone flow descriptions 
of each newly added pallet in the line. Traditional PN-
based search procedures can subsequently be utilized 
for finding (non)optimal schedules taking into consid-
eration the overall flow mix.

A tool has been programmed in JAVA as a plugin to an 
already existing tool chain (available online at http://
www.pe.tut.fi/movida3/tools/). Currently the tool can 
be utilized for automatic generation of TNCES models 
of standalone flow descriptors, manual interconnection 
of these to generate orchestrator formal models, and for 
dynamic construction of the overall flow model each 
time a new orchestrator is added (to search for feasible 
schedules). Future work will focus on linking the exist-
ing tool set to the real time information coming from 
an industrial demonstrator. Pallet routing optimization 
based on the generated formal model of the flow mix is 
another upcoming topic of interest.
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