
203IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Runtime Modeling of Flow for Dynamic Deadlock-free
Scheduling in Service-oriented Factory automation

Systems
Corina Popescu, Maria de los Ángeles Cavia Soto1 and Jose L. Martinez Lastra

Institute of Production Engineering, Tampere University of Technology, Korkeakoulunkatu 6, 33101 Tampere.
1E.T.S. Ingenieros Industriales y de Telecomunicación, Avda. de los Castros s/n 39005 Santander, Spain.

Abstract

Changes in equipment and production demand cannot be predicted at the design stage. Therefore, decision
taking mechanisms must rely on real time information collected from the shop floor. To perform schedul-
ing and routing optimization, not only modifications in values of parameters of interest, but also in the
flow itself must be accounted for. This paper addresses this problem and proposes a method to formally
model, at runtime, the flow within a service-oriented manufacturing line. The resulting representation assists
 deadlock- free dynamic scheduling of the system.

Keywords
deadlock handling, Factory automation, Manufacturing systems, petri nets, Runtime modeling, Scheduling,
Service oriented architecture.

1. Introduction

Frequent production demand changes are reflected
in corresponding modifications of a manufacturing
line. The required adjustments range from PLC-level
program changes to machine/robot replacements and
sometimes even reorganization of the entire line. The
constant increase in time-to-market pressure imposes
an additional critical constraint on the feasible duration
of these modifications.

The bridging of production engineering with other
domains has been recognized to have a huge potential
for addressing these problems [1,2]. In particular, Service
Oriented Architecture (SOA), as a philosophy, and Web
Services (WS), as a technology to support it, provide the
necessary solutions.

Services are encapsulations of processes and can be
thought of as interfaces. A service provides a clear
separation between the way the encapsulated process
is executed and the view other entities have of the pro-
cess from the outside. Services are loosely coupled and
can be (de)composed to whichever level of granularity
may be required. Moreover, if annotated semantically,
a service may be automatically discovered, invoked and
composed.

From a SOA perspective, a manufacturing line is seen
as a set of service encapsulations of provided and
requested processes. The provided processes are the
equipment skills. The requested processes are the

product needs. Each product can be described in terms
of its orchestrator. The orchestrator specifies the order
of execution (the flow) of its needs – the services that
should operate upon the raw material to obtain a final
product. Following the SOA pattern [Figure 1], pal-
lets (service requestors) search and locate the needed
services in the order specified by their corresponding
orchestrators. The devices (the service providers) pub-
lish the processes that they can offer. Selections of each
device to execute upon a pallet are made gradually, as
the orchestrator executes it task. Each time a device
is selected for execution, the transportation services
needed to carry the pallet to its chosen destination are
subjected to discovery and selection as well. These steps
take place for each service specified in the orchestrator
of a pallet, until all product needs are satisfied and the
pallet exits the line.

Service-oriented manufacturing systems allow both
changes in the values of parameters of interest (online

Figure 1: The service oriented architecture pattern.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

204 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

equipment modifications) and the flow itself (variations
in product type demand order) to be recognized and to
be responded to in a natural way. However, optimal sup-
port of re-configurability and adaptability through WS
technology is ensured only if dynamic decision taking
mechanisms rely on formal flow representations that are
obtained at runtime.

This paper extends previous results on automatic
 representation of formal models of standalone orchestra-
tors [3]. The contents are organized as follows: Section 2
presents the background of this work. In particular, a
brief overview of the state of the art in dynamic schedul-
ing is presented, to illustrate the importance of making
use of real time information in such decision taking
mechanisms. The review is followed by an introduction
to the syntax and semantics of the Petri Net–derived
formalism that is used for modeling here [4,5]. The sec-
tion concludes with a summary of the earlier reported
research [3] and a comparison of the presented approach
with related efforts. Section 3 gives details on the runtime
modeling of flow. Section 4 discusses the application of
traditional PN-based scheduling search procedures on
the reachability graph of the dynamically constructed
model. Section 5 presents the conclusions and the scope
for future research.

2. background

2.1 Dynamic Scheduling – An Overview

A production schedule is a specification, for each resource
required for production, of the planned start time and
end time of each job assigned to that resource.

