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The development of technology to reduce the environmental impact of fluorinated refrigerant gases (F-
gases) is currently of outmost importance. The capture of F-gases in ionic liquids (ILs) is envisaged as
solution to avoid emissions of F-gases to the atmosphere, and many studies have been devoted to the
experimental determination of the vapor-liquid equilibrium of F-gas/IL mixtures. However, this is an
expensive and time-consuming task, so finding prescreening options that can reduce the experimental
load would pose a significant advantage in the development of new industrial-scale processes. Here,
we develop a prescreening tool based on the use of artificial neural networks (ANNs) to predict the sol-
ubility of F-gases in ILs from easily accessible properties of the pure compounds, such as the critical prop-
erties of the gases or the molar mass and volume of the IL. We have used the UC-RAIL database with more
than 4300 solubility data of 24 F-gases in 52 ILs. The ANN resulting from this study is capable to predict
the fed dataset with an average absolute relative deviation (AARD) and mean absolute error (MAE) of
10.93% and 0.014, respectively, and we further demonstrate its predictive capabilities showing the very
accurate prediction of a system including R-1243zf, an F-gas that was not present in the training set
because it had not been previously studied. Finally, the developed ANN is implemented in an easy-to-
use spreadsheet that will allow to extend its use in the prescreening of ILs towards the abatement and
recovery of high environmental impact refrigerant gases.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

Refrigeration is considered one the greatest engineering
achievements of the 20th century, with applications that span from
the preservation of fresh food and pharmaceutical compounds to
providing air conditioning comfort in domestic, industrial, and
transport environments [1]. Currently, a majority of refrigeration
and air conditioning (RAC) equipment apply compression assisted
evaporation and condensation cycles that use hydrofluorocarbons
(HFCs) as refrigeration fluids. HFCs are synthetic fluorinated gases
that were created to substitute the ozone-depleting chlorofluoro-
carbons (CFCs) and hydrochlorofluorocarbons (HCFCs) previously
applied. However, HFCs are still powerful greenhouse gases. At
present, a new class of related compounds, the hydrofluoroolefins
(HFOs), with very low global warming potential (GWP), are gaining
market share as a strategy for climate change mitigation [2]. As a
result, commercial refrigerant blends are transitioning from HFC-
only to low-GWP HFC/HFO mixtures containing mainly the HFCs
R-32 (difluoromethane) and R-134a (1,1,1,2-tetrafluoroethane),
and the HFOs R-1234yf (2,3,3,3-tetrafluoropropene) and R-
1234ze(E) (trans-1,3,3,3-tetrafluoropropene) [3].

The emissions of HFCs contributed to global greenhouse gas
emissions as 0.73 and 1.1 Gt CO2-eq in 2010 and 2015, respec-
tively, and only a small fraction of the HFCs in waste equipment
are recovered or sent to incineration [4]. New regulations aim to
stop this steady-rise scenario, among which the Kigali Amendment
(2016) to the Montreal Protocol stands out, by defining a schedule
for phasing down the production and consumption of HFCs by 85%
by the late 2040s [5–7]. Thus, apart from the search for new low-
GWP working fluids [8,9], the current context presents the oppor-
tunity of creating new abatement and regeneration technologies to
recover and purify the HFCs from waste refrigerant mixtures,
allowing their reuse in the formulation of the new HFC/HFO
blends. Additionally, some mid-GWP HFC/HFO blends will only
be used in the interim between emission reduction steps in inter-
national F-gas regulations, so recovering the HFOs to reuse them in
low-GWP blends is of the utmost interest [10].

Different technologies have been proposed to perform the
recovery of refrigerants from mixtures that usually exhibit azeo-
tropic or near-azeotropic behavior [10]. These are, namely, mem-
brane separation [11–15], adsorption on porous materials [16–
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18], and absorption-based extractive distillation processes [19–
21], in which ionic liquids (ILs) have attracted the most attention
as entrainers. ILs are compounds preferentially composed of bulky
organic ions that are liquid near room temperature [22] and exhi-
bit unique properties, namely, nonvolatility, nonflammability,
existence in liquid state over a wide range of temperatures, chem-
ical and thermal stability, and ability to solubilize both polar and
nonpolar compounds [23]. In particular, the high solubility of HFCs
in ILs is related to hydrogen bonding and polar interactions
between the solute and solvent molecules in the liquid mixture,
and to favorable entropic effects in ILs featuring large free volume
[24].

