Localization effects for Dirichlet problems in domains
surrounded by thin stiff and heavy bands

Delfina Gémez?, Sergei A. Nazarov®, Maria-Eugenia Pérez-Martinez®*

% Departamento de Matemdticas, Estadistica y Computacion, Universidad de Cantabria,
Santander, 39005, Spain, e-mail: gomezdel@unican.es
bSaint-Petersburg State University, St. Petersburg, 199034, Russia; Institute of Problems
of Mechanical Engineering RAS, St. Petersburg, 199178, Russia, e-mail:
srgnazarov@yahoo.co.uk
¢Departamento de Matemdtica Aplicada y Ciencias de la Computacion, Universidad de
Cantabria, Santander, 39005, Spain, e-mail: meperez@unican.es

Abstract

We consider a Dirichlet spectral problem for a second order differential op-
erator, with piecewise constant coefficients, in a domain . in the plane R2.
Here €2, is QUw.UT", where €2 is a fixed bounded domain with boundary I', w.
is a curvilinear band of width O(¢), and I' = QNw,. The density and stiffness
constants are of order e~ and ! respectively in this band, while they
are of order 1 in ;¢ > 1, m > 2, and ¢ is a small positive parameter. We
address the asymptotic behavior, as € — 0, for the eigenvalues and the cor-
responding eigenfunctions. In particular, we show certain localization effects
for eigenfunctions associated with low frequencies. This is deeply involved
with the extrema of the curvature of I'.
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1. Introduction and statement of the problem

Let  be a bounded domain of the plane R? with a smooth boundary I'
and let (v, 7) be the natural orthogonal curvilinear coordinates in a neigh-
borhood of I': 7 is the arc length and v the distance along the normal vector
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to I'; v < 0 inside €. Let ¢ denote the length of the curve I and (1) its
curvature at the point 7. We assume that the domain €2 is surrounded by
the thin band w. = {z : 0 < v < eh} where € > 0 is a small parameter and
h is a positive constant, cf. (1.4). Let ). be the domain Q. = QUw. UT" and
I'. = {x : v =¢eh} the boundary of Q. (see Figure 1).

Te

Figure 1: Possible geometry for ).

We consider the spectral Dirichlet problem in €2, for a second order dif-
ferential operator with piecewise constants coefficients:

— AA U = \°U* in €, (1.1a)
—ag PAut = NeTE in we, (1.1b)
Ut =u° on I, (1.1c)
et A0, U° = ad,u° on I, (1.1d)
u =0 on I'.. (1.1e)

Here, A and a are two positive constants while 9, denotes the derivative along
the outward normal vector v to the curve I'; ¢ and m are two positive pa-
rameters. We study the asymptotic behavior, as e — 0, of the eigenvalues \°
of (1.1) and the corresponding eigenfunctions which we identify with pairs of
functions {U¢,u}. In (1.1), U® stands for the restriction of the eigenfunction
to 2 and u® for the restriction of the eigenfunction to w;.

Problem (1.1) is new in the literature. It is of interest, for instance, in
the study of reinforcement problems for solid media and in vibrations for
a two-phase system in fluid mechanics. Here, the band w. is both stiffer
and heavier. Parameters ¢t and m deal with the physical characteristic of
the medium and it seems natural to have a different asymptotic behavior
as € — 0 for the eigenpairs (A, {U¢,u°}) of (1.1) depending on their value.
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In particular, for 0 < m < 2 the low frequencies are of order 1 while for
m > 2 they are of order €™ 2 (cf. Proposition 1.1 and Remark 5.4). For
m > 2 and t > 1, among other things, the paper provides a mathematical
proof on how the low frequencies vibrations in reinforcement problems can
concentrate around certain points of the boundary.

Usually, the localization phenomena occur near the extrema of the curva-
ture, see e.g. [19, 23, 9, 17] for maxima and [11, 3] for minima. In problems
with banded domains, they occur for both, maxima and minima (see [16]
and the present paper).

In this respect, let us recall the results in [14, 15, 16] for a very different
problem: the Neumann problem (1.1a)—(1.1d) along with

dus=0 onl.. (1.2)

They are the closest works in the literature for a domain w, = {z : 0 <v <
eh(7)}, where h is a strictly positive function of the 7 variable ¢-periodic,
h € C*(Sy), Sy stands for the circumference of length ¢ and w. may vary
with the arc length. A characterization of the limiting problems for the
eigenpairs of problem (1.1a)—(1.1d), (1.2) for the different values of ¢ and
m has been obtained in [14] by means of asymptotic expansions. Sharp
bounds for convergence rates of the eigenpairs (A%, {U¢, u°}) in the case where
t = 1 and m = 0 have been given by using the so-called inverse-direct
reduction method (cf. [24, 25, 20]). A different approach for the eigenpairs
is provided in [15] for the case where ¢ > 1 and m = 0 where, in addition
to the convergence, a complete asymptotic expansion for the eigenpairs has
been obtained, and a connection of this problem with Wentzell problems with
small parameters has been shown. Also, both papers [14, 15] describe precise
bounds for convergence rates for the low frequencies and the corresponding
eigenfunctions in the cases mentioned above m = 0 and t > 1. We refer to
[14, 15] for further references.

Paper [16] deals with the Neumann problem (1.1a)—(1.1d), (1.2) in the
case where t = 1 and m > 0, and considers the low and high frequencies
which are of order €™ and 1 respectively. The limiting problems associated
with both kinds of frequencies are obtained and information on the structure
of the corresponding eigenfunctions is also provided. These problems appear
independently of the geometry of the band w,, but for m > 2 there are other
limiting problems associated with the so-called middle frequencies, namely
eigenvalues of order ™2, which strongly depend on this geometry: more



precisely whether the function h is constant or not. Moreover, only in the
case where h is not a constant, the eigenfunctions corresponding to the middle
frequencies are localized asymptotically in small neighborhoods of points 7
of the boundary where the function h presents a local maximum.

Here we deal with the Dirichlet problem (1.1) which provides a very dif-
ferent behavior of the spectrum as ¢ — 0. We consider the low and high
frequencies in the case where t > 1 and m > 2 which are now of order ¢™ 2
and 1 respectively (see Remark 5.4 for other values of m). In contrast with
the Neumann problem, when the function h is constant, we show new local-
ization effects for the eigenfunctions of (1.1) at points 7y of the boundary
where the curvature of I presents a local minimum (cf. Theorem 3.3 and
Remark 2.2). Besides, these eigenfunctions correspond to low frequencies of
(1.1). When the curvature of I' has a unique global minimum (cf. Figure 2),
we also study the convergence of the low frequencies with conservation of
the multiplicity, once we have rescaled the eigenvalues and the correspond-
ing eigenfunctions in a suitable way (cf. Theorem 4.1). We note that, for
the sake of brevity, we avoid writing proofs in the case where I' has several
curved components (cf., e.g., Figure 2 (d)).

1.1. A priori estimate for the eigenvalues

The weak formulation of problem (1.1) reads: to find A\* and {U¢®,u°} €
H;(Q2) \ {0}, satisfying

A/VZUE-Vmde n %/ V0t - Vg do
“ we (1.3)

1
= )\ </Q U¢Gdx + 5t+m/ uEQdI) V{Gvg} < H&(QE>

Here, and in what follows, we identify a function in L*(€.) (H'(£2.), respec-
tively) with the pair of functions {G, ¢}, where G stands for the restriction
of the function to 2 and g for the restriction of the function to w.. In par-
ticular, the eigenpairs formed by the eigenvalues A* and the corresponding
eigenfunctions read (A%, {U¢, u°}).

For each € > 0, problem (1.3) is a standard spectral problem in the couple
of spaces H}(2.) C L?(.), with a positive and discrete spectrum. Let us
consider

k—o00

D<A <AL <AL oo

the sequence of eigenvalues repeated according to their multiplicity.
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Figure 2: Examples of different domains 2 and points 79 where the localization phenomena
occur with the global minimum.

Now, we introduce some notations and obtain estimates for the eigenval-
ues of (1.3) (see, for instance, [12, 14] for the technique).

Let I'(7) = (I'y(7),T'2(7)) be a parametrization of the boundary I' = 09
by its arc length 7 € [0, ), namely (T'}(7))? + (I'4(7))? = 1; we choose the
counterclockwise orientation of the boundary. Let sz be the curvature of T,
»(1) = Y5 (r) — DY (7)) (7) for 7 € [0,£); note that the curvature is
nonnegative if the domain €2 is convex.

For € small enough, let us consider the change

xy = T1(7) + vl5(7) and 9 = Ty(7) — v (7), (1.4)
where (v, 7) are the orthogonal curvilinear coordinates, v € [0,¢h) and 7 €
[0,¢). The Jacobian of the above transformation is K (v, 7) = 1 4+ v(7).

In a neighborhood of I, we introduce the so-called local coordinates

¢,7), C=¢y (1.5)

which transforms the thin domain w,. into a band w; of length ¢ and width
O(1); namely, w. = {(v,7) : v € [0,eh),7 € S;} into w; = {({,7) : ¢ €
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[0,h), 7 € S¢}. Note that the boundary condition along with the change of
variable (1.5) in w, yield

902y < CElIVaglliow.,) VG, g} € Hy(Q); (1.6)

we)

here and in what follows C' denotes a strictly positive constant independent
of €.

Proposition 1.1. Let {\;}?2, be eigenvalues of (1.3). For each fived k € N
and a small €, we have
C <\, <y when m < 2,

1.7
Ce™ 2 <\, < Cre™ ™% when m > 2, (17)

where the positive constants C' and C), do not depend on ¢, but Cy — 00 as
k — oo.

Proof. The lower bounds hold as a direct consequence of (1.3), the Poincaré
inequality, (1.6), and the fact that m < 2 or m > 2, respectively (cf. Propo-
sition 4.2).

