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1.1 Introduction

In this paper we consider a parametric family of spectral problems for the Laplace 
operator in a rectangular perforated domain ϖε . The perforations are periodically 
placed along the ordinate axis at a distance O(ε) between them, where ε is an small 
parameter ε ≪ 1, see Fig. 1.1 a). We impose Dirichlet conditions on the boundary 
of the perforation and on the horizontal sides of the rectangle, while we impose 
quasi-periodicity conditions on the lateral sides containing the so-called Floquet-
parameter η ∈ [−π,π]. This parametric family arises as the model problem of a 
spectral problem posed in an unbounded strip periodically perforated by a string of 
holes, which is referred to as perforation string, cf. Fig. 1.1 b). For each η ∈ [−π,π], 
the spectral problem in the periodicity cell ϖε , is itself a homogenization problem, 
and we study the asymptotic behavior of the eigenvalues and eigenfunctions as ε → 
0. In this way, we revisit the spectral problem for the Dirichlet-Laplace operator
in a perforated waveguide addressed in [NaOrPe19a], providing new results that
complement those.

The setting of the perturbation spectral problem is in Section 1.1.1; the homoge-
nized problem is in Section 1.1.2, while the state of the art is in Section 1.1.3. Our
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Fig. 1.1 a) The perforated domain ϖε . b) The perforated strip Π ε .

aim is to study the asymptotic behavior of the spectrum as ε → 0 at the same time
that we provide precise bounds for convergence rates which are uniform in both
parameters ε and η . This is in Section 1.3. Some preliminary results obtained in
[NaOrPe19a] and [GoEtAl21a] are stated in Section 1.2.

1.1.1 The parametric family of homogenization spectral problems

Let ω be a domain in the plane R2 which is bounded by a smooth simple closed
curve ∂ω and has the compact closure ω = ω ∪∂ω ⊂ ϖ0, where ϖ0 is the rectangle

ϖ
0 = (−1/2,1/2)× (0,H). (1.1)

We introduce the perforated domain ϖε , see Fig. 1.1 a), obtained from ϖ0 by re-
moving the family of holes

ωε(k) = {x : ε−1(x1,x2 − εkH) ∈ ω}, k = 0, . . . ,N −1,

which are distributed periodically along the ordinate x2-axis. Each hole is homoth-
etic to ω of ratio ε and translation of εω = ωε(0). Namely,

ϖ
ε = ϖ

0 \ωε where ω
ε =

N−1⋃
k=0

ω
ε(k). (1.2)

Here, ε is a small positive parameter and N is a big natural number, both related by
N = ε−1. The period is εH with ε ≪ 1.

In the domain ϖε , we consider the spectral problem defined by the equations

−∆Uε(x;η) = Λ
ε(η)Uε(x;η), x ∈ ϖ

ε , (1.3)
Uε(x;η) = 0, x ∈ Γ

ε , (1.4)
Uε(1/2,x2;η) = eiηUε(−1/2,x2;η), x2 ∈ (0,H), (1.5)
∂Uε

∂x1
(1/2,x2;η) = eiη ∂Uε

∂x1
(−1/2,x2;η), x2 ∈ (0,H), (1.6)

where
Γ

ε = ∂ϖ
ε \{±1/2}× (0,H),
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η is the dual variable, namely, the Floquet-parameter. Λ ε(η) and Uε(·;η), respec-
tively, denote the eigenvalues and eigenfunctions which depend on both the pertur-
bation parameter and the Floquet-parameter. Conditions (1.5)-(1.6) are the so-called
quasi-periodicity conditions on the lateral sides {±1/2}× (0,H) of ϖε .

The variational formulation of the spectral problem (1.3)-(1.6) reads: Find Λ ε(η)

and Uε(·;η) ∈ H1,η
per (ϖ

ε ;Γ ε), Uε(·;η) ̸= 0 satisfying

(∇Uε(·;η),∇V )
ϖε = Λ

ε(η)(Uε(·;η),V )
ϖε ∀V ∈ H1,η

per (ϖ
ε ;Γ ε), (1.7)

where H1,η
per (ϖ

ε ;Γ ε) denotes the subspace of H1(ϖε) of functions which satisfy the
quasi-periodicity conditions (1.5)-(1.6) and vanish on Γ ε , and (·, ·)ϖε denotes the
scalar product in L2(ϖε).

As is well known (cf. [NaOrPe19a], Ch. 10 in [BiSo80], Ch. 13 in [ReSi78] and
Ch. 4 in [SaSa89]) problem (1.7) has a discrete spectrum constituting the monotone
unbounded sequence of eigenvalues

0 < Λ
ε
1 (η)≤ Λ

ε
2 (η)≤ ·· · ≤ Λ

ε
m(η)≤ ·· · → ∞, as m → ∞, (1.8)

which are repeated according to their multiplicities. Also, the corresponding eigen-
functions {Uε

m(·;η)}∞

m=1 are assumed to form an orthonormal basis in L2(ϖε). Fur-
thermore, the function

η ∈ [−π,π] 7→ Λ
ε
m(η) (1.9)

is continuous and 2π-periodic. This last assertion is due to the fact that problem
(1.3)-(1.6) is the model problem associated with a waveguide, which is referred to
as the Dirichlet strip, and has been recently considered in the literature (cf. (1.20),
Fig. 1.1 b), [NaOrPe19a] and [NaOrPe19b]). For the sake of completeness, in order
to outline the interest of the problem under consideration (1.3)-(1.6), as well as its
properties we introduce briefly this waveguide in Section 1.1.3.

