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Abstract

Angiogenesis is the natural physiological process of new blood vessel formation and plays a

fundamental role in the growth of cancerous tumors. In this work, we study a mathematical

model of pharmacodynamics (introduced in 1999 by P. Hahnfeldt et al.) that includes this

effect. It consists of a system of two nonlinear ODEs whose asymptotic behavior we analyze.

In addition, the model allows the inclusion of a term for the antiangiogenic treatment, whose

antitumor action can be optimized using mathematical techniques. We further assume that

tumor growth is of the Gompertz type.

We study an optimization related problem where the number of doses applied in the treat-

ment, as well as their quantity and the time of administration, are variables. We also perform

some approaches to this problem that, as far as we know, have not been published yet, and show

examples to contrast with the theory.

Several numerical experiments using MATLAB for three commonly used antiangiogenic drugs

with different properties are also included. These are Angiostatin, Endostatin and TNP-470.

With them, it is evidenced that metronomic type of therapies are more suitable for treating

tumors under this approach in most cases.

Key words: Metronomic therapy, Hahnfeldt et al. model, angiogenesis, optimization prob-

lem

Resumen

La angiogénesis es el proceso fisiológico natural de formación de nuevos vasos sangúıneos y

desempeña un papel fundamental en el crecimiento de los tumores canceŕıgenos. En este trabajo

estudiamos un modelo matemático de farmacodinámica (introducido en 1999 por P. Hahnfeldt y

sus colaboradores) que incluye este efecto. Consiste en un sistema de dos EDO no lineales cuyo

comportamiento asintótico analizamos. Además, el modelo permite incluir un término para el

tratamiento antiangiogénico, cuya acción antitumoral se puede optimizar utilizando técnicas

matemáticas. Suponemos además que el crecimiento del tumor es de tipo Gompertz.

Estudiamos un problema de optimización relacionado, donde el número de dosis aplicadas en

el tratamiento, al igual que su cantidad y el tiempo de administración son variables. Realizamos

además varios enfoques de este problema que, por lo que sabemos, no han sido publicados antes,

y mostramos ejemplos para contrastar con la teoŕıa.

Se incluyen también algunos experimentos numéricos utilizando MATLAB para tres fármacos

antiangiogénicos de uso común con diferentes propiedades. Estos son Angiostatina, Endostatina

y TNP-470. Con ellos queda evidenciado que las terapias de tipo metronómico son las adecuadas

para tratar tumores con este enfoque en la mayoŕıa de los casos.

Palabras clave: Terapia metronómica, modelo de Hahnfeldt et al., angiogénesis, problema

de optimización
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Chapter 1

Introduction

In 2020, nearly 20 million people were diagnosed with cancer worldwide. The International

Agency for Research on Cancer[3] further estimates that this number will continue to increase

in the coming years. One of the factors favoring the uncontrolled proliferation and spread of

cells is angiogenesis. It is the process of formation of new blood vessels that provide nutrients

and oxygen to the body’s tissues they reach. It is a vital physiological process in body growth

and development, but it also supplies the blood tumors need to thrive, grow and metastasize.

Most of these diagnosed people undergo treatments like chemotherapy, radiotherapy, and

immunotherapy. The treatment’s purpose varies depending on both the tumor characteristics

and the patient’s conditions. It can be curative, in case the tumor stage allows it to be eliminated,

or palliative, if a reduction of the malignant tumor is sought when it is already very advanced.

In addition, there are different treatment regimens to achieve these objectives. Among the

most common are the following:

Maximum Tolerated Dose (MTD) therapy: the doses applied are the highest ones that

can be administered to a patient before unacceptable toxic effects appear. It is required a

low dosing frequency so that the drug concentration in the blood is eliminated before each

application. They target dividing tumor cells, i.e., they have a cytotoxic effect.

Metronomic (MN) therapy: doses below the MTD are applied frequently to maintain the

plasma concentration quasi-constant. It is less toxic than MTD therapy, and it aims to

control tumors by targeting angiogenesis. Very recently, it has been shown that for most

cytotoxic drugs it is also the most recommended therapy, even without taking into account

their antiangiogenic effect (see [5]).

Therefore, to describe a treatment properly, the doses administered, as well as the amount

of them and the time of application should be detailed.

1.1. A mathematical approach to cancer therapy

Mathematical models allow us to describe many of the processes that we observe in our

daily lives. In particular, models using differential equations (those that establish relationships

between variables and their derivatives) are used to study, for example, population dynamics,

the mechanics of particles or the diffusion of substances in our body.
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The evolution of a tumor can be considered as a process involving a large number of chemical

reactions, which can also be studied from a mathematical point of view. Among other advan-

tages, it makes it possible to predict the impact of drugs on the tumor before the application in

a patient and to establish the cancer treatments that will work best for their target.

Among the differential equation models that we can use, we will consider the Gompertz

model, one of the most widely used to deal with the tumor size evolution, but many others can

be also used (Bertalanffy, logistic, ...). In addition, we will consider the effect of administering

an angiogenesis inhibitor through an expression first introduced in 1999 by Hahnfeldt et al. (see

[6]). Although it was described more than 20 years ago, its significance makes it interesting to

be studied yet (see [10], [4]).

1.2. Structure of the work

In this work, we will conduct a study based on Hahnfeldt et al.’s article, expanding on

what appears there with innovative approaches. We will also study the drug concentration of

the cancer treatment applied within the body, formulating a complex nonlinear optimization

problem with several variables. We will analyze particular cases of this problem to obtain the

best treatments in different circumstances of significant clinical interest. To the best of our

knowledge, there are mathematical studies that have considered them, but using a different

point of view (see [1]).

Along this work, we will face with results from other areas of mathematics such as algebra,

and we will argument from the heuristic point of view as a way to simplify mathematical results.

We will also use MATLAB software to perform simulations that will allow us to reinforce what

we have studied theoretically and to solve the particular cases of the complex system mentioned

above. For these examples, we will use the drugs studied by Hahnfeldt et al. in their article[6],

whose variety of characteristics allows us to cover the particular cases analyzed theoretically.

The work is divided into five chapters, the first of which is the current introduction. They

include the following content:

Chapter 2 presents the Cauchy system that models tumor dynamics both in the presence

of a drug and in the untreated case. The existence and uniqueness of solution in both

situations is studied together with its asymptotic behavior.

Chapter 3 contains the study of the concentration of the drug in the patient’s body. It

presents both the expression of the concentration and the optimization problem with its

variants.

Chapter 4 presents practical examples of the theoretical aspects analyzed above. We

will analyze the effect of both curative and palliative therapy and show that the optimal

treatment with an angiogenesis inhibitor is the metronomic type one in most cases.

Chapter 5 reviews the results obtained in the previous chapters, proposing new lines of

research that will allow the continuation of this study.
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Chapter 2

Tumor dynamics

In this chapter, we will study the tumor’s development and progression in the body. We

will start by considering that the cancer is not being treated, and we will prove the existence

and uniqueness of the solutions of a particular Cauchy problem under these hypotheses in two

different cases. Afterward, we will analyze the case in which a drug is being administered,

introducing a piecewise continuous and time-dependent function representing its concentration

into the previously formulated Cauchy problem. We will also study the existence and uniqueness

of solution under this circumstance.

