


1 Introduction

1.1. Motivation. In this paper, we study the model problem on a periodicity cell coming from

the Floquet–Bloch theory [1]–[4] in the analysis of the spectrum of a periodically perforated

waveguide (cf. Figure 1). Eigenvalues of the model problem depending on the Floquet parameter

η ∈ [−π, π] (the dual variable of the Gelfand transform [5]) determine the location and size of

spectral segments and gap opening between them, i.e., generate the band-gap structure of the

waveguide spectrum. The main (and essentially new) problem appearing in the justification

of asymptotic expansions of eigenvalues of model problems on the periodicity cell is to derive

η-uniform estimates for remainders of asymptotic expansions since only such estimates provide

a competent information about spectral segments. We note that estimates of such a quality are

not necessary in the usual situation of a single spectral problem, but they are required if we

deal with a family of problems parametrized by the Floquet parameter. The known justification

schemes involve elements that, after adaptation to the class of problems under consideration, do

not guarantee the required uniformity. In this paper, we discuss approaches to compensate this

lack.

(a) (b)

Figure 1. Periodic waveguide (a) and its periodicity cell (b).

We study several boundary value problems on the same cell of the simplest shape as in

Figure 1 (b) for which we have different formulations and different proofs of the corresponding

results. In Sections 2 and 3, calculations and arguments are rather simple since they are based

on variational methods, whereas a new rather complicated and laborious analysis including new

ideas and tools is required to study some problems in Section 4. The approaches we propose

can be also applied to other methods of periodic singular perturbations of cylindrical and even

originally periodic waveguides.

1.2. Statement of the problem. Let Ω = {x = (x1, x2) : |x1| < 1/2, |x2| < H} be a

rectangle in the plane R
2. We consider the family of fine holes

ωε
j = {x : ξj := ε−1(x1, x2 − 2Hεj) ∈ ω} ⊂ Ω, j = −N, . . . , N. (1.1)

Here, ω is a domain such that its closure ω = ω ∪ ∂ω is contained in the rectangle � =

(−h, h)× (−H,H), h, H are fixed positive numbers, and ε = (1 + 2N)−1 is a small parameter,

i.e., N is a large natural number. In the perforated cell of a periodic waveguide (cf. Figure 1

(a), (b))

Ωε = Ω \
N⋃

j=−N

ω ε
j , (1.2)

we consider the differential equation

−Δuε(x; η) = λε(η)uε(x; η), x ∈ Ωε, (1.3)

where Δ is the Laplace operator and λε is the spectral parameter. We consider Equation (1.3)
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with the Neumann condition and quasiperiodicity condition on the rectangle sides

∂uε

∂n
(x1,±H; η) := ±∂u

ε

∂x2
(x1,±H; η) = 0, |x1| < 1

2
, (1.4)

∂puε

∂xp1

(
+

1

2
, x2; η

)
= eiη

∂puε

∂xp1

(
− 1

2
, x2; η

)
, |x2| < H, p = 0, 1, (1.5)

where η ∈ [−π, π] is the above-mentioned Floquet parameter caused by applying the Gelfand

transform [5] to the problem in an infinite waveguide as in Figure 1 (a) and ∂n := ∂/∂n is the

normal derivative with respect to the inward normal on the boundaries of the holes (1.1) that are

assumed to be piecewise smooth, consequently, n is the outward normal to the boundary ∂Ωε of

the perforated rectangle. On the contours ∂ωε
−N , . . . , ∂ω

ε
N , we impose the Dirichlet conditions

uε(x; η) = 0, x ∈ ∂ωε :=

N⋃

j=−N

∂ωε
j (1.6)

or the Neumann conditions

∂nu
ε(x; η) = 0, x ∈ ∂ωε. (1.7)

In what follows, we deal with a composite rectangle. Together with Equation (1.3), we also

consider the differential equation

−TΔuεT◦(x; η) = Tλε(η)uεT◦(x; η), x ∈ ωε
j , j = −N, . . . , N, (1.8)

in the holes (1.1) and the transmission conditions on the boundaries of the inclusions

uεT◦(x; η) = uεT�(x; η), T∂nu
ε
T◦(x; η) = ∂nu

ε
T�(x; η), x ∈ ∂ωε

j , j = −N, . . . , N, (1.9)

connecting the restrictions uεT◦ on ωε and uεT� on Ωε of the function uεT defined in Ω and the

normal derivatives of these restrictions. Moreover, T ∈ (0,+∞) is also a parameter of the

problem. We emphasize that, in the particular case T = 1, the singular perturbation vanishes

since the transmission conditions (1.9) are transformed to the continuity conditions, whereas

Equations (1.3) and (1.8) remain unchanged (cf. Remark 1.2). For the sake of brevity we

sometimes omit the subscripts T , η and ◦, �.

The problems (1.3)–(1.6) and (1.3)–(1.5), (1.7) will be denoted by Pε
D(η) and Pε

N (η) re-

spectively, whereas the problem (1.3)–(1.5), (1.8), (1.9) will be mentioned as Problem Pε
T (η).

The variational statement of the last problem is associated with the integral identity

aεT (u
ε
T , ψ; Ω) = λεT b

ε
T (u

ε
T , ψ; Ω), ψ ∈ H1

η (Ω), (1.10)

where H1
η (Ω) is the Sobolev space of functions satisfying the stable (p = 0) quasiperiodicity

condition (1.5). Furthermore, (1.10) involves the bilinear forms

aεT (u
ε
T , ψ; Ω) = (∇xu

ε
T ,∇xψ)Ωε + T (∇xu

ε
T ,∇xψ)ωε ,

bεT (u
ε
T , ψ; Ω) = (uεT , ψ)Ωε + T (uεT , ψ)ωε ,

(1.11)

where ∇ = grad and (·, ·)Ωε denotes the natural (scalar or vector) inner product in the Lebesgue

space L2(Ωε). The variational problem (1.10) will be mentioned as Problem J ε
T (η). The integral
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identities of Problem J ε
M (η) corresponding to Problem Pε

M (η) with M = D and M = N have

the form

(∇uεM ,∇ψε)Ωε = λεM (uεM , ψ
ε)Ωε , ψε ∈ H1

η,M (Ωε). (1.12)

As above, H1
η,N (Ωε) is the Sobolev space of functions satisfying the first (p = 0) quasiperiodicity

condition in (1.5), and functions of the subspace H1
η,D(Ω

ε) ⊂ H1
η,N (Ωε) additionally satisfy the

Dirichlet conditions (1.4) on the boundaries of fine holes.

Remark 1.1. The integral identity of Problem J ε
N (η) can be obtained from Problem J ε

T (η)

as T → +0, but the limit passage to “absolutely rigid” inclusions as T → +∞ does not lead to

Problem J ε
D(η). This situation is discussed in Subsection 5.1.

The left-hand sides of the integral identities (1.10) and (1.12) are positive symmetric and

closed bilinear forms in the spaces H1
η (Ω) and H1

η,N (Ωε), H1
η,D(Ω

ε) respectively. Hence Prob-

lems Pε
T (η) and Pε

N (η), Pε
D(η) are associated (cf. [6, Chapter 10]) with unbounded selfadjoint

positive operators A ε
T (η) and A ε

N (η), A ε
D(η) in Hilbert spaces L2(Ω) and L2(Ωε). By [6, Theo-

rems 10.1.5 and 10.2.2], the spectrum σεM (η) of the operator A ε
M (η) with M = T,N,D forms a

monotone unbounded sequence of eigenvalues

0 � λεM1 � λεM2 � λεM3 � . . . � λεm � · · · → +∞, (1.13)

where the multiplicty is taken into account.

We can assume that the eigenfunctions uεM1, u
ε
M2, u

ε
M3, . . . , u

ε
m, . . . of the problems (1.10)

with M = T and (1.12) with M = N,D respectively satisfy the orthonormality conditions

bεT (u
ε
Mm, u

ε
Mn)Ω = δm,n (1.14)

and

(uεMm, u
ε
Mn)Ωε = δm,n, M = N,D. (1.15)

Here, δm,n is the Kronecker symbol and m,n ∈ N = {1, 2, 3, . . . }. Moreover, λεD1 > 0 and

the operator A ε
D(η) is positive definite. The problem with the Dirichlet conditions is studied in

Section 3, but the most difficult point of the paper appears when we study Problem Pε
T (η) which

is used to pass continuously from Problem Pε
0(η) with the Neumann perforation to Problem

Pε
1(η) on the whole cell.