1.1.2 The homogenized problem

For each η ∈ [−π,π], the homogenized problem of (1.3)-(1.6) reads

−∆U0(x;η) = Λ
0(η)U0(x;η), x ∈ ϖ̃

0, (1.10)
U0(x;η) = 0, x ∈ Γlu0, (1.11)
U0(1/2,x2;η) = eiηU0(−1/2,x2;η), x2 ∈ (0,H), (1.12)

∂U0

∂x1
(1/2,x2;η) = eiη ∂U0

∂x1
(−1/2,x2;η), x2 ∈ (0,H), (1.13)

where ϖ̃0 and Γlu0 denote

ϖ̃
0 := (−1/2,0)× (0,H)∪ (0,1/2)× (0,H)
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and

Γlu0 := {x : x1 ∈ (−1/2,1/2), x2 ∈ {0,H}}∪{x : x1 = 0, x2 ∈ (0,H)} (1.14)

respectively, Λ 0(η) is the spectral parameter and U0(·;η) the corresponding eigen-
function.

The variational formulation of the spectral problem (1.10)-(1.13) reads: Find
Λ 0(η) and U0(·;η) ∈ H1,η

per (ϖ
0;Γlu0), U0(·;η) ̸= 0 satisfying(

∇U0(·;η),∇V
)

ϖ̃0 = Λ
0(η)

(
U0(·;η),V

)
ϖ̃0 ∀V ∈ H1,η

per (ϖ
0;Γlu0), (1.15)

where H1,η
per (ϖ

0;Γlu0) denotes the subspace of H1(ϖ0) of functions which satisfy
the quasi-periodicity conditions (1.12)-(1.13) and vanish on Γlu0. Similarly to (1.7),
problem (1.15) has a discrete spectrum {Λ 0

m(η)}∞
m=1 with corresponding eigenfunc-

tions {U0
m(·;η)}∞

m=1 which form an orthogonal basis in L2(ϖ0).
Comparing the homogenization problem (1.3)-(1.6) with other homogenization

problems having Dirichlet conditions on the boundary of the perforations, we see
that it differs only in the quasi-periodicity boundary conditions on the lateral sides
and one can easily guess the homogenized problem (1.10)-(1.13), see for instance
[LoEtAl98]. However, in this case, one can show that the eigenvalues coincide with
those of the Dirichlet problem

−∆U0(x) = Λ 0U0(x), x ∈ υ , υ := (0,1)× (0,H),

U0(x) = 0, x ∈ ∂υ ,
(1.16)

and consequently, do not depend on η (cf. [NaOrPe19a]).
Problem (1.16) has a discrete spectrum which forms the increasing sequence of

eigenvalues
0 < Λ

0
1<Λ

0
2 ≤ ·· · ≤ Λ

0
m ≤ ·· · → ∞, as m → ∞, (1.17)

repeated according to their multiplicities. In addition, the eigenpairs of (1.16) can
be computed explicitly

Λ
0
np = π

2
(

n2 +
p2

H2

)
, U0

np(x) =
2√
H

sin(nπx1)sin(pπx2/H), p,n ∈ N. (1.18)

Note that the eigenvalues Λ 0
np are numerated with two indexes and must be reordered

in order to obtain the increasing sequence (1.17); the corresponding eigenfunctions
U0

np are normalized in L2(υ). Also, we note that if H2 is an irrational number all the
eigenvalues are simple.

As noticed in [NaOrPe19a], extending by quasi-periodicity the eigenfunctions
U0

m(·;η),

u0
m(x;η) =

{
U0

m(x;η), x1 ∈ (0,1/2),
eiηU0

m(x1 −1,x2;η), x1 ∈ (1/2,1),
(1.19)
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we obtain a smooth function in the rectangle υ , and the pair (Λ 0
m(η), u0

m(·,η)) sat-
isfies (1.16).

The orthogonality of {U0
m(·;η)}∞

m=1 in L2(ϖ0) implies that the functions in
(1.19), {u0

m(·;η)}∞
m=1, form an orthogonal basis in L2(υ), and this shows that the set

{Λ 0
m(η)}∞

m=1 coincides with {Λ 0
m}∞

m=1 in the sequence (1.17) for any η ∈ [−π,π].
Similarly to (1.18), we compute the eigenvalues and eigenfunctions of (1.10)-

(1.13):

U0
np(x,η) =


2√
H

sin(nπx1)sin(pπ
x2
H ), x1 ∈ (0,1/2),

2e−iη
√

H
sin(nπ(x1 +1))sin(pπ

x2
H ), x1 ∈ (−1/2,0),

is the eigenfunction corresponding to Λ 0
np = π2

(
n2 + p2

H2

)
with p,n ∈ N.

1.1.3 The Dirichlet strip and some background

For convenience, we introduce here a problem closely related to (1.3)-(1.6): a
Dirichlet problem for the Laplace operator in a strip with periodic dense transversal
perforations by identical holes of diameter ε .