As regards the upper bounds, the minimax principle gives the equalities

A/ yvxw?dwrg/ V0] do
A\, = min max x -

Ex C HY(Q.) {V,v} € By 2 1 2 ’
dimEy =k  {V,0} #0 /QWl dr + ” [v] dz

(1.8)

where the minimum is taken over all the subspaces E, C H}(.) with
dim Fy, = k.

Let {ur}32, be the eigenvalues of the Dirichlet problem in © and {V,}7°,
the corresponding eigenfunctions which are assumed to form an orthonormal
basis in L*(Q). For each fixed k, E}" is the linear space

EI? = [{‘/170}77{‘//“0}] - H(%<Q€>7

where {V.,0} denotes the extension of V;. to Q. by 0 in w,, forr =1,2... k.
Then, from (1.8), for any m € R, we derive

A/ V. V[ da
;< max i = L.
{V.v} € Bf /]V|2d;v
{Vivl#0 Q



This inequality provides the upper bound in (1.7) when m < 2. In order
to prove it when m > 2, we consider { Ao }72, the eigenvalues of the spectral
problem

{ _ay[/), = >\0y0 C € (Oa h)a
Y0(0) = yo(h) =0

and {yox}72, the corresponding eigenfunctions (cf. Section 2 for details) and
we define the functions V¢ € H}(Q.) as

VE( ) yO,k(()) if € Q,
€Tr) =
‘ Yor(v/e) ifx € w..

Then, taking in (1.8) the particular subspace of Hj(S2.), Ef = [V£, ..., VE],
and making the change of variable (1.5) in w,, we obtain

a 2
& | a0 K. dgar
AL < max =1

.1 ,
S

where K.(¢,7) = 1+ &(»(7). On account of the continuity of s(7), for
sufficiently small €, (1.9) gives

A< Ce™ o,

(1.9)

C being a constant independent of €. Therefore, the proposition is proved.
O

Relations in (1.7) indicate the order of magnitude of the eigenvalues of
problem (1.3) for fixed k, the so-called low frequencies. The aim of this paper
is to study, for t > 1 and m > 2, its asymptotic behavior as ¢ — 0 and that of
the corresponding eigenfunctions {Uf, uf}. We assume that they are subject
to the orthonormalization condition

8t+1A/ V.Up -V, U dx + sa/ Vauy, - Veuy de = gy,
Q w,

where d;; denotes the Kronecker symbol. It should be noted that, by intro-
ducing the change of variable (1.5), the integral identity (1.3) reads

et+1A/VxU5-Vdex+a/ Ocu0:g K. d§d7+52a/ 0w 0,g Kt d¢dr
Q w1 w1

AE
= <€t+m1/U€Gd:c+/ uEgKEdCah'), (1.10)
Q w1
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where now u® and g denote the functions v* and g written in the new variables
(¢,7), and K.(C,7) = 1 +¢&((7) denotes the Jacobian of the transformation
from (z1,x2) to (v, 7) in the (¢, ) variables.

In particular, we construct three-term asymptotic expansions of eigenval-

m—2

ues of (1.1) of order e™72,
X =™ 2 (g + el + %230 + 0(e¥/2)), (1.11)

and show localization effects for the corresponding eigenfunctions in the case
where the curvature of I' is not constant. As a matter of fact, we construct
approaches to eigenfunctions corresponding to certain eigenvalues of order
£™~2 which concentrate asymptotically their support in £'/4-neighborhoods
of points which are local minima of s (cf. [19, 23, 8, 9] for very different
problems with localization effects in neighborhoods of local extrema of the
curvature). Note that, in contrast with the Neumann problem, these lo-
calization effects can arise when the thickness of the band is constant (of
order ¢), and they are associated with low frequencies (cf. [16]). We refer
to [19, 23, 10, 11, 6, 27, 3, 4] for different problems in thin domains where
localization effects for the eigenfunctions arise: [19, 23, 27] deal with thin
plate-like domains while [10, 11, 6] consider a thin rod structure in two and
three dimensions respectively. See [21] for references on other quite different
localization effects at points for vibrating systems with concentrated masses.

In this respect, it is worthy emphasizing that localization effects for eigen-
functions in the literature are related either to geometrical characteristics of
the domains along with the operator under consideration, or to physical char-
acteristics of the material. Here, as happens in [16], they are related to both
characteristics. The localization near a point 7y can be enlightened by intro-
ducing suitable local variables (which somehow isolate the point), rescaled
spectral parameters and renormalized eigenfunctions. All this is glimpsed by
means of asymptotic expansions. Although the frequency range giving rise
to localized eigenfunctions differs from [16], the choice of appropriate scales
leads to a certain connection of the operator (cf. (1.1)) with the harmonic
oscillator operator (2.37) which also involves the geometrical characteristics
of the domain.

We also describe the asymptotic behavior as € — 0 of the eigenvalues Aj,
of (1.1) for k € N fixed. As occurs in other Dirichlet problems posed in thin
domains (cf. [5, 10, 11, 3, 4, 2, 27, 18]), for all k fixed, the values X /e™2
have a common limit A\, the dominant eigenvalue of (2.22), and we have



to turn to the second correction term Ag/» to show the effect of asymptotic
splitting in the eigenvalue sequence, namely,

2

A = em—2(z;; + s“%](f)) + 32Ny o + 0(53/2)) forkeN, (1.12)
To being the only point where the curvature of I' has the global minimum.
In this case, M35 are the eigenvalues of the harmonic oscillator operator
(2.37). The proof is based on a factorization principle which somehow allows
us to isolate oscillations. This technique has been used in the literature of
homogenization problems (cf. [26] and references therein), but to our knowl-
edge this is the first time that it is used for reinforcement problems. The
method involves a rescaling for eigenfunctions which along with a suitable
shift and rescaling for eigenvalues lead us to a reformulation of the original
problem in terms of new eigenvalues and eigenfunctions.

The structure of the paper is the following: in Section 2 we construct the
formal asymptotic expansions (1.11) and identify the values A\ as eigenvalues
of (2.22), \; = ax(m)/h, and Ay as eigenvalues of the harmonic oscillator
operator (2.37), 7o being a point where s presents a local minimum and
#"(19) > 0 (cf. (2.38) and Remark 5.3). These asymptotic expansions are
justified up to a certain degree in Section 3 where we obtain estimates for con-
vergence rates for the low frequencies and the corresponding eigenfunctions
as stated in Theorem 3.3. However, this still does not imply the convergence
of the kth eigenvalue of (1.1). The aim of Section 4 is precisely to justify
(1.12) when 79 is the only point where the curvature of I has the global min-
imum (see Theorem 4.1). We divide the proof into several steps. In (4.1),
we verify that the dominant eigenvalue of (2.22) is the common limit of the
rescaled eigenvalues of (1.3), \¢/e™ 2 for k € N fixed (cf. Theorem 4.3).
Later on, in (4.2), using the principal eigenpair of (2.22) we reformulate the
original problem (1.3) in terms of a new spectral parameter and eigenfunc-
tions, problem (4.64), and we show that its eigenvalues converge towards
the eigenvalues of (2.37) (see (4.3)). In (4.4), we state the equivalence of
the spectral problems (1.3) and (4.64), and show convergence (1.12). Deal-
ing with the local effects for the low frequencies, the technique differs very
much from [16]. Finally, the eigenvalues of (1.1) of order 1, that is, the high
frequencies, are considered in Section 5.

It should be noted that in (1.11) for Ay the dominant eigenvalue of (2.22)
and for \; = a(7p)/h with 7y the point where s presents the global minimum
(namely, (1.12)), we are dealing with very low frequencies, while for other
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values 1y where s presents local minima or for other values of )y, eigenvalues
of (2.22), we are dealing with larger frequencies but with the same order of
magnitude.

2. Asymptotic expansions

In this section, we provide asymptotic expansions for the eigenvalues of
(1.1) of order e™2 and their corresponding eigenfunctions. We determine the
terms arising in these expansions from the eigenpairs of two one-dimensional
problems (cf. (2.22) and (2.37)). The justification for these expansions is
given in Section 3.

Let 79 be a point where the function s has a local minimum. In order
to isolate a neighborhood of this point 7y, it proves useful to introduce some
local variables defined by

(=c'v and n=¢"(1—7) (2.13)

with v a constant, v > 0. For any d > 0, the change (2.13) transforms the
narrow band {(v,7) : v € [0,eh), |T — 10| < d} into the band {({,n) : €
[0,h),n € (—de™7,de™7)} of width O(1) and length O(¢77), and it leads us
to consider a limiting problem in [0, h) x R independent of the geometry.

Taking into account the Taylor expansions of s(7) in a neighborhood
of 79, we introduce the new variables in the Laplacian in the curvilinear
coordinates, namely in

Ay = K, 1) 0,(K(1,7),) + K(v,7) " 0- (K (v,7)'0,),  (2.14)

being K(v,7) = 1+ vx(7), and gather the different powers of . Since
»'(19) = 0, we have

Aey=e20+e (n0) 0 +77127 5 () 2+ 202+ -+ (2.15)

where here and in the sequel the dots denote further asymptotic terms of
different powers of € which in general are not used to derive our results.
Following the idea in [19, 23, 16] for localized eigenfunctions, among the
possible choices of v we consider one that leads us to an eigenvalue problem
in L*(R) for the Hermite differential operator in the “tangencial” variable
n (cf. (2.37)). Under the assumption »”(79) > 0 (cf. Remark 2.1 for other
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cases), equalizing the exponents of € in the third and fourth terms on the
right hand side of (2.15) yields v = 1/4 in (2.13), namely,

(=cw and n=c"r-n). (2.16)

Now, we consider an asymptotic expansion for the eigenvalues A and for
the corresponding eigenfunctions {U®, u°} in Q and w. of the form:

A= 8m72<)\0 + €1/2)\1/2 -+ 8)\1 -+ 83/2)\3/2 + .. ), (217)
Us(z)=Ve(x) + 51/2V§/2(x) +eVi(z) + 63/2V§/2(x) +---2€Q,  (218)

ua(C> 77) :UD(C, 77)"'61/2“1/2((7 77)""’5“1 (Cv 77)+53/2U3/2(C7 77)+' - GE [07 h)v neR,

(2.19)
respectively. Besides, we suppose that V€ in (2.18) or vy in (2.19) are different
from zero. We note that we have assumed that the outer expansion (2.18) can
be a non-regular expansion since we allow the terms arising in the expansion
to be dependent on € and x simultaneously and (2.19) is the expansion in
the fast variables.