2.1. Tumor dynamics without drug administration

Among the different mathematical models that can be utilized to study the tumor cells

proliferation rate[2] [11], we will consider the Gompertzian growth one. It establishes that

V ′(t) = −λ1V (t)log

(
V (t)

Vmax

)
, (2.1)

where λ1 > 0 is the growth rate, V (t) the tumor size or volume at time t > 0, and Vmax > 0 the

so-called carrying capacity, i.e., the maximum volume a tumor can reach.

However, this last quantity is not fixed in time, as it depends on biological processes that

affect vascular growth. Therefore, we can replace it by a variable K(t), where the change rate

K ′(t) we consider in this dissertation is the one proposed by Philip Hahnfeldt et al. in 1999[6]

(with no treatment first):

K ′(t) = −λ2K(t) + S(V (t),K(t))− I(V (t),K(t)) = −λ2K(t) + bV (t)− dK(t)V (t)2/3, (2.2)

with λ2 ≥ 0 being the intrinsic loss rate and b and d being the weights of the vascular growth

stimulating and inhibiting processes, respectively.

Remark 2.1.1. As we are dealing with a chemical process involving the diffusion of inhibitory

and stimulatory substances, it can be modeled using the following reaction-diffusion partial

differential equation:

∂n

∂t
(x, y, z, t) = D̃2∆n(x, y, z, t)− cn(x, y, z, t) + s01[0,r20)(x

2 + y2 + z2),

where we assume that the tumor is a spheroid of radius r0, c >0 describes the clearance rate

of stimulators, D̃2 > 0 is the constant diffusion coefficient and n(x, y, z, t) is the stimulator/in-

hibitor concentration at time t in position (x, y, z). Finally, the last term describes the rate of
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stimulator secretion, which takes the value s0 inside the tumor, and is null outside it. Through

this equation it is possible to justify the form of both the inhibitor (I(V,K) = bV ) and the

stimulation (S(V,K) = dKV 2/3) factors of Equation (2.2).

We further assume that the tumor is in a quasi-steady state, i.e., ∂n
∂t (x, y, z, t) = 0, and that

it has radial symmetry. It allows us to reduce the number of parameters of n, such that n(x, y, z)

= n(r), with r being the distance from the center of the tumor to the origin.

Thus, the above expression is reduced to the following second-order ordinary differential

equation:

n′′(r) +
2

r
n′(r)− c

D̃2
n(r) +

s01[0,r0)(r)

D̃2
= 0. (2.3)

Let us take c1 =
√
c

D̃
. Now, we can distinguish between two cases:

If r > r0, then the ODE is homogeneous. By using the change of unknown function

v(r) = rn(r), the general solution of n(r) is

n(r) = k1
ec1r

r
+ k2

e−c1r

r
, with k1, k2 ∈ R. (2.4)

As n(r) −→ 0 if r −→ +∞ (i.e. we are assuming that the inhibitory/stimulatory effect

occurs near the tumor), then k1 = 0 and the solution becomes

n(r) = k2
e−c1r

r
, with k2 ∈ R.

If r ≤ r0, the resulting expression is analogous to the previous one, excepting for an

additional term that makes it inhomogeneous. We now have n(r) = s0
c as a particular

constant solution of this inhomogeneous equation, while the solution of the homogeneous

equation is (2.4). Therefore, as the sum of solutions is also a solution, then, when r ≤ r0,
the general solution of Equation (2.3) is as follows

n(r) = k̃1
sinh(c1r)

r
+ k̃2

cosh(c1r)

r
+
s0
c
, with k̃1, k̃2 ∈ R.

where we have expressed the exponential functions in terms of hyperbolic functions. Now,

note that n(r) has to be bounded when r −→ 0, so k̃2 = 0 , and

n(r) = k̃1
sinh(c1r)

r
+
s0
c
, with k̃1 ∈ R.

Therefore, by continuity of both n(r) and n′(r) at the point r = r0, we can obtain the

expressions of k̃1 and k2, such that the unique solution of n(r) is as follows

n(r) =


s0
c

(
1− 1 + r0c1

c1

sinh(c1r)

r
e−c1r0

)
, if r ≤ r0,

s0
c

(
r0 cosh(c1r0)−

sinh(c1r0)

c1

)
e−c1r

r
, if r > r0.

We now need to distinguish between tumor inhibitors and stimulators. In the first case, it

is assumed that c (stimulator clearance rate) is small (c ≈ 0), such that the exact solution can

be approximated as

nI(r) =


s0

D̃2

3r20 − r2

6
, if r ≤ r0,

s0r
3
0

3D̃2r
, if r > r0.
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Then, we can calculate the total concentration of inhibitors inside the tumor, such that

I(r0) = v1

∫ r0

0
nI(r)r

2dr = v1

∫ r0

0

s0(3r
2
0 − r2)

6D̃2
r2dr =

2v1s0

15D̃2
r50,

where v1 is a constant that comes from expressing the integral in spherical coordinates. Assuming

that I(V,K) is proportional to I(r0), and having that I(r0) is proportional to r50, a reasonable

proposal is to take I(V,K) = dKV 2/3, because both KV 2/3 and r50 have the same ’units’.

In the case of the stimulation factor, c is considered to be large (c >> 0), so under this

assumption n(r) is approximated by s0
c inside the tumor, and therefore:

S(r0) = ṽ1

∫ r0

0
nS(r)r2dr = ṽ1

∫ r0

0

s0
c
r2dr =

ṽ1s0
3c

r30,

where ṽ1 is also a constant. Arguing in the same way as before, and assuming that S(V,K) is

proportional to S(r0), we can take S(V,K) = bV since V and r30 have ’units of volume’.

It is noteworthy to mention that these are not the only options we can choose. Following

the criterion of the units and taking into account that V and K tend to move together, we can

also have S(V,K) = bK and I(V,K) = dKαV β, where α+ β = 5/3.

Note that neither (2.1) nor (2.2) depend explicitly on time. As a consequence, we can write

equations (2.1) and (2.2) together as a time-constant Cauchy problem:
V ′ = −λ1V log

(
V
K

)
,

K ′ = −λ2K + bV − dKV 2/3,

V (0) = V0 > 0, K(0) = K0 > 0,

(2.5)

where K0 should be larger than V0, as we are considering that when a tumor is firstly detected,

its volume can still be larger.

Theorem 2.1.1. Let us consider the system (2.5) and b > λ2. Let 0 < V0 < K0. There exists

a unique solution (V (t),K(t)) of the system for all t > 0. In addition, (V (t),K(t)) −→ (Vc,Kc)

as t −→∞, where

(Vc,Kc) =

((
b− λ2
d

)3/2

,

(
b− λ2
d

)3/2
)

is a critical point.

Proof. Let

f1(V,K) = −λ1V log

(
V

K

)
, f2(V,K) = −λ2K + bV − dKV 2/3.

Let Ω = {(V,K) ∈ R2 : V > 0,K > 0} be the domain of both functions due to biological

reasons. Let us note that f1(V,K) is not defined at the origin (see Remark 2.1.2).

As problem (2.5) does not depend explicitly on time, we can represent its solutions in a

V K phase portrait[13]. In Figure 2.1.a. we can observe the evolution of some solutions (blue,

orange, purple, and yellow curves) of the problem with respect to time for different initial points

(not-filled points of the figure).
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The first step that has to be done is the proof of the existence and uniqueness of local

solution. To do so, we have to check whether f1(V,K) and f2(V,K) and their partial derivatives

are continuous in the Ω subset (i.e. that f1 and f2 are C1 functions in Ω).