Extending ϖε (cf. (1.2) and Fig. 1.1 a)) by periodicity along the x1 axis, we create
the unbounded perforated strip Π ε (see Fig. 1.1 b)):

Π
ε = R× (0,H)\

⋃
j∈Z

N−1⋃
k=0

ωε( j,k)

where ωε( j,k) = {x : ε−1(x1 − j,x2 − εkH) ∈ ω} with j ∈ Z, k = 0,1, . . . ,N − 1.
In the waveguide Π ε , we consider the Dirichlet spectral problem{

−∆uε(x) = λ ε uε(x), x ∈ Π ε ,

uε(x) = 0, x ∈ ∂Π ε .
(1.20)

Then, applying the Floquet-Bloch-Gelfand transform

uε(x)→Uε(x;η) =
1√
2π

∑
n∈Z

e−inη uε(x1 +n,x2)

see, for instance, [Ge50], [ReSi78], [Sk85], [Ku93] and [CoPlVa94], problem (1.20)
converts into a η-parametric family of spectral problems in the periodicity cell ϖε ,
namely, into the parametric family of boundary value problems (1.3)-(1.6), see Fig.
1.1 a).

The spectrum of the operator on the Hilbert space L2(Π ε) associated with prob-
lem (1.20) is given by
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σ
ε =

⋃
m∈N

Bε
m (1.21)

where
Bε

m = {Λ
ε
m(η) : η ∈ [−π,π]}. (1.22)

As a consequence of the previously mentioned continuity of Λ ε
m(η), cf. (1.9), the

sets Bε
m are closed, connected and bounded intervals of the real positive axis R+.

Results (1.21) and (1.22) for the spectrum of the boundary value problem (1.20)
are well-known in the framework of the Floquet-Bloch-Gelfand theory (see the
above references). The segments Bε

m and Bε
m+1 may intersect but also they can be

disjoints so that a spectral gap becomes open between them. Recall that a spectral
gap is a non empty interval which is free of the spectrum but has both endpoints in
the spectrum.

Therefore, studying the asymptotic behavior of the spectrum of (1.3)-(1.6) be-
comes essential to detect the band gap structure of the spectrum (1.21). In this re-
spect, an extensive asymptotic analysis of the spectral bands (1.22) has been per-
formed in [NaOrPe19a]. In particular, we have obtained asymptotic formulas for
the endpoints of the spectral bands (1.22) and show that σ ε has a long number of
short bands of length O(ε) which alternate with wide gaps of width O(1), while we
can guarantee that indeed there are open gaps corresponding with Bε

m and Bε
m+1 only

when the limit eigenvalue Λ 0
m in the sequence (1.17) is simple, cf. Fig. 1.2 (on the

right), and this strongly depends on H.
We note that the explicit formulas (1.18) are of great interest to draw the limit

dispersion curves for different values of H and, after obtaining bounds for discrep-
ancies of the type (1.42) (cf. also (1.28)), they also allow us to draw possible con-
figurations of the perturbed dispersion curves associated with (1.20), cf. Fig. 1.2
(on the left). Recall that these curves are the graphs of Λ ε

m(η), for η ∈ [−π,π]. On
account of (1.18), the limiting dispersion curves are independent of η .

We refer to [BaPe18] for a very different perturbed waveguide with limiting
dispersion curves independent of the Floquet-parameter and to [GoEtAl21b] and
[GoEtAl21c] for the geometry of the waveguide here considered but with Neumann
conditions instead of Dirichlet. Also, we refer to [GoEtAl21b] and [GoEtAl21c] for
further references and an extensive comparison between the behaviors of the spec-
tral bands when we change Dirichlet by Neumann conditions both in (1.20) and
(1.10)-(1.13). As a matter of fact, in the case of the Neumann-strip we find long
bands, of order O(1), which are separated from each other by short spectral gaps
of order O(ε). Moreover, it should be mentioned that, as a consequence of the fact
that the limiting dispersion curves are not constant in the case of the Neumann-strip,
the asymptotic analysis is much more complicated and delicate, in particular, it be-
comes multiscale in several variables, not only in the geometrical ones, but also in
the Floquet-parameter.

Finally, let us observe that opening gaps in [NaOrPe19a] implies a thorough
asymptotic analysis to obtain corrector terms of order O(ε) that improves the uni-
form bounds (1.42). For the sake of brevity, we avoid defining the correctors here
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Fig. 1.2 On the left: a sketch of possible dispersion curves in the axis (η ,Λ) for the problem in
the waveguide Π ε . On the right: a sketch of the possible distribution of the spectral bands Bε .

which involves introducing some boundary layer problems and the so-called polar-
ization matrix. We refer to [NaOrPe19a] and [NaOrPe19b] in this connection.

1.2 Preliminary results

Let us introduce here some estimates for the eigenvalues of the perturbation problem
that improves that in [NaOrPe19a], and a couple of theorems whose proofs are in
[NaOrPe19a]. The results of these theorems are improved in Section 1.3.