For developing F-gas reclamation processes, ILs need to be
tested to find those that preferentially absorb some refrigerants
over others, providing high solubility selectivity. In this regard,
imidazolium ILs with thiocyanate and dicyanamide anions
[23,25], as well as the combination of these anions with pyri-
dinium cations [26], have shown high solubility selectivity for
key F-gas separations, which can be related to the small molar vol-
ume and no fluorination of the anions [10]. In addition, the favor-
able solubility of HFCs and HFOs in ILs is encouraging the design of
more energy efficient absorption refrigeration systems, in which
the gas compressor is substituted by an absorber and a desorber
[27]. In this field, the interest lies in finding low-viscosity ILs cap-
able of dissolving large quantities of refrigerant gases of low-GWP
so as to reduce the amount of solvent used and minimize the
pumping costs.

In any case, knowledge on the vapor-liquid equilibrium (VLE) at
several temperatures and pressures is crucial for the development
of both applications. However, the experimental VLE determina-
tion is expensive and time-consuming and there are so many dif-
ferent fluorinated refrigerants, and even more possible ILs, that
testing all the combinations becomes an unattainable goal. For this
reason, developing a screening tool that allows the user to test the
solubility behavior of F-gases in different ILs has a great interest,
including systems for which there are not experimental informa-
tion available [26].

In this sense, artificial intelligence approaches have shown
excellent prediction capability in the field of chemical and process
engineering, including their use in the design of new more sustain-
able refrigerants (HFCs, HFOs, and HCFOs) [28]. Machine learning
are superior versus classical data analysis techniques in two main
aspects, data classification and prediction; consequently, their pre-
dictive ability is being investigated in depth in ILs research [29].
For example, an Artificial Neural Network (ANN) and a
Supported-Vector Machine (SVM) were trained to predict the vis-
cosity of ILs using 1079 experimental data points from 45 ILs
[30], and the melting point of ILs was predicted using a SVM
trained using 22268 data points of 2068 ILs [31]. Some studies also
developed machine learning methods to predict the solubility in
ILs of CO2 [32–36] and H2S [36–38], where ANNs showed improved
prediction accuracy compared to cubic equations of state. In the
field of refrigerant gases, previous attempts of developing ANNs
to predict their solubility in ILs are limited to the works of Faúndez
et al. [39], who used 254 data points of the solubility of the R-32
refrigerant in different ILs to train an ANN, and later extended
the database to 642 data points to include one- and two-carbons
HFCs [40]. However, training machine learning tools is not
straightforward and requires strategies to overcome the difficulty
in finding a global minimum, avoid overfitting and obtain a mean-
ingfully predictive model [41]. As it will be detailed in section 2,
several approaches are applied in this work to overcome these
shortcomings, namely, applying multi-start initialization, using
early-stopping methods to avoid overfitting, and using a large
dataset as input for the training.
2

In this work, we use the recently published UC-RAIL database
containing over 4000 solubility data of 24 fluorinated refrigerant
gases (F-gases) in 52 ILs [10] to train an ANN to predict the molar
fraction of F-gas absorbed from pure component data, namely, crit-
ical properties and vapor pressure of the gas, molecular weights
and number of fluorine atoms of the gas and the IL, and IL density.
We have trained the ANN with different F-gas families that include
HFCs, HFOs, hydrochlorofluoroolefins (HCFOs), CFCs, HCFCs, and
perfluorocarbons (PFCs). Furthermore, the trained ANN has been
used to predict recently published VLE data that were not included
in the UC-RAIL database. The ANN also describes the phase behav-
ior at several pressures and temperatures. The developed tool will
be useful in the initial stages of F-gas capture processes to make
fast screenings of several ILs.