Remark 1.2. For T = 1 the forms (1.11) become (∇u,∇ψ)Ω and (u, ψ)Ω, i.e., the foreign

inclusions disperse, whereas Problem Pε
T (η) with T = 1, denoted by P(η), loses its dependence

on the small parameter ε. As a result, the eigenpairs {λ(η), u(·; η)} satisfying the differential

equation in the whole rectangle

−Δu(x; η) = λ(η)u(x; η), x ∈ Ω, (1.16)

and the conditions (1.4) and (1.5) on its sides (the superscript ε is not necessary now) take the

explicit form

λp,q(η) =
π2p2

4H2
+ (η + 2πq)2,

up,q(x; η) = cos
( πp
2H

(x2 +H)
)
ei(η+2πq)x1 ,

(1.17)

where p ∈ N0 = N∪{0} and q ∈ Z = {0,±1,±2, . . . }. It is clear that the eigenvalues (1.17) with
two indices should be re-enumerated to obtain a monotone sequence (1.13). The re-enumerated
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eigenpairs are denoted by {λj(η), uj(·; η)} with one index j ∈ N, and the eigenfunctions satisfy

the orthonormality conditions (cf. (1.14) in the case T = 1)

(uj(·; η), uk(·; η))Ω = δj,k, j, k ∈ N. (1.18)

1.3. Two scenarios of obtaining uniform estimates for remainders. Usually, a

scheme for justifying asymptotic expansions of eigenvalues and eigenfunction (eigenvectors) of

singularly perturbed spectral problems consists of three steps. First, formal asymptotic expan-

sion of eigenpairs is constructed. Second, the global asymptotic approximation to the eigenfunc-

tion is obtained when we glue together the external and internal expansions obtained by the

method of matched asymptotic expansions (cf., for example, [7, 8]) or summarize smooth type

solutions with boundary layer type solutions within the framework of the method of composite

asymptotic expansions (cf., for example, [9, 10]). Then it is possible to calculate the residuals

generated by the approximate eigenpair in the singularly perturbed initial problem and, finally,

to apply the lemma about almost eigenvalues and eigenvectors [11] provided by the spectral

representation of the resolvent (cf., for example, [6, Chapter 6]). Thus, at the second step, in a

small neighborhood of the κk(η)-multiple eigenvalue λ0Mk(η) of the limit problem, we can find

the terms

λεMP ε
k (η)

(η), . . . , λεMP ε
k (η)+κk(η)−1(η) (1.19)

of the subsequence of eigenvalues of the initial problem Pε
M (η). It is important that the factor

c(η) in the final estimates

|λεMP ε
k (η)+p(η)− λ0Mk(η)| � ck(η)ε

α0 , p = 0, . . . ,κk(η)− 1, (1.20)

can be made independent of the Floquet parameter η ∈ [η0 − δ0, η0 + δ0] for some α0 ∈ (0, 1]

and η0 ∈ (−π, π], δ0 > 0 (we refer to Subsection 5.2 for details).

It remains to verify that P ε
k (η) = k in the list (1.19), i.e., to realize the third step of the

scheme. Traditionally, for this purpose one uses the so-called convergence theorems establishing

the limit passage as ε → +0 (usually, the spaces in (1.21) should be specified, but it is not

necessary for our goals):

λεMj(η) → λ0MJ(j)(η),

uεMj(·; η) → u0MJ(j)(·; η) weakly in H1 and strongly in L2.
(1.21)

The number J(j) ∈ N of the eigenpair {λ0MJ(j)(η), u
0
MJ(j)(·; η)} of the limit problem is not

specified at this step, but it becomes j after completing proofs of all necessary results. Thus,

owing to formula (1.21) for any j ∈ N and η ∈ [−π, π], it is possible to prove by contradiction

that, in the case ε ∈ (0, εj(η)], there are no “superflous” eigenvalues satisfying (1.20). Therefore,

it is easy to prove that P ε
k (η) = k in the list (1.19) for sufficiently small ε.

We note the brittleness of the third step: we do not know the character of dependence of

εj(η) on j and η. Consequently, it is not clear whether the estimates (1.20) with P ε
k (η) = k are

uniform with respect to the Floquet parameter.

In this paper, we propose two approaches to overcoming the above-mentioned difficulty

arising in the justification of asymptotic expansions of spectral segments

υεMk = {λ = λεMk(η) | η ∈ [−π, π]}, k ∈ N, (1.22)
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generating the spectrum of an infinite waveguide with the periodicity cell (1.2) (cf. Figure 1 (a)).

We emphasize that if estimates for the remainder in the asymptotic expansions of the eigenvalues

λεMk(η) are not uniform with respect to η, then we cannot make any conclusion about geometric

characteristics of the connected compact set υεMk for ε ∈ (0, εMk] even if εMk > 0 is small.

The first approach (cf. Sections 2 and 3) is to somehow use the classical max–min principle

(cf., for example, [6, Theorem 10.2.2]) to prove the inequalities

λ0Mk(η)− c(η)εθ � λεMk(η) � λ0Mk(η) + c(η)εθ, (1.23)

where θ > 0 and

c(η) � cθ, η ∈ [−π, π]. (1.24)

By (1.23) and (1.24), it is easy to show that it is not necessary to use convergence theorems in

the justification scheme and we can verify that P ε
k (η) = k in the list (1.19) for every η (we refer

the reader for details to [12], where this approach is realized for a singularly perturbed cell of

some other shape in the space R
d, d = 3).

According to the second approach, it is not necessary to exclude the above-mentioned con-

vergence theorems from the scheme, but we can ignore the fact that we do not know whether

the convergences (1.21) are uniform by verifying the following assertion: if λ• is not eigenvalue

of the limit problem P0
T (η) for any η ∈ [η• − δ•, η• + δ•], then the point λ• does not belong to

the spectrum (1.13) of Problem Pε
T (η) for ε ∈ (0, ε(η•, δ•)] and ε(η•, δ•) > 0. Thus, the arcs

{λ = λεk(η)
∣∣ η ∈ [η• − δ•, η• + δ•]} of dispersion curves do not intersect the segment

Λ• := {(λ, η) | λ = λ•, η ∈ [η• − δ•, η• + δ•]}. (1.25)

Hence for |η − η•| � δ• the multiplicity of the spectrum σεT (η) on the closed interval [0, λ•] is
constant for all ε ∈ (0, ε(η•, δ•)]. Thus, it becomes indifferent for which value of the parameter

the multiplicity is calculated.

In Subsection 5.2, we present another way to use this fact. Namely, since the eigenvalues

λεTk(η) of Problem Pε
T (η) continuously depend on two parameters T ∈ [0, 1] and η ∈ [η•−δ•, η•+

δ•], the dispersion curves cannot intersect the horizontal segment (1.25), and, consequently, on

the segment [0, λ•], the multiplicity #σ(η) of the spectrum σ(η) of Problem P(η) = Pε
T (η)

∣∣
T=0

on the whole cell Ω coincides with the multiplicity #σεN (η) of the spectrum σεN (η) of Problem

Pε
N (η) = Pε

T (η)
∣∣
T=0

on the cell with the Neumann perforation. Thus, the asymptotics of

the spectral segments (1.22) is justified without convergence theorems since the lemma about

almost eigenvalues and eigenvectors asserts that there are at least #σ(η) eigenvalues (1.19) of

the problem (1.3)–(1.5), (1.7) on [0, λ•]. By the aforesaid, the number of eigenvalues is equal

to #σ(η).

1.4. Structure of the paper. In Section 2, we use the max–min principle to obtain the

right inequality in (1.23) for the eigenvalues of Problem Pε
T (η); here, we use rather elementary

calculations. This method does not provide the required result completely, but we can slightly

modify Equation (1.8) (cf. Subsection 2.2), and then use the same principle to obtain the left

inequality in (1.23) for T > 1. Unfortunately, the modified problem is useless to study Problem

Pε
N (η) (cf. Remark 5.1).

In Section 3, we study Problem Pε
D(η). Owing to the Dirichlet conditions on the hole

boundaries, we can derive weighted estimates (Lemma 3.1 and Proposition 3.1). Based on these

estimates, we use the max–min principle to prove (1.23) completely. In a sense, the problem

6



with the conditions (1.6) is simpler than other problems. In Subsection 5.3, we show that the

second approach is also applicable to obtain uniform estimates for remainders of asymptotic

expansions.

Section 4 represents a technically difficult result. We show how the second approach is

realized by considering Problem Pε
N (η). To establish the unique solvability of Problem Pε

T (η)

with parameters λ = λ• and η ∈ [η• − δ•, η• + δ•], we construct almost inverse operators for

the operators Aε
T (λ•; η) of the family of problems. We first use the trick [13] of smoothing the

right-hand side of the singularly perturbed problem and then, in fact, repeat the procedure for

constructing asymptotics for the solutions and estimate the appeared small residuals.

The proposed method for verifying whether there are eigenvalues on the segment (1.25) can

be also used in other approaches to the study of singular perturbations of periodicity cells.

Therefore, we mention some works dealing with differential equations with strongly contrast

coefficients [14]–[17], the case where the periodicity cells split in limit [18]–[21], the case of thin

domains [22]–[25], and the case of regular and singular perturbations of boundaries [26]–[28].

In Section 5, we describe the second approach by considering Problems Pε
T (η), T ∈ [0, 1],

and Pε
D(η). This section also contains auxiliary results used in this paper.

2 Max–Min Principle

2.1. Problem Pε
T (η). By [6, Theorem 10.2.2], the term numbered by k ∈ N in the

subsequence (1.14)T is expressed by

λεTk(η) = max
E k
T (η)

inf
uε∈E k

T (η)\{0}
aεT (u

ε, uε; Ω)

bεT (u
ε, uε; Ω)

, (2.1)

where we have the bilinear forms (1.11) and E k
T (η) is any subspace of the space H1

η (Ω) of

codimension k − 1, in particular, E 1
T (η) = H1

η (Ω).

We denote by L k(η) the linear span of the eigenfunctions u1(·; η), . . . , uk(·; η) of the problem
(1.16), (1.4), (1.5) (cf. Remark 1.2). Since dimL k(η) = k, the intersection E k

T (η) ∩ L k(η) is

not empty: it contains a nontrivial linear combination

U E k
T (η)(x; η) =

k∑

j=1

α
E k
T (η)

j uj(x; η), (2.2)

where
k∑

j=1
|αE k

T (η)
j |2 = 1. By (1.18), (2.1), (2.2),

λεTk(η) � max
E k
T (η)

aεT (U
E k
T (η),U E k

T (η); Ω)

bεT (U
E k
T (η),U E k

T (η); Ω)
. (2.3)

In what follows, we omit the superscript E k
T (η) in the notation. Since

|aεT (U ,U ; Ω)− (∇U ,∇U )Ω| = |T − 1|(∇U ,∇U )ωε � ck|T − 1|mes 2ω
ε, (2.4)

where mes 2ω
ε = (1+2N)ε2mes 2ω = O(ε) and mes 2ω is the area of ω, we see that the majorant

in (2.4) does not exceed Ck|T −1|ε; moreover, Ck is independent of k and can be taken the same
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for all η ∈ [−π, π]. Thus,
|aεT (U ,U ; Ω)− (∇U ,∇U )Ω| � Ck|T − 1|ε,
|bεT (U ,U ; Ω)− (U ,U )Ω| � Ck|T − 1|ε,

(2.5)

and

(∇U ,∇U )Ω =
k∑

j=1

λj(η)|αj |2 � λk(η),

(U ,U )Ω =
k∑

j=1

|αj |2 = 1

(2.6)

since λj(η) � λk(η), j = 1, . . . , k. Thus, from (2.3)–(2.6) we obtain the following assertion.