The expressions of the partial derivatives are as follows:

∂f1
∂V

(V,K) = −λ1
[
log

(
V

K

)
+ 1

]
,

∂f2
∂V

(V,K) = b− 2

3

dK

V 1/3
,

∂f1
∂K

(V,K) =
λ1V

K
,

∂f2
∂K

(V,K) = −λ2 − dV 2/3.

We can see that all the expressions, as well as f1(V,K) and f2(V,K) are continuous, as they

are compositions of continuous functions (remember that (0,0) /∈ Ω). Then, there exists only

one solution for each initial point (V0,K0) in some interval [0, h]. It is reflected in the phase

portrait as a lack of bifurcations in the solution curves in that interval.

Before proving the existence of a global solution, we need to ensure that the solution will

remain in the domain Ω for all t > 0, and that any of its components tends to infinity or to

the Ω’s boundary as time tends towards infinity. To do so, we can make use of the V K phase

portrait of Figure 2.1.a., and the different regions that we can divide it in according to the sign

of both V ′ and K ′.

Let us obtain first the conditions that should fulfill V and K so that V ′ > 0:

f1(V,K) = V ′ > 0⇐⇒ log

(
V

K

)
< 0⇐⇒ V < K (2.6)

where we have to remember that V , K, and λ1 are positive and non-zero. On the other hand,

if we desire that K ′ > 0 (with λ2, d > 0), then:

f2(V,K) = K ′ > 0⇐⇒ bV > K(λ2 + dV 2/3)⇐⇒ bV

λ2 + dV 2/3
> K (2.7)

The so-called nullclines are the curves that make f1(V,K) = 0 and f2(V,K) = 0, and they

separate the V K phase portrait into four different regions according to the sign of K ′ and V ′. In

Figure 2.1.a. we can also observe the nullclines of the system drawn in dark blue (which makes

f1(V,K) = 0) and brown (where f2(V,K) = 0). We can distinguish the following cases:

i) Let us suppose K < min
{
V, bV

λ2+dV 2/3

}
. Here we have that V ′ < 0 and K ′ > 0, which

indicate that the solution of the system (2.5) should move up and leftwards.

ii) If K ∈
[
V, bV

λ2+dV 2/3

]
, then K ′, V ′ > 0. The solution in this region moves both to the right

and top.

iii) When K > max
{
V, bV

λ2+dV 2/3

}
, K ′ is negative and V ′ is positive. As a result, the solution

should go to the right and down.

iv) If K ∈
[

bV
λ2+dV 2/3 , V

]
both K ′ and V ′ are negative. It implies that the solution moves

down and leftwards.

Each of the curves representing the evolution of the solutions with respect to time of Figure

2.1.a. has its initial point located in one of the mentioned regions. For instance, the orange

curve starts in the i) region, so it goes slightly to the left and the top until it crosses the dark
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blue nullcline, where it turns to the right. At first, it is a subtle right movement, but once it is

close to the brown nullcline, it follows its path tending to the critical point, represented by a red

dot. The blue and the yellow curves start in the ii) and iv) regions, respectively, and they follow

the movement established by them, tending to the equilibrium point, too. Finally, the purple

curve starts in the iii) region, so the solution evolves moving down and to the right. When it

crosses the brown nullcline, the curve starts going up, keeping close to this zero-growth isocline

and tending to the critical point.

As a result, we have also proved that neither of the solutions can have a negative or a

tending-to-infinity component because of the behavior they should have in each region.

Once we have checked how solutions behave for all t > 0, we have to extend the reasoning

followed to prove the local existence to all t > 0, in order to prove the global existence. As we

have observed, both V and K are positive at all times. In particular, they are positive at time

h, so (V (h),K(h)) ∈ Ω. Thus, there exists a solution in some interval [h, h+ h′], with h′ > 0.

This process is repeated iteratively until we demonstrate the existence of solution for all

t > 0. Moreover, it is unique because the partial derivatives are continuous in all Ω.

Critical points (Vc,Kc) satisfy that f1(Vc,Kc) = f2(Vc,Kc) = 0, i.e, they are the intersection

between nullclines. In our biological framework, it is where the tumor size reaches the carrying

capacity, which is the worst situation for the patient. By using Equations (2.6) and (2.7), we

get

Vc = Kc =

(
b− λ2
d

)3/2

. (2.8)

which we know that exists because of the theorem’s hypothesis b > λ2.

As we have noticed, all solutions converge to that point, regardless of the starting point. As

a result, we have proved globally that it is asymptotically stable.

Remark 2.1.2. As we have mentioned before, f1(V,K) can not be defined at the origin. If it

were, then f1(V,K) and f2(V,K) would be continuous in (0,0), or at least have a removable

discontinuity in that point. We have that f2(0, 0) = 0. However, f1(V,K) is not continuous

at the origin because of the terms inside the logarithm. What is more, we can not solve this

discontinuity by taking the value of the limit of f1(V,K) when (V,K) −→ (0,0) because it does

not exist. We have that

lim
(V,K)→(0,0)

f1(V,K) = lim
(V,K)→(0,0)

−λ1V log(V ) + lim
(V,K)→(0,0)

λ1V log(K), (2.9)

where the first term’s limit exists. By applying L’Hôpital’s rule:

lim
(V,K)→(0,0)

−λ1V log(V ) = lim
(V,K)→(0,0)

−λ1
log(V )

1/V
= lim

(V,K)→(0,0)
λ1V = 0.

Nevertheless, we can not compute the second term of the expression (2.9). We can take two

sequences tending to the origin such that this limit takes two different values. Let us take:

(Vn,Kn) =

(
1

n
, e−n

)
−−−−−→
n−→+∞

(0, 0) =⇒ lim
(V,K)→(0,0)

λ1Vnlog(Kn) = −λ1,

and by taking other sequence we have:

(Vn,Kn) =

(
1

n
, e−n

2

)
−−−−−→
n−→+∞

(0, 0) =⇒ lim
(V,K)→(0,0)

λ1Vnlog(Kn) = −∞.
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(a) Case b > λ2. (b) Case b ≤ λ2.

Figure 2.1: V K phase portrait with the nullclines (brown and dark blue curves), the critical point in red and

some solutions of system (2.5) for different initial points. They were obtained with a MATLAB toolbox called

PhaseP lane.

Theorem 2.1.2. Let (V (t),K(t)) be a solution of system (2.5) in t > 0 and b ≤ λ2. Then,

(V (t),K(t)) −→ (0, 0) as t −→ +∞, independently of the starting point (V0,K0), with 0 < V0 <

K0.

Proof. As we have showed in Theorem 2.1.1, nullclines can divide a V K phase portrait into a

certain number of regions according to the sign of both V ′ and K ′. Unlike the previous theorem,

nullclines now do not intersect in Ω = (0,+∞)× (0,+∞), because b ≤ λ2. As a result, we just

can divide the V K portrait into three regions, as it can be observed in Figure 2.1.b..

Using the same reasoning as before, we can further distinguish between:

i) If K < min
{
V, bV

λ2+dV 2/3

}
, then we have that V ′ < 0 and K ′ > 0. Here, the the solution

of the system (2.5) should move to the left and the top.

ii) When K > max
{
V, bV

λ2+dV 2/3

}
, K ′ < 0 and V ′ > 0, so the solution should go rightwards

and down.

iii) If K ∈
[

bV
λ2+dV 2/3 , V

]
both K ′ and V ′ are negative, so the solution should move down and

to the left.