Lemma 1. For each fixed m, there are constants ε0 < 1, Km(η) and Cm such that

0 < Km(η)≤ Λ
ε
m(η)≤Cm ∀η ∈ [−π,π], ε ≤ ε0. (1.23)

Proof. To obtain the lower bound in (1.23) with Km(η) ≡ C independent of m and
η , it suffices to consider (1.7) for the eigenpair (Λ ε

1 (η),Uε
1 (·;η)) and apply the

Poincaré inequality in H1(ϖ0) once that Uε
1 (·;η) is extended by zero in ω

ε , cf.
(1.1) and (1.2). However, we can also obtain better bounds depending on η that
somehow could isolate the branches {Λ ε

m(η) : η ∈ [−π,π]}.
Indeed, let us consider {Λ ∗

m(η)}∞
m=1 to be the sequence of eigenvalues of the

following problem in ϖ0:
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−∆U∗
m(x;η) = Λ ∗

m(η)U∗
m(x;η), x ∈ ϖ0,

U∗
m(x;η) = 0, x ∈ Γlu,

U∗
m(1/2,x2;η) = eiηU∗

m(−1/2,x2;η), x2 ∈ (0,H),

∂U∗
m

∂x1
(1/2,x2;η) = eiη ∂U∗

m

∂x1
(−1/2,x2;η), x2 ∈ (0,H),

(1.24)

where we have denoted by Γlu lower and upper basis of the rectangle ϖ0, namely,

Γlu := {x : x1 ∈ (−1/2,1/2), x2 ∈ {0,H}}, (1.25)

cf. (1.14) to compare, and by {U∗
m(·;η)}∞

m=1 the eigenfunctions.
Using the minimax principle,

Λ
∗
m(η) = min

Em⊂H1,η
per (ϖ0;Γlu)

max
V∈Em,V ̸=0

(∇V,∇V )
ϖ0

(V,V )
ϖ0

,

where the minimum is computed over the set of subspaces Em of H1,η
per (ϖ

0;Γlu) with
dimension m.

Consider the subspace Eε
m of H1,η

per (ϖ
ε ;Γ ε) with dimension m, of the eigen-

functions Uε
k (·;η) of (1.3)-(1.6) associated with the eigenvalues Λ ε

k (η) in the se-
quence (1.8) with k ≤ m. These eigenfunctions have been taken to be orthonormal
in L2(ϖε), and are extended by 0 inside the holes, they are still denoted by Uε

m(·;η)
and orthonormal in L2(ϖ0), and we take the particular subspace of dimension m of
H1,η

per (ϖ
0;Γlu) to be E∗

m =
[
Uε

1 (·;η),Uε
2 (·;η), · · ·Uε

m(·;η)
]
. Then, we can write:

Λ
∗
m(η)≤ max

V∈E∗
m,V ̸=0

(∇V,∇V )
ϖ0

(V,V )
ϖ0

= max
V∈E∗

m,∥V∥L2(ϖ0)=1
(∇V,∇V )

ϖ0 .

For each V ∈ E∗
m, with ∥V∥L2(ϖ0) = 1, we write V = ∑

m
i=1 αε

i (η)Uε
i (·;η) for

certain constants αε
i (η). On account of the above mentioned orthonormality, these

constants satisfy

∥V∥2
L2(ϖ0) =

m

∑
i=1

(αε
i (η))2 = 1.

Similarly, because of the extension by zero, the orthonormality, and (1.7), for the
gradients, we can write:

∥∇V∥2
L2(ϖ0) =

m

∑
i=1

(αε
i (η))2∥∇Uε

i (·;η)∥2
L2(ϖ0) =

m

∑
i=1

(αε
i (η))2

Λ
ε
i (η)≤ Λ

ε
m(η),

which gives
Λ

∗
m(η)≤ Λ

ε
m(η), ∀η ∈ [−π,π], m ≥ 1.

Therefore, the left hand side of (1.23) holds for Km(η) = Λ ∗
m(η) the eigenvalue of

the mixed problem (1.24).
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Finally, the precise constant Cm on the right hand sides of (1.23) has been ob-
tained in [NaOrPe19a], related to the m-th eigenvalue of a Dirichlet problem in any
fixed rectangle (α,β )× (0,H), with 0 < α < β < 1/2. 2

The first convergence result is given in Theorem 1 below. It shows the some-
how expected convergence of the spectrum with conservation of the multiplicity in
homogenization theory. Also, the convergence of the corresponding eigenfunctions
is stated. The proof in [NaOrPe19a] has been performed adapting standard tech-
niques in homogenization and spectral perturbation theory: see, for instance, Ch. 3
in [OlShYo92] for a general framework and [LoEtAl98] for its application to spec-
tral problems in perforated domains with different boundary conditions.

Theorem 1. Let us consider the spectral problem (1.3)-(1.6) and the sequence of
eigenvalues (1.8). Then, for any η ∈ [−π,π], we have the convergence

Λ
ε
m(η)→ Λ

0
m, as ε → 0, (1.26)

where Λ 0
m are the set of eigenvalues in the sequence (1.17) of the Dirichlet problem

(1.16). In addition, for each sequence, we can extract a subsequence, still denoted by
ε , such that the extension by zero of the eigenfunctions {U ε

m(·;η)}∞
m=1 normalized

in L2(ϖε), {Û ε
m(·;η)}∞

m=1, converge towards the eigenfunctions of (1.10)-(1.13) in
L2(ϖ0), which form an orthonormal basis of L2(ϖ0).