Scheduling is the process of creating a production
 schedule for a given set of jobs and resources, while
optimizing some performance measure (increase of
productivity, minimization of operation costs, etc.).
Based on production schedules, resource conflicts can
be identified and the release of jobs to the shop can be
controlled, for a better overall coordination of the activi-
ties in the manufacturing line.

Rescheduling is the process of updating an existing
production schedule in response to disruptions such
as machine failures and repairs, urgent job arrival, job
cancelation, due date change or change in job priority.

Three main types of rescheduling strategies have been
identified in the literature: completely reactive schedul-
ing, predictive-reactive scheduling and robust pro-active
scheduling:

Completely reactive rescheduling methods do not generate
firm schedules in advance, but use dispatching rules
to assist real time execution. (Panwalkar and Iskander

[6] have provided an extensive list and classification of
such rules. A comparative study in this field is provided
by Rajendran and Holthaus [7]). The main problem
 associated with these techniques is the difficulty in
predicting system performance, because the decisions
are taken locally.

Predictive/Reactive scheduling is an iterative process of
repairing previously-created schedules [8,9] or com-
pletely regenerating schedules [10]. Depending on the
implemented rescheduling policy, the revisions may be
triggered in response to unexpected events, altering the
system status (event-driven) periodically, or in a hybrid
manner.

Robust pro-active scheduling refers to the construction of
predictive schedules that satisfy performance require-
ments predictably in a dynamic environment.

Several researchers have discussed the existing gap
between scheduling theory and scheduling practice
[11,12,13,14,15]. Only a small percentage of factories
use scheduling tools or theories [13], because schedul-
ing models and algorithms fail to consider the dynamic
characteristics of a manufacturing system. As stated by
Cowling and Johansson [14], ‘scheduling research has
failed to keep pace with technological developments
in process control and monitoring systems.’ Real time
data is monitored and processed for control purposes;
however, it is insufficiently used to improve schedules
dynamically. This real time information should not
only account for changes in the values of parameters
of interest (online equipment modifications), but also
in the flow itself (variations in product type demand
order), and should be used by the dynamic scheduling
system as it arrives.

A wide variety of dynamic scheduling techniques have
been discussed in the literature [12,16,17,18].

Heuristics are schedule repair methods that target the
finding of reasonably good solutions in a short time.
Heuristic dispatching rules are defined based on experi-
ence and are assessed through simulation, with respect
to various performance criteria (e.g. tardiness, flow time
etc.). The choice of policies is problem specific, and no
rule performs well for all performance criteria [8]. Dis-
patching rules are used extensively in multi-agent based
dynamic scheduling [19,20]. Multi-agent architectures
address the drawbacks of central and hierarchical sched-
uling through a network of individual problem solvers
that cooperate. The system behavior is influenced by
concurrent independent local decisions. In this manner,
system complexity and cost are reduced and flexibility
and fault tolerance are increased.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

205IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

Mathematical programming techniques ignore practical
constraints such as material handling capacity and
 complex resource sharing/routing, and, therefore, have
only a few real applications in industry [16,17].

Meta-heuristics seek to avoid entrapment in poor local
optimums obtained through local neighborhood search
methods. The most popular meta-heuristic techniques
include tabu search, simulated annealing and genetic
algorithms [18].

Knowledge based systems, genetic algorithms (e.g. [9]),
fuzzy logic, case-based reasoning and neural networks
have also been considered as potential solutions to the
scheduling problem. However, most of these techniques
have been found to entail considerable computational
effort.

Petri Nets can finely describe shared resources,
 synchronization, lot sizes and routing flexibility [21,22]. PN-
based scheduling implies a search in the state space of the
system for a sequence of feasible transition firings from an
initial state to a goal state. The found schedule is deadlock
free (one of the main advantage of Petri Nets over the other
discussed dynamic scheduling techniques). Additionally,
it is event-driven, which makes this type of scheduling
perfectly suitable for real time implementation.

2.2 Timed Net Condition Event Systems: Syntax
and Semantics

This work uses a Petri Net (PN) [23] derived formalism
called Timed Net Condition Event Systems (TNCES)
[4,5].