In Figure 2.1.b. we have represented the trajectories of some solutions, each of them starting

in a different region. The blue curve starts in region i), so it moves to the left and up until it

reaches the nonlinear nullcline. Then, it continues its path tending to the origin. The orange

curve’s starting point is in the ii) region. As a result, it moves slightly to the left and down, and

once it is close to the brown nullcline, it follows its path tending to (0,0). Finally, the yellow

one starts in the iii) region, and it goes slightly to the right and down until it crosses the blue

nullcline. Then, it moves as it does the orange curve.

Arguing as before, we can prove that a solution of system (2.5) exists for all t > 0 and tends

to the origin as t −→ +∞, for any starting point (V0,K0) that satisfies 0 < V0 < K0. What is

more, we can ensure that none of the solution trajectories will tend neither to infinity nor to

another R2 quadrant because of the regions’ rules.

8



2.2. Pharmacodynamics

Neither (2.1) nor (2.2) equations take into account unnatural external stimuli like cancer

treatments, whose aim is to reduce the tumor size in order to maintain it in a non-toxic volume

or even, if possible, to eliminate it. If we add the effect of cancer drugs, then those expressions

change. They can be divided into two groups according to the type of cells they target: cytotoxic

and antiangiogenic drugs. In this dissertation, we will focus on the second ones.

Antiangiogenic drugs block the nutrients and oxygen necessary for a tumor for its develop-

ment, by inhibiting the growth of new vasculature. We formulate their effect in Equation (2.2)

as an additional term, such that

K ′ = −λ2K + bV − dKV 2/3 − eKc(t), (2.10)

where e > 0 is the factor that quantifies the consequence of applying the c(t) concentration of

antiangiogenic drugs in the carrying capacity.

The Cauchy problem can now be rewritten as:
V ′ = −λ1V log

(
V
K

)
,

K ′ = −λ2K + bV − dKV 2/3 − eKc(t),

V (0) = V0 > 0, K(0) = K0 > 0,

(2.11)

where all constants have already been specified. Note that the system now depends on time,

unless c(t) ≡ cd. If it were, we could distinguish between the following two cases:

If b > λ2 + ecd, then we are under the hypotheses of Theorem 2.1.1, where the critical

point (Ṽc, K̃c) is now

Ṽc = K̃c =

(
b− λ2 − ecd

d

)3/2

. (2.12)

As we have that ecd is a positive quantity, it can be observed that applying a treatment

reduces the maximum volume a tumor can reach. It is related to palliative treatments.

If b ≤ λ2 + ecd, then we can apply Theorem 2.1.2, where the final volume can be reduced

to zero. It is the case of a curative treatment.

Let us see an example in which we apply a drug, and we want to see the maximum volume

a tumor could reach when it is applied. We will consider that there is a minimum constant

concentration and a maximum one, and observe the changes they produce in Ṽc:

Example 2.2.1. Let b = 5.85 day−1, λ2 = 0 day−1, e = 0.15 mg−1 L day−1 and d = 0.00873

day−1 mm−2 [6]. If we do not consider any treatment, then Vc ≈ 17346 mm3 (see Equation

(2.8)). In case we suppose that the patient is being treated, by considering cd = 10 mg/L we get

Ṽc = K̃c = 11123 mm3, with cd = 20 mg/L we obtain Ṽc = 5899 mm3, and if cd = 30 mg/L,

Ṽc = K̃c = 1923 mm3 (see Equation (2.12)). As we could expect, the effects of the treatment on

the tumor volume increase with cd. However, biologically it is not always possible to apply the

amount of drug we would desire.

In Figure 2.2 we can see the effect of the different drug concentrations both in the volume and

in the carrying capacity. Note that the carrying capacity K is always above the tumor volume

V , which is consistent with the biological meaning of both quantities, and that they both move
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together. In addition, we can see that the effect of the concentration is not only on the maximum

possible tumor volume but also on the time it takes to reach it. When we only apply 10 mg/L

of the drug, it takes approximately 80 days to reach the maximum. Nevertheless, in the second

situation, it takes around 100 days to reach it, and it enlarges to 150 days in the third one.

Figure 2.2: Tumor volume (V ) and carrying capacity (K) when cd takes values 10 (left), 20 (center) and 30

mg/L (right).

The phase portraits resulting from the three cases of the example are represented as follows:

Figure 2.3: V K phase portraits with the nullclines (brown and dark blue curves) and the critical point in red,

when the constant drug concentration cd takes values 10 (left), 20 (center) and 30 mg/L (right).

Notice that the critical point moves down the blue nullcline as the drug concentration in-

creases. Moreover, its coordinates coincide with those calculated from Equation (2.12) in each

case.

Nevertheless, when a drug is administered in doses, it is not possible to maintain a constant

concentration in the body. Since this varies with time, being also a piecewise continuous function,

it is not possible to use the standard arguments to prove the existence and uniqueness of the

solution (those used in the previous section). Let us see, however, that we can make use of a

similar argument to prove it if there is a finite number of jump discontinuities. The following

example shows how we have to proceed when we have a piecewise continuous function:

Example 2.2.2. Let us take the following ODE:

x′(t) =

 x(t), if t < 0,

tx(t), if t ≥ 0,
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with the condition x(0) = 5.

We can solve first the equation in each interval, such that

x(t) =


c1e

t, if t < 0,

c2e
t2/2, if t ≥ 0

where c1 and c2 are real constants.

If we ask it to be continuous not only in each of the intervals where it is defined but also in

the connection points, then c1 = c2 = 5 (as they should also satisfy that x(0) = 5). Therefore,

the solution obtained exists for all t ∈ R, and it is unique.

Note that when t = 0 it is not derivable, because x′(0−) = 5 6= 0 = x′(0+).

In view of this example, we can observe that if we have a function x′(t) with a finite number

of jump discontinuities t1, ..., tN , function x(t) will not be derivable at those points, although

it will be continuous for the whole domain. Therefore, the classical theory about the existence

and uniqueness of solution for Cauchy problems can be extended to the case where the function

defining the ODE is only piecewise continuous with respect to t and C1 with respect to x, just

pasting the solutions at the finite number of points where the function has such a discontinuity

with respect to t (see Chapter 3 of [7]).

Theorem 2.2.1. Let c : [0,+∞) −→ [0,+∞) be a piecewise continuous function in [0,+∞)

with (at most) a finite number of jump discontinuity points. Let c1, c2 > 0, such that 0 < c1 <

c(t) < c2, for all t > 0, and 0 < V0 < K0. Then, there exists a unique solution (V (t),K(t)) of

the Cauchy problem (2.11) defined in [0,+∞). It verifies that V (t) > 0 and K(t) > 0, for all

t > 0, and

i) if b > λ2 + ec2,

0 <

(
b− λ2 − ec2

d

)3/2

≤ lim inf
t→+∞

V (t) ≤ lim sup
t→+∞

V (t) ≤
(
b− λ2 − ec1

d

)3/2

,

0 <

(
b− λ2 − ec2

d

)3/2

≤ lim inf
t→+∞

K(t) ≤ lim sup
t→+∞

K(t) ≤
(
b− λ2 − ec1

d

)3/2

.

ii) if b ≤ λ2 + ec1, we have that

lim
t→+∞

V (t) = lim
t→+∞

K(t) = 0.

Proof. Let

f̃1(V,K) = −λ1V log

(
V

K

)
, f̃2(t, V,K) = −λ2K + bV − dKV 2/3 − eKc(t).