2. Methodology

2.1. Dataset

The VLE data recently compiled in the UC-RAIL database were
used for developing the ANN to predict the solubility of fluorinated
refrigerant gases in ILs [10]. This database contains experimental
data for the solubility of 24 F-gases in 52 ILs that were randomly
divided in training, validation, and test sets in the proportion
70/15/15. Out of the 4444 experimental data points available, 1%
of the information (48 points) was removed. These points corre-
spond to the solubility of fluorobutenes in ILs, for which there
are not enough data available to make a meaningful network train-
ing, and to F-gas/IL systems that deal with the solubility of R-134a
in [C2mim][Ac] and R-125 in [C2mim][Ac], [C4mim][Ac], and
[C6mim][Cl]. The latter four systems could not be predicted accu-
rately, even if they were purposely included in the training set. This
can be considered a new proof of the unexpectedly strong interac-
tions found between carboxylate and chloride anions with R-134a
and R-125 gases [42,43]. As reported by Morais et al. [42], these
interactions could be of chemical nature, like those of CO2 absorp-
tion [44]. The list of IL cations and anions and F-gases considered in
this work is presented in Table 1.

2.2. Artificial neural networks

An ANN is formed by processing units called neurons that are
organized in layers [45]. The first layer of the network is the input
layer, through which the input data is fed to the ANN. The input
data provides useful and relevant information, the so-called fea-
tures, to the network. These features are then fed to the hidden lay-
ers, where they undergo a series of transformations. Next, the
information is sent from the last hidden layer to the output layer,
which provides the results [46,47]. Each of the hidden layers com-
municates with their adjacent layers, this is, the ones that are
immediately before and after. To that end, each neuron j in layer
i receives k inputs (ui�1;k) from the previous layer (k is the number
of neurons in the previous layer), multiplies them by their corre-
sponding weights (wijk) and adds the bias (bij):

yij ¼ bij þ
X

k
wijkui�1;k ð1Þ

The calculated value of each neuron (yij), normalized with a
transfer function, represents the input to the neurons of the next
layer. In this work, we have used the hyperbolic tangent sigmoid
function (tansig) to normalize the neuron output [48]:

uij ¼ 2
1þ exp �2yij

� �� 1 ð2Þ

where uij is the normalized neuron output which will be used as an
input for the following layer.



Table 1
List of IL cations and anions and F-gases included in the UC-RAIL database.

Ionic Liquids

Cation Cation name Anion Anion name

[C2mim]+ 1-ethyl-3-methylimidazolium [Ac]- acetate
[C4mim]+ 1-butyl-3-methylimidazolium [BEI]- bis(pentafluoroethylsulfonyl)imide
[C6mim]+ 1-hexyl-3-methylimidazolium [BF4]- tetrafluoroborate
[C7mim]+ 1-heptyl-3-methylimidazolium [Cl]- chloride
[C8mim]+ 3-octyl-1-methylimidazolium [Et2PO4]- diethylphosphate
[(C8)2im]+ 1,3-dioctylimidazolium [FEP]- tris(pentafluoroethyl)trifluorophosphate
[C8H4F13mim]+ 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-

methylimidazolium
[FS]- 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-

tetrafluoroethanesulfonate
[HFPS]- 1,1,2,3,3,3-hexafluoropropanesulfonate

[C12mim]+ 1-dodecyl-3-methylimidazolium [I]- iodide
[(C1)2C3im]+ 1,2-dimethyl-3-propylimidazolium [MeSO4]- methylsulfate

[OTf]- trifluoromethanesulfonate
[C2mpy]+ 1-ethyl-3-methylpyridinium [Pe]- pentanoate
[C3mpy]+ 3-methyl-1-propylpyridinium [PF6]- hexafluorophosphate
[C4mpy]+ 1-butyl-3-methylpyridinium [Pr]- propionate
[P4441]+ tributyl(methyl)phosphonium [PFBS]- perfluorobutanesulfonate
[P4442]+ tributyl(ethyl)phosphonium [PFP]- perfluoropentanoate
[P44414]+ tributyl(tetradecyl)phosphonium [SCN]- thiocyanate
[P66614]+ trihexyl(tetradecyl)phosphonium [Tf2N]- bis(trifluoromethylsulfonyl)imide
[m-2-HEA]+ N-methyl-2-hydroxyethylammonium [TFES]- 1,1,2,2-tetrafluoroethanesulfonate