As a consequence of the asymptotic analysis in [NaOrPe19a] we state the fol-
lowing result:

Theorem 2. Let m ∈ N and let Λ 0
m be an eigenvalue of the Dirichlet problem (1.16)

in the sequence (1.17). There is at least one eigenvalue Λ ε
p (η) of problem (1.3)-

(1.6), with p = p(ε,η ,m)≥ m, satisfying

|Λ ε
p (η)−Λ

0
m| ≤ cmε, ∀ε ≤ εm, η ∈ [−π,π], (1.27)

where εm and cm are certain positive constants that are independent of η and ε .

The proof of Theorem 2 can be found in [NaOrPe19a], based on a Lemma on
almost eigenvalues and eigenfunctions from the spectral perturbation theory, cf.
[ViLu57]. It involves the construction of approximations to eigenpairs of the per-
turbation problem by means of asymptotic expansions from the solutions of the
homogenized problem and a boundary layer problem in an unbounded perforated
strip, namely, in the “unit periodicity cell” for the homogenization problem (1.3)-
(1.6) (cf. also [NaOrPe19b]).

In the next section, we show that the index p provided by Theorem 2 coincides
with m, cf. Theorem 4. Although the bound (1.27) with p = m has been used to
detect spectral gaps in [NaOrPe19a], we think that the proof in Section 1.3 of this
paper may clarify that in [NaOrPe19a].

Remark 1. It should be noted that bounds (1.23) can be improved as follows: For
each fixed m, there are positive constants ε0 < 1, θ < 1, km and cm independent of ε

and η , such that
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Λ
0
m − kmε

2θ ≤ Λ
ε
m(η)≤ Λ

0
m + cmε ∀η ∈ [−π,π], ε ≤ ε0. (1.28)

The proof of (1.28) can be obtained using the reasoning of [GoEtAl21a] (Sec-
tion 3) with minor modifications. This implies using the max-min principle, Hardy
inequality, the normalization procedure used to obtain the left hand side inequality
in (1.23) (applied both to finite dimensional spaces of eigenfunctions of the per-
turbation and homogenized problem), weighted estimates in Sobolev spaces and
some cut-off functions vanishing in ε-neighborhoods of the perforation string. This
result allows a simplification of the proof of Theorem 3 related to the eigenval-
ues. However, the bounds (1.28) are associated with the homogenization of perfo-
rated domains along lines with Dirichlet boundary conditions in the perforations
(see [GoEtAl21a] and [GoEtAl21c] for other boundary conditions) and the suit-
able bounds cannot be obtained in many problems of perturbed waveguides, see
[GoEtAl21a], [GoEtAl21b] and [GoEtAl21c] to compare. In contrast, the technique
developed in Theorem 3 can be applied to many problems even when the limit dis-
persion curves depend on η , cf. [GoEtAl21b].

Also, it shoud be emphasized that the result in Theorem 4 improves the bound
(1.28) providing the precise value of θ = 1/2. 2

1.3 Convergence and convergence rates for eigenvalues

A first approach to the asymptotics for eigenpairs of (1.3)-(1.6) is given by Theo-
rem 1, when the parameter η is fixed. Theorem 3 below also allows a certain per-
turbation of this parameter and therefore improves the result in Theorem 1.

Theorem 3. Let us consider the spectral problem (1.3)-(1.6) and the sequence of
eigenvalues (1.8). Then, for each sequence {(εr,ηr)}∞

r=1 such that εr → 0 and ηr →
η̂ ∈ [−π,π], as r → ∞, we have the convergence

Λ
εr
m (ηr)→ Λ

0
m, as r → ∞, (1.29)

where Λ 0
m are the set of eigenvalues of the Dirichlet problem (1.16) in the sequence

(1.17). In addition, we can extract a subsequence, still denoted by εr, such that
the extension by zero of the eigenfunctions {U εr

m (·;ηr)}∞
m=1 normalized in L2(ϖεr),

{Û εr
m (·;ηr)}∞

m=1, converge towards the eigenfunctions of (1.10)-(1.13) in L2(ϖ0),
which form an orthonormal basis of L2(ϖ0).

Proof. Let us consider Λ εr
m (ηr) and Uεr

m (·;ηr) ∈ H1,ηr
per (ϖεr ;Γ εr) the eigenpair of

(1.7). Namely, for fixed (ηr,εr) and m = 1,2, · · · , they satisfy

(∇Uεr
m (·;ηr),∇V )

ϖεr = Λ
εr
m (ηr)(Uεr

m (·;ηr),V )
ϖεr , V ∈ H1,η

per (ϖ
εr ;Γ εr), (1.30)

Taking V =Uεr
m (·;ηr), (1.30) reads

∥∇Uεr
m (·;ηr)∥2

L2(ϖεr ) = Λ
εr
m (ηr)∥Uεr

m (·;ηr)∥2
L2(ϖεr ).
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Let us extend the eigenfunctions by zero inside the holes. Then, using (1.23), the
normalization ∥Uεr

m (·;ηr)∥L2(ϖεr ) = 1 and the Poincaré inequality, for each m we
get a uniform bound for the eigenvalues and eigenfunctions in H1(ϖ0). Indeed, the
inequalities

min
η∈[−π,π]