Note that f̃1(V,K) = f1(V,K), and f̃2(t, V,K) = f2(V,K) − eKc(t), where f1(V,K) and

f2(V,K) were defined in the proof of Theorem 2.1.1.

Let us prove first the existence and uniqueness of solution (V (t),K(t)) of the Cauchy problem

(2.11) for all t ∈ [0,+∞). Be {t1, ..., tN} ⊂ [0,+∞) the jump discontinuity points of function

c, such that 0 ≤ t1 < t2 < ... < tN . Let us take the interval [0, t1), so that we can ensure that

function c is continuous there. Let us suppose (V (0),K(0))∈ Ω = {(V,K) ∈ R2 : V > 0,K > 0},

11



where (V (0),K(0)) = (V0,K0) is the initial point of problem (2.11). We have to prove that

f̃1(V,K) and f̃2(t, V,K) are continuous in [0, t1) × Ω. The first function is C1 in Ω, as we had

proved in Theorem 2.1.1. The second function is also continuous in all Ω, because the new term

−eKc(t) added to the C1 function f2(V,K) of Theorem 2.1.1 is continuous when t ∈ [0, t1). In

addition, the partial derivatives of f̃2(t, V,K) are also continuous in [0, t1)× Ω:

∂f̃2
∂V

(t, V,K) = b− 2

3

dK

V 1/3
,

∂f̃2
∂K

(t, V,K) = −λ2 − dV 2/3 − ec(t).

Therefore, there exists a unique solution for each initial point (V0,K0) in the interval [0, h],

for some h > 0, such that h < t1. Here again, the solution neither diverges nor tends to Ω’s

boundary. As c is continuous in [0, t1), and (V (h),K(h)) ∈ Ω by continuity, we can repeat this

process iteratively to prove the existence of a unique solution in t ∈ [0, t1).

We can follow the same reasoning with the intervals [ti, ti+1), where i ∈ {1, ..., N − 1}, and

with [tN ,+∞), and prove the existence of a unique solution in each of those intervals pasting

the different branches as explained above. Then, we can prove the existence and uniqueness of

solution for all t > 0.

In order to prove the inequalities stated in the theorem, let (V1(t),K1(t)) and (V2(t),K2(t))

be the solutions of the following Cauchy problems, respectively:

(C1)


V ′ = −λ1V log

(
V
K

)
,

K ′ = −λ2K + bV − dKV 2/3 − eKc1,

V (0) = V0 > 0, K(0) = K0 > 0,

(C2)


V ′ = −λ1V log

(
V
K

)
,

K ′ = −λ2K + bV − dKV 2/3 − eKc2,

V (0) = V0 > 0, K(0) = K0 > 0.

By using the comparison Theorem 2.2.2, we get that

0 < V2(t) ≤ V (t) ≤ V1(t), 0 < K2(t) ≤ K(t) ≤ K1(t), (2.13)

for all t ≥ 0. If b > λ2 + ec2, by taking into account Theorem 2.1.1 we know that

lim
t→+∞

V1(t) = lim
t→+∞

K1(t) =

(
b− λ2 − ec1

d

)3/2

,

lim
t→+∞

V2(t) = lim
t→+∞

K2(t) =

(
b− λ2 − ec2

d

)3/2

.

(2.14)

As a result, we can prove the theorem’s statement i) by taking the limit t −→ +∞, and

substituting expressions (2.14) into inequalities (2.13). It is noteworthy to mention that the

solutions of problem (2.11) heavily oscillate as t −→ +∞ (see figures of Chapter 4), and that is

the reason why we have to distinguish between the limit superior and inferior.

On the other hand, if we have b ≤ λ2 + ec1, then lim
t→+∞

V1(t) = lim
t→+∞

K1(t) = 0, as it is

stated in Theorem 2.1.2. By taking limits and using the sandwich rule in expressions (2.13) we

can finally prove statement ii).

Remark 2.2.1. Function c will represent the drug concentration in the patient’s body.

As we have mentioned, the above theorem bases its reasoning on the so-called comparison

theorem. Before stating it, we have to introduce the Chaplygin Lemma:

Lemma 2.2.1. Let f1, f2 ∈ C1(Ω), where Ω ⊂ R2 is an open set. Let x1, x2, y1, y2 continuous

functions in [0, Tf ], such that (x1(t), x2(t)) ∈ Ω, and (y1(t), y2(t)) ∈ Ω, ∀t ∈ [0, Tf ]. Let us

suppose that they verify
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
x′1(t) = f1(x1(t), x2(t)),

x′2(t) = f2(x1(t), x2(t)),

x1(t0) = x10, x2(t0) = x20,


y′1(t) < f1(y1(t), y2(t)),

y′2(t) < f2(y1(t), y2(t))− f3(t),

y1(t0) < x10, y2(t0) < x20,

with (x10, x20) ∈ Ω. If

∂f1
∂x2

(x1, x2) ≥ 0,
∂f2
∂x1

(x1, x2) ≥ 0, ∀(x1, x2) ∈ Ω,

then y1(t) ≤ x1(t) and y2(t) ≤ x2(t), ∀t ∈ [0, Tf ].

Proof. We will prove it by contradiction. Let us assume that there is a t∗ ∈ (0, Tf ) and i ∈ {1, 2}
such that yi(t

∗) > xi(t
∗). Let us consider the set

A = {t ∈ [0, Tf ] : yi(t) > xi(t) for some i ∈ {1, 2}}.

Note that A is bounded from below by 0, and it is not empty because t∗ ∈ A. By the infimum

axiom, we know that there exists a t1 ∈ [0, Tf ] such that t1 = inf(A).

Let us assume i = 1, so y1(t1) = x1(t1) and x2(t1) ≥ y2(t1): if t1 ∈ A or x2(t1) < y2(t1) then,

by continuity of y1, y2, x1 and x2, t1 would not be the infimum of the set. Therefore, we have

f1(x1(t1), x2(t1))− f1(y1(t1), y2(t1)) = f1(x1(t), x2(t1))− f1(x1(t1), y2(t1))

=
∂f1
∂x2

(x1(t1), θx2(t1) + (1− θ)y2(t1))(x2(t1)− y2(t1)) ≥ 0,

(2.15)

where we have used the Mean Value Theorem, with θ ∈ (0, 1) and the partial derivative hypoth-

esis of the lemma.

As t1 = inf(A), there exists an element δ > 0 such that y1(t1 + ∆) > x1(t1 + ∆), where

∆ ∈ (0, δ). Therefore,

y1(t1 + ∆)− y1(t1)
∆

>
x1(t1 + ∆)− x1(t1)

∆

and if we consider ∆ −→ 0, then it is obtained that f1(y1(t1), y2(t1)) > y′1(t1) ≥ x′1(t1) =

f1(x1(t1), x2(t1)), which contradicts (2.15).

If i = 2, the process can be repeated by considering x2(t1) = y2(t1) and x1(t1) ≥ y1(t1).