After considering equations (2.15), we replace expansions (2.17)—(2.19)
in problem (1.1) and collect coeflicients of the same powers of €. In a first
step, we have that the leading terms in (2.17) and (2.19) satisfy the following
problem with the parameter n € R :

—a 8?1}0 = )\01)0 C S (O,h), (220)
aCUO<07 77) = 07 ’l]o(h,’f]) =0. (221>

From (2.20)—(2.21), we deduce that \q is an eigenvalue of

—ayy = Aoyo ¢ € (0, h),
{ yh(0) = yo(h) = 0 (2.22)
and
vo(C,m) =yo(Qv(n) ¢ €(0,h), nER, (2.23)

where yg is an eigenfunction of (2.22) corresponding to Ag and v is an arbi-
trary function of 1 to be determined. It is clear that the eigenvalues of (2.22)
are given by

a(2k — 1)*x?

for k=1,2,... 2.24
4h?

)\O,k =

11



and the corresponding eigenfunctions can be chosen to be

Yo.x(C) = sin (W(g — h)) for k=1,2,.... (2.25)

In a second step, we obtain the following problem with the parameter
nelR:

—a 821)1/2 = /\01}1/2 + )\1/2'00 C € (0, h), (226)
Icv12(0,m) =0, wviya(h,n) = 0. (2.27)

Since v9((, 7) = yo(C)v(n) verifies (2.20)—(2.21), the compatibility condition
for the non-homogeneous problem (2.26)—(2.27) in the (—variable reads

h
0= )\1/271(77)/0 yo(C)Q ¢, neR,

and so A2 =0. Now, since the eigenvalues of (2.22) are simple, we choose the

solution vy /2 =0 to be the unique solution which satisfies fohvl/g(C, yo(Q)d¢ =
0.

In the third step, we obtain the following problem with the parameter
nekR:

—a(‘)?vl - CL%(T()) 8<U0 = /\0’01 + )\1/2?}1/2 + )\11)(), g S (0, h), (228)
Ocv1(0,m) =0, wv1(h,n) =0. (2.29)

Since A1/, = 0, the compatibility condition in (2.28)-(2.29) reads

—ase(ro)o(n) / B(Quo(C) d¢ = Mo(n) / w(C?d, 7ER.

The explicit form (2.25) of the solutions of (2.22) gives

" / 1 2 2 1 " 2 h
YoYo d¢ = a(yo(h) —40(0)%) = ~3 and Yo d¢ = BL (2.30)
0 0
and we have that
A = ah™ (7). (2.31)

In addition, any function v, satisfying (2.28)—(2.29) can be written in the
form

vi(G,n) = #(ro)v(yi(C), ¢ €(0,h), neR,
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where y; is a solution of

a
{ —ayy — Aoy = ayy + 7 Yo ¢ € (0,h), (2.32)

y1(0) = y1(h) = 0.
In fact, for each fixed eigenpair (Mg, yo) of (2.22), we can choose y; above

to be the unique solution which satisfies foh y1(Q)yo(¢) d¢ = 0, and then, for
(Ao, yo) = (Aok, Yo) verifying (2.24) and (2.25), we have

v1(¢n) = vik(C,n) = 2(r)v(Myir(C), ¢ € (0,h), nER, (2.33)
where
L0 Bk (k12 . ((2k— )
ha(6) == (5 T Rk(2E - 1) ) o ( TR h)>
- (2k i 1)7T(C — h) cos <—<2k2_hl>7r(C - h)) , fork=1,2,....
(2.34)

Following the process, in the next step, we derive the problem for v/,
with the parameter n € R :

ax’ (1
—a 8?1)3/2—&%(70)841)1/2 — 2( 0) n? 841)0—@821)0
= AoUs/2+ A1/201+ A1 2+ Ag200, CE(0,R), (2.35)
841)3/2((),77) =0, U3/2(ha77) =0. (2.36)

Now, the compatibility condition for the non-homogeneous problem (2.35)—
(2.36) provides:

ax" (1)

h h
ot [ (€ o = (o) [ (e
= A3/2?}@)/0 w(¢)*d¢, neR.

From (2.30) we get the equation for the eigenpair (32, v):

ai}(:())”%(n) —av"(n) = Agppv(n), neER. (2.37)
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Under the assumption »”(79) > 0 (cf. Remark 2.1) and prescribing the
condition v € L*(R), (2.37) has a discrete spectrum (see, for example, Chap-
ter IX of [7]) and we can compute the eigenvalues A3/, as follows

(7 1/2
A3jop = ( 2(h0)> ai2p—1) forp=1,2...,

while the corresponding eigenfunctions v(n) are

/" 1/2 2 /" 1/4
vP(n) = Cpexp (— (%2(;D)> %) Hp_1<(%2(;0)) 77) forp=1,2...,

where C,, are arbitrary constants and H,_; are the Hermite polynomials of
degree p — 1.

In addition, by virtue of (2.23), (2.22), (2.31), (2.33), (2.37), and the fact
that A;/ = 0 and vy = 0, equation (2.35) becomes

) () (4(C) + T30(0). CE(0.h)meR:

—a@?vgp — )\01)3/2 =a

and v3/2(¢,n) can be obtained by separation of variables as

%//(7_0>

2 nZUp(n)yl,k(<>7 C € (07 h)7 ne R,

U3/2(C7 n) =

where y; (() is given by (2.34).
Hence, we have identified the first terms in the expansion (2.17) which
shows a splitting of the low frequencies into a double series

/2

€ m—20(2k — 1)*7? m—10%(70) m—1/2 #"(70) Y _
A ~e oz +e 7 +e —n a(2p —1)

k,p=1,2,..., (2.38)

for which the first terms in (2.19) are also determined by

%H (7_0)

u (¢, 7) ~ Yo ()P () + e3¢(70)y1.x(C)v" (n) + 53/QTU2yl,k(OUp(77)a

Ce(0,h), neR, (2.39)

while the terms in the outer expansion (2.18) are yet to be computed in order
that expansions (2.18) and (2.19) match up to a certain order.
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To this end, we note that the fast variable in (2.19) and (2.39) is n =
(7 — 70)e~1/* and the function vo(¢, n) +ev1 (¢, n) + &%/ %v3/2(¢, n) is somehow
localized in a neighborhood of n = 0, namely in {z € w. : |7 — 79| <
Ke'* v € (0,eh)} with K a positive constant, and it is exponentially small
outside. Specifying further, v(n) is exponentially small for 7 satisfying |7 —
To| = P with any p < 1/4.

Hence, in order to get an approximation of {U¢,u®} in the whole domain
), for a fixed d, 0 < d < £/2, we introduce a cut—off function

X € C*°(R) such that 0<x <1, x(s)=1 as |s|<d/2 and x(s) =0 as |s|>d.
(2.40)

Then, we set

: rom\ [ v ), W\ v

)~ e =)o () (%) + 2 (st + 2 = ) ()
(2.41)

for (v, 7) € w., where (Ao, 9o) is an eigenpair of (2.22), (A3/2,v) is an eigenpair

of (2.37) and y; is the solution of (2.32).

Now, equations (1.1a) and (1.1c), along with (2.17), (2.18) and (2.19),
provide the first term in the outer expansion (2.18) to be the solution of the
non-homogeneous Dirichlet problem

“AALVE=0  in Q,

7" (10)

0 (7—70)2) yl(O)} onT.

(2.42)
On account of the smoothness of the non-homogeneous data on I'; for each
fixed € > 0, problem (2.42) has a unique solution V¢ € H%({)) and we can set

Us(z) ~Ve(z) forze Q. (2.43)

T—1T0

Ve (z)=x(T—10) v (W) {yo(o) +e (%(7’0) +

In addition, since the data is located at supp(y) and the function v decays
exponentially with the distance to 79, one may expect that V¢, as well as its
derivatives up to the order k, will be o(1) at a distance O(1) of 7y (also, at a
distance O(ePx) for a certain p;, < 1/4 depending on k).

Hence, formally, from (2.41) and (2.43), we have localized eigenfunctions
corresponding to eigenvalues in (2.38). The support of these eigenfunctions
concentrates asymptotically in Ce'/4-neighborhoods of 7y. In the next sec-
tion, we justify approximations (2.41) and (2.43) and show the estimates
above for V©.
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Remark 2.1. Similar results can be obtained when s presents a local min-
imum in 75 but »”(r) = 0. If so, it is self-evident that we must intro-
duce different variables and asymptotic expansions. As a matter of fact, if
i (19) = 3" (19) = -+ = 5" V(79) = 0 and 5" (75) > 0 for certain n > 1,
the suitable variables to show the local effects for the eigenfunctions are likely
to be ( = v/e and n = (7 — 1)~ /20D,

Remark 2.2. When the domain (2 is a disk, the curvature s is constant and
explicit computations for the eigenpairs of (1.1) can be done by means the
Bessel functions. In this case, the corresponding eigenfunctions are significant
over the whole domain €2., and no localization effects arise.

On account of the above remarks, in what follows we make the following
assumption:

ASSUMPTION 1: the curvature s of T' has a local minimum at Ty such
that »" (1) > 0.

3. Estimates of the asymptotic remainders

In this section, we justify up to a certain degree the asymptotic expan-
sions in Section 2. We obtain estimates which establish the closeness of the
eigenvalues \* = O(e™2) of (1.1) and the values A + eA; + %/2)\3/5 where
Ao and Ag/p are eigenvalues of (2.22) and (2.37) respectively, and A; is given
by (2.31) (cf. Theorem 3.3). We also provide information on the structure
of the eigenfunctions corresponding to \°. However, this still does not imply
the convergence of the kth eigenvalue of (1.1).