Proposition 2.1. The eigenvalues (1.13) of Problem Pε
T (η) satisfy the estimate

λεk(η) � λk(η) + Ck|T − 1|ε, (2.7)

where k ∈ N, λk(η) are the eigenvalues of the limit problem P(η) (cf. Remark 1.2) and Ck are

independent of η ∈ [−π, π] and T � 0.

The case T = 0 corresponding to Problem Pε
N (η) with the Neumann condition (cf. Remark

1.2 and Subsection 5.1) is covered by Proposition 2.1 because no essential modifications are

required to verify formula (2.7) in this case. As shown in Subsection 3.3, the eigenvalues of

Problem Pε
D(η) with the Dirichlet conditions satisfy an equality similar to (2.7).

2.2. The modified problem Pε
T (η). Unfortunately, the max–min principle does not yield

immediately the left inequality in (1.23) for the eigenvalues of Problem Pε
T (η). We discuss one

problem to which this approach is applicable by using elementary calculations. Namely, for

T > 1 we replace Equation (1.8) with the following:

−TΔuε�T (x; η) = λε�T (η)u
ε�
T (x; η), x ∈ ωε

j , j = −N, . . . , N. (2.8)

In other words, we eliminate T from the right-hand sides of the differential equations (1.8), and

thereby the “material density” of the cell Ω becomes constant. We assign the symbol � denot-

ing this operation to ingredients of the relations (1.3)–(1.5), (1.9) generating Problem Pε�
T (η).

The eigenvalues of this problem are denoted by λε�T j(η). We assume that the corresponding

eigenfunctions uε�T j(·; η) satisfy the orthonormality conditions (1.18).

We apply the max–min principle to the operator A (η) of Problem P(η) = Pε
T (η)

∣∣
T=1

,

consisting of Equations (1.16), (1.4), (1.5) without the parameter ε and make the required

changes in formula (2.1). The linear span L ε�
k (η) of the eigenfunctions uε�T1(·; η), . . . , uε�Tk(·; η)

of Problem Pε�
T (η) intersects each subspace ENk(η) in the max–min principle, whereas the

intersection of these sets contains the following linear combination similar to (2.2):

U �(x; η) =

k∑

j=1

α�
j(η)u

ε�
j (·; η).

Since ‖U �(·; η);L2(Ω)‖ = 1 in view of (1.18) and the second identity in (2.2), we have

λk(η) � max
ENk(η)

(∇U �(·; η),∇U �(·; η))Ω
(U �(·; η),U �(·; η))Ω
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= max
ENk(η)

(aεT (U
�(·; η),U �(·; η); Ω)− (T − 1)‖∇U �(·; η);L2(Ω)‖2) � λε�Tk(η). (2.9)

Proposition 2.2. If T > 1, then the eigenvalues of the problems (1.3)–(1.5), (2.8), (1.9)

and (1.16), (1.4), (1.5) are connected by

λk(η) � λε�Tk(η) � λk(η) + C�
k(T − 1)ε, (2.10)

where C�
k is independent of the Floquet parameter η ∈ [−π, π] and small parameter ε ∈ (0, ε�Tk)

with some ε�Tk > 0.

Proof. It suffices to note that the transformations providing Proposition 2.1 can be also

used for the Rayleigh fraction in the max–min principle

λε�Tk(η) = max
E k�
T (η)

inf
uε∈E k�

T (η)\{0}
aεT (u

ε, uε; Ω)

(uε, uε)Ω
(2.11)

for the eigenvalues of the operator A ε�
T (η), i.e., in fact, the second inequality in (2.10) is not

different from (2.7). The first inequality in (2.10) is contained in (2.9).

3 Perforations with Dirichlet Conditions

3.1. The limit problem P0
D. By the conditions (1.6) on the boundaries of the densely

located fine holes (1.1), Problem Pε
D(η) significantly differs from other problems considered in

the paper because of the Poincaré–Friedrichs inequality

ε−2‖uε;L2(�2εh
j \ ωε

j )‖2 � ch,ω‖∇uε;L2(�2εh
j \ ωε

j )‖2, (3.1)

valid in view of the Dirichlet condition on ∂ωε
j , where �2εh

j = {x : |x1| < 2hε, |x2 − 2Hεj| <
2εH}; moreover, ωε

j ⊂ �εh
j . The inequality (3.1) is verified by stretching variables x �→ ξj (cf.

formula (1.1)). Summarizing the inequality (3.1) with respect to j = −N, . . . , N , we get the

estimate

ε−2‖uε;L2(Ωε
2εh)‖2 � ch,ω‖∇uε;L2(Ωε

2εh)‖2, (3.2)

where Ωε
	 = {x ∈ Ωε : |x1| < �}. Since the factor on the left-hand side of (3.2) is large, we

can conclude that the limit problem of Pε
D(η) is Problem P0

D(η) consisting of the differential

equation

−Δu0(x; η) = λ0u0(x; η), x ∈ Ω \Υ, (3.3)

the conditions (1.4), (1.5) on the lateral sides of the rectangle Ω, and the Dirichlet condition on

its vertical mean line Υ = {x : x1 = 0, |x2| < H}
u0(x; η) = 0, x ∈ Υ. (3.4)

A detailed analysis of the limit passage as ε→ +0 can be found in [29].

The problem (3.3), (3.4), (1.4), (1.5) has the explicit solution

λ0p,q = π2q2 +
π2p2

4H2
, p ∈ N, q ∈ Z, (3.5)

u0p,q(x; η) =

⎧
⎨

⎩
sin(πqx1) cos(πp(2H)−1(x2 +H)), x1 > 0,

e−iη sin(πqx1) cos(πp(2H)−1(x2 +H)), x1 < 0.
(3.6)
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It is remarkable that the eigenvalues (3.5) are independent of the Floquet parameter. Owing

to this fact, the asymptotic analysis in [29] shows that there are narrow spectral segments

(cf. Figure 2) separated by wide gaps in the spectrum of the periodic waveguide with Dirichlet

perforation (cf. Figure 1 (b)). We emphasize that the dependence of the eigenfunctions (3.6) on

η is largely fictitious; the periodicity cell in the waveguide is taken in an arbitrary way and, by

the quasiperiodicity conditions (1.5), the eigenfunctions in the shifted cell Ω �→ = (0, 1)×(−H,H)

take the form sin(πqx1) cos(πp(2H)−1(x2 +H)) without the Floquet parameter.

−π O π

Figure 2. The dispersion curves for Problem Pε
D are shown with bold lines. The wide

gaps are the projections of tinted rectangles on the ordinate axis. The dashed lines

indicate admissible values λ• of the spectral parameter for which it is easy to construct

the almost inverse operators (cf. Subsection 5.3).

We omit the argument η even in the notation of the functions (3.6) and denote by PD the

limit problem (3.3), (3.4), (1.4), (1.5). We enumerate the eigenvalues (3.5) in nondescending

order and re-numerate terms of the subsequence {λ0j}j∈N with one index. We assume that the

corresponding eigenfunctions u0j satisfy the orthonormality conditions (1.18).

3.2. Weighted estimates. We first apply the one-dimensional Hardy inequality

R∫

0

t−2|V (t)|2dt � 4

R∫

0

∣∣∣
dV

dt
(t)
∣∣∣
2
dt (3.7)

which is valid for any R > 0 and V ∈ C1
c (0, R] vanishing at t = 0. Indeed,

R∫

0

t−2|V (t)|2dt = 2

R∫

0

t−2

t∫

0

V (τ)
dV

dτ
(τ)dτdt � 2

R∫

0

|V (τ)|
∣∣∣
dV

dτ
(τ)
∣∣∣

R∫

τ

t−2dtdτ

= 2

R∫

0

|V (τ)|
∣∣∣
dV

dτ
(τ)
∣∣∣
(1
τ
− 1

R

)
dτ � 2

( R∫

0

τ−2|V (τ)|2dτ
)1/2( R∫

0

∣∣∣
dV

dτ
(τ)
∣∣∣
2
dτ

)1/2

.

Lemma 3.1. For uε ∈ H1
η,D(Ω

ε)

‖(ε2 + x21)
−1/2uε;L2(Ωε)‖ � cω‖∇uε;L2(Ωε)‖, (3.8)

where cω is independent of ε and uε.
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Proof. Let Xε ∈ C∞
c (R) be a cut-off function such that

Xε(x1) =

{
1, |x1| > 2εh,

0, |x1| < εh,
0 � Xε � 1,

∣∣∣
∂Xε

∂x1
(x1)

∣∣∣ � CX

εh
, |x1| ∈ [εh, 2εh],

∂X ε
h

∂x1
(x1) = 0, |x1| �∈ [εh, 2εh].

(3.9)

By (3.3), the product Xε(x1)u
ε(x1, x2) satisfies the inequalities

‖∇(Xεu
ε);L2(Ω)‖2 � c(‖∇uε;L2(Ωε)‖2 + ε−2‖uε;L2(supp |∇Xε|)‖2) � c‖∇uε;L2(Ωε)‖2.

Integrating (3.7) with V (t, x2) = X ε
h (t)u

ε(t, x2) with respect to x2 ∈ (−H,H), we get

‖|x1|−1V ε;L2(Ωε \ Ωε
h)‖2 � c‖|x1|−1V ε;L2(Ω)‖2 � c‖∇V ε;L2(Ω)‖2 � c‖∇uε;L2(Ωε)‖2. (3.10)

From (3.1) and (3.10) we obtain the estimate (3.8).