Now, we can present the comparison theorem, whose proof is based on the Chaplygin Lemma:

Theorem 2.2.2. Let f1, f2 ∈ C1(Ω), where Ω ⊂ R2 is an open set. Let f3 ≥ 0, piecewise

continuous in the interval [0, Tf ]. Let us consider the following ODE systems:
x′1(t) = f1(x1(t), x2(t)),

x′2(t) = f2(x1(t), x2(t)),

x1(0) = x10, x2(0) = x20,


y′1(t) = f1(y1(t), y2(t)),

y′2(t) = f2(y1(t), y2(t))− f3(t),

y1(0) = x10, y2(0) = x20,

with (x10, x20) ∈ Ω. If the following conditions are fulfilled:

i) (x1(t), x2(t)) exists ∀t ∈ [0, Tf ], and (x1(t), x2(t)) ∈ Ω, ∀t ∈ [0, Tf ],
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ii) (y1(t), y2(t)) exists ∀t ∈ [0, Tf ], and (y1(t), y2(t)) ∈ Ω, for all t ∈ [0, Tf ],

iii)
∂f1
∂x2

(x1, x2) ≥ 0 and
∂f2
∂x1

(x1, x2) ≥ 0, ∀(x1, x2) ∈ Ω,

then, y1(t) ≤ x1(t) and y2(t) ≤ x2(t), ∀t ∈ [0, Tf ].

Proof. Let us take ε > 0. We will consider that (y1ε(t), y2ε(t)) as the solution of the following

Cauchy problem: 
y′1ε(t) = f1(y1ε(t), y2ε(t))− ε,

y′2ε(t) = f2(y1ε(t), y2ε(t))− f3(t)− ε,

y1ε(0) = x10 − ε, y2ε(0) = x20 − ε.
If ε is small enough, then (y1ε(t), y2ε(t)) ∈ Ω, and it is defined in [0,Tf ]. Moreover,

(y1ε(t), y2ε(t)) −→ (y1(t), y2(t)) ∀t ∈ [0, Tf ], when ε −→ 0+.

By applying the Chaplygin Lemma we obtain that y1ε(t) ≤ x1(t) and y2ε(t) ≤ x2(t), for all

t ∈ [0, Tf ], and for all ε > 0 small enough.

To get the final result of the theorem it is enough to take the limit when ε −→ 0+.

Under the hypotheses of Theorem 2.2.1, and considering x1 = V , and x2 = K, we can prove

V (t) ≤ V1(t) and K(t) ≤ K1(t) if we take:

f1(V,K) = −λ1V log

(
V

K

)
,

f2(V,K) = bV − λ2K − dKV 2/3 − eKc1,

f3(t) = eK(t)(c(t)− c1) ≥ 0

By using Theorems 2.1.1 and 2.2.1 we know that conditions i) and ii) of the comparison

theorem are satisfied. Let us see what happens with the third hypothesis:

∂f1
∂K

(V,K) =
λ1V

K
> 0⇐⇒ V,K < 0 or V,K > 0,

∂f2
∂V

(V,K) = b− 2

3
d
K

V 1/3
> 0⇐⇒ K

V 1/3
<

3

2

b

d
.

We have already observed that the first condition is attained in Ω. In the case of the second

condition, note that it includes in that region the nonlinear nullcline described in Theorem 2.1.1:

K =
bV

λ2 + dV 2/3
≤ b

d
V 1/3 ≤ 3

2

b

d
V 1/3.

We should remember that solutions evolve with time following the same path as the previ-

ously mentioned nullcline. As a result, we can ensure that the condition is met if the starting

point is already in that region.

If we want to prove V2(t) ≤ V (t) and K2(t) ≤ K(t), we will consider the alternative −V (t) ≤
−V2(t) and −K(t) ≤ −K2(t), and then

f1(V,K) = λ1V log

(
V

K

)
,

f2(V,K) = −bV + λ2K + dKV 2/3 + eKc2,

f3(t) = eK(t)(c2 − c(t)) ≥ 0
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where the hypothesis of the comparison theorem are satisfied as before.

Now, we will show an example where we can observe how the limit of the tumor volume is

kept between the limits expressed in Theorem 2.2.1.

Example 2.2.3. Let us take c(t) whose expression are obtained in the following chapter (see

(3.2)), with λ = 0.38 days−1. We study three cases, that take different N , d = (d1, ..., dN ) and

t = (t1, ..., tN ) values. We also consider the maximum and minimum values of c(t) in each

situation. They are all displayed in the following table:

Treatment N ∆t (days) d (mg/kg) cmin (mg/L) cmax (mg/L)

1 53 (1.96, 2.61,..., 2.61) (12.46, 10,..., 10) 5.74 15.74

2 106 (1.12, 1.32,..., 1.32) (23.45, 10,..., 10) 15.32 25.32

3 135 (0.97, 1.03,..., 1.03) (30, 10,... 10) 20.74 30.74

Table 2.1: Different treatments according to the quantities N , d and t for c(t). It is also included both the

superior and the inferior levels of c(t).

Note that we have written the values of ∆t instead of the t vector, but it is just for simplicity

reasons. We take t1 = 0, and then t2 = ∆t1, t3 = ∆t1 + ∆t2,..., tN =
∑N−1

i=1 ∆ti. This criterion

is used throughout the whole work.

The following graphs represent the drug concentration in the body for the different treatments

presented above. Note that the maximum and minimum values are the ones included in Table

2.1:

Figure 2.4: Drug concentration in the body c(t) with cmin and cmax limits for the treatments presented in Table

2.1.

Although it may not seem so, let us note that c(t) is a piecewise continuous function, with

finite jump discontinuities at each ti.

Now, let us substitute c(t) into the Cauchy problem (2.11), and cmin and cmax into Equation

(2.12), where b, d, e and λ2 take the values expressed in Example 2.3, for each treatment. We

can observe the evolution of the tumor’s volume with the three concentrations in each case.
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Figure 2.5: Evolution of the tumor’s volume with time when the drug concentration c(t) is between cmin and

cmax limits for the treatments presented in Table 2.1.

In Figure 2.5, we have illustrated an example of case i) of Theorem 2.2.1, because we can

observe that there is no limit for the volume and that both the superior and inferior limits are

between the values expressed there.

Moreover, if we decrease the elapsed times between doses while having fixed the dosages and

the final day of treatment (in this case day 140th), there is a noticeable decrease in the final

tumor’s volume. It is consistent with the fact that we are applying a higher quantity of drug in

the same period of time.
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Chapter 3

Drug concentration

Once we have studied the dynamics of the tumor under treatment, it is necessary to formulate

the expression of the drug concentration in the body. To avoid large fluctuations in the tumor

volume, we will obtain the schedules of the treatments that would keep it in a quasi-steady state

through an optimization problem. We will also study different particular cases of significant

practical interest.

3.1. Formulating the drug concentration function

Once a drug is administered to a patient, its body interacts with it by activating drug-

elimination biological processes. As a result, the concentration of the drug c varies with time.

In addition, when a patient undergoes a treatment, it usually consists in the application of certain

(let’s suppose N > 0) number of doses {di}i∈{1,...,N} ⊂ [0,+∞) at times {ti}i∈{1,...,N} ⊂ [0,+∞),

respectively, which should also be considered when formulating the drug concentration in the

body. Then, we will consider the following Cauchy problem: c′(t) = −λc(t) + σ
N∑
i=1

diδ(t− ti),

c(0) = 0

(3.1)

where λ > 0 represents the clearance or elimination rate, i.e., the rate at which the body

eliminates the drug, and the second term considers each drug administration, with σ > 0. The

coefficient σ depends on the drug itself, the patient, and the tumor. In this case, σ = β
VD

, where

VD is the volume of distribution of the drug (in L) and β is the patient weight (in kg). For the

sake of simplicity and without loss of generality, throughout this work we will consider σ = 1

kg/L. In the general case, expressions where di appears should be replaced by σdi. Once more,

let us note that the concentration is not a continuous function and that (3.1) is formulated in

the sense of distributions due to the presence of Dirac deltas.