We first introduce some notation and results of further use. For each
e > 0, H° is the space H}(Q.) with the scalar product

(U, u},{G, g} )u: = at“A/ V.U -V,Gdx+¢ca| V,u-V,gdz
o . (3.44)

V{U,u}, {G, g} € Hy(Q).

Let A® be a positive, compact and symmetric operator on H¢ defined by

(AU (G ghwe == [UG o~ [ugds WU}, (G g HY(.).
Q w

€

It is clear that the eigenvalues of A® are {e™2/)5}7°, where {\{}32, are the
eigenvalues of (1.1).
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In order to derive estimates, we use a classical result on “almost eigenval-
ues and eigenvectors” from the spectral perturbation theory, namely, Lemma
3.1, and a result which describes the behavior of the solution of problem
(2.42), namely, Lemma 3.2 (see [28] and Chapter 6 in [1] for the proof of
Lemma 3.1, and [16] for the proof of Lemma 3.2).

Lemma 3.1. Let A: H — H be a linear, self-adjoint, positive and compact
operator on a separable Hilbert space H. Let uw € H, with ||ullg = 1 and
A, 7> 0 such that ||Au — Aullg < r. Then, there exists an eigenvalue \; of
the operator A satisfying the inequality |A\— ;| < r. Moreover, for any r* > r
there is u* € H, with ||u*||gz = 1, u* belonging to the eigenspace associated
with all the eigenvalues of the operator A lying on the segment [N\ —1*, A\ +1r*]
and such that

Ju—u"l|m < —
,
Lemma 3.2. Let g € C*°(R) be a function verifying
IVEg(s)| < Ch(1+s)F2 forse R and k=0,1,2...
For e >0, let V¢ be the solution of the problem

{ —A, V=0 in

Ve =x(t —710)9((r —10) /") onT (3.45)

where v > 0, 19 € ', x € C®(R) is a cut—off function such that x(s) =1
as |s| < d/2 and x(s) = 0 as |s| > d for sufficiently small d > 0. Then, the
function V¢ satisfies

IVEVE(2)] < crs 7070 (e 4 %) 01702 (3.46)

forany 0 < d <1,z € Qand k =0,1,2..., r being dist(x,7y) and crs a
constant independent of c.

Now, we can state the following result which provides bounds for the
convergence rates for the eigenvalues and eigenfunctions of (1.3):

Theorem 3.3. Let (Ao, yo) and (X3/2,v) be eigenelements of (2.22) and (2.37),
respectively, such that ||y0\|%2(0’h) = Hv||222(R) = 1/2. Let y; be the solution of
(2.32) orthogonal to yo in L*(0,h), and let V¢ be the solution of (2.42), where
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x € C=(R) is defined by (2.40). Lett > 1 and m > 2. Then, under the as-
sumption 1, there are eigenvalues A° of problem (1.3) such that

A —/\0—8%(7—0)—83/2/\3/2 S C&fq,

gm=2 (3.47)

where ¢ = min{ (4t + 4m — 3 — 20)/8,13/8},
C' is a constant independent of £, and 6 € (0,1/8). Moreover, there is a linear

combination of eigenfunctions {U=, 1} € H(Q.), {U%, 5} corresponding to
the eigenvalues Aj ., of (1.1) which satisfy /\2(5)52_"‘ € Mo — K& \g + K&

with K > 0 and 0 < 0 < ¢, |{U=, @}l = /8, such that
€(t+1)/2’|[7€ o stsHHl(Q) + 81/2”&’6 - ﬁEwEHHl(wg) S ng79+1/87 (348)

where w* is defined by

) =t )|l %) =)+ 5w (%)

(3.49)
if (v, 7) € we, 55 = V8 {V, w3k, and B° — A% as e — 0.
Proof. For sufficiently small ¢, the function {W¢ w®} is defined by
We(z) =Vve(z) ifxeq, (3.50)

and (3.49). It is clear that {We, w®} € H}(Q.). In addition, considering
Lemma 3.2 for § € (0,1), we take integrals over € in (3.46) with £k = 0,1, 2,
and use polar coordinates around 7; then, we obtain the estimate

56/4”VEHL2(Q) + 51/4HvaEHL2(Q) + 61/2HV§,V€HL2(Q) S 051/4. (351)

In order to apply Lemma 3.1, we prove the estimate

1

)\0_’_811%;:0) +53/2>\3/2

(Ao, ) - (W, 0}{G.g}) | <CIH{G. g}l

(3.52)
for all {G,g} € H°, where {We @} = {We w}[{We, w}|5}, and ¢ is
defined in the statement of the theorem.
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Taking into account the definition of the operator A%, the scalar product
(+,-)ne and the function {W¢ w°} and introducing the change of variables
(2.16) in the integrals in w., we can write

ax(70) | s 1
No+e—9 / )\ A° WE, el VVE7 € ’ G, )H
< 0 B € >< { w } /\0+6a%270)+63/2)\3/2{ v } { g} e
=J1+ Jo — Js,
where

J1 = <>\o +e }(L o) + £3/2 )3 ) Hml/ VG dx — e"TA [V, V- V,G da,
0 Q

Jg 251/4 <)\0 + €—a%}<l7-0) + 53/2>\3/2>

3/2 #'(10) >
* | Xe (yo +ex(mo)yr + ¢ — y1>nga d¢dn
R

and

7" (7 ~
Jy =as'/4 / 0% (Xe (yo + e3e(m0)y1 + 53/Q¥n2y1>v> OcgK. d¢dn
R
3 _
+ a67/4/ Oy (Xs (yo + e3e(mo)yr + €72 ; )77 yl) )%gK;ldCdn;
R

with g denoting the function g € H'(w.) in the local variables ((,n), R =
(0,h) x R, K.(¢,n) =1+ eCs(mo + e'/*n) and x.(n) = x("/*n).

To estimate .J;, we take into account the definition of V¢, the fact that
G =gon I and g =0 on I';, the trace inequalities

eh 2
161y = [ ([ o) r < CEIV.gli, < CIHG 9B
V{G, g} € Hy(S0),

(3.53)

and
10,Ull 2y < ClUN 2y YU € HA(Q),

estimates (3.51) and equation (3.44). Then,

| L] <CeHVE 2o |Gl 20y + £ CLIONV | 2y | G| 2y
SC( 2t+2m 1-6 —|—€t+1 1/4)||{G g}”?—[f
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To estimate |Jo—J3, since (Ao, yo) is an eigenpair of (2.22), y; is a solution
of (2.32) and (A3/2,v) is an eigenpair of (2.37), we write

~ 2"
Jy — J3 = gl/4 {)\0/ XeVYog (Ke — 1 —e(s(m) — 53/2(@%) d¢dn
R

—a/ Oc(XevY0)Ocg (KE —1—e((m) — 83/2<M7]2> dCdn}
R 2

' ~
+ /4 {)\0/ Xe <%(7’0) + 61/2¥7]2>vy1g(1{5 —1)d{dn

X (CL%]STO) +51/2)\ >/X5Uy0g(f{5_ 1) dgdn
R
1/2%/(70) 2 >
—a [ O (Xs(%(To) +et—m )vyl)acg(Ks — 1) d¢dn
R
+ 74 {—a/ 8n(xsvy0)8ng(f{;1 —1)dCdn
R
+(l/( 1/2 // 251/4 / ,)yogdgdn}
R
9/4 ax(7o) 1/2 1/2%//(7'0) 2 >
+ € ( . + /e /) RX€<%(TO)+€ — n >vy1gK5dCdn
—511/4a/8,7 (Xs (%(7'0) —1—51/2@772)@1)8,@?{61 dcdn .
R

Now, for fixed ¢ and ¢, we consider the Taylor series at the point 7o of
the functions K.(¢,7) = 1 + eC»(7), and KZ-'(¢,7) = (1 + eCs(7))! for
T = 79 + /%y, Then, taking into account the smoothness of » in S,, and
that »/(79) = 0 and ||n*v||2r) With k = 2,4, 6 is bounded, we obtain

| Jo — J5| < Cie®(||gll ey + 10cel 2wy + ¥ 1008l L2ry)

Moreover, introducing (2.16) in w. and taking into account (1.6) yields

HG. g} =1 A V.G dotea | |0cel*KedCdn+<""a | |0,8]°K: dCdn,
Q Re Re

(3.54)
and

C’ ~
I{G, g} 3 >ca| |Vag)*da > - 9> dz = C'* [ |g)* K. d¢dn;

We We RE
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here R, denotes the domain transformed of w. with the change of variable
(2.16). Thus,
| Jo — J5| < Coe™B|{G, g}l 2=

As a result of the above estimates for J;, Jo — J3, and the fact that t > 1,
we have

1
)\0 + 5@ + 53/2)\3/2

HE
2t4+2m—1—4§

<Cle T +EMNG, gHne {G.g} € H7,

‘ (mwaws} we ), {G,g}>

where 6 € (0,1/4). As regards the normalization of {W¢, @} in H*, we show
VWS w e = af (0c(wor)l didn = Xo; - (3.55)
R

which is obtained taking limits in (3.54), on account of (3.51), the normal-
ization in the statement of the theorem for v and y, and the variational
formulation of problem (2.22). Consequently, (3.52) holds due to the defini-
tion of {/er,ﬁs} and (3.55).