Km(η)≤ Λ
εr
m (ηr)≤Cm and ∥Uεr

m (·;ηr)∥H1(ϖεr ) ≤ cm, (1.31)

hold for constants cm,Cm which do not depend on εr and ηr.
Hence, for each fixed m, we can extract a subsequence of εr and ηr, still denoted

by r such that
(ηr,εr)→ (η̂ ,0), as r → ∞, (1.32)

and

Λ
εr
m (ηr)→ Λ̂

0
m, Ûεr

m (·;ηr)⇀ Û0
m in H1(ϖ0)−weak, as r → ∞, (1.33)

for a certain positive Λ̂ 0
m and a certain function Û0

m ∈ H1(ϖ0) which vanishes on the
lower and upper bases of ϖ0, namely on Γlu, cf. (1.4) and (1.25). Let us prove that
Û0

m also vanishes along the line {x1 = 0}∩ϖ0.
Indeed, we use the Poincaré inequality on the domains ϖ0 \ω and ϖ0, cf. (1.1),

∥U∥L2(ϖ0\ω) ≤C∥∇U∥L2(ϖ0\ω) ∀U ∈ H1(ϖ0 \ω; Γlu ∪∂ω),

and
∥U∥L2(ϖ0) ≤C∥∇U∥L2(ϖ0) ∀U ∈ H1(ϖ0;Γlu).

We deduce

ε
−1
r

∥∥Uεr
m (·;ηr)

∥∥2
L2({|x1|≤εr/2}∩ϖ0)

≤Cεr
∥∥∇Uεr

m (·;ηr)
∥∥2

L2({|x1|≤εr/2}∩ϖ0)
, (1.34)

where C is a constant independent of r and m. Now, taking limits in (1.34) as r → ∞,
or equivalently as εr → 0, we get Û0

m = 0 on {x1 = 0}∩ϖ0 (cf., e.g., [MaKh06] and
(1.31)) as it has been announced.

Therefore, the limit function in (1.33) satisfies Û0
m ∈ H1(ϖ0;Γlu0); cf. (1.14). Let

us prove that it also satisfies the quasi-periodicity conditions on the lateral sides of
ϖ0:

Û0
m(1/2,x2) = eiη̂Û0

m(−1/2,x2) and
∂Û0

m

∂x1
(1/2,x2) = eiη̂ ∂Û0

m

∂x1
(−1/2,x2). (1.35)

To do this, notice that the change V εr
m (·;ηr) = Uεr

m (·;ηr)e−iηrx1 converts the
Laplacian into the differential operator

−
( ∂

∂x1
+ iηr

)( ∂

∂x1
+ iηr

)
− ∂ 2

∂x2
2
,



12 D. Gómez, S.A. Nazarov, R. Orive and M.E. Pérez

and the ηr quasi-periodicity condition for Uεr
m (·;ηr) becomes a periodicity condition

for V εr
m (·;ηr)∈ H1

per(ϖ
0;Γlu). Consequently, since the convergence (1.33) holds, we

also have a bound for V̂ εr
m ∈ H1

per(ϖ
0;Γlu) which holds uniformly in ηr and εr, and

consequently a convergence of V̂ εr
m (·;ηr) (V εr

m (·;ηr) extended by zero inside the
holes) towards a function V̂ 0

m(·;ηr) ∈ H1
per(ϖ

0;Γlu0) holds in the weak topology of
H1(ϖ0;Γlu0). Then, we obtain V̂ 0

m = Û0
me−iη̂x1 , as a consequence of the convergence

∥Ûεr
m (·;ηr)e−iηrx1 −Û0

me−iη̂x1∥L2(ϖ0) → 0 as r → ∞.

To verify the last convergence it suffices to consider

∥Ûεr
m (·;ηr)e−iηrx1 −Û0

me−iη̂x1∥L2(ϖ0)

≤ ∥
(
Ûεr

m (·;ηr)−Û0
m
)
e−iηrx1∥L2(ϖ0)+∥Û0

m
(
e−iηrx1 − e−iη̂x1

)
∥L2(ϖ0),

the convergence (1.33), the smoothness of the exponential function and the conver-
gence ηr towards η̂ as r → ∞.

Thus, we have Û0
m = V̂ 0

meiη̂x1 , with V̂ 0
m ∈ H1

per(ϖ
0), and this already implies

(1.35). Consequently, we have shown that Û0
m ∈ H1,η̂

per (ϖ
0;Γlu0) and depends on η̂ .

Also, the normalization of the eigenfunctions Ûεr
m (·;ηr) in L2(ϖ0) and the conver-

gence (1.33) provides Û0
m ̸= 0.

In addition, by taking limits in the variational formulation (1.30) for the test
functions V ∈C ∞

0 ((−1/2,0)×(0,H)) and for V ∈C ∞
0 ((0,1/2)×(0,H)), we obtain

the partial differential equation

−∆Û0
m = Λ̂

0
mÛ0

m for x ∈ ϖ̃
0. (1.36)

All of this together, allows us to identify (Λ̂ 0
m, Û0

m) with an eigenpair of the boundary
value problem (1.10)-(1.13), cf. also (1.15).