[TMeM]- tris(trifluoromethylsulfonyl)methide
[TMPP]- bis(2,4,4-trimethylpentyl)phosphinate
[TPES]- 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate
[TTES]- 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate

Fluorinated refrigerants

HFCs Chemical name HFOs/
HCFOS

Chemical name

R-41 fluoromethane R-1234yf 2,3,3,3-tetrafluoropropene
R-32 difluoromethane R-1234ze(E) trans-1,3,3,3-tetrafluoropropene
R-23 trifluoromethane R-1233zd(E) trans-1-chloro-3,3,3-trifluoropropene
R-161 fluoroethane R-1243zf 3,3,3-trifluoropropene
R-152a 1,1-difluoroethane PFCs Chemical name
R-143a 1,1,1-trifluoroethane R-14 tetrafluoromethane
R-134 1,1,2,2-tetrafluoroethane R-116 hexafluoroethane
R-134a 1,1,1,2-tetrafluoroethane R-218 octafluoropropane
R-125 pentafluoroethane Phased out Chemical name
R-245fa 1,1,1,3,3-pentafluoropropane R-114 1,2-dichloro-1,1,2,2-tetrafluoroethane
R-236fa 1,1,1,3,3,3-hexafluoropropane R-114a 1,1-dichloro-1,2,2,2-tetrafluoroethane
R-227ea 1,1,1,2,3,3,3-heptafluoropropane R-124 2-chloro-1,1,1,2-tetrafluoroethane

R-124a 2-chloro-1,1,2,2-tetrafluoroethane
R-22 chlorodifluoromethane
R-22B1 bromodifluoromethane
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After the last hidden layer, the normalized outputs are multi-
plied by the output layer weights and summed using the purelin
function [48]. A developed explanation of the ANN calculation
can be found in the Supplementary Material.

To develop the ANN, all the weights, wijk, and biases, bij, are
parametrized for every neuron in every layer. Unfortunately, there
is not an explicit rule that determines the number of hidden layers
or the number of neurons in each layer, so they must be selected by
trial and error [39]. In this work, we focused in three-hidden-layers
structures containing between 1 and 10 neurons in each layer. This
decision was made after checking that the structures containing
only one or two hidden layers resulted in much worse perfor-
mances. For each possible combination, 50 different networks
were trained to overcome the main shortcoming of the ANN
regarding initialization and only the best one was kept. The train-
ing was made using the Neural Network Toolbox of MATLAB
R2021a software using the BFGS Quasi-Newton training function
(trainbfg). The maximum number of epochs was set to 10000, but
the maximum number of fails was kept at 50 to avoid overfitting,
so that the final network was only trained for 1544 epochs.

We used the average absolute relative deviation (AARD) as the
performance function, Eq. (3), because minimizing the AARD
allowed the accurate prediction of the solubility of low-sorbing
3

gases, while it also provided low absolute errors for the prediction
of highly soluble gases. However, the root mean square error
(RMSE) and mean absolute error (MAE) were also evaluated as per-
formance indicators of the ANN.

AARD ¼ 100
N

P
i
xcalc;i�xexp;i

xexp;i

���
���

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i xcalc;i � xexp;i
� �2q

MAE ¼ 1
N

P
i xcalc;i � xexp;i
�� ��

ð3Þ
3. Results

3.1. Feature selection

The ANN was trained to predict the solubility of F-gases in ILs as
a function of the equilibrium temperature and pressure using
easily accessible and well-known properties of the pure solvents
and solutes. The properties used to describe the IL solvents are
the molar mass of the cation and the anion (Mcat and Man), the IL
molar volume (VmIL), and the number of fluorine atoms in the IL
(Fat;IL). The selection of these properties was based on our previous
review on the topic [10], where we showed that all of them had a
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relevant effect on the solubility of F-gases in ILs. For the F-gases,
we used as features the critical properties of pressure, tempera-
ture, and volume (Tc , Pc , and Vc), the acentric factor (x), the vapor
pressure (Pvap), the molar mass (Mgas), and the number of fluorine
atoms (Fat;gas). The thermophysical properties database and equa-
tions of state library Coolprop 6.4.0 [49] was used to calculate
the vapor pressures of all the compounds available and the rest
were calculated using the correlations available in the book by Pol-
ing and Prausnitz [50]. The input properties for each IL and F-gas
are compiled in the Supplementary Material.