In order to solve the Cauchy problem, we can apply both the definition and some properties

of Laplace transforms. Firstly, by applying Laplace transform, we get[5]

sL[c(t)](s) = −λL[c(t)](s) +

N∑
i=1

die
−stiL[δ(t− ti)](s),

where

L[δ(t− ti)](s) =

∫ ∞
0

e−stδ(t− ti)dt = e−sti .
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Once we rearrange the terms and substitute the latest result we get

L[c(t)](s) =
1

s+ λ

N∑
i=1

die
−sti =

N∑
i=1

die
−stiL[e−λt](s) =

N∑
i=1

diL[gi(t)](s),

where

gi(t) =

{
0 0 ≤ t ≤ ti,
e−λ(t−ti) t > ti.

By applying inverse Laplace transform we finally obtain

c(t) =
N∑
i=1

die
−λ(t−ti) =



0 t ∈ [0, t1),

e−λtd1e
λt1 t ∈ [t1, t2),

e−λt(d1e
λt1 + d2e

λt2) t ∈ [t2, t3),
...

...

e−λt(d1e
λt1 + d2e

λt2 + ...+ dNe
λtN ) t > tN .

(3.2)

3.2. Keeping the drug concentration in a steady state

We would desire to reach a steady-state for the concentration of the drug in the patient. It

would help to have the upper and lower limits of both the volume and the carrying capacity

inside a shorter interval, as we got in Theorem 2.2.1. Therefore, we could get some guidance

about how much the maximum tumor volume can be reduced if the drug is applied and how

much time it would take to reach it.

The next problem is presented in order to determine the minimization of the integral of the

quadratic difference between the concentration function c(t) and an ideal constant one cd in an

interval of time [0, Tf ][1]. We have a fixed maximum total dose D > 0, which has to be divided

(it is not necessary to use the total D quantity) into N doses {di}Ni=1. Each of these doses has to

be larger than a quantity dmin > 0 and smaller than dmax > 0, both for treatment effectiveness

and toxicity reasons, respectively. As a result, we have an upper bound in the number of doses

N , such that N ≤ D
dmin

.

In addition, all these doses have to be taken in times 0 ≤ t1 < t2 < ... < tN ≤ Tf whose

elapsed times of application should be larger than γ days, as it is more practical for the patient

and also to avoid toxic effects. The value of γ can be fixed in each treatment.

(P1)



min
N∈N,{di}Ni=1,{ti}Ni=1⊂R+

J(N, d1, ..., dN , t1, ...tN )

subject to ti + γ ≤ ti+1, ∀i ∈ {1, ...N − 1}
tN ≤ Tf
dmin ≤ di ≤ dmax, ∀i ∈ {1, ...N}
N∑
i=1

di ≤ D

where the objective function J is described as follows,

J(N, d1, ..., dN , t1, ...tN ) =

∫ Tf

0
(c(t)− cd)2dt =

∫ Tf

0
c2(t)dt− 2cd

∫ Tf

0
c(t)dt+ c2dTf .
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Note that the constant desired drug level cd should take a reasonable value. If it is too high,

then we are limited by the maximum total and individual dose limits, D, dmax, and dmin (see

Example 3.2.1).

We have to calculate each integral in order to get an expression that can be used to formulate

the objective function of (P1) in terms of its variables. To do so, we will proceed with inductive

processes.

Firstly, we will expand the integral of the quadratic concentration function. To do so, let us

suppose we have N = 2, i.e, the treatment only consists of two doses, applied at t1 and t2 < Tf .

Then,∫ Tf

0
c2(t)dt =

∫ t2

t1

e−2λ(t−t1)d21dt+

∫ Tf

t2

e−2λt(d1e
λt1 + d2e

λt2)2dt

=
1

2λ

[(
d21e

2λt1
)(

e−2λt1 − e−2λt2
)

+
(
d21e

2λt1 + d22e
2λt2 + 2d1d2e

λ(t1+t2)
)
·

·
(
e−2λt2 − e−2λTf

)
]

=
1

2λ

[
d21(1− e2λ(t1−Tf )) + d22(1− e2λ(t2−Tf )) + 2d1d2(e

λ(t1−t2) − eλ(t1+t2−2Tf ))
]
.

If we consider N = 3, then we have∫ Tf

0
c2(t)dt =

∫ t2

t1

e−2λ(t−t1)d21dt+

∫ t3

t2

e−2λt(d1e
λt1 + d2e

λt2)2dt+

∫ Tf

t3

e−2λt(d1e
λt1+

+ d2e
λt2 + d3e

λt3)2dt

=
1

2λ

[(
d21e

2λt1
)(

e−2λt1 − e−2λt2
)

+
(
d21e

2λt1 + d22e
2λt2 + 2d1d2e

λ(t1+t2)
)
·

·
(
e−2λt2 − e−2λTf

)
+ (d21e

2λt1 + d22e
2λt2 + d23e

2λt3 + 2d1d2e
λ(t1+t2) + 2d1d3·

· eλ(t1+t3) + 2d2d3e
λ(t2+t3))(e−2λt3 − e−2λTf )]

=
1

2λ

[
d21(1− e2λ(t1−Tf )) + d22(1− e2λ(t2−Tf )) + d23(1− e2λ(t3−Tf )) + 2d1d2·

· (eλ(t1−t2) − eλ(t1+t2−2Tf )) + 2d1d3(e
λ(t1−t3) − eλ(t1+t3−2Tf )) + 2d2d3(e

λ(t2−t3)−

− eλ(t2+t3−2Tf )).

So then, for a general N we have∫ Tf

0
c2(t)dt =

1

2λ

 N∑
i=1

d2i (1− e2λ(ti−Tf )) + 2
N−1∑
k=1

N∑
j=k+1

djdk(e
λ(tk−tj) − eλ(tj+tk−2Tf ))

 .
We will use the same method to expand the integral of the concentration function. Now,

considering N=2:∫ Tf

0
c(t)dt =

∫ t2

t1

e−λ(t−t1)d1dt+

∫ Tf

t2

e−λt(d1e
λt1 + d2e

λt2)dt

=
1

λ

[
d1e

λt1
(
e−λt1 − e−λt2

)
+
(
d1e

λt1 + d2e
λt2
)(

e−λt2 − e−λTf
)]

=
1

λ

[
d1(1− eλ(t1−Tf )) + d2(1− eλ(t2−Tf ))

]
.
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If we suppose the treatment consists of three doses:∫ Tf

0
c(t)dt =

∫ t2

t1

e−λ(t−t1)d1dt+

∫ t3

t2

e−λt(d1e
λt1 + d2e

λt2)dt+

∫ Tf

t3

e−λt(d1e
λt1+

+ d2e
λt2 + d3e

λt3)dt

=
1

λ

[
d1e

λt1
(
e−λt1 − e−λt2

)
+
(
d1e

λt1 + d2e
λt2
)(

e−λt2 − e−λt3
)

+ (d1e
λt1+

+ d2e
λt2 + d3e

λt3)(e−λt3 − e−λTf )]

=
1

λ

[
d1(1− eλ(t1−Tf )) + d2(1− eλ(t2−Tf )) + d3(1− eλ(t3−Tf))

]
.