Note that the extracted subsequence and limits, cf. (1.32) and (1.33), may depend
on m. However, using a diagonalization argument, for each sequence of r, we can
extract another subsequence of r, still denoted by r but independent of m, such
that (1.33) holds ∀m ∈ N. Hence, by construction, we have obtained an increasing
sequence of eigenvalues of (1.10)-(1.13)

0 < Λ̂
0
1 ≤ Λ̂

0
2 ≤ ·· · ≤ Λ̂

0
m ≤ ·· · . (1.37)

In what follows we prove that the sequence {Λ̂ 0
m}∞

m=1 converges towards infinity as
m → ∞ while the whole sequence coincides with that in (1.17).

Indeed, from the orthonormality of Uεr
m (·;ηr) in L2(ϖεr), we get the orthonor-

mality of Û0
m := Û0

m(·; η̂) in L2(ϖ0) just writing

(Ûεr
m (·;ηr),Ûεr

p (·;ηr))ϖ0 = δm,n, ∀m,n ∈ N,
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and taking limits as r → ∞. This confirms that the sequence (1.37) converge towards
infinity as m → ∞.

Let us prove that the sequence (1.37) coincides with that in (1.17). Since for each
(εr,ηr) we have a spectral problem with the corresponding spectrum (1.8) and the
eigenfunctions forming an orthonormal basis of L2(ϖεr), we can follow the idea
of Section 3.1 in [OlShYo92] or Section III.9.1 in [At84] to show the convergence
of the whole sequence of eigenvalues {Λ εr

m (ηr)}∞
m=1 towards those of (1.10)-(1.13)

with conservation of the multiplicity, and that the set {Û0
m}∞

m=1 forms a basis of
L2(ϖ0). The fact that the eigenvalues Λ̂ 0

m do not depend on η̂ is due to the identi-
fication performed by means of the change (1.19). However, since we are dealing
with a double perturbation, the technique must be adapted and, for the sake of com-
pleteness, we provide here the whole proof.

We proceed by contradiction, assuming that there is some Λ ∗ eigenvalue of
(1.10)-(1.13) in the sequence (1.17) which is not in the sequence (1.37). Therefore,
for some m ∈ N:

Λ
∗ < Λ̂

0
m+1.

Let U∗(·; η̂) ∈ H1,η
per (ϖ

0;Γlu0) be a corresponding eigenfunction that is orthogonal
to the constructed sequence of eigenfunctions {Û0

l (·; η̂)}∞
l=1. Then, we consider the

function Uεr∗ (·;ηr) ∈ H1,ηr
per (ϖεr ;Γ εr), solution of the problem

(∇Uεr
∗ (·;ηr),∇V )

ϖεr = Λ
∗ (U∗(·; η̂),V )

ϖεr ∀V ∈ H1,ηr
per (ϖεr ;Γ εr).

Applying the Poincaré inequality, we obtain that the extension by zero of Uεr∗ (·;ηr)
inside the holes, {Ûεr∗ (·;ηr)}r constitutes a sequence uniformly bounded in H1(ϖ0).
Therefore, up to a subsequence, still denoted by r,

Ûεr
∗ (·;ηr)⇀U∗(·; η̂) in H1(ϖ0)−weak, as r → ∞. (1.38)

Note that to show the convergence (1.38) we need to rewrite the argument above,
cf. (1.30)-(1.36), with minor modifications.

From Uεr∗ (·;ηr) we construct a new function W εr∗ (·;ηr) orthogonal to the set
{Uεr

l (·;ηr)}m
l=1 in the space L2(ϖεr) as follows:

W εr
∗ (·;ηr) =Uεr

∗ (·;ηr)−
m

∑
l=1

(Uεr
∗ (·;ηr),U

εr
l (·;ηr))ϖεr Uεr

l (·;ηr).

In addition, from the above convergence for eigenfunctions, (1.38), the orthogo-
nality of the limit eigenfunctions in L2(ϖ0), and the assumption performed on the
orthogonality of U∗(·; η̂) to the limit eigenfunctions, we can write

(Uεr
∗ (·;ηr),U

εr
l (·;ηr))ϖεr → 0, as r → ∞, l = 1,2, · · · ,m, (1.39)

Ŵ εr
∗ (·;ηr)⇀U∗(·; η̂) in H1(ϖ0)−weak, as r → ∞, (1.40)

Ŵ εr∗ (·;ηr) being the extension by zero on the holes of W εr∗ (·;ηr), and
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(∇W εr
∗ (·;ηr),∇W εr

∗ (·;ηr))ϖεr → Λ
∗(U∗(·; η̂),U∗(·; η̂))ϖ0 , as r → ∞. (1.41)

Then, since for each εr, we have constructed a function W εr∗ (·;ηr) ∈ {V ∈
H1,ηr

per (ϖεr ;Γ εr); (V,(Uεr
l (·;ηr))ϖεr = 0, l = 1,2, · · · ,m}, we can apply the Rayleigh

principle, see, for instance Section I.7 in [SaSa89],

Λ
εr
m+1(ηr) = inf

V

(∇V,∇V )
ϖεr

(V,V )
ϖεr

,

where the infimum is computed over the elements of the space

{V ∈ H1,ηr
per (ϖεr ;Γ εr) : (V,Uεr

l (·;ηr))ϖεr = 0, l = 1,2, · · · ,m}.