Fig. 1a presents the correlation coefficients of the selected input
variables with the molar fraction of gas absorbed (x). The numeric
values of the correlation coefficients as well as the regression lines
and individual histograms for the variables are presented in Fig-
ure S1 in the Supplementary Information. As can be observed,
the correlation coefficient between each descriptor and the solubil-
ity (x), that can be read in the bottom line of Fig. 1a, are lower than
±0.25, except for the equilibrium temperature, T , and the refriger-
ant critical pressure, Pc . These moderate correlation coefficients
indicate that all of them should have a very similar importance
Fig. 1. (a) Pearson correlation coefficients between the input variables and the
output variable (x, molar fraction of gas absorbed in the IL). The color code and the
point size are related to the magnitude of the correlation coefficient according to
the scale of the right-hand side of the y-axis. (b) Fractional variance of the ILs and F-
gases descriptors presented as percentage of the total variance of the input
variables.

4

on the solubility prediction. Among the IL features, the anion molar
mass, Man, presents the best correlation to the solubility (x) with a
correlation coefficient of 0.23. Additionally, Fig. 1a also provides
information regarding the positive or negative correlation between
the descriptor variables. For instance, the molar mass of the gas
ðMgasÞ, is positively correlated with its critical molar volume (Vc),
and degree of fluorination (Fat;gas), as the most fluorinated gases
are bigger and have higher molar mass than those hydrofluorocar-
bon gases with more hydrogen atoms than fluorine atoms bonded
to the carbon chain. In addition, it is possible to infer whether there
is a significant contribution of one input variable on the prediction
of the output variable by assessing its fractional variance, which is
calculated as the variance of each variable over the cumulative
variance of all the input variables [51]. Thus, Fig. 1b shows the frac-
tional variance of each of the descriptors of the ILs and F-gases,
which ranges between 5 and 15% of the total cumulative variance
in all cases. Therefore, we can infer that all the input variables have
a similar importance in the prediction of F-gas solubility a priori.

3.2. Neural network training and performance

The ANNs were trained following the methodology described in
section 2.2. The considered structures consisted of three-layer net-
works with 1 to 10 neurons in each layer (103 possible combina-
tions), and 50 networks were trained for each structure, given a
total number of trained networks equal to 50000. Fig. 2 shows
the overall AARD of the best ANN out of each 50 ANNs trained with
the same structure. As can be seen, increasing the number of neu-
rons in the first and third layers reduces the AARD significantly,
while the number of neurons in the second layer has a lower effect
on the performance function.

The final structure of the ANN was selected in a point where
increasing the number of neurons did not improve the perfor-
mance significantly. Although it is possible to further reduce the
AARD of the ANN, it may incur in overfitting derived from using
too many parameters. The resulting ANN has a structure of 10, 4,
and 5 neurons in the first, second, and third layer, respectively.
Observing Fig. 2, it can be seen that increasing the number of neu-
rons in the first layer has an important effect on the resulting
AARD, so using the maximum limit of neurons allowed in this layer
was expected. For the second and third layers, the AARD surface
flattens, so there is no significant advantage in using more than 4
and 5 neurons, respectively, to obtain accurate results. Table 2
shows the performance indicators for the test set using this net-
Fig. 2. Minimum AARD achieved for different number of neurons in each of the
three layers of the ANN.



Table 2
Performance indicators for the neural network trained to predict the solubility of F-gases in ILs.