TNCES enhances the expression capabilities of Petri
Nets with typed modularity, and adds to the originally
defined elements of a PN the notions of event arcs and
condition arcs. Event arcs report changes in the state of
the system, while condition arcs carry state informa-
tion. TNCES can model simultaneous start, has a clear
notion of interfaces (event inputs/outputs and condition
inputs/outputs) and a modular hierarchy.

An example of a simple TNCES module of name and
type ‘Atomic Service’ is depicted in Figure 2. Apart from
sets of places ({p1, p2}), transitions ({t1,t2}) and flowarcs
({(p1,t1), (t1,p2), (p2,t2), (t2, p1)}), which are present in
any PN, this TNCES module has event inputs ({start}),
event outputs ({running, end}) and condition outputs
(={s_available, s_not_available}). Event arcs ({(start, t1), (t1,
running), (t2, end)}) link event inputs to transitions / tran-
sitions to event outputs. Condition arcs ({(p1, s_available),
(p2, s_not_available)}) link places to condition outputs.
Condition arcs may also link condition inputs to places,
however this is not illustrated in Figure 2.

Figure 3 illustrates a slightly more complex example of a
TNCES module (of name ‘orchestrator’) composed of three
internal modules (of name ‘Sequence’ and type ‘sequence’,
and of name ‘A’/’B’ and type ‘Atomic Service’). The inter-
nal modules are interconnected by means of module event
arcs ({(Sequence.start_s_1, A.start), (Sequence.start_s_2,
B.start), (A.end, Sequence.end_s_1), (B.end, Sequence.
end_s_2)}) and module condition arcs ({(A.A_av, Sequence.
s1_available), (B.B_av, Sequence.s2_available)}).

Condition and event arcs influence the firing rules in a
TNCES module. A transition that is marking enabled (i.e.
has at least one token in each of its input places) may fire
at any point in time in case it is also condition enabled. Con-
sidering the example in Figure 3: Transition Sequence. t2
may fire at any point in time if there is at least one token
in the place Sequence. p2 (i.e. the transition is marking
enabled) and if there is one token in the place A.p1 (i.e.
the transition is condition enabled through the module
condition arc (A.A_av, Sequence.s1_available)). A transi-
tion that is marking enabled will fire immediately in case
it is also event enabled. In the module depicted in Figure
3, transition Sequence.t3 fires immediately if there is at
least one token in place Sequence. p3 and once transition
A.t2 fires (change in state signaled through the module
event arc (A.end, Sequence.end_s_1)).

TNCES modules may be associated delay times with
flowarcs outgoing from places.

The extensions provided by TNCES have a fully defined
mathematical backbone [4]. The notions of condition
arcs and event arcs, together with their impact on the
flow of tokens within the net can be derived algebra-
ically. Therefore, extending the modeling power by
using TNCES instead of an ordinary PN fully preserves
the capability to perform deadlock-free scheduling and
verification.

Figure 2: TNCES representation of an atomic service.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

206 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

2.3	 Previous	Work	and	Related	Efforts

The modeling of service orchestration is approached in
a modular manner. A library of typed and composable
TNCES modules has been defined to represent an atomic
service and eight flow descriptors capable of expressing
multithreading and synchronization (Split, Split+Join),
looping (RepeatUntil and RepeatWhile), sequencing
(Sequence, AnyOrder) and choice (Choice, If-Then-Else).
Each of these formal models can be generated auto-
matically as a function of the number of participants (a
tool for this purpose – a plug-in to an earlier developed
set of tools - is available online at http://www.pe.tut.
fi/movida3/tools/). The generation procedures are
detailed in [3].

The clearly defined interfaces facilitate the easy
 interconnection between the modules. Formal represen-
tations of any kind of flow can be created automatically
in this way.

The earlier discussed example of Figure 3 illustrates the
formal representation of a Sequence TNCES module
engaging two participant atomic services A and B. Tran-
sition t1 of the Sequence module is marking enabled and
will fire immediately upon receiving a change in state
notification through the event input Sequence.startSeq.
The internal functionality of the atomic services A and
B is not included in the model. The only information
concerning the atomic services that is available to the
other TNCES modules is related to their busy/idle
status. The details on how the processes are executed
are left aside.