In the following assertion, we use the trick proposed in [30] and used, in particular, in [12].

Proposition 3.1. Let uεk(·; η) ∈ H1
η,D(Ω

ε) be the normalized (by (1.18)) eigenfunction of

Problem Pε
D(η) corresponding to the eigenvalue λεk(η). Then there are θ ∈ (0, 1], ε0 > 0, c0 > 0

such that for ε ∈ (0, ε0] and η ∈ [−π, π]
‖(ε2 + x21)

−θ∇uεk(·; η);L2(Ωε)‖+ ‖(ε2 + x21)
−1−θuεk(·; η);L2(Ωε)‖ � c0λ

ε
k(η). (3.11)

Proof. We substitute ψε = R−2θ
ε uεk ∈ H1

η,D(Ω
ε), where Rε(x) = (ε2 + x21)

1/2, into the

integral identity (1.12)D. In what follows, we omit η in the notation. We set U ε
k = R−θ

ε uεk. By

(3.8), we have

‖U ε
k ;L

2(Ωε)‖2 � ‖R−1
ε uεk;L

2(Ωε)‖2 � c‖∇uεk;L2(Ωε)‖2 = cλεk(η)

since Rε(x)
1−θ � (ε2 + 1/4)1−θ � 1 for ε ∈ (0, ε0], where ε0 �

√
3/2. A simple transformation

shows that

λεk‖U ε
k ;L

2(Ωε)‖2 = λεk(U
ε
k , ψ

ε)Ωε = (∇uεk,∇ψε)Ωε

= (R−θ
ε ∇uεk,∇U ε

k)Ωε + θ(R−θ
ε ∇uεk, U ε

kR
−1
ε ∇Rε)Ωε

= ‖∇U ε
k ;L

2(Ωε)‖2 − θ(U ε
kR

−1
ε ∇Rε,∇U ε

k)Ωε

+ θ(∇U ε
k , U

ε
kR

−1
ε ∇Rε)Ωε − θ2‖U ε

kR
−1
ε ∇Rε;L

2(Ωε)‖2. (3.12)

Two terms on the right-hand side cancel, and the remaining two terms satisfy the relations

‖∇U ε
k ;L

2(Ωε)‖2 � c−2
ω ‖R−1

ε U ε
k ;L

2(Ωε)‖2,
R−1

ε (x)|∇Rε(x)| � R−1
ε (x) ⇒ ‖U ε

kR
−1
ε ∇Rε;L

2(Ωε)‖2 � ‖R−1
ε U ε

k ;L
2(Ωε)‖2.

Thus, for θ � (2cω)
−1 the right-hand side of (3.12) is estimated from below by 3

4‖∇U ε
k ;L

2(Ωε)‖2
which, in turn, exceeds c‖R−1−θ

ε uεk;L
2(Ωε)‖2 with c > 0 in view of Lemma 3.1. We have

‖R−θ
ε ∇uεk;L2(Ωε)‖2 � 2(‖∇U ε

k ;L
2(Ωε)‖2 + ‖U ε

kR
θ
ε∇R−θ

ε ;L2(Ωε)‖2) � C‖∇U ε
k ;L

2(Ωε)‖2

which completes the proof.
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Remark 3.1. By construction, the exponent θ in Proposition 3.1 cannot be large. Thus,

in the limit problem PD without small parameter ε, but with the Dirichlet condition (3.4), we

have θ < 1/2 in view of smoothness of the eigenfunctions (3.6).

3.3. Application of the max–min principle. In the following representation of the

eigenvalues of the operator of Problem Pε
D(η), similar to (2.1) and (2.11),

λεDk(η) = max
E k
D(η)

inf
uε∈E k

D(η)\{0}
‖∇uε;L2(Ωε)‖
‖uε;L2(Ωε)‖ (3.13)

each subspace E k
D(η) ⊂ H1

η,D(Ω
ε) of codimension k − 1 intersects the k-dimensional span L ε

k

of the functions Uε
j = Xεu

0
Dj , j = 1, . . . , k. We introduced the cut-off function (3.9) to satisfy

the Dirichlet conditions (1.6) and guarantee that Xεu
0
Dj belong to the space H1

η,D(Ω
ε). At the

same time, for the eigenfunctions (3.6) (which are enumerated and satisfy (1.18)) we have the

elementary estimates

|u0D,j(x)| � c0j |x1|, |∇u0D,j(x)| � c1j (3.14)

which imply that the smoothing functions Uε
1, . . . ,U

ε
k with small ε inherit the linear indepen-

dence property of u0D1, . . . , u
0
Dk. Furthermore, for the linear combination

U E k
D(η)(·; η) =

k∑

j=1

α
E k
D(η)

j Uε
j ∈ E k

D(η) ∩ L ε
k ,

k∑

j=1

|αE k
D(η)

j |2 = 1, (3.15)

we find

‖U ;L2(Ωε)‖2 =
k∑

j,q=1

αjαq((u
0
j , u

0
q)Ω + ((X 2

ε − 1)u0j , u
0
q)Ω)

⇒ |‖U ;L2(Ωε)‖2 − 1| � ckε
3,

‖∇U ;L2(Ωε)‖2 =
k∑

j,q=1

αjαq((∇u0j ,∇u0q)Ω + ((X 2
ε − 1)∇u0j ,∇u0q)Ω

+ (Xε∇u0j , u0q∇Xε)Ω + (u0j∇Xε,Xε∇u0q)Ω + (u0j∇Xε, u
0
q∇Xε)Ω)

⇒
∣∣∣∣∣‖∇U ;L2(Ωε)‖2 −

k∑

j=1

|αj |2λεj
∣∣∣∣∣ � Ckε.

(3.16)

For the sake of brevity we omit the argument η and do not indicate that the linear combination

(3.15) belongs to E k
D(η) in the notation. In (3.16), we used formulas (3.9), (3.14) and their

consequence |u0D,j(x)| � 2c0jhε, x ∈ supp |∇Xε|. From (3.13) and (3.16) it follows that

λεDk(η) � max
E k
D(η)

‖∇U ;L2(Ωε)‖
‖U ;L2(Ωε)‖ � λ0k(η) + Ckε.

A similar calculation for the max–min principle (3.13) at ε = 0, i.e., for the eigenvalues of

the problem (3.4), (1.4), (1.5) without parameters η and ε, yields the estimate

λ0Dk � max
E k
D(η)

‖∇U ε
k ;L

2(Ω)‖
‖U ε

k ;L
2(Ωε)‖ � λεDk(η) + Ckε

2θ. (3.17)
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We explain necessary replacements. First of all, E k
D(η) is the subspace of the space H1

η,D(Ω)

of functions vanishing on the mean line Υ of the rectangle Ω and some test functions in this

subspace have the form

U ε
k = Xε

k∑

j=1

αε
ju

ε
j ,

k∑

j=1

|αε
j |2 = 1,

where uεj are the eigenfunctions of Problem Pε
D(η) satisfying the orthonormality conditions

(1.15), and, as above, the cut-off function (3.9) satisfies the Dirichlet conditions on Υ.

By the weighted estimate (3.11) in Proposition 3.1,

ε−1‖uεDj ;L
2(supp |∇Xε|)‖+ ‖∇uεDj ;L

2(supp |∇Xε|)‖ � cjε
θ.

Taking into account this estimate, we obtain the following assertion from (3.17).

Theorem 3.1. The eigenvalues of the problems (1.3)–(1.6) and (3.3), (1.4), (1.5), (3.4) are

connected by the inequalities

λ0Dk − Ckε
2θ � λεDk(η) � λ0Dk + Ckε, (3.18)

where θ ∈ (0, 1) is the exponent in Proposition 3.1 and Ck is independent of η ∈ [−π, π] and
ε ∈ (0, εk] for some εk > 0.

As was shown in Subsection 1.3, Theorem 3.1 is sufficient to realize the first approach for

obtaining uniform estimates for remainders of asymptotic expansions. This fact was verified in

[29] by other arguments.

We note that the max–min principle was also used in [12] to prove analogues of (1.23).

This max–min principle is based on a priori weighted estimates for eigenfunctions of the model

problem on a three-dimensional periodicity cell with the Neumann condition on the boundary

of a single small cavity. The multidimensional (d > 3) case can be treated in the same way,

whereas the plane problem has not been studied yet.

4 Solvability of Singularly Perturbed Problem
in Perforated Cell

4.1. Almost inverse operator. If the spectral parameter λ• is fixed, we can associate the

variational statement of the inhomogeneous problem Pε
T (η)

aεT (u
ε
T , ψ; Ω)− λ•bεT (u

ε
T , ψ; Ω) = f εT (ψ), ψ ∈ H1

η,T (Ω), (4.1)

with the mapping

H1
η,T (Ω) � uεT �→ f εT = Aε

T (η;λ•)u
ε
T ∈ H1

η,T (Ω)
∗, (4.2)

where H1
η,T (Ω) is the Sobolev space H1

η (Ω) equipped with the norm depending on the parameter

T ∈ (0, 1]

‖uεT ;H1
η,T (Ω)‖ = (aεT (u

ε
T , u

ε
T ; Ω) + bεT (u

ε
T , u

ε
T ; Ω))

1/2

= (‖∇uεT ;L2(Ωε)‖2 + T‖∇uεT ;L2(ωε)‖2 + ‖uεT ;L2(Ωε)‖2 + T‖uεT ;L2(ωε)‖2)1/2. (4.3)
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Here, aεT and bεT denote the bilinear forms (1.11) and f εT ∈ H1
η,T (Ω)

∗ is a linear continuous

functional on H1
η,T (Ω). In this subsection, we assume that T > 0. The case T = 0 is considered

in Subsection 4.6.