Indicator Database Train set Validation set Test set

AARD/% 10.93 10.39 10.98 13.41
MAE 0.014 0.014 0.014 0.015
RMSE 0.028 0.028 0.026 0.028
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work. As expected, minimizing the AARD performance function
was a useful strategy to obtain errors below 15% for the train, val-
idation, and test sets and achieve an overall AARD of 10.93%, while
the MAE and RMSE are very low and kept almost constant for every
set. The comparison between experimental and ANN solubilities is
shown in Fig. 3, showing that most of the data can be well repro-
duced using the developed model.

An analysis a posteriori of the influence of the variables on the
output provides meaningful insights of the systems subject to
study. To that end, we present here an analysis performed using
the Partial Derivatives (PaD) method, as it was found to be the
most useful approach to study the contribution of the inputs to
the ANN output [52]. As its name indicates, the PaD method con-
sists in calculating the partial derivatives of the output with
respect to the input variables. The resulting relative contribution
(%) of each input on the F-gas solubility is presented in Fig. 4.
Moreover, this method yields a set of graphs that enables direct
access to the influence of the input variable on the output, which
are presented in Figures S2 (relating the derivatives to their corre-
sponding input) and Figure S3 (relating the derivatives to the
resulting molar fraction of absorbed gas in the IL solvent) in the
Supplementary Information. Figure S2 and S3 show that the
derivatives with respect to every variable take both positive and
negative values where linear relationships between the derivatives
and the molar fraction can be seen, although they are fuzzy, and no
obvious trends can be inferred.
Fig. 3. Comparison between the experimental and ANN

5

Fig. 4 shows that the critical temperature of the gas is the input
variable having the highest impact (61.2%) on the calculated
absorbed gas molar fraction. This result reinforces the importance
of the empirical trend found in previous works pointing to the
strong relationship observed between the Henry’s law constants
for the absorption of different F-gases in a certain IL and the critical
temperature of the F-gas being absorbed [10,53]. The following
two variables in order of importance are also gas-related proper-
ties: the critical volume and the number of fluorine atoms. The rel-
evance of the critical volume of the gas (13.3%) shows that the size
of the solute is a determining factor in the prediction of the solubil-
ity, i.e., the lower the critical volume, the higher the solubility (for
that reason, in Figures S2 and S3, the derivative of the output with
respect to critical volume is mostly negative). Similarly, there is an
important contribution (6.4%) of the number of fluorine atoms of
the gas molecule (Fig. 4) that indicates that it is a relevant descrip-
tor for the prediction of the molar fraction of F-gas absorbed in ILs.
Interestingly, the relative contribution of the critical pressure
(3.7%) only represents the fourth most important gas feature,
whereas this property exhibited one of the highest correlation
coefficients to the solubility and was ranked as the gas feature with
the highest importance in Fig. 1. This fact clearly shows that an
analysis of the correlation coefficients is not enough to infer the
influence of the input variables on the ANN output, and highlights
the importance of evaluating the relative contribution of each
input variable after obtaining the parameters of the final ANN.
solubilities for the training, validation and test sets.



Fig. 4. Contribution of the input variables to the F-gas solubility in ILs for the three-layer 10-4-5 ANN calculated with the PaD method.
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Regarding the IL features, the two properties with the highest
importance are the cation molar mass (4.7%) and the IL molar vol-
ume (4.4%). This result also confirms our previous analysis of the F-
gas solubility using the Regular Solution Theory [10], according to
which the ILs with lower molar volume have lower absorption
capacities towards F-gases. The rest of the variables related to
the IL properties do not have strong contributions on the F-gas sol-
ubility, as shown in Fig. 4.

Future extensions of this ANN to expand its domain of applica-
tion should consider mainly the gas critical properties and the
number of fluorine atoms in the gas molecule, as well as the IL
molar mass and volume. A successful extension should also include
properties related to polarity. For example, including the dipole
moment of the gases could be beneficial to allow the ANN to distin-
guish the behavior of F-gases from apolar molecules like hydrocar-
bons. However, including information on the polarity of the ILs
would be more difficult, as IL solvents are segregated in polar
and apolar domains [54,55]. Maybe using solvatochromic proper-
ties like the Kamlet-Taft parameters would help in this regard as
they describe the dipolarity/polarizability, and hydrogen bond
acidity and basicity [56], but currently there are not enough data
available to cover all the ILs considered in this database. Addition-
ally, molecular modeling and machine learning can be modeled by
using advanced molecular models and equations of state to gener-
ate descriptors of the molecules to be fed to the machine learning
algorithms [8,28]. For example, the newly proposed quantum
chemical parameters referred to as ionic polarity index could be
applied to describe IL polarity based on the ion charge and average
surface potential [57].