We apply Lemma 3.1 for H = H*, A= A%, A = (\g+220) 4 23/2), )1
and u = {WE, w®} and r = Ce? which provides, for sufficiently small ¢, at
least one eigenvalue Aj ) of (1.1) verifying |()\i(5)52*m)*1 — (Ao + 5@ +
e3/2)\3/2) 71| < Ce4, and consequently, we deduce (3.47). Moreover, if we take,
for instance, r* = g? with 0 < 6 < ¢, Lemma 3.1 also provides a function
{U=,u*} € He, with |[{U®, @} = 1, {U¢, @} belonging to the eigenspace
associated with all the eigenvalues (/\2(8)52_’")_1 of operator A® contained in
the closed interval

-1 —1
[(AO + 5@ - 53/2A3/2> — &, (Ao + sWT(TO) - 53/2A3/2) + 59] :

such that .
II{Us, {L\E} — o {W w Y| < Cle17?

is satisfied where a® = [[{W¢, w}|;}. Now, we set {U°,a°} = e'/8{U*, 0%}
and 3¢ = /807, namely,

Bs — 81/8||{W€, U)E}H;Li,
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which converge towards )\51/2 as € — 0 (see (3.55)).
Then, from (3.44), (3.49), (3.50), and (3.55) it follows

eV, (UF — BVF) || 20y + €2 Vu (@ — B°0°) || r2(un) < CeT M5,

and, since (U¢ — B°V¢)|p = (@ — fw®)r, using again Friedrichs’ inequality
and the trace inequality (3.53) with g = u® — fw®, yields (3.48), and the
theorem is proved. O

Remark 3.4. Let us analyze (3.47). For ¢ > 1 and m > 2 such that
t +m > 15/4, we can choose an appropriate 6 € (0,1/8) to get ¢ > 3/2
in (3.47) and the asymptotic expansion (2.17) is justified up to order £%/2,
Nevertheless, estimate (3.47) still does not imply the approach of the kth
eigenvalue of (1.3) through the kth eigenvalue of (2.37) where )y is the
dominant eigenvalue of (2.22).

In the case where t > 1 and m > 2, but 3 < t +m < 15/4, (3.47) also
provides a justification for the first two terms arising in (2.17) while it is
necessary to construct explicitly the further terms in (2.18) to improve the
estimate of |J;| and, consequently, the estimate in (3.47).

4. The convergence theorems

The aim of this section is to prove the convergence of the low frequencies,
that is, the convergence, as ¢ — 0, of the rescaled eigenvalues of (1.3), in the
way stated by Theorem 4.1. Here, and in the sequel, we make the following
assumption as well as assumption 1:

ASSUMPTION 2: there is an only point 19 € Sy where the curvature » of
I' has the global minimum.

Moreover, for technical reasons, in certain proofs we use the restriction ¢ 4
m > 15/4 (cf. Remark 3.4).

Theorem 4.1. Lett > 1 and m > 2 such that t+m > 15/4, and let {\}}32,
be eigenvalues of (1.3). Then, under the assumptions 1 and 2, for each fized
k € N, we have

_ XS am? arx(mo)\ 1 " (19) 1/2
lim <€m_2 - e )53/2 —a(552) k-1, (456)
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We divide the proof of Theorem 4.1 into several steps. First, we prove
that the rescaled eigenvalues of (1.3), Af/e™ 2 have a common limit as is
stated in Theorem 4.3. In a second step, see (4.2), we reformulate the origi-
nal problem (1.3) in terms of a new spectral parameter and eigenfunctions,
problem (4.64), and we show that its eigenvalues {/f}72, converge towards
the eigenvalues {A3/21 }72, of (2.37) with conservation of the multiplicity (see
(4.3) and (4.4)). Finally, we state in (4.4) that problem (4.64) is equivalent
to the original one (1.3), and convergence (4.56) holds.

4.1. The common limit

In this section we characterize the limit of A;/e™™2 for k € N fixed and
m > 2. To do so, we observe that, as a consequence of Proposition 1.1,
the sequence A /5m 2 is bounded and there are converging subsequences,
still denoted by €, A{/e™ ™% — Af as € — 0, for a certain \;. Moreover, by
Proposition 4.2 below, the first eigenvalue of (2.22), namely 4h§, is a lower
bound of A;. Finally, on account of Theorem 3.3, we identify this limit as
stated in Theorem 4.3.

Proposition 4.2. Lett > 1 and m > 2. For a small €, there exists C' > 0
such that any eigenvalue \° of (1.3) satisfies

A am?
T2 2 4h2(1 — Ce). (4.57)
Proof. Let {U®,u®} be an eigenfunction of (1.3) corresponding to A® satisfy-
ing the normalization condition [[{U¢, u®}||3= = 1 where || - || is defined by

(3.44).

On account of the Friedrichs’ inequality, (1.1c), (1.1e), and the trace
inequality (3.53), we have
10 220y < C(IVU [2aq@y + 1T I3y ) < C(IVU* I3y + el Ve s

Moreover, using the continuity of s, the Poincaré Friedrichs’ inequality

[etaz T [era e 800,60 =0

for 6 = eh, and (1.1e), we obtain

eh 2
1— 501 ™
Vel > (1 =) [ [ o dvar > 122 o
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for certain constants C,Cy > 0. Thus, gathering the above estimates and
the normalization condition for the eigenfunctions yields

TN = (U gy + e )

1+ eCy 4R )‘1 (4.58)

> C m—2 m+t—1 -
_( a5 e >+1—<€C'1a7r2

Finally, since t > 1 and m > 2, by a proper choice of the constant C' > 0
and for a small €, (4.57) holds from (4.58), which concludes the proof. [

Theorem 4.3. Lett > 1 and m > 2 such that t+m > 15/4, and let {\}32,
be eigenvalues of (1.3). Then, under the assumption 1, for each fived k € N,

we have

€ 2
A am

lim = —.
e—0 €m_2 4h2

(4.59)

Proof. First, let k = 1. From Propositions 1.1 and 4.2, we can extract a
subsequence &, — 0 such that e27™\{" — A} for some \} > ‘ﬂ; Besides,
due to Theorem 3.3 with A\g = ﬁ and A3y = a(%)lﬂ, there is at least

one eigenvalue of (1.3) \° = Ay satistying (3.47). Now, taking limits as
&n = 0in g2 ™A < el AL ) yields A} < 9% and convergence (4.59)
holds for k£ = 1.

Without loss of generality, we prove the convergence for k = 2, and the
result for any k holds by induction. By Proposition 1.1 we can extract a
subsequence &, — 0 such that 27" \5* — \; for some A}. Also, on account
of Theorem 3.3 with A\ = Zzz and A3/p = 3a(” (o ))1/2 for sufficiently small
g, there is at least one eigenvalue of (1.3) \* = )\E (o) satisfying (3.47). Note
that, for € small enough and ¢ +m > 15/4, k() > 2. Thus taking limits as
gn — 0in 272 < 27N < g2 m)\a" ) gives Ay = a227 and convergence

(4.59) holds for k = 2. O

4.2. Reformulation of problem (1.3)

In this section, we reformulate the original problem (1.3) in terms of a new
spectral problem (4.64). This involves a rescaling of the eigenfunctions and
a shift and rescaling of the eigenvalues (cf. (4.65)). To do this, we introduce
the changes

{U€7 UE} = {ng SVE} and {Gvg} = {VV; SW},
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in problem (1.3) written in the local variable (1.5), namely, equation (1.10),
where

S(¢) = sin (%(g . h)) (4.60)

is an eigenfunction corresponding to the first eigenvalue Ao ; = % of problem
(2.22) and v, w are the fractional functions v¢ = u®/S,w = g/.S, respectively.
By Proposition 4.4 below, v¢,w € Hg . (w1).

Proposition 4.4. Let {U,u} € H}(.). Then, the fractional function v =
u/S € Hg,,,(w1) where u denotes the function u written in the local coordi-
nates (1.5), S is the function defined by (4.60), and H§,,,.(w1) denotes the
weighted space {v : Sv, SO, SO,v € L*(w1), v((,0) = v(¢,¢) for ¢ € (0,h)}.

Proof. Note that the only non trivial assertion is the fact that So,v € L*(wy).
Besides, since S € C*°([0, h]) and S only vanishes at ¢ = h, it suffices to show
that u/S € L*(w;), and more precisely, u/S € L*(w; N{¢ > h/2}). To prove
this, we consider a cut-off function

€ C®(R) such that 0<¢ <1, ¥({)=0 as |(| <0 and ¥({)=1 as || >h/2,
(4.61)
and use that

3C > 0 such that Cy* < sin® (%y) Vy € (0, h), (4.62)

and the Hardy inequality

hoq h
/ ?\w(y)de < 4/ &' (y)IPdy Ve € H'(0,h), p(0) =0.
0 0
Thus, making the change of variable y = h — (, we obtain
h 9 h 9 h

/ u dggc/ ‘ﬂ dCZC/ ’%
h/2 S o IC—h o 'Y

h
< 40/ 10, (u)|* dy < Ch|ullgropy,
0

2
dy

which implies that u/S € L?*(w; N {¢ > h/2}). Therefore, the proposition is
proved. O
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Now, using the equality

/ :(SV) 0 (Sw) K.d¢dr = / S20vOewkK dCdr

(4.63)
4h2 / S*vwK_ d¢dr — e/ SS'vw(T)dCdrT,
we derive the integral identity
ae({va’ve}y{v[/’ W}) = 65<{V€7V6}’{VV7 W})E (464>
where the new spectral parameter is defined by
. XN ar? ax(m)y 1
b= <gm—2 Taz S h )e?»/?’ (4.65)

and a(-,-) and (-, -). are given by

a:({V,v}, {W,w}) = 73/ 4 / VoV VW de + / S*OvOwK.ddr
Q

a , a (T
i / S8 vwse(r)dCdr — (}L(’)S?vaadng

w1

2
+a51/4/ SZ@TV@WKgldCdT—5*3/4*””‘*2(“2 +5a%(70)> / VWdx
3 4h h Q
(4.66)

and

1
({V,v}, {W,w}), = glt3/4+m=2 /Q Vde+1—/4 SPvwK d¢dr, (4.67)

respectively, for any {V,v}, {W,w} € V being
V={{V,v}:VeH (Q),veHg,,(w), V|r=—v(0,7) for T € S}.