A comparison of this approach to related work
described in the literature should highlight the
 following points: Unlike the models of Narayanan and
McIlraith [24], this approach is modular and hierarchi-
cal. Luo et al. [25] rely on expansion of transitions for
composition; this approach achieves the goal through
clearly defined interfaces carrying information about
states and changes in states. The set of flow descriptors
is not defined by the authors (see [26]), but taken from
the accepted OWL-S W3C Note [27]. The works on
Business Process Execution Language [28] representa-
tions to PNs [29,30] are focused on a lower level, that
of the peer to peer interactions that take place between
services. This work aims to dynamically capture only
the flow of services within the line, for deadlock-free
scheduling purposes; therefore, it abstracts from these
interactions. The work of Van der Aalst and colleagues
([31,32,33,34] is focused on modeling workflow patterns
in general, and achieves composition of these patterns
by fusing input and output places. Recently the group
has directed their efforts at creating a complete speci-
fication of the formal semantics and analysis of control
flow in WS-BPEL [34] – again, the modeling is taken to
peer to peer interaction level.

3. Runtime Modeling of Flow

The flow sequence specified by a pallet’s orchestrator
is automatically translatable to TNCES [3]. Each time a
pallet is introduced in the line, its standalone orchestra-
tor formal model must be generated and combined with
the existing overall flow model into a final orchestrator
mix model.

A simple example is used here to clarify the dynamic
generation procedure for the orchestrator mix model.
Consider the situation illustrated in Figure 4 (left side):

A pallet with required sequencing described by
 orchestrator O1 [Figure 4, top side] is first introduced in
the line. O1 is a representation of a higher level of granu-
larity of the orchestrator depicted in Figure 4 (ordered
sequence of two atomic services S1 and S2). The inner
elements of each internal module are abstracted from for
simplicity. Upon entering the line, the TNCES model of
O1 is automatically generated. As there is only one pallet
in the line, this model is a full formal representation of
the current orchestrator mix.

Another pallet, characterized by O2 [Figure 4, bottom
side], follows the first one after some time. O2 is a
sequence of three atomic services: S1 (the same service
searched by O1 initially), S3 and S4. The newly generated
formal model (O2) must be added automatically to the
already existing orchestrator mix model:

Figure 3: TNCES module. Sequence of two atomic services.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

207IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

For each standalone orchestrator, the atomic services are
first separated from the rest of the model. An example of
the outcome of this procedure is illustrated in Figure 4
(right side). The top-left side of the figure depicts orches-
trator O1 as generated automatically in the initial stage.
After separation (top-right), orchestrator O1 consists of
only the Sequence module. Additional event input and
output sets are created to enable the necessary links
to the external modules Service S1 and Service S2. To
ensure a correct separation, the order in which the atomic
services are withdrawn from the initial orchestration
module is tracked. This order must be consistent with
the generation order of corresponding additional event
input –event output pairs.

The TNCES orchestrator mix model obtained by adding
the model of O2 to the original orchestrator mix model (i.e.,
O1) is illustrated in Figure 5. The generation procedure
considers the orchestrator model to be added at this step
[Figure 4, bottom-right side]. A check is performed to
see whether the atomic services of the newly introduced
model are already part of the existing mix model or not.
In this case, service S1 is found to already have been
included in the orchestrator mix model. Therefore, only
the necessary connections are added to the mix module
(i.e., the event arcs connecting O2.start_s1 to S1.start
and S1.end to O2.end_s1). The other two atomic services
involved in the formal model of O2 - S3 and S4 - are not
yet part of the current mix model. Therefore, the corre-

sponding TNCES modules and the necessary connections
are added to the main module.

The mapping of services to resources is also done at
runtime, to account for online equipment modifications
or additions. The formal model of the orchestrator mix
is dynamically combined and updated with TNCES
modules describing the status and, separately, the usage

Figure 4: Automatically generated models of standalone orchestrators. Separation of flow-related representation from the
 atomic services representation.

Figure 5: Formal model of the orchestrator mix of the two
standalone orchestrators depicted in Figure 4.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

208 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

of each existing resource. The separation between sta-
tus and usage is done to ensure that the possibility to
 represent the cases in which the same resource is located
by more than one requestor (either to provide the same
or different services).