Fig. 5 presents the performance of the ANN to predict the solu-
bility in ILs of each of the 24 F–gases included in the network train-
ing in terms of both the AARD and MAE. The F-gases in Fig. 5 are
grouped in four families: first, the gases that cannot be used in cur-
rent equipment because they were phased out, second, the PFCs,
used in ultra-low temperature applications and characterized
because they do not contain hydrogen atoms, third, the HFCs that
are currently predominant in installed RAC equipment, and last,
the HFOs that are now entering the RAC market. As can be seen,
the ANN results are accurate for predicting the solubility in ILs of
6

the HFCs R-32, R-134a, and the HFOs R-1234yf, and R-1234ze(E),
the most extended gases in current refrigerant mixtures, with
AARD < 10% except for R-134a, for which the ARRD is 12%. Also,
the HCFC R-22, that is present in end-of-life RAC equipment, is pre-
dicted accurately by the ANN. The high error observed in the pre-
diction of R-23 and R-41 solubilities may be due to the fact that
these F-gases are the only ones studied with ammonium-based
ILs that contain carboxylate anions. As mentioned earlier, carboxy-
late anions are suspected to have strong polar interactions with R-
134a and R-125, and they may be interacting with R-41 and R-23
too, but there is not enough empirical information available in this
regard. The training of an enhanced predictive model would need
expanding the dataset to include more examples of these ILs and
studying the nature of the interaction between them and F-gases.
With respect to R-125, a low sorbing gas, the prediction is good
despite the high AARD value observed. This value is related to
some experimental points with very low solubility of this gas, so
that the relative error is magnified as a result of dividing by
near-zero values. In the case of R-125, the good performance of
the ANN is depicted by the MAE, which is only 0.020, very similar
to the MAE of the calculated solubilities of a highly soluble gas like
R-32.
3.3. Predictive capabilities

To show the predictive capabilities of the ANN, we present in
this section the VLE of several F-gas/IL systems that were not
included the UC-RAIL database as they have been recently pub-
lished. Therefore, these data were not used for training the ANN.
These data correspond mostly to HFOs, which are the new com-
pounds of the fourth generation of refrigerants whose use is stea-
dily increasing in the formulation of new refrigerant blends with
the objective of reducing the impact of the RAC sector in the global
warming. Table 3 shows that the network is predicting accurately
the absorption of R-134a and R-1234ze(E), while it shows higher
deviations for R-1233zd(E), for which the available dataset is small.
Remarkably, the influence of the principal operation variables,
temperature and pressure, are well predicted. This fact is of partic-
ular relevance for the usefulness of the ANNmodel, as temperature



Fig. 5. AARD and MAE of the ANN as a function of the F-gas considered.

Table 3
VLE prediction of systems not included in the database. Experimental data from [58–
61].

Gas + IL AARD/% MAE RMSE

R-134a + [C4mim][Tf2N] 13.25 0.030 0.038
R-1234ze(E) + [P66614][Cl] 10.73 0.050 0.056
R-1233zd(E) + [P66614][Cl] 29.97 0.076 0.108
R-1243zf + [C4mim][Ac] 8.49 0.007 0.009
R-1243zf + [C4mim][OTf] 18.63 0.027 0.035
R-1243zf + [C4mim][PF6] 4.93 0.006 0.012
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and pressure are relevant variables during the process design pro-
cedures. In fact, the chloride anion of the IL increases its solubility
as mentioned in section 2.1, which results in the underprediction
of the ANN. Very interestingly, the ANN predicts very accurately
the solubility of R-1243zf in [C4mim][Ac], [C4mim][OTf], and
[C4mim][PF6], in an ample temperature range from 283 to 343 K,
as shown in Fig. 6 and Figure S4. R-1243zf is an HFO that had
not been previously studied, and therefore completely unknown
to the ANN, combined in the case of Fig. 6 with an IL that contains
the carboxylate group. Considering the low deviation between the
experimental data and predicted VLE results, the ANN proves a
useful in silico tool to infer solubility differences between F-gases
in a certain IL, thus avoiding time-consuming experimental work
for the selection of task-specific ILs.