Let η• ∈ [−π, π] and λ• > 0 be such that the operator A(η•;λ•) of the problem in Ω is

invertible for small ε > 0. Then there is δ• > 0, such that the invertibility property of A(η;λ•)
is preserved for all ε ∈ (0, ε•] and η ∈ [η• − δ•, η• + δ•], where ε• is independent of η. We

emphasize that, in the case η• = ±π, to make sense of the last inclusion, the objects should be

periodically continued to a neighborhood of [−π, π].
The goal of this section is to prove the following assertion.

Theorem 4.1. Under the above invertibility assumption on A(η•;λ•), there exist positive

numbers ε• and δ• such that the operator Aε
T (η;λ•) is an isomorphism for all η ∈ [η•−δ•, η•+δ•],

ε ∈ (0, ε•] and, T ∈ [0, 1].

We emphasize that the operator Aε
T (η;λ•) is selfadjoint, i.e., to prove Theorem 4.1, it suffices

to verify the invertibility of this operator.

To prove Theorem 4.1, we construct the so-called almost inverse operator

Rε
T (η;λ•) : H

1
η,T (Ω)

∗ → H1
η,T (Ω) (4.4)

such that

‖Aε
T (η;λ•)R

ε
T (η;λ•)− Id;H1

η,T (Ω)
∗ → H1

η,T (Ω)
∗‖ � c•εα• , (4.5)

where η ∈ [η•− δ•, η•+ δ•], α• > 0 is the exponent and Id is the identity mapping. Then the op-

erator Aε
T (η;λ•)R

ε
T (η;λ•) is invertible for small ε ∈ (0, ε•] and Rε

T (η;λ•)(A
ε
T (η;λ•)R

ε
T (η;λ•))

−1

is the usual inverse of the mapping (4.2). It is important that α• and c• in (4.5) are independent

of the Floquet parameter.

We fix a functional f εT ∈ H1
η,T (Ω)

∗ and construct Rε
T (η;λ•)f

ε
T ∈ H1

η,T (Ω) step by step. We

assume that T ∈ (0, 1].

4.2. Auxiliary problem near perforation. We impose the artificial Dirichlet conditions

on Υ±
	 = {x : x1 = ±�, |x2| < H} and consider the problem on the narrowed (� < 1/2) rectangle

Ω	 = {x : |x1| < �, |x2| < H}

aεT (u
ε�
T , ψ

�; Ω	)− λ•bεT (u
ε�
T , ψ

�; Ω	) = f ε�T (ψ�), ψ� ∈ H1�
η,T (ΩL). (4.6)

The superscript � means, for example, that a test function ψ� satisfies the additional boundary

condition

ψ�(±�, x2) = 0, |x2| < H.

The right-hand side f ε�T (ψ) = f εT (χ
�
0ψ) of (4.6) is a functional, where χ�

0 ∈ C∞
c (R) is a cut-off

function such that 0 � χ�
0 � 1,

χ�
0(x1) =

⎧
⎨

⎩
1, |x1| < �/2,

0, |x1| > 2�/3.
(4.7)

It is clear that

‖f ε�T ;H1�
η,T (Ω	)

∗‖ � c‖f εT ;H1
η,T (Ω)

∗‖.
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Proposition 4.1. For ψ� ∈ H1�
η,T (Ω	)

‖ψ�;L2(Ωε
	)‖2 + T‖ψ�;L2(ωε)‖2 � c�(�+ ε)2‖ψ�;H1�

η,T (ΩL)‖2, (4.8)

where Ωε
	 = {x ∈ Ωε : |x1| < �} = Ω	 \ωε is the perforated rectangle Ω	 and c� is independent of

� ∈ (0, 1/2] and ε ∈ (0, ε0] for some ε0 > 0.

Proof. We begin by constructing a suitable extension Ψε to the holes (1.1) of the restriction

ψ�
∣∣
Ωε

�
such that

‖Ψε;L2(Ω	)‖ � c‖∇ψ�;L2(Ωε
	)‖ � c‖ψ�;H1,�

η,T (Ω	)‖. (4.9)

Namely, we set Ψε = ψ� on Ωε
	 and

Ψε(x) = ψ
�
j + ψ̂ �

j (ε
−1x1, ε

−1(x2 − 2Hεj)), x ∈ ωε
j , j = −N, . . . , N, (4.10)

where ψ
�
j is the mean value of ψ� over the contour ∂ω:

ψ
�
j =

1

mes 1∂ωε
j

∫

∂ωε
j

ψ�(x) dsx (4.11)

and ψ̂ �
j is an extension of �h \ ω � ξ �→ ψ̂ �

j (ξ) := ψ�(εξ1, 2Hεj + εx2)) − ψ
�
j on the rectangle

�2h = (−2h, 2h)× (−H,H) admitting the natural estimate in the H1(ω)-norm. We have

‖∇xψ̂
�
j ;L

2(�εh)‖2 = ‖∇ξψ̂
�
j ;L

2(�h)‖2 � chω(‖∇ξψ
�;L2(�h)‖2 + ‖ψ� − ψ

�
j ;L

2(�h)‖2)

� C‖∇ξψ
�;L2(�h \ ω)‖ = C‖∇xψ

�;L2(�εh \ ωε
j )‖. (4.12)

Here, we used the Poincaré inequality for functions ψ̂ �
j with zero mean over the contour ∂ω in

accordance with the definition (4.11):

‖ψ� − ψ
�
j ;L

2(�h \ ω)‖ � c‖∇ξ(ψ
� − ψ

�
j );L

2(�h \ ω)‖ = c‖∇ξψ
�;L2(�h \ ω)‖.

Summarizing the relation (4.12) with respect to j = −N, . . . , N , we obtain the estimate (4.9).

Integrating the one-dimensional Friedrichs inequality on (−�, �) � x1 with respect to x2 ∈
(−H,H), we get

‖ψ�;L2(Ωε
	)‖2 � ‖Ψε;L2(Ω	)‖2 � π2

4�2

∥∥∥
∂Ψε

∂x1
;L2(Ω	)

∥∥∥
2
� C

�2
‖∇ψ�;L2(Ωε

	)‖2. (4.13)

It remains to consider the norm
√
T‖ψ�;L2(ωε)‖ in (4.3) and the left-hand side of (4.8). Since

T � 1 and the difference ψ� −Ψε vanishes on ∂ωε
j , we find

T

N∑

j=−N

‖ψ� −Ψε;L2(ωε
j )‖2 � cε2T

N∑

j=−N

‖∇(ψ� −Ψε);L2(ωε
j )‖2

� 2cε2
N∑

j=−N

(T‖∇ψ�;L2(ωε
j )‖2 + ‖∇Ψε;L2(�εh

j )‖2) � Cε2‖ψ�;H1,�
η,D(Ω	)‖2, (4.14)

T‖ψ�;L2(ωε)‖2 � 2T
(‖Ψε;L2(ωε)‖2 + ‖ψ� −Ψε;L2(ωε)‖2)

� c(L2‖∇Ψε;L2(Ω	)‖2 + ε2‖ψ�;H1,�
η,D(Ω	)‖2). (4.15)
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From (4.14), (4.15), and (4.9) we obtain the required estimate for the norm
√
T‖ψ�;L2(ωε)‖,

which completes the proof of (4.8) in view of (4.13).

The problem (4.6) is uniquely solvable for small � and ε in view of the Riesz representation

theorem and the following inequality obtained from Proposition 4.1:

aεT (ψ
�, ψ�; Ω	)− λ•bεT (ψ

�, ψ�; Ω	) �
1

2
aεT (ψ

�, ψ�; Ω	) +
( 1

2c�
1

ε2 + �2
− λ•

)
bεT (ψ

�, ψ�; Ω	).

Moreover, for uε�T ∈ H1�
η,T (Ω	) we have

‖uε�T ;H1�
η,T (Ω	)‖ � c‖f ε�T ;H1�

η,T (Ω	)
∗‖ � C‖f εT ;H1

η,T (Ω)
∗‖.

To conclude the first step, we define the first term

Rε�
T = χ�

1u
ε�
T (4.16)

in the coming representation of the almost inverse operator

Rε
T (η;λ•)f

ε
T = Rε�

T + RεΩ
T + Rω

T . (4.17)

The cut-off function χ�
1 ∈ C∞

c (R) satisfying χ�
1χ

�
0 = χ�

0 was introduced to (4.16) since

χ�
1(x1) =

⎧
⎨

⎩
1, |x1| � 2�/3,

0, |x1| � 5�/6.
(4.18)

4.3. Smooth solution in Ω. Taking ψ ∈ H1
η,T (Ω) and substituting the test function

ψ� = ψχ�
1 into the integral identity (4.6), we get

f εT (ψχ
�
0) = f ε�T (ψχ�

1) = aεT (u
ε�
T , ψχ

�
1; ΩL)− λ•bεT (u

ε�
T , ψχ

�
1; ΩL)

= aεT (χ
�
1u

ε�
T , ψ; Ω)− λ•bεT (χ

�
1u

ε�
T , ψ; Ω) + (∇uε�T , ψ∇χ�

1)Ω − (uε�T ∇χ�
1,∇ψ)Ω. (4.19)

Thus, the residual

f εΩT (ψ) = f εT ((1− χ�
0)ψ)− (∇uε�T , ψ∇χ�

1)Ω + (uε�T ∇χ�
1,∇ψ)Ω (4.20)

left by the first term (4.16) in the expression (4.17) satisfies the estimate

‖f εΩT ;H1
η (Ω)

∗‖ � C‖f εT ;H1
η,T (Ω)

∗‖. (4.21)

At the same time, an extremely important property of the functional (4.20) obtained precisely

at the first step is that, according to the definitions (4.18) and (4.7), the functional f εΩT vanishes

on test functions that vanish in the rectangle Ω	/3 = (−�/3, �/3) × (−H,H), i.e., supp f εΩT ⊂
Ω \ Ω	/2. Thus, the solution uεΩT ∈ H1