Below, we show certain estimates for functions in Hg,,.(w1) of further
use.

Proposition 4.5. Any function v € Héper(wl) can be written in the form
V(C) 7—) - VO(T) + VJ.(C? 7—) (468)
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where vo € H'(T'), vi € Hg . (w1), and foh S%v, d¢ = 0. Moreover,

h h
/ ’VJ_|2 dC < C/ SQ‘acledC. (469)
0 0

In addition, under the assumptions 1 and 2, and for a small e, the following
inequality is valid:

1
“VOH%Q(F) < 051/2<”57V0H%2(1“) + = /F(%<T) - %(7—0»’\/0'2 dT)- (4.70)

Proof. Note that (4.68) is true taking vo(7) = %foh S*vd¢ and v, = v — v.

Let us prove (4.69). Due to the orthogonality condition foh S?v, d¢ =0, it is
easy to check that

h h y [h?
/ S0 P dC > ,,1/ Sl [Pdc > 5/ v |2 de, (4.71)
0 0 0

where v; is the first positive eigenvalue of problem

{ 0c(S?0:w) = vS?w ¢ € (0,h),
Oew(0) = dew(h) = 0.

To estimate [ hh/2 lv1|?d¢, we use the cut-off function (4.61) and the Hardy
inequality

| ewPar<a [CPwrd Ve e o)
0 0
Thus, setting y = h — ( yields
h h h
[ owPdcs [ wviPac<a [ - oiacwvpac
h —00

/2 —o0

<o [To-ormaract [0 orowrac)

Now, formulas (4.62) and (4.71) give

h/2

h h
/ vi|?de < C( Sﬂvﬁdu/ sﬂacvﬁdg)
h 0 0

/2 (4.72)

1 h
< c(—+1)/ 200, |? dC.
0

V1
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and, combining (4.71) and (4.72), (4.69) is proved.
As regards (4.70), under the assumption 2, fixed d > 0

3C, > 0 such that (1) — 5(79) > C} VT €Sy, |T— 10| > d/2. (4.73)

Then, we divide the integrals on I' into two parts I' N {|7 — 79| < d/2} and
I'n{|r — 1| > d/2}. Owing to (4.73), it is clear that, for a small ¢,

1

/ |0-vol? dr 4 = / (3¢(T) — 2¢(70))|vo|* dT
rn{|r—ro|>d/2} € Jrnf{|r—mo|>d/2}
Cy

> —/ vol® dr.
gl/2 r{|r—7o|>d/2}

To estimate the integral over I'N{|7 — 79| < d/2}, we use the cut-off function
(2.40), the variable s = e7*/4(7 — 7) and the Hardy inequality

/|g0|2ds§ C’(/ |gp’|2ds+/32|go|2ds> Yo € H'(R).
R R R

(4.74)

Thus,

1 / 2 1 2
73 lvo|“dT < —/|V0X| dr
el/2 rrf|r—rol<d/2} el/2 R

1
<o [1oto0rdr+ 1 [ (r-mphoxtar)
R € Jr

1
< C(/ 10-vo|? dr + / ol dr + —/ (1 — 7‘0)2|v0|2d7'>.
r r € Jrn{|r—ro|<d}

Moreover, since s has a local minimum at 7 = 7y, there exists Cy > 0 such
that

(7)) — 2(19) > Co(T — 10)? V1 € Sy, |T — 10| < d, (4.75)

and, consequently,

= al?
gl/2 rn{|r—ro|<d/2}

1
< C’(/ |0-vo|? dT + / vo|? dT + —/ (3¢(7) — 2(70))|vo|? dT).
r r € Jrn{|r—m|<d}
(4.76)
Now, gathering (4.74) and (4.76) we obtain (4.70), which concludes the proof.
[l
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Proposition 4.6. Lett > 1 and m > 2. Then, under the assumptions 1 and
2, and for a small €, we have

a:({V,v}, {V,v})

> C(€t73/4HvaH%2(Q) + 577/4||S(9CVLH%2(M) + 51/4H537Vi||%2(w1)

(4.77)
4 (10laeyt = () = sl dr)) Vi) €V,
r
where C' is a constant independent of € and {V,v}. Moreover,
a:({V,v},{V,v})
> C (VLY Ry + IS0V (4.78)

+ 81/ ||SaTVJ_||L2(w1) + 81/4HV0HH1(F)) V{V,V} ev.

Proof. From the decomposition (4.68), the definition of K., the smoothness
of the functions S and s, and (2.30), it follows that

e~/ / S?| v K. dCdr 4 €'/* / S0, v[P K td¢dr

(4.79)
20( TS0V LN 2y + €100l T2y + €SBV L7 w1>>
and
a , (7o)
M/ S8 (r)Pdcdr + o | SR dcdr
wla w1 (480)
— 57 [ (etra) = r )l + Ry
where
ax(To) 9 2a /
m:hﬁ4ws|u -~ VT + Sy [ S8 mvovs i
) ax(7p)
+ 3—/4 . SS' 5e(7)|vy [Pd¢dT + h53/i /w1 S?|v, [2d¢dr.

Note that, for any o > 0,
(Rl <CV (Vo) + 15 ey

+ O™ (e vollaqry + & IVl + Vi lEau)-
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Besides, taking a = 3/4 and using estimates (4.70) and (4.69), we obtain

1
(| <C4 (10, vo 2y +— / (s4(7)=5¢(70)) Vol d ) +2 /| SO |32,

(4.81)
On the other hand, since V|, = S(0)v(0,7), S(h) = 0, and (4.68), we
deduce

VI Z2r) = PO (SV) 12w < C(IIVoH%z(r) + VLl + ||S8CVL||2L2(0J1)>'

(4.82)
Then, by Friedichs’ inequality, (4.82), (4.69) and (4.70), we get
IV 2@y <C(IVaV 2@ + 10w W
. (4.83)

+ 22 ([0, 3 + = / (s4(7) = () o i) ).

Therefore, using the definition of a.(-,-) and gathering (4.79), (4.80), (4.81)
and (4.83) gives (4.77) for a small e.

Finally, (4.78) holds due to (4.70) and (4.77), which completes the proof.

[

As a consequence of Propositions 4.5 and 4.6, for each ¢ > 0, a.(-,)
defines a scalar product in the space V; let us denote by V¢ the space V
equipped with this scalar product. Thus, the new spectral problem reads:
find g, {Ve,ve} € Ve, {Ve v} # 0, satisfying (4.64) for any {W,w} € V=.
In addition, introducing W¢ the weighted space {{V,v} : V € L*(Q),v €
L% e (w1)} with the norm defined by (4.67), we show that the embedding
Ve C W* is compact, and the spectral problem (4.64) in V¢ has the monotone
unbounded positive sequence of eigenvalues

k—o0

0<B << << L0

and the corresponding eigenfunctions {{V5,v;}}32, can be subject to the
orthonormalization condition

G’E({VkEu Vi}? {‘/157 V?}) = 5k,l (484)

where a.(-,-) is defined by (4.66). In the next section, we study the asymp-
totic behavior, ¢ — 0, of the eigenvalues 3} for fixed k.
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4.3. Convergence of the rescaled eigenvalues

First, we obtain a result that gives us estimates for the eigenvalues of
(4.64) (cf. Proposition 1.1 to compare).

Proposition 4.7. Let t > 1 and m > 2. Let {8}, be eigenvalues of
(4.64). Under the assumptions 1 and 2, for each fivzed k = 1,2,... and a
small €, we have

C < B <C (4.85)

where the positive constants C' and Cy do not depend on ¢, but Cy, — oo as
k — oo.

Proof. The lower bound holds as a direct consequence of (4.64), (4.77),
(4.70), (4.67), Friedrichs’ inequality, (4.82) and (4.69), namely,

65 _ aé({vkea Vi}, {ng7 Vi})
k € |, € \,E
({Vk ’ Vk}7 {‘/k 7Vk})€
CY <5t_3/4||vmvk€||%2(ﬂ) + 5_7/4”58&@”%2(@) + 5_1/4||Vio||%2(r)>

> .
Cs <5t73/4||vrvk€||%2(ﬂ) + 571/4”@0”%2@) + €71/4||58<V2J_H%2(UJ1))

As regards the upper bound, the minimax principle gives the equalities

ac({V, v}, {Viv})

y = min max , 4.86
A= i e, {Vivh{Viv}). (4:86)
dmEy =k {V,v} £0

where the minimum is taken over all the subspaces F;, C V¢ with dim Ej, = k.

Let {A3)26}52, be the eigenvalues of the harmonic oscillator equation
(2.37), and {v*}2°, the corresponding eigenfunctions which are assumed to
be normalized in L*(R). For each fixed k, let Ef be the linear space Ef =
[{V5,vi}, ... {V5,vi}] € V¢, where V¢ denotes the solution of (3.45) for x
the cut-off function defined by (2.40), ¢ = v, and v = 1/4, and vi((,7) =
—x(7 = 10)v"((T — 70) /eY*) for (¢, 7) € wy, r =1,2..., k. Note that vi, =0
and, by Lemma 3.2, VV¢ is bounded in L?(Q) for r = 1,2... k. Then, from
(4.86), (4.66), (4.80), and (4.67), we derive

gt—3/4||vvniz<m+el/4||vO|rzl<rd>+e‘3% (5¢() — 32(70) ol
d

Br < C max -
{V.v} € Ef € 1/4||V0||%2(rd/2)

{Vivi #0

Y
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where I'y denotes I' N {|7 — 7| < d}. Besides, by assumption 1, there exists
C3 > 0 such that »(7) — »(79) < C5(T — 79)? for 7 € Ty, and introducing the
change of variable n = (7 — 79)/e'/* and taking into account that {32 x, vx}
is an eigenpair of (2.37), we obtain

B < Cp + Cilssak,
which completes the proof. O

As a consequence of Proposition 4.7, the sequence f; is bounded and
there are converging subsequences ¢, still denoted by ¢, 5; — B as ¢ —
0, for certain f; > 0. Moreover, by Theorem 4.8 below, this limit must
be an eigenvalue of the harmonic oscillator operator (2.37). Later on, in
(4.4), we identify g} with the kth eigenvalue of (2.37), namely, we prove the
convergence, as ¢ — 0, of the eigenvalues of (4.64) towards the eigenvalues
of (2.37) with conservation of the multiplicity (cf. Corollary 4.10).