A resource_status module [Figure 6a, left side] keeps
track of whether the depicted resource is busy or idle.
A resource_usage module [Figure 6b, right side] is a rep-
resentation of whether the depicted resource is located
or invoked by a requestor [Figure 1]. There can be exactly
one TNCES resource_status module per resource in the
mix model. The orchestrator mix model may include
as many resource_usage modules as necessary, for each
device in the line (to correspond to the number of times
the device is actually identified as potential provider for
a requested service). All modules of both types are to be
dynamically updated with real time information from

the shop floor. This information includes, for instance,
various time delays that are associated with the same
device performing different processes.

Figure 6a illustrates the model of a resource that is
located and possibly invoked once. In case the resource
is idle (i.e., there is one token in place resource_status.
p1; m(resource_status.p1)=1) and identified as potential
provider of service for a particular requestor/pallet
(m(resource_usage.p1)=1), transition resource_usage.t1
may fire at any time. The information regarding the (un)
availability of the resource is carried through the condi-
tion arc that links place resource_status.p1 to transition
resource_usage.t1. In case resource_usage.t1 fires, a token
is placed in place resource_usage.p2. At the same time,
the firing of resource_usage.t1 is announced through the
module event arc connecting the resource_invoked event
output and input. The triggering of this event will cause
the firing of transition resource_status.t1. Consequently, a
token is placed in place resource_status.p2 as well.

A device may be located more than once. The requests
may be for the same service or not – the model accounts
for the situation in which a resource has multiple skills in
terms of processes (The incoming flowarc of each transi-
tion resource_usage.t2 may be assigned a time interval to
represent various processing durations).

Figure 6b illustrates the situation in which the same device
is searched for by two different requestors. In this case, the
two separate resource_usage modules initialized at m(p1)=1
reflect the case in which two pallets have discovered this
particular device to be capable of responding to their cur-
rent demands. Resource invocation can take place only
once. This point should be reflected when searching the
reachability graph for scheduling purposes.

Figure 7 shows the formal model of the orchestrator
mix depicted in Figure 5, in the case both orchestrators
request Service S1. The needed skill may be provided
by two different devices: machines R5 and R10. This
information is collected in real time from the shop floor
and input to the orchestrator mix model. For each con-
sidered device, a resource_status module is added to the
flow model (resource5_status and resource10_status). Each
potential mapping (O1(S1):R5; O1(S1):R10; O2(S1):R5;
O2(S1):R10) results in the addition of a corresponding
resource_usage typed module. The modification of the
formal model is done at runtime, based on online col-
lected knowledge about device skills.

4. Scheduling based on the Runtime
Constructed Models

The runtime constructed TNCES model of flow mix is
input to search procedures to find feasible deadlock-free
schedules. The net marking obtained after each update of

Figure 6: Combining TNCES models of resource status and usage:
(a) TNCES model of a resource that is located once; (b) TNCES
model of a resource searched for by two different requestors.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

209IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

the entire model is the initial marking of the new search.

The update of the flow mix model and its parameters
is event-driven. The entire model changes as a result of
machine failure or machine addition. Model parameters
are updated in case of machine replacement (e.g. time
intervals associated with the inner flowarcs of the
resource_usage typed modules change).

The goal marking is automatically obtainable, as
the marking corresponding to termination of execu-
tion of each main calling module (in the example of
 Figure 7, such modules are the Sequence typed modules
within each orchestrator).

Both backtracking (BT) and best-first (BF) search [21] can
be used to find feasible schedules based on the runtime-
constructed TNCES models of flow.

Backtracking maintains in storage a single path leading
to the current marking, without considering optimality.
Therefore there is no need to unnecessarily increase the
size of the model input to the search procedure: for each
service requested by each orchestrator, it is enough to
incorporate only one of the found resource possibilities
in the model. For backtracking purposes, in the model
shown in Figure 7, it is enough to incorporate either
one of the two resources available to perform Service
S1 for orchestrator O1 (resource5 or resource10); the

Figure 7: Linking the mix model to real time information collected from the shop floor: O1 and O2 request service S1, which may
be provided by either resource 5 or by resource 10.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

210 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

orchestrator mix model is thus enhanced with either
the resource5_usage1 or the resource10_usage1 module,
and the corresponding connection arcs. The filtering of
unnecessary paths in the state space of the complete flow
model can thus be assisted at modeling stage already.
 Complementary resource allocation policies can be used
during model construction to guide a feasible modeling
phase.