η (Ω) to the problem

(∇uεΩT ,∇ψ)Ω − λ•(uεΩT , ψ)Ω = f εΩT (ψ), ψ ∈ H1
η (Ω), (4.22)

existing by the assumption of Theorem 4.1 and satisfying the estimate

‖uεΩT ;H1
η (Ω)‖ � c‖f εΩT ;H1

η (Ω)
∗‖, (4.23)
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becomes infinitely differentiable, at least, in the rectangle Ω	/3. In particular, in view of local

estimates for solutions to elliptic equations, we have

‖uεΩT ;Cm(Ω	/3)‖ � cm‖f εΩT ;H1
η (Ω)

∗‖, m ∈ N0. (4.24)

Furthermore, Equation (1.3) holds in Ω	/3 and Equation (1.8) holds in ωε
j . Therefore, the resid-

uals left by the sum Rε�
T +RεΩ

T in the representation (4.17) are concentrated on the boundaries

of the inclusions (1.1). Indeed,

aεT (u
εΩ
T , ψ; Ω)− λ•bεT (u

εΩ
T , ψ; Ω)− f εΩT (ψ)

= (T − 1)
N∑

j=−N

((∇uεΩT ,∇ψ)ωε
j
− λ•(uεΩT , ψ)ωε

j
) = (T − 1)

N∑

j=−N

(∂nu
εΩ
T , ψ)∂ωε

j
. (4.25)

To compensate such residuals, we construct a boundary layer.

4.4. Boundary layer problem. As usual, near the row of fine holes we have the boundary

layer phenomenon described by the solutions to the problem in the strip Π = (−H,H)× R:

−Δξw�(ξ) = 0, ξ ∈ Π� = Π \ ω, (4.26)

− TΔξw◦(ξ) = 0, ξ ∈ ω, (4.27)

w�(ξ)− w◦(ξ) = 0, ∂nw�(ξ)− T∂nw◦(ξ) = g(ξ), ξ ∈ ∂ω, (4.28)

w�(ξ1, H) = w�(ξ1,−H),
∂w�
∂ξ2

(ξ1, H) =
∂w�
∂ξ2

(ξ1,−H), ξ1 ∈ R. (4.29)

Here, w� and w◦ are the restrictions of w on Π� and ω respectively. The Laplace equations

(4.26) and (4.27) are obtained from the Helmholtz equations (1.3) and (1.8) by passing to the

stretched variables ξ = ε−1x, where Δx + λ = ε−2Δξ + λ, i.e., the Laplacian Δξ is the leading

part of the asymptotics of the Helmholtz operator Δx+λ. The transmission conditions (4.28) are

inherited by the similar conditions (1.9), whereas the periodicity conditions (4.29) are artificial,

are not related to the quasiperiodicity conditions (1.4), and will be used to construct a global

solution of boundary layer type.

The variational statement of the problem (4.26)–(4.29) has the form

(∇ξw,∇ξϕ)Π◦ + T (∇ξw,∇ξϕ)ω = (g, ϕ)∂ω, ϕ ∈ HT,per(Π), (4.30)

on the space HT,per(Π) obtained by completion of the linear set C∞
c,per(Π) of infinitely differ-

entiable compactly supported functions that are 2H-periodic with respect to ξ2 in the energy

norm

‖ϕ;HT,per(Π)‖ = (‖∇ξϕ;L
2(Π◦)‖2 + T‖∇ξϕ;L

2(ω)‖2 + ‖ϕ�; ;L
2(∂ω)‖2)1/2. (4.31)

By the Poincaré inequality on the sets {ξ ∈ Π� : |ξ1| < 2h} and ω and the one-dimensional

Hardy inequality (3.7) with R = +∞, the norm (4.31) is equivalent to the weight norm

(‖∇ξϕ;L
2(Π◦)‖2 + T‖∇ξϕ;L

2(ω)‖2 + ‖(1 + ξ22)
−1/2ϕ;L2(Π◦)‖2 + T‖ϕ;L2(ω)‖2)1/2 (4.32)

uniformly with respect to the parameter T ∈ (0, 1]. As known, the constants belong to the space

HT,per(Π), in particular, the norms (4.32) are finite. Thus, the following assertion holds (cf., for

example, [31, Section 3]).
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Proposition 4.2. The problem (4.30) with g ∈ L2(∂ω) has a solution w ∈ HT,per(Π) if and

only if ∫

∂ω

g(ξ)dsξ = 0. (4.33)

This solution is defined up to an additive constant and is unique provided that
∫

∂ω

w�(ξ)dsξ = 0; (4.34)

moreover,

‖w;HT,per(Π)‖ � c‖g;L2(∂ω)‖,
where c is independent of g and T ∈ (0, 1].

If the contour ∂ω and the right-hand side g of the second transmission condition in (4.28)

are smooth, then the components w� and w◦ of the solution w ∈ HT,per(Π) are also smooth on

the sets Π \ω and ω respectively. In the general case, the component w� is smooth outside any

neighborhood of the compact set ω, whereas the component w◦ is smooth inside the domain ω.

These obvious facts are true because of local estimates for solutions to elliptic equations: based

on the periodicity condition, it is possible to reduce the problem (4.26)–(4.29) to the case of the

cylindrical surface R× S2H , where SL is the circle of length L.

By the Fourier method, we have the representation

w(ξ) = w̃(ξ) +
∑

±
±χ±(ξ1)cw (4.35)

and the following estimate for the remainder:

|∇m
ξ w̃(ξ)| � cme

−(2H)−1π|ξ1|, |ξ1| � h, m ∈ N0. (4.36)

Moreover, cw is a constant and χ± ∈ C∞(R) are cut-off functions vanishing on ω,

χ±(ξ1) =

⎧
⎨

⎩
1, ±ξ1 � 2h,

0, ±ξ1 � h.

We emphasize that the function (4.35) is stabilized, generally speaking, to different constants c±w
as ξ1 → ±∞, i.e., the representation (4.35) providing the zero sum of these constants c±w = ±cw
distinguishes the solution w ∈ HT,per(Π), i.e., it is a counterpart of the orthogonality conditions

(4.34) in Proposition 4.2.

In what follows, we need two (q = 1, 2) special solutions Wq to the problem (4.26)–(4.29)

(or (4.30)) with gq(ξ) = −∂nξq. In both cases, the solvability conditions (4.33) are satisfied,

Wq ∈ HT,per(Π), and (4.35), (4.36) hold.

4.5. Component of boundary layer type. Thus, in the construction (4.17) of an almost

inverse operator, we set

RεΩ
T (x) = uεΩT (x), (4.37)

Rω
T (x) = ε(T − 1)χ�

0(x1)
∑

q=1,2

Wq(ε
−1x1, ε

−1x2)
∂uεΩT
∂xq

(0, x2)
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=: εχ�
0(x1)S

ε(x) = εχ�
0(x1)

∑

q=1,2

S ε
q (x). (4.38)

We recall that one of the factors in (4.38), namely, the trace on Υ of the derivative of solution

uεΩT to the problem (4.22) is a smooth function on the segment [−H,H] � x2. Taking into

account formulas (4.24) and (4.36), we obtain the estimate

‖Rω
T ;H

1
η,T (Ω)‖ � c‖f εT ;H1

η,T (Ω)
∗‖. (4.39)

Furthermore,

(∇Rω
T ,∇ψε)Ω = ε(S ε∇χ�

0,∇ψε)Ω − ε(∇S ε, ψε∇χ�
0)Ω + ε(∇S ε,∇(χ�

0ψ
ε))Ω. (4.40)

The moduli of the first two inner products on the right-hand side of (4.40) do not exceed

cε‖uεΩT ;C1(ΩL/3)‖ ‖ψε;H1
η,T (Ω)‖

since the estimate (4.36) applied to the solutions W q implies

|Wq(ε
−1x)| � cW , |∇xWq(ε

−1x)| � CW ε
−1e−τ/ε, τ > 0, x ∈ supp |∇xχ

�
0|. (4.41)

Furthermore,

ε(∇xS
ε
q ,∇(χ�

0ψ
ε))ΩL

= −ε(ΔxS
ε
q , χ

�
0ψ

ε))ΩL
+ ε(∂n(x)S

ε
q , χ

�
0ψ

ε))ωε

−
∑

±
±

1/2∫

−1/2

∂S ε
q

∂x2
(x1,±H)χ�

0(x1)ψ
ε(x1,±H) dx1 =: I 1

q (ψ
ε) + I 2

q (ψ
ε) + I 3

q (ψ
ε). (4.42)

We consider each term I ε
m(ψε). Since the smooth function

∂Wq

∂ξ2
(ξ,±H) = ε−1∂Wq

∂x2

(x1
ε
,±H

)

decays at infinity at a rate O(e−(2H)−1π|x1|/ε) (cf. (4.35), (4.36) and (4.41)), we find

|I 2
q (ψ

ε)| � c‖uεΩT ;C2(ΩL/3)‖
( 1/2∫

−1/2

e−H−1π|x1|/εdx1

)1/2 ∑

±
‖ψε(·,±H);L2(−1/2, 1/2)‖

� cε1/2‖uεΩT ;C2(ΩL/3)‖‖ψε;H1
η,T (Ω)‖. (4.43)

Note that the estimates for the L2(−1/2, 1/2)-norm of the test function ψε are obtained from

the usual trace inequality for the extension (4.10) of the restriction ψε
∣∣
Ωε on Ω in the Sobolev

class H1 satisfying the relation

‖Ψε;H1(Ω)‖ � c‖ψε;H1(Ωε)‖ � c‖ψε;H1
η,T (Ω)‖.