Theorem 4.8. Let t > 1 and m > 2. Let {8°}. be any sequence of eigen-
values of (4.64) such that 5° converges when ¢ — 0 towards some 3*. Then,
under the assumptions 1 and 2, B* is an eigenvalue of (2.37).

Proof. Let {V= v} be eigenfunction of (4.64) corresponding to 3¢ satisfying
the normalization condition (4.84). Then, choosing {W,w} = {V v°} in
(4.64) and taking into account the boundedness of %, (4.77), (4.69), and
(4.70) we get

NIV e+ &0V T2 oy + € 1OV Ty + &7 VLI T2 ) <C

L /F (o) — selmo)) ol dr ) < C.

ey + £ (NOrvEl ey + <
(4.87)

Set ¢°(n) = v§(To+e'/*n)x(e'/4n) for n € R, where Y is the cut-off function
(2.40). Owing to the change of variable 7 = 7 +¢'/*p, (4.75), and (4.87), we
have

161 22wy + 11651122y + 1116 122
_ 1
<e 1/401||V8||%2(r) + 51/4”87\/8”%2(1“) + E;m/r(T — 70)%|vo|*dr
d

1
< NG ey + /4o (10ilay + £ [ G4 = sl r) < €.
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and, consequently, there is a subsequence of ¢, still denoted by ¢, satisfying
¢F =", ngt =", ¢7 =" weakly in L*(R),

as € tends to zero, for certain functions ¢*, ¢*, o* € L*(R). Obviously, ¢* =

n¢* and o* = ¢*' in D'(R).

In order to identify the pair (5%, ¢*), we consider (4.64) for the test func-
tions W = V& and w = 2((7 — 79)/e'/4), where z € C§°(R) and V¢ is the
solution of (3.45) for ¢ = —z and v = 1/4. Note that for a small ¢ we can
assume that w = wy(7) = 0 for |7 — 79| > d/2 and {V°,w} € V°. Besides,
{ve,w} = {V, wp} verify (3.51) and

571/4HW0H%2(F) + 81/4H87W0”%2(F) < C. (488)
Therefore, due to the decomposition (4.68) and (2.30), we obtain

ah
51/47 OrvgO-Wo dT + —— 5z 3/4 / (22(1) — 2¢(70) )vgwo dT
/ (4.89)
2e1/4 La/2
where
RE =pecta/am=2 / VEVE da + €/4 / S*vewo(K. — 1)d(dr
Q w1

gt=3/44 / VoVE VoV dr + / S8 (T wo dCdr

+ 2= <TO>/ S wo(K, — 1) dCdr — 1/4/ S20-v"Orwo (K — 1) dCdr

h63/4
2

+ 8t73/4+m72<a’7r + 8@%(7’0)) / Veveda.
Q

4h? h

Using (3.51), (4.87), (4.88) and Friedrichs’ inequality, we verify that R® tends
to zero as € — 0. Moreover, by assumption 1,

/!
‘/ 5(70) )VoWo d7 — / a éTO)V(E)WO dT‘ < C‘/ T— To) vowo dT|.
1—‘d/z r

Ly a/2

Thus, introducing the variable n = e~/4(7 — 1) in (4.89) and passing to the
limit as € to 0, we get the integral identity

/877¢*8 dn + ';f)/ 2§ dn = B0 /gbzdn vz € C(R).
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To conclude the proof, it suffices to prove that ¢* # 0.

To this end, we take limits as ¢ — 0 in the normalization condition for
the eigenfunction {V¢ v¢} and use the Friedrichs’ inequality, (4.74), (4.87),
and (2.30). Then,

* 11 € € * 1s - € hﬁ* . — €
= 5 i [ (V22 = Bl e S 3 = ol e e
in fact, due to (4.73) and (4.87), we have

—-1/4

. 2 . . 2
|’V0”%2(Fd/2) = W and consequently ll_I)I(l) ||p H%Q(R) >

=

Note that 3* > 0 because of (4.85). Moreover, since n¢° is bounded in L*(R),
for any R > 0, ||¢E||%2(|,7|>R) < C/R?, C being a constant independent of R.

Let us choose Ry > 0 satisfying C'/R2 < 2/hf3*; thus,

lime
e—0

C
* 1|2 1 2
10" 22(m<ro) = lim 191221 < Ro) > W R >0,

and hence ¢* # 0, which completes the proof. O

4.4. The equivalence of the spectral problems

In this section we show the relation between the eigenvalues of problems
(1.3) and (4.64) (cf. (4.9) below). This relation along with Theorem 3.3 and
Theorem 4.8 allow us to show the convergence, as ¢ — 0 of the rescaled
eigenvalues of (1.3) in the way stated by Theorem 4.1. As a consequence, we
also prove the convergence, as ¢ — 0, of the eigenvalues of (4.64) towards the
eigenvalues of (2.37) with conservation of the multiplicity (cf. Corollary 4.10).

Theorem 4.9. Lett > 1 andm > 2. Let {\,}72, and {85}, be eigenvalues
of (1.3) and (4.64), respectively. Then, under the assumptions 1 and 2,

. (A ar® ax(m)y 1
5k_<€m72_4h2_€ . )53/2, for k € N.

Proof. We divide the proof into two parts. First, we state that any eigen-
pair (A, {Ug, ui}) of (1.3) gives rise to an eigenpair (5%, {Vz, Vi }) of (4.64)
defined by

€ )\i CL7T2 a%(Tﬂ) 1 € € e €
P = <5m—2 Tanr ST >e3/2 and {Vg,Vvi} = {U;,u;/S}, (4.90)
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where uj, denotes the function uj in the local variable (1.5). From Proposi-
tion 4.4 it is clear that the function {VjZ, v} defined by (4.90) belongs to
Ve. Moreover, if we set

G=W inQ and g(v,7) = S(v/e)w(v/e,7) in w., for any {W,w} € V°,

it is easy to check that {G,g} € Hi(€.). Thus, taking {G,g} as a test
function in the integral identity (1.3) written in the local variable, namely
(1.10), and using that

ar?  ax(7)
T Th
and (4.63), we obtain that the pair (5%, {VZ,V%}), defined by (4.90), verifies
(4.64) for any {W,w} € V°. Hence, any eigenpair (A, {U;,u5}) of (1.3)
generates an eigenpair of (4.64).

Secondly, we state that any eigenpair (55, {V&,vi}) of (4.64) gives rise to
an eigenpair (A%, {U%,u%}) of (1.3) defined by

X = sm_2< + 53/%;), Us =VE, o =SV,

ar®  ax(m)

e _ -m—2

N
where S¢(v) = S(v/e) and vi(v,7) = vi(v/e,7) for (v,7) € [0,eh) X S,.
Clearly, {U%, u5 } € H(£2.). Besides, setting

W =G inQ and w(¢,7) = S(¢)'g(e¢,7) in wy, for any {G,g}e Ha(SL),
we can check that {W,w} € V¢ and

+28) and {Ug,uic} = (Vi S°uik,

A/QVIUIE( -V,Gdx + %/ Vot - Vogde = e3/47 (as({Vke,vi}, {W,w})

am’ 2 ¢ ax(To) 2 ¢
+W/w S viwK_ d¢dT + 7, /w S*viw K. d(dt

2
4 gt3/4+m=2 (ZZQ + sa%f(fo)> / VEW dx).
Q

Now, taking into account that (8%, {V/,vi}) is an eigenpair of (4.64) and
that

2

B = < A% am a%(m)) 1

k — em—2 - Ah2 - L £3/2 and {Vz:?vi} = {Ufﬁ U%/S},
we see that (A5, {U%,us}) verifies (1.3) for any {G,g} € Hj(£), which
completes the proof. O

35



Proof of Theorem /.1. First, let k = 1. By Theorem 4.9, Proposition 4.7,
and Theorem 4.8, we can extract a subsequence €, — 0 such that

A* o ar? ax(to)\ 1 . .
(7 )3 = A oA
En

em=2 " qp2 Mg

2
2
and A3;p = a(%)lm, there is at least one eigenvalue of (1.3) X* = Xy,
satisfying (3.47), namely, using again Theorem 4.9, there is at least one
eigenvalue of (4.64) 5° = B, satisfying |5, — a(#)l/ﬂ < Ce173/2
where ¢ = min{(4¢t + 4m — 3 — 2§)/8,13/8} with 6 € (0,1/8). Now, taking
limits as e, — 0in i < B, | yields gf = a(”;m))l/ 2 and convergence
(4.56) holds for k = 1.

Without loss of generality, we prove the convergence for k = 2 and the
result for any £ holds by induction. From Theorem 4.9, Proposition 4.7, and
Theorem 4.8, we can extract a subsequence ¢, — 0 such that

for some [} eigenvalue of (2.37). Besides, owing to Theorem 3.3 with Ay =

At an? ax(7o)\ 1 .
(5 ) s

em=2 " qp2 g

for some [ eigenvalue of (2.37). Also, on account of Theorem 3.3 with
Ao = ZZ; and A32 = 3a(%5 " (ro ))1/ 2 for sufficiently small e, there is at least
one eigenvalue of (1.3) A\* = )\5 () Satisfying (3.47), namely, using again The-
orem 4.9, there is at least one eigenvalue of (4.64) 5° = Bie) satistying
185y — Ba(Z5R) 2] < Cet3/? where q = min{(4¢ + 4m — 3 — 20)/8,13/8}
With o € (0,1/8). It is clear that, for ¢ small enough and t +m > 15/4,
k(e) > 2. Thus, taking limits as €, — 0 in g~ < 5" < BZ&”) gives

o(ZI) 7~ g < gy < 3a (1)

Since (5 is an eigenvalue of (2.37), convergence (4.56) will be proved for
k = 2 once we show that 35 # (7.