Best-first search examines before each decision the
entire set of available alternatives (both newly gener-
ated and suspended in the past). Therefore, if optimality
is desired, all resource possibilities must be included
in the overall flow model to be input to the search
procedure (as illustrated in Figure 7). This imposes a
set of rules to govern the on-the-fly construction of the
BF search space:

First, a mutual exclusion policy must be followed if
 multiple resources are feasible to perform the same ser-
vice on an orchestrator (multiple resource_usage typed
modules are connected to the same start_s_j condition
output of a calling module). In the example of Figure 7,
service S1 needed by orchestrator O1 can be performed
by either resource 5 or resource 10; in case both are
available only the execution of one of the correspond-
ing resource_usage typed modules must be investigated
per search path (mutual exclusion condition-enabling
imposed on the (O1.start_s1, resource5_usage1.available)
and (O1.start_s1, resource10_usage1.available) condition
arcs).

Second, if multiple resource_usage typed modules are
connected to the same resource_status module, a mutual
exclusion relation must be imposed on them (the same
resource cannot be used for two different purposes at
the same time). In the example of Figure 7, either one
of the two condition arcs {(resource5_status.available,
resource5_usage1.available), (resource5_status.available,
resource5_usage2. available) must be allowed to condi-
tion-enable the firing of the corresponding transitions,
when building the BF search space, per search path.

Module types dictate the type of internal transition
 firing, when building the search space. In Split or
Split+Join modules, all transitions that are enabled at
the same time should fire concurrently. In Choice typed
modules, the same scenario imposes that only one of
the eligible transitions fires.

The search for a schedule does not have to start all over
again each time a new orchestrator is input to the line.
The model update preserves the current situation of the
orchestrators already involved in the mix model, while
adding a new module.

5. Conclusion

Fast and optimal adaptation of production to changes
in market demand and dynamic modifications of the
manufacturing line is needed. Service encapsulation
of devices has been repeatedly identified to respond to
these needs.

However, online changes must reflect automatically
in the formal model of the flow mix in a line, to input
relevant information to the decision taking mechanisms
immediately.

This paper proposes a modular and composable
 procedure to automatically build at runtime the flow
model and to dynamically link this model to real time
information collected from the shop floor. The resulting
representation assists deadlock-free scheduling.

Many static PN flow modeling approaches exist in the
literature. The main contribution of this particular work
is the possibility to model flow at runtime, automati-
cally, solely based on the standalone flow descriptions
of each newly added pallet in the line. Traditional PN-
based search procedures can subsequently be utilized
for finding (non)optimal schedules taking into consid-
eration the overall flow mix.

A tool has been programmed in JAVA as a plugin to an
already existing tool chain (available online at http://
www.pe.tut.fi/movida3/tools/). Currently the tool can
be utilized for automatic generation of TNCES models
of standalone flow descriptors, manual interconnection
of these to generate orchestrator formal models, and for
dynamic construction of the overall flow model each
time a new orchestrator is added (to search for feasible
schedules). Future work will focus on linking the exist-
ing tool set to the real time information coming from
an industrial demonstrator. Pallet routing optimization
based on the generated formal model of the flow mix is
another upcoming topic of interest.

Acknowledgment

This work is partly supported by the Nokia Foundation
 Corporation.

References

1. J.L. Martinez Lastra, and I.M. Delamer, “Semantic Web Services
in Factory Automation: Fundamental Insights and Research
Roadmap”, IEEE Transactions on Industrial Informatics, vol. 2,
no. 1., pp. 1-11, Feb. 2006.

2. I.M. Delamer, and J.L. Martinez Lastra, “Loosely-coupled
Automation Systems using Device-level SOA”, in Proceedings of the
5th IEEE International Conference on Industrial Informatics, 2007,
June 2007, pp. 743-48.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

211IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

Popescu C, et al.: Factory Aautomation –Runtime Modeling Deadlock-Free Scheduling

3. C. Popescu, A. Lobov, J.L. Martinez Lastra, and M. Cavia Soto, “A
modeling approach to formally represent service orchestration”,
International Journal of Computer Aided Engineering and
technology, vol. 1, no. 1, 2008, pp 1-30.