Furthermore, since Wq is harmonic in Π \ ω and ω, we get

I 1
q (ψ

ε) = −(T − 1)ε
((

WqΔx
∂uεΩT
∂xq

∣∣∣
Υ
, χ�

0ψ
ε
)

Ωε
+ T

(
WqΔx

∂uεΩT
∂xq

∣∣∣
Υ
, χ�

0ψ
ε
)

ωε

)

− 2(T − 1)ε
((

(∇xWq)
�∇x

∂uεΩT
∂xq

∣∣∣
Υ
, χ�

0ψ
ε
)

Ωε
+ T

(
(∇xWq)

�∇x
∂uεΩT
∂xq

∣∣∣
Υ
, χ�

0ψ
ε
)

ωε

)
.
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Taking into account formulas (4.35) and (4.36), we derive the estimate

|I 1
q (ψ

ε)| � c‖ψε;H1
η,T (Ω)‖ sup

x∈Υ
(|∇xu

εΩ
T (x)|+ |∇2

xu
εΩ
T (x)|)

× (‖Wq;L
2(Ωε

L/3)‖2 + T‖Wq;L
2(ωε)‖2 + ‖∇xWq;L

2(Ωε
L/3)‖2 + T‖∇xWq;L

2(ωε)‖2)1/2

� cε‖uεΩT ;C2(ΩL/3)‖
(
1 +

1

ε

L/3∫

−L/3

e−H−1π|x1|/εdx1

)1/2

‖ψε;H1
η,T (Ω)‖

� cε1/2‖uεΩT ;C2(ΩL/3)‖‖ψε;H1
η,T (Ω)‖. (4.44)

We represent the remaining terms I 2
q (ψ

ε) in (4.42) as

I 2
q (ψ

ε) = ε(T − 1)
N∑

j=−N

∫

∂ωε
j

ψε(x)
∂

∂n

(∂uεΩT
∂xq

(x1, 0)W
(x
ε

))
dsx

= ε(T − 1)

N∑

j=−N

∫

∂ωε
j

ψε(x)
∂uεΩT
∂xq

(x)
∂W

∂n(x)

(x
ε

)
dsx

+ ε(T − 1)
N∑

j=−N

∫

∂ωε
j

ψε(x)W
(x
ε

) ∂2uεΩT
∂n∂xq

(x1, 0)dsx

+ ε

N∑

j=−N

∫

∂ωε
j

ψε(x)
∂W

∂n(x)

(x
ε

)(∂uεΩT
∂xq

(x1, 0)− ∂uεΩT
∂xq

(x)
)
dsx

=: I 20
q (ψε) + I 21

q (ψε) + I 22
q (ψε). (4.45)

By the definition of the special solutions Wq (cf. Subsection 4.4), the sum

I 20
1 (ψε) + I 20

1 (ψε)

= −ε(T − 1)
N∑

j=−N

∫

∂ωε
j

ψε(x)
( ∂ξ

∂n(ξ)

)�∇xu
εΩ
T (x)dsx = −(T − 1)

N∑

j=−N

(∂nu
εΩ
T , ψ)∂ωε

j
(4.46)

coincides with the expression (4.25) taken with the opposite sign, i.e., the residual generated by

the smooth solution uεΩT are eliminated.

We deal with another pair of terms on the right-hand side of (4.45) as follows:

I 21
q (ψε) � cε‖ψε;H1

η,T (Ω)‖ ε−1/2‖Wq;L
2(∂ω)‖ sup

x∈Υ
|∇2

xu
εΩ
T (x)|

� cε3/2‖ψε;H1
η,T (Ω)‖‖uεΩT ;C2(ΩL/3)‖,

I 22
q (ψε) � cε‖ψε;H1

η,T (Ω)‖ ε−1/2‖∂nWq;L
2(∂ω)‖ sup

x∈Υ

∣∣∣
∂uεΩT
∂xq

(x)− ∂uεΩT
∂xq

(x1, 0)
∣∣∣

� cε−1/2‖ψε;H1
η,T (Ω)‖ε‖uεΩT ;C2(ΩL/3)‖.

(4.47)
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We summarize the above calculation. First, the estimates (4.18), (4.23), and (4.39) show that

the norm of the mapping (4.4) is uniformly bounded. Second, the sum (4.17) of the three

terms (4.16), (4.37), and (4.38) generates the residual f̃ ε
T (ψ

ε) in the problem (4.1) satisfying the

inequality

|f̃ ε
T (ψ

ε)| � cε1/2‖f εT ;H1
η,T (Ω)‖ ‖ψε;H1

η,T (Ω)
∗‖

in view of (4.19), (4.20), (4.25), (4.46), and also (4.21), (4.24), and (4.43)–(4.44), (4.47). It is

this inequality (4.5) with exponent α• = 1/2 that was required to construct the almost inverse

operator (4.4) and, consequently, the true inverse operator (4.2) of the problem (4.1). Thus,

Theorem 4.1 is proved for T ∈ (0, 1].

4.6. Case T = 0. All calculations and arguments of the previous subsections can be easily

adapted to Problem Pε
N (η). In fact, it suffices to set T = 0 in all formulas and remove the

first identities from the transmission conditions (1.9) and (4.28), i.e., transform them to the

Neumann conditions (1.7) and ∂nw(ξ) = g(ξ) for ξ ∈ ∂ω respectively. It is obvious that the

obtained estimates are uniform with respect to the Floquet parameter η ∈ [η•− δ•, η•+ δ•]. The
fact that ε• > 0 can be different in the situations T ∈ (0, 1] and T = 0 does not affect the final

formulation of Theorem 4.1 which thereby is valid for all T ∈ [0, 1].

5 Comments

5.1. Limit as T → +0. We fix ε > 0, i.e., the inclusions (1.1) are not assumed to be small,

and construct the formal asymptotic expansions of the eigenvalues (1.13)T of Problem Pε
T (η)

as T → +0. We refer, for example, to [32] for asymptotic procedures including the proof of

estimates for remainders of asymptotic expansions (the uniformity in the Floquet parameter is

not necessary).

The transmission conditions (1.9) split into two boundary conditions as T → +0, so that the

Neumann conditions are imposed at the more rigid inclusion, whereas the Dirichlet conditions

are related to the softer one. Thus, the asymptotic ansätze for eigenpairs {λεTk(η), u
ε
Tk(·; η)} of

the problem (1.3)–(1.5), (1.8), (1.9)

λεTk(η) = λε0k(η) + Tλε′k (η) + . . . , (5.1)

uεTk�(x; η) = uε0k�(x; η) + Tuε′k�(x; η) + . . . , (5.2)

uεTk◦(x; η) = uε0k◦(x; η) + Tuε′k◦(x; η) + . . . (5.3)

contain eigenpairs of the limit problem consisting of the equation

−Δuε0k�(x; η) = λε0k(η)u
ε
0k�(x; η), x ∈ Ωε, (5.4)

the Neumann boundary conditions (1.4), (1.7), the quasiperiodicity conditions (1.9), and the

equations

−Δuε0k◦(x; η) = λε0k(η)u
ε
0k◦(x; η), x ∈ ωε

j , j = −N, . . . , N, (5.5)

with the Dirichlet boundary conditions (1.6). The dots in (5.1)–(5.3) mean lower-order terms

that are not essential in our formal analysis.

The eigenvalues λεj◦k of the Dirichlet problems (5.5), (1.6) are independent of η and satisfy

the estimate

λεj◦k � λε◦1 = ε−2Λω, j = −N, . . . , N, (5.6)
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where Λω > 0 is the first (least) eigenvalue of the Dirichlet problem in the domain ω. Conse-

quently, for ε ∈ (0, εω) and some εω > 0 (which is acceptable) the required segment [0, λ•] is
free from the spectrum of the problem (5.5), (1.6). This segment can contain the eigenvalues of

the problem (5.4), (1.4), (1.7), (1.9) which depend on η ∈ [η• − δ•, η• − δ•] in a complex way

(cf. Figure 3 (a) and Subsection 1.3). In particular, they can be multiple for some values of the

Floquet parameter η. Let λεNk(η) be a κk(η)-multiple eigenvalue, i.e.,

λεNk−1(η) < λεNk(η) = · · · = λεNk+κk(η)−1(η) < λεNk+κk(η)
(η)

in the ordered subsequence of eigenvalues. We consider the asymptotic ansätze (5.1) for λεTp(η)

with correction terms λε′p (η). In what follows, p = k, . . . , k + κk(η) − 1. The leading terms

u ε
0p� of the ansatz (5.2) for the restrictions uεTp� of the eigenfunctions uεTp onto the perforated

rectangle Ωε are looked for in the form

u ε
0p�(x; η) = c

(p)
k uε0k�(x; η) + · · ·+ c

(p)
k+κk(η)−1u

ε
0k+κk(η)−1�(x; η), (5.7)

and corrections in these ansätze are denoted by u ε′
p�. Here, uε0k�, . . . , u

ε
0k+κk(η)−1� are eigen-

functions of Problem Pε
N (η) satisfying (1.15), and c(p) = (c

(p)
k , . . . , c

(p)
k+κk(η)−1)

� ∈ R
κk(η) are

such that (c(q))�c(p) = δp,q, p, q = k, . . . , k + κk(η)− 1. The leading terms u ε
0kj◦ of the ansätze

(5.3) for the functions uεTk◦ = uεTk

∣∣
ωε
j
are solutions to the problems in the fine domains (1.1)

−Δu ε
0p◦(x; η) = λε0k(η)u

ε
0p◦(x; η), x ∈ ωε

j ,

u ε
0p◦(x; η) = u ε

0p�(x; η) =

k+κk(η)−1∑

m=k

c(p)m uε0m�(x; η), x ∈ ∂ωε
j ,

(5.8)

where j = −N, . . . , N . These problems are uniquely solvable since λε0k < λε◦1 in view of (5.6).