Indeed, we set ¢5(n) = viy(To + e/*n)x(e¥/*n) for n € R and k € N,
where {{V5,v§}}52, eigenfunctions corresponding to {5}, subject to the
orthonormalization condition (4.84), and x is the cut-off function (2.40).
Similar reasonings to those used for the proof of Theorem 4.8 lead us to
prove that the weak limit in L?(R) of ¢5 and ¢5, ¢! and ¢} respectively,
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are eigenfunctions of (2.37) corresponding to 7 and [; respectively, and
fR o505 dn = 0. Hence, since the eigenvalues of (2.37) are simple, f; # f5,
which concludes the proof.

Corollary 4.10. Let t > 1 and m > 2 such that t +m > 15/4. Let {55},
be eigenvalues of (4.64). Then, under the assumptions 1 and 2, for each k
fized, B converges, as € — 0, towards the kth eigenvalue of (2.37).

5. High frequencies

As occurs in many singularly perturbed problems (see, for instance, [22,
13, 12, 20, 16]), there are sequences of eigenvalues of (1.1), A* = A}, with
k(g) — oo, of order &” for some 8 < m — 2, whose corresponding eigenfunc-
tions suitably normalized do not vanish asymptotically. Here, we focus our
attention on the eigenvalues of (1.1) of order 1, the so-called high frequencies.

Throughout this section we consider the case where m > 0. We first
obtain the limiting problem associated with the eigenvalues A\° of (1.1) of
order 1 by means of asymptotic expansions. Later on, we show that the
eigenvalues A° asymptotically close to eigenvalues of the Dirichlet problem in
Q) give rise to global vibrations in the way stated by Theorem 5.1 and The-
orem 5.2: roughly speaking, only the eigenfunctions corresponding to eigen-
values A° asymptotically near an eigenvalue of the Dirichlet problem (5.95)
can be asymptotically different from zero in H'(2). Tt should be noted that
convergence results hold for all m > 0, while some restrictions and extensions
for the asymptotic expansions for certain values of m are in Remark 5.4.

For m > 2 (see Remark 5.4 for m € (0,2]), we assume an asymptotic
expansion for the eigenvalues A° and for the corresponding eigenfunctions
{U%, 4} in © and w, of the form:

A= )\0 + 8)\1 + 82)\2 + - (591)
Us(z) = V(x) +eVi(z) + V() + - -, x €, (5.92)
uf (¢, 7) = vo(¢, 7) +evr (¢, 7) +e2ua (¢, ) 4+ -, ¢el0,h), €S, (5.93)

respectively, where ((,7) are the local coordinates given by (1.5), and v;
are (—periodic functions in 7. Besides, we suppose that at least one of the
functions V' or vy in (5.92)—(5.93) are different from zero.
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We introduce the local coordinates (1.5) in the Laplacian written in the
curvilinear coordinates, namely, in (2.14) and we gather the coefficients of
the different powers of €. Thus, we write

Aer =2+ 5(1)0 — 3(1)%COc + 02 + -+ - . (5.94)

By replacing (5.91), (5.92) and (5.93) in (1.1), on account of (5.94), we have
that the leading terms in the asymptotic expansions satisfy the equations

—AAV =XV in Q,
O:)\O'Ul); CG (O7h)77—€S€7
V=vy onl.

Hence, \yg = 0 or vg = 0. Since we are dealing with the eigenvalues of order
1, we consider the case where A\g # 0, and consequently we have that (A, V)
is an eigenpair of the Dirichlet problem

—AAV = \V in Q,
(5.95)

V=0 on [

As outlined for the asymptotics of the eigenfunctions corresponding to the
low frequencies, an appropriate normalization for the eigenfunctions must be
prescribed to obtain convergence for the high frequencies. We denote by $°
the space H}(€.) with the scalar product

a
W, w}, {G, s:A/VxW-VIGd:B%—— V,w - Vgdr
(W} {G.ohse = 4 | 5/ T

V{W> w}> {Ga g} € Hé(Qs)

Next, we use Lemma 3.1 to show the convergence of sequences of eigen-
values of (1.1) towards those of (5.95) and to obtain bounds for the con-
vergence rates for the eigenvalues and eigenfunctions stated in Theorem 5.1
(cf. (5.97)). Theorem 5.2 shows that this result for the high frequencies is
optimal, since, on account that any real A\* is a limit point of sequences of
eigenvalues A\* = O(1) of (1.1) (cf. [16], for instance, for the technique), the
normalization for the corresponding eigenfunctions (or linear combination
of eigenfunctions) {U®,u®} in $H° (see (5.96)), lead to possible limits being
(A*,0) in R x H'(Q) —weak in the case where \* is not an eigenvalue (5.95).
For brevity, below we state the main results and outline the proofs which
follow the arguments in [16].
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Theorem 5.1. Let (Ao, V) be an eigenpair of the Dirichlet problem (5.95)
such that ||V||p2) = 1. Then, for m > 0, there are eigenvalues Aie) of
problem (1.1) such that

[ Ake) — Aol < Ce

where C' is a constant independent of €. In addition, there is a linear com-
bination of eigenfunctions {U®, u*} € HL(Q.), {U®,u°} corresponding to the
eigenvalues Aj .y of (1.1) in the interval [Ao — K& N\ + Ke%] with K > 0

and 0 < 0 < 1, |[{U=, @} ||ge = 1, such that
105 = Ay 2V || a1y < Ce'0, (5.97)

Proof. We apply Lemma 3.1 for H = $° in (5.96), A = 2° the compact and
symmetric operator on $° defined by

1
@ (W, w}, {G, g} = /Q WG dnt i [wgds ¥{Wow), (G g} € HY(S)

A= X' and u = {V,0}||V||]_{11(Q) € H}(Q.) where (N, V) is as the theo-
rem states. Then, we rewrite the proof of Theorem 3.3 with the suitable
simplifications, and the theorem holds. O

Theorem 5.2. Let \* be any positive real number which is not an eigenvalue
of the Dirichlet problem (5.95). Let m > 0, and let §. denote any positive in-
finitesimal sequence. Assuming that there are eigenvalues A of problem (1.1)
in the interval [\* — 0%, \* 4 69], let {U=, @} € HY(Q.) be any linear com-
bination of eigenfunctions of (1.1) corresponding to the eigenvalues )\i(a) mn
the above interval, {U=, W} satisfying |[{U=, %} ||se = 1. Then, U° converge
weakly in H*(Q) towards zero as € — 0.

Proof. We employ the technique in [16]. First, we consider the case when
the interval contains only one eigenvalue \* = Ai(a). This amounts to taking
Je = [N =X > 0ase — 0. Let {U?,u°} be the corresponding eigenfunction
of norm 1in $° (see (5.96)). Thus, ||[{U®, u®}| g1, is bounded by a constant
independent of e, and we can extract a subsequence (still denoted by ¢) such
that U® converges weakly in H'(Q) towards U*. Taking into that U® = u®
on I', u® = 0 on I'¥, and the normalization yields

U1y < CellVaulZag,,) < CeM0,
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and hence U* = 0 on I In order to identify U*, we consider (1.3) for
G € D(Q) extended by zero to €., we take limits as ¢ — 0 and we obtain
that (A*,U*) satisfies

/va* V.G dr = A*/ U*Gdr VG e HXQ),
Q Q

which is the weak formulation of (5.95). Consequently, if A* is not an eigen-
value of (5.95), then U* = 0.

Finally, we rewrite the above arguments with minor modifications in the
general case where there are several eigenvalues of (1.1) in the interval [\* —
6%, A" +06°]. Indeed, let {X,,; }7_o denote the set of eigenvalues [A\*— 6%, \*+
6], and {{U5 )10 Upo 4 i1}/—o the set of the corresponding eigenfunctions; .J
being a certain natural that can depend on . Let us assume that

J
{Us, "} = Z Oé{Uli(a)-‘rj?uZ(a)-&-j}
7=0

for certain constants a5. We write the equation (1.3) for each eigenvalue and
the corresponding eigenfunction of the set, and for G € H}(Q), g = 0. Then,
we take the sum after multiplying each equation by a5, j ranging from 0 to
J. We take into account the convergence

J
> (N, — /\*)/ Uie;Gdr =0 ase—0,
j=0 “

and the result of the theorem holds. O

Remark 5.3. There can be different points where s(7) has a local mini-
mum, and even several different points with the same value for the second
derivative s’(1p). Thus, without stronger restrictions for s(7), the type
of results in Theorem 5.2, which would complement those in Theorem 3.3,
cannot be obtained.

Remark 5.4. It should be noted that the technique of asymptotic expansions
throughout this section also applies in the case where m € (0,2) and we
obtain the same limit problem (5.95). In this case we need to use further
terms of the asymptotic expansions of u° in w.. As a matter of fact, for m # 1
the expansion (5.93) must be suitably modified by introducing other terms
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for different powers of £, namely of the order e?, with p > 0, p € N, depending
on the particular value of m. Moreover, for m € (0,2), the converge of the
kth eigenvalue of (1.3), when ¢ — 0, towards the kth eigenvalue of (5.95)
holds following the technique in [16] (see also [12]).

In the case where m = 2, the asymptotic expansions (5.91)—(5.93) and
(2.17)—(2.19) provide two possibilities for Ay that we state here without a
proof. One is )y to be an eigenvalue of (5.95) and the other is A\¢ to be an
eigenvalue of (2.22). Now, it remains to identify the eigenfunctions in (5.92)—
(5.93) and (2.18)-(2.19) which involve different normalization (see norms
(3.44) and (5.96) to compare). This case remains as an open problem.
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