4. M. Rausch, and H.-M. Hanisch, “Net condition/event systems with
multiple condition output”, in Proceedings of the Symposium on
Emerging Technologies and Factory Automation, vol. 1, Oct. 1995,
pp. 592-600.

5. H.-M. Hanisch, J. Thieme, A. Luder, and A. Wienhold, “Modeling of
PLC Behavior by Means of Timed Net Condition/Event Systems”,
in Proceedings of 6th International Conference on Emerging
Technologies and Factory Automation, Sep. 1997, pp. 391-6.

6. S.S. Panwalkar, and W. Iskander, “A survey of scheduling rules”,
Operations Research, vol. 25, no. 1, Jan.-Feb. 1977, pp. 45-61.

7. C. Rajendran, and O. Holthaus, “A comparative study of dispatching
rules in dynamic flow shops and job shops”, European Journal of
Operational Research, vol. 116(1), 1999, pp. 156 -70.

8. R.J. Abumaizar, and J.A. Svetska, “Rescheduling job shops under
random disruptions”, International Journal of Production Research,
vol. 35(7), 1997, pp. 2065-82.

9. A.K. Jain, and H.A. ElMaraghy, “Production scheduling/
rescheduling in flexible manufacturing”, International Journal of
Production Research, vol. 35, no. 1, 1997, pp. 281-309.

10. L.K. Church, and R. Uszoy, “Analysis of periodic and event-driven
rescheduling policies in dynamic shops”, International Journal of
Computer Integrated Manufacturing, vol. 5(3), 1992, pp. 153-63.

11. B.L. MacCarthy, and J. Liu, “Addressing the gap in scheduling
research: A review of optimization and heuristic methods in
production scheduling”, International Journal of Production
Research, vol. 31(1), 1993, pp. 59-79.

12. C.S. Shukla, and F.F. Chen, “The state of the art in intelligent real-
time FMS control: A comprehensive survey”, Journal of Intelligent
Manufacturing, vol. 7, 1996, pp. 441-55.

13. K. McKay, and V.C.S. Wiers, “Unifying the theory and practice
of production scheduling”, Journal of Manufacturing Systems,
vol. 18(4), 1999, pp. 241-54.

14. P. Cowling, and M. Johansson, “Using real time information for
effective dynamic scheduling”, European Journal of Operational
Research vol. 139, 2002, pp. 230-44.

15. G.E. Vieira, J.W. Herrman, and E. Lin, “Rescheduling manufacturing
systems: A framework of strategies, policies and methods”, Journal
of Scheduling, 2003, vol. 6, pp. 39-62.

16. M. Zhou, Petri Nets in Flexible and Agile Automation. Kluwer
Academic Publishers, 1995.

17. M. Zhou, and K. Venkatesh: Modeling, Simulation and Control
of Flexible Manufacturing Systems – A Petri Net Approach, World
Scientific Publishing, 1999.

18. D. Ouelhadj, and S. Petrovic, “A survey of dynamic scheduling in

manufacturing systems”, Journal of Scheduling, 2008.
19. J.H. Lee, and C.O. Kim, “Multi-agent systems applications in

manufacturing systems and supply chain management: A review
paper”, International Journal of Production Research, vol. 46(1),
2007, pp. 233-65.

20. C. Wang, H. Ghenniwa, and W. Shen, ‘Real time distributed shop
floor scheduling using an agent-based service-oriented architecture’,
International Journal of Production Research, vol. 46(9), 2008,
pp. 2433-52.

21. D.Y. Lee, and F. DiCesare, “Scheduling Flexible Manufacturing
Systems Using Petri Nets and Heuristic Search”, IEEE Transactions
on Robotics and Automation, vol. 10, no. 2, April 1994, pp. 123-32.

22. M. Zhou, and M.D. Jeng, “Modeling, Analysis, Simulation,
Scheduling and Control of Semiconductor Manufacturing Systems:
A Petri Net Approach”, IEEE Transactions on Semiconductor
Manufacturing, vol. 11, no. 3, August 1998, pp. 333-57.