It is obvious that

u ε
0p◦(x; η) =

k+κk(η)−1∑

m=k

c(p)m uε0m◦(x; η). (5.9)

Finally, the correction terms u ε′
p� are found from the equations

−Δu ε′
p�(x; η)− λε0k(η)u

ε′
p�(x; η) = λε′p (η)u

ε
0p�(x; η)

:= λε′p (η)
k+κk(η)−1∑

m=k

c(p)m uε0m�(x; η), x ∈ Ωε, (5.10)

with the conditions (1.4), (1.5) on the unilateral sides of the rectangle Ω and the inhomogeneous

Neumann conditions on the boundaries of the holes (1.1)

∂nu
ε′
p�(x; η) = ∂nu

ε
0p◦(x; η) :=

k+κk(η)−1∑

m=k

c(p)m ∂nu
ε
0m◦(x; η), x ∈ ∂ωε

j , j = −N, . . . , N. (5.11)

The equalities (5.10) and (5.11) are obtained by substituting the ansätze for eigenpairs into

Equation (1.3) and the second transmission condition in (1.9) and collecting after that coefficients

of the small parameter T .
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The solvability conditions for the problem (5.10), (5.11), (1.4), (1.5) are obtained with the

help of the Green formula in the domain Ωε for functions u ε′
p� and uεNq:

λε′p (η)c
(p)
q = λε′p (η)

∫

Ωε

uεNq(x; η)u
ε
0p�(x; η) dx

= −
∫

Ωε

uεNq(x; η)(Δu ε′
p�(x; η) + λε0k(η)u

ε′
p�(x; η))dx

=

∫

∂ωε

(u ε′
p�(x; η)∂nu

ε
Nq(x; η)− uεNq(x; η)∂nu

ε′
p�(x; η))dsx

= −
∫

∂ωε

uεNq(x; η)∂nu
ε′
p�(x; η)dsx = −

k+κk(η)−1∑

m=k

c(p)m

∫

∂ωε

uεNq(x; η)∂nu
ε
Nm◦(x; η)dsx

= −
k+κk(η)−1∑

m=k

c(p)m

∫

∂ωε

uεNq◦(x; η)∂nu
ε
Nm◦(x; η)dsx =:

k+κk(η)−1∑

m=k

Mε
qm(η)c(p)m .

Using (5.8), (5.9) and integrating by parts over the domains ωε
j (recall that n is the inward

normal on ∂ωε
j ), we get

Mε
qm(η) = λε0k(η)(u

ε
Nq(·; η), uεNq(·; η))ωε − (∇uεNq(·; η),∇uεNq(·; η))ωε , (5.12)

where q,m = k, . . . , k + κk(η) − 1. Thus, the asymptotic corrections λε′k (η), . . . , λ
ε′
k+κk(η)−1(η)

are eigenvalues of the symmetric (κk(η)× κk(η))-matrices Mε(η) with entries (5.12).

Thus, we have constructed the leading terms of the asymptotic expansions (5.1) of the

eigenvalues of Problem Pε
T (η). The estimates

|λεTk(η)− λεNk(η)− Tλε′p (η)| � Ck(η)T
3/2, k ∈ N,

obtained in [32] provide the required continuity of T �→ λεTk(η) at T = 0.

By [33, Theorem 7.1.8], if λεNk(η) is a simple eigenvalue (κk(η) = 1 in the list (5.7)), then

this function is an analytic real-valued function on [0, T0(ε, η)]. This property is important, but

plays no role in this paper.

Remark 5.1. 1. At the first glance, in view Proposition 2.2, it is much easier to deal

with the modified problem Pε�
T (η) in Subsection 2.2 which can be transformed to Problems

Pε
N (η) and P(η) by passing to the limit as T → +0 and T → 1 − 0 respectively. However,

first, the right inequality in (2.10) holds only if T > 1, i.e., it is useless in the limit passage

and, second, additional difficulties arise while constructing the almost inverse operator for the

operator Aε�
T (λ•; η) of the problem (1.3)–(1.5), (2.8), (1.9).

2. As known, passing to the limit as T → +∞, we obtain the problem (1.3)–(1.5) with the

following integro-differential boundary conditions on the boundaries of the holes (1.1):

uε∞(x; η) = cεj , x ∈ ∂ωε
j ,

∫

∂ωε
j

∂nu
ε
∞(x; η)dsx = 0, j = −N, . . . , N.
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Moreover, the constants cεj are not a priori fixed, but are found when we solve the problem. The

variational statement (1.12) of the problem is considered in the subspace

H1
η,∞(Ωε) = {uε∞ ∈ H1

η (Ω
ε) : uε∞(x; η) = cεj , x ∈ ∂ωε

j , j = −N, . . . , N}.

5.2. Justification of the asymptotics the spectral segments with the Neumann

perforations. A simple result presented in [32] and rewritten in Subsection 5.1 leads to the

following important conclusion: Theorem 4.1 shows that the multiplicities of the spectra on

[0, λ•] coincide for Problem Pε
N (η) with the Neumann conditions on the boundaries of holes

(1.1) and Problem P(η) on the whole cell. We consider an example to show how to apply this

result.

Formula (1.17) for the eigenvalues of the limit problem P(η) involving Equation (1.16) in

the rectangle Ω = (−1/2, 1/2)× (−H,H) and the conditions (1.4), (1.5) on the sides of Ω shows

that the corresponding dispersion curves form a truss of a rather complex structure. The lower

part of the truss is shown in Figure 3 (b), (c) in the case 1/6 < H < 1/4, where two gaps γεN1

and γεN2 (the projections of tinted rectangles on the ordinate axis in Figure 3 (a)) can appear

in the spectrum of an infinite periodic waveguide with the Neumann perforation (cf. Figure 1

(a)). These gaps are located in cε-neighborhoods of the points λε
N1 = π2 and λε

N2 = (2H)−2π2.

To identify the gaps γεN1, we need asymptotic formulas for the upper and lower bounds of the

spectral segments υεN1 and υεN2 respectively. Due to the interwining of dispersion curves, the

justification of asymptotics for λεN1(η) and λεN2(η) is performed in two steps. First, Theorem

4.1 applied to the segment Λ•1 = {(λ•1, η)
∣∣ |η| � δ1} (cf. the definition (1.25)) shows that only

one dispersion curve can pass through the rectangle [0, λ•1]× [−δ1, δ1] in Figure 3 (a). Second,

Theorem 4.1 applied to the segment Λ•2+ = {(λ•2, η)
∣∣ η ∈ [π − 2δ2, π]} yields the opposite

observation: the rectangle [0, λ•2] × [π − 2δ1, π] in Figure 3 (a) contains arcs of two dispersion

curves. We emphasize that the rectangle is not necessarily symmetrically located because the

function η �→ λεMk(η) is even. Since we can choose λ•1 < λ•2 and δ1 > π − 2δ2 (cf. Figure

3 (b), where the segments Λ•1 and Λ•2± are marked with dash-dotted lines ending with the

symbol •), we can derive the required uniform estimates with respect to the Floquet parameter

for the remainders in the asymptotic representations of the eigenvalues and obtain exhaustive

information about the spectral segments (1.22)N with k = 1 and k = 2.

(a) (b) (c)

−π π−π π−π π

Figure 3. The dispersion curves in the model problem with the Neumann perforation

(a) and on the whole cell (b) and (c). The dash-dotted line ended with the symbol •
represents the segment (1.25) which is free from the spectrum of Problem Pε

T (η).

To study the opening of the gap γεN1, we use Figure 3 (c). The upper and lower bounds of
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the segments υεN2 and υ
ε
N3 are determined by the eigenvalues λεN2(η) and λ

ε
N3(η), but, in view of

the structure of the truss of dispersion curves, we need to justify the asymptotic expansions of

four eigenvalues λεN1(η), . . . , λ
ε
N4(η) on η ∈ [−δ3, δ3]. The segments Λ•3 and Λ•4± are presented

in Figure 3 (c) as above. It is natural to expect that similar coverings of the range interval of

the Floquet parameter can be also constructed for more complicated trusses.

5.3. Another approach to justifying asymptotics for spectral segments with

the Dirichlet perforation. The asymptotics of the eigenvalues of the problem (1.3)–(1.6) is

constructed in [29]. The asymptotics of narrowed spectral segments justified in (1.22) (cf. Figure

2) can be done by different methods, in particular, by using the inequality (3.18) in Theorem 3.1.

The second above-discussed approach is also applicable. Namely, the construction of an

almost inverse operator for mapping

Aε
D(η;λ•) : H

1
η,D(Ω

ε) → H1
η,D(Ω

ε)∗ (5.13)

of the inhomogeneous problem Pε
D(η) in the variational setting

(∇uεD,∇ψε
D)Ωε − λ•(uεD, ψ

ε
D)Ωε = f εD(ψ

ε
D), ψε

D ∈ H1
η,D(Ω

ε)

repeats (with some simplifications) the arguments of Section 4. Moreover, because of the sim-

plicity of dispersion curves, in Problem P0
D we deal with horizontal segments of level λ = λDk.

Therefore, we choose points λ• �∈ {λDk}k∈N for which the operator (5.13) realizes an isomor-

phism for all η ∈ [−π, π], ε ∈ (0, εk•] and some εk• > 0. As a result, for such values of ε

the multiplicities of the discrete spectra of Problems Pε
D(η) and P0

D on [0, λ•] coincide. Since

the asymptotic expansions of the eigenvalues λεDk(η) are obtained in [29], it is obvious that the

estimates for the remainders are uniform in η ∈ [−π, π].
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32. V. Chiadò Piat, L. D’Elia, and S. A. Nazarov, “The stiff Neumann problem: asymptotic
specialty and “kissing” domains,” Asymptotic Anal. DOI 10.3233/ASY-211701 (2021).

33. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin etc. (1966).

27