These highly accurate predictions show that the developed ANN
can be reliably integrated in process design. This ANN can provide
the solubility of F-gases in ILs, which can then be used to calculate
Henry’s law constants and ideal selectivity values for separations
based in solubility differences. Furthermore, it can be included in
the process design of extractive distillation columns and of new
absorption refrigeration cycles where the VLE of the mixtures in
the process can be calculated with this matrix multiplication pro-
cedure, easier to converge than the activity-coefficient models like
NRTL.
Fig. 6. Comparison between the experimental data (symbols) from references
[59,60] and the ANN predictions (lines) for the systems (a) R-1234ze(E) + [P66614]
[Cl], and (b) R-1243zf + [C4mim][Ac].
3.4. Network parameters and easy-to-use tool

With the aim of facilitating the widespread use of the ANN pre-
sented in this work, we provide as Supplementary Material a
spreadsheet containing all the ANN parameters and a calculator
of F-gas solubility in ILs that implements the ANN (Fig. 7). The user
simply needs to provide the 13 input parameters and the software
will automatically calculate the F-gas solubility predicted by the
ANN. In case the user wants to predict whole isotherms or many
systems at the same time, the parameters are available in the same
excel file and the formulas can be seen, so that the calculation can
be easily replicated. With this, we hope to improve the user expe-
rience and favor the widespread use of the results of this article as
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an effective prescreening method for the abatement of high-GWP
fluorinated gases using ionic liquids.
4. Conclusions

The UC-RAIL database has been used to prepare a predictive tool
for the prescreening of ionic liquids for the absorption of fluori-
nated refrigerant gases. This tool is based on the use of an ANN that



Fig. 7. Implementation of the ANN to predict the F-gas solubility in ILs.
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is fed with easily accessible pure compound properties of the sol-
vent and solute, as well as the VLE equilibrium conditions. A total
of 4396 experimental VLE points for the solubility of 24 F-gases in
52 ILs were randomly divided in training, validation, and test sets
in the proportion 70/15/15 to train 50000 three-hidden-layer
ANNs varying the number of neurons on each layer. Out of all
the trained networks, an ANN with 10, 4, and 5 neurons in each
layer was selected due to its satisfying accuracy and good predic-
tive properties, with an overall AARD of 10.93%, and low values
for the MAE and RMSE (0.014 and 0.028, respectively). Using the
AARD as the objective function made possible obtaining good pre-
dictions for both high- and low-soluble refrigerant gases. Also, the
relative importance of the selected inputs in the final predicted
molar fraction value was evaluated, showing that the critical tem-
perature and volume and the number of fluorine atoms of the gas
have the highest contributions, followed by the IL molar volume
and cation molar mass. Further refinements of this ANN to predict
not only the solubility of fluorinated refrigerant gases, but also
other compounds such as hydrocarbons should include informa-
tion on the polarity of the solutes and solvents to improve the
information introduced to the network and be able to distinguish
between solute families. Nevertheless, for the purpose of fluori-
nated refrigerant gases, the ANN proposed in this contribution is
very reliable and highly useful, as we have demonstrated predict-
ing the vapor-liquid equilibrium of systems that are not present
in the UC-RAIL database, including the gas R-1243zf, which was
not present in the training whatsoever.

To facilitate the use of this ANN screening tool, we provide as
Supplementary Material an easy-to-use datasheet to predict the
solubility of new systems that can be applied to the design of novel
separation processes aimed at the recovery of fluorinated refriger-
ants, with the final double purpose of increasing the share of
reclaimed refrigerants in RAC equipment and contributing to the
development of climate change mitigation technologies, by avoid-
ing the release to the atmosphere of high global warming potential
fluorinated gases.
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