23. T. Murata, “Petri nets: Properties, analysis and applications”,
Proceedings of the IEEE, vol. 77, no. 4, April 1989, pp. 541-80.

24. S. Narayanan, and S.A. McIlraith, “Simulation, Verification and
Automated Composition of Web Services”, in Proceedings of
WWW, 2002, May 7-11, pp. 77-88.

25. N. Luo, J. Yan, and M. Liu, “Towards Efficient Verification for
Process Composition of Semantic Web Services”, in Proceedings of
Services Computing, 2007, pp. 220-7.

26. R. Hamadi, and B. Benatallah, “A Petri Net-based Model for Web
Service Composition”, in Proceedings of Australasian Database
Conference, 2003, vol. 17.

27. The OWL Services Coalition, ‘OWL-S: Semantic Markup for
Web Services’, Available from: http://www.ai.sri.com/daml/services/
owl-s/1.2/overview, 2006.

28. Web Services Business Process Execution Language. Available
from: http://docs.oasis-open.org/wsbpel/2.0/varprop, 2007.

29. S. Hinz, K´. Schmidt, and C. Stahl, “Transforming BPEL to Petri
Nets”, in BPM 2005, LNCS 3649, 2005, pp. 220–5.

30. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing
Interacting BPEL Processes”, Lecture Notes in Computer Science,
vol. 4102, 2006, pp. 17-32.

31. W.M.P. Van der Aalst, “Interorganisational workflows: An approach
based on message sequence charts and Petri nets”, in Systems
Analysis, Modelling, Simulation 34(3), 1999.

32. The Workflow Patterns Initiative. Available from: http://www.
workflowpatterns.com/., 2007

33. M. Voorhoeve, “Compositional Modelling and Verification of
Workflow Processes”, LNCS 1806, 2000, pp. 184-200.

34. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas,
and A.H.M. ter Hofstede, “Formal semantics and analysis of control
flow in WS-BPEL”, in Science of Computer Programming, 2007.

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

212 IETE TECHNICAL REVIEW | VoL 26 | ISSUE 3 | MAY-JUN 2009

AUTHORS
Corina Popescu received the Control Engineer degree
from the Politehnica University of Bucharest, Romania,
in 2004. She is currently pursuing the degree of Dr.
Tech. at the Institute of Production Engineering,
Tampere University of Technology. Her main research
interests are in semantic web technologies and in
formal methods in factory automation.

E-mail: corina.popescu@ieee.org

María de los Angeles Cavia Soto received her Licentiate
degree in Physics and her Dr. Ing. degree in Electrical
Engineering from the Universidad de Cantabria, Spain. Dr.
Cavia has been a tenured University Reader since 1987,
and is the Vice-Dean of the ETS de Ingenieros Industriales
y de Telecomunicacion of the Universidad de Cantabria.
Her main research interest is in the advancement of

engineering education by developing new methodologies and tools.

E-mail: caviama@unican.es

Jose L. Martinez Lastra joined the Tampere University
of Technology in 1997, and became Full Professor of
Factory Automation in 2006. Prof. Lastra earned his
advanced degrees (MS ”with distinction” and Dr. Tech.
“with commendation”) in Automation Engineering
from the Tampere University of Technology (Tampere,
Finland). His undergraduate degree in Electrical

Engineering is from the Universidad de Cantabria (Santander, Spain). Previous
to his current position at the Department of Production Engineering,
Prof. Lastra carried research at the Departamento de Ingeniería Eléctrica
y Energética (Santander, Spain), the Mathematics Department (Tampere,
Finland), the Institute of Hydraulics and Automation (Tampere, Finland)
and the Mechatronics Research Laboratory of the Massachusetts Institute
of Technology (Cambridge, MA). He has published over 175 original papers
in international journals and conference proceedings and holds a number
of patents in the field of Industrial Automation. His main research interest
is in the application of information and communication technologies in the
field of factory automation.

E-mail: lastra@ieee.org

DoI: 10.4103/0256-4602.50705; Paper No TR 63_09; Copyright © 2009 by the IETE

Popescu C, et al.: Factory automation –Runtime modeling deadlock-free scheduling

[Downloaded free from http://www.tr.ietejournals.org on Wednesday, October 14, 2009]