Consequently

Λ
εr
m+1(ηr)≤

(∇W εr∗ (·;ηr),∇W εr∗ (·;ηr))ϖεr

(W εr∗ (·;ηr),W
εr∗ (·;ηr))ϖεr

,

and taking limits as r → ∞, from (1.33) and (1.39)-(1.41) we ready get

Λ̂
0
m+1 ≤ Λ

∗

which contradicts our assumption, and we have proved that all the eigenvalues of
the homogenized problem in (1.17) are in the sequence {Λ̂ m

0 }∞
m=1.

Also, this confirms the fact that the set of limiting eigenfunctions {Û0
m(·; η̂)}∞

m=1
in (1.33) forms an orthogonal basis in L2(ϖ0) and the set of limiting eigenvalues
(1.37) and (1.17) coincide and are independent on the Floquet-parameter. Therefore,
the theorem is proved. 2

Theorem 4. Let m ∈ N, let Λ 0
m be an eigenvalue of the Dirichlet problem (1.16)

in the sequence (1.17). There exist positive εm and cm independent of η and ε such
that, for any ε ∈ (0,εm], the eigenvalue Λ ε

m(η) of problem (1.3)-(1.6) in the sequence
(1.8) meets the estimate

|Λ ε
m(η)−Λ

0
m| ≤ cmε, ∀ε ≤ εm, η ∈ [−π,π]. (1.42)

Proof. Let us recall Theorem 2 which provides (1.27) for a certain p(ε,η ,m)≥ m.
Here without any restriction, we can assume that Λ 0

m+1 >Λ 0
m, otherwise p(ε,η ,m)≥

m+1 also. Let us show that p(ε,η ,m) = m and consequently the result of the state-
ment holds. We proceed by contradiction, denying (1.42).

This implies that there is η∗ such that the estimate (1.42) does not hold. That is,
for this η∗ we can find a εη∗ ≤ εm for which p(εη∗ ,η∗,m)≥ m+1 (and, obviously,
strictly greater than m+ 1 depending on whether the multiplicity of Λ 0

m be greater
than 1). First of all, we observe that the numbers εη∗ that we can find must range in
a finite set {εη∗,1,εη∗,2, · · ·εη∗,kη∗}, because, otherwise, we can take a subsequence
{εη∗,l}∞

l=1, εη∗,l → 0 as l → ∞, for which p(εη∗,l ,η
∗,m)≥ m+1. Then, from (1.27)

we write
Λ

εη∗ ,l
m+1 (η

∗)≤ Λ
εη∗ ,l
p(εη∗ ,l ,η

∗,m)
(η∗)≤ Λ

0
m + cmεη∗,l ,
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and taking limits, as l → ∞, we get a contradiction, see the convergence (1.26), for
fixed η∗:

Λ
0
m+1 ≤ Λ

0
m. (1.43)

Note that the limit is independent of η .
Consequently, for each η∗ such that (1.42) does not hold, we associate the finite

set {εη∗,l}
kη∗
l=1 for which p(εη∗,l ,η

∗,m)≥ m+1. In addition, we note that if there is
only one η∗ for which (1.42) does not hold, taking ε∗m =min(εm,εη∗,1,εη∗,2, · · ·εη∗,kη∗ ),
the inequality (1.42) holds for ε ≤ ε∗m, and the same occurs if there is only a finite
number of η∗ for which (1.42) does not hold.

Therefore, we deduce that there is at least one subsequence {η∗
r }∞

r=1 that con-
verge towards some η̂ ∈ [−π,π] as r → ∞ such that (1.42) is not satisfied for
εη∗

r ,1,εη∗
r ,2, · · ·εη∗

r ,kη∗r
, r = 1,2, · · · while (1.27) holds. Without any restriction we

can assume that there is also a subsequence of εη∗
r converging towards zero as

r → ∞. Indeed, let us explain the last assertion in further detail. For the set
J := {η∗ ∈ [−π,π] : (1.42) is not satisfied } ⊂ [−π,π], we consider the associ-
ated set of parameters constructed above: E := {εη∗,1,εη∗,2, · · ·εη∗,kη∗}η∗∈J . Ei-
ther E has a lower bound ε∗∗m > 0 or we can extract a sequence {εη∗

r }
∞
r=1 converging

towards zero as r → ∞, each one associated to a certain value η∗
r ∈ J . In the first

case, (1.42) holds for ε ≤ ε∗m := min(ε∗∗m ,εm) and the proof is ended. In the second
case, since the sequence {η∗

r }∞
r=1 is bounded from above and from below, we can

construct a subsequence, still denoted by r, such that

(η∗
r ,εη∗

r )→ (η̂ ,0) as r → ∞.

To show that this last assertion leads us to a contradiction, we note that from
(1.27) we can write that the corresponding sequence of eigenvalues satisfy

Λ
ε

η∗r
m+1(η

∗
r )≤ Λ

ε
η∗r

p(ε
η∗r ,η

∗
r ,m)

(η∗
r )≤ Λ

0
m + cmεη∗

r .

Taking limits as r → ∞, from the convergence (1.29) we get again the contradiction
(1.43). Therefore, the result of the theorem holds true. 2
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