Proceeding inductively, for a general N we obtain:

∫ Tf

0
c(t)dt =

1

λ

N∑
i=1

di(1− eλ(ti−Tf )).

Therefore, we get the following expression for the objective function of (P1):

J(N, d1, ..., dN , t1, ...tN ) =
1

2λ

 N∑
i=1

d2i (1− e2λ(ti−Tf )) + 2
N−1∑
k=1

N∑
j=k+1

djdk(e
λ(tk−tj)−

−eλ(tj+tk−2Tf ))

]
− 2cd

λ

N∑
i=1

di(1− eλ(ti−Tf )) + c2dTf ,

(3.3)

which can also be expressed in matrix form as

J =
1

2λ
dTHd− 2cd

λ
pTd+ c2dTf , (3.4)

where d = (d1, d2, ..., dN )T and p is a vector whose components are p(i) = 1 − ri, with ri =

eλ(ti−Tf ), ∀i ∈ {1, ..., N}. Moreover, H is a symmetric matrix, where

H(i, j) =
ri
rj
− rirj , H(j, i) = H(i, j), ∀i, j such that i ≤ j ≤ N. (3.5)

H matrix is included in the class of generator representable semiseparable matrices. They

are those symmetric matrices whose upper and lower triangular parts are given by the product of

two vectors. These matrices have a surprising property: their inverses are tridiagonal matrices,

where both the superdiagonal and the subdiagonal have the same values. See [14] for a proof of

this fact.

Let us explore an example by considering different elimination rates so that we can observe

the importance of taking an adequate cd in each case.

In order to solve numerically the optimization system (PN1 ) and those that will be presented

throughout the work, MATLAB programs have been developed. In particular, we have used the

fmincon function to solve them. It is a nonlinear programming solver that attempts to find the

minimum of a multivariate function under certain equality, inequality, and boundary constraints

by giving an initial value. Note that in this case, although the objective function is quadratic,

we cannot use the quadprog function because time variables are within exponential terms.
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Example 3.2.1. Given D = 300 mg/kg, dmin = 10 mg/kg, dmax = 30 mg/kg, γ = 0.3 days

and Tf = 30 days. We will solve (P1) for different elimination rates λ.

We will start by considering a very short elimination rate, i.e., a situation in which the drug

administered remains in the patient’s body almost in its totality. The results with ideal constant

concentration of cd = 100, 200 and 300 mg/L, respectively, are graphically expressed as follows:

Figure 3.1: Drug concentration in the body with λ = 0.0001 days−1 for different cd.

Note that in this case, cd can take the value of the maximum cumulative dosage D, and the

concentration in the body is able to reach that quantity. The best strategy in order to reduce the

difference between the concentration in the body and the ideal one is to administer all the doses at

the start of the treatment, with the minimum elapsed time γ. They take the maximum individual

dose value dmax until cd−c(t) < 30 mg/L, and then the last dose is equal to the difference between

both quantities. Moreover, as the elimination rate is almost null, once cd is reached, there is

no need to take more doses. Therefore, the total dosage administered corresponds to cd in each

case, so if we have an ideal constant concentration larger than 300 mg/L, the concentration in

the body will not be able to reach it as it has already consumed the maximum cumulative dosage.

Let us now consider the opposite situation in which the patient eliminates the drug very fast

(λ = 10 days−1). The following figure represents three cases, with cd = 10, 12 and 14 mg/L,

respectively:

Figure 3.2: Drug concentration in the body with λ = 10 days−1 for different cd.

Now, we can observe that there is no constant concentration over 10 mg/L such that the

drug concentration in the body can be around it (considering a cd below 10 mg/L could have no

notorious effect on the patient’s tumor). In the three cases the best option is to administer the

maximum number of dmin doses possible (we are limited by the quantity D
dmin

) and equally spaced

along the 30 days of treatment. It is noteworthy to mention that it is spent the whole cumulative

dosage possible in order to reach the ideal concentration level, but λ makes it not possible.
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Finally, if we consider an intermediate elimination rate of λ = 0.38 days−1, the graphs of

Figure 3.3 are obtained with cd = 20, 30 and 40 mg/L.

Figure 3.3: Drug concentration in the body with λ = 0.38 days−1 for different cd.

By looking at the graphs, we can observe that the most efficient treatment consists of taking

an initial large dose so that a high concentration is reached and then keeping it constant. In the

case of cd = 20 mg/L, the concentration is kept around the ideal level, but when cd increases, it

is not possible to reach it, and a tail appears. It is larger as cd increases.

In view of Example 3.2.1, we can see that cd can take values from dmin, considering this level

as the minimum possible to observe changes in the tumor, to D. However, the value should be

reasonable according to the drug we are dealing with.

Along the following subsections, we will analyze different situations related to the choice of

the ideal concentration level.

3.2.1. Having a fixed ideal constant concentration

We will first consider that the ideal constant concentration cd is fixed, and we will observe

the behavior of both the dosage time spacing and the doses when the number of doses N ∈[
1, D

dmin

]
∩ N is fixed. Note that the problem we want to solve now is not (P1) but a particular

case of it:

(PN1 )



min
{di}Ni=1,{ti}Ni=1⊂R+

JN (d1, ..., dN , t1, ...tN ) =

∫ Tf

0
(c(t)− cd)2dt

subject to ti + γ ≤ ti+1, ∀i ∈ {1, ...N − 1}
tN ≤ Tf
dmin ≤ di ≤ dmax, ∀i ∈ {1, ...N}
N∑
i=1

di ≤ D

Theorem 3.2.1. There exists at least one solution for problem (PN1 ).

Proof. Let’s consider K the set of restrictions of (PN1 ), such that

K =

{
(d, t) ∈ R2N :

N∑
i=1

di −D ≤ 0, dmin ≤ di ≤ dmax,∀i ∈ {1, ..., N},

ti + γ ≤ ti+1 ∀i ∈ {1, ...N − 1}, t1 ≥ 0, tN ≤ Tf

}
.

22



Be the linear, and therefore continuous functions:

gi : R2N −→ R such that gi(d, t) = di, ∀i ∈ {1, ..., N},

gN+1 : R2N −→ R such that gN+1(d, t) =
N∑
i=1

di −D,

g̃i : R2N −→ R such that g̃i(d, t) = ti+1 − ti, ∀i ∈ {1, ..., N − 1},
g̃N+1 : R2N −→ R such that g̃N+1(d, t) = t1,

g̃N+2 : R2N −→ R such that g̃N+2(d, t) = tN .

Set K can be written then as

K =

[
N⋂
i=1

g−1i ([dmin, dmax])

]⋂
g−1N+1((−∞, 0])

⋂[
N−1⋂
i=1

g̃−1i ([γ,+∞))

]⋂
⋂
g̃−1N+1([0,+∞))

⋂
g̃−1N+2((−∞, Tf ]).

Since the preimage of continuous functions on a closed set is closed, then so it is K because it

is the intersection of closed sets. Moreover, all the variables of the problem are bounded, so K is

bounded too. Finally, as the objective function of (PN1 ), JN , is continuous, and K is compact,

we are under the hypotheses of the Weierstrass’ theorem, so there is at least one solution of

problem (PN1 ).

As there exists a solution of problem (PN1 ), with N ∈
[
1, D

dmin

]
∩ N, then there should be

at least one N in this finite set that makes J minimal. In order to observe this fact, we have

depicted the next figure, which represents the objective function JN for each N in the interval

N ∈ [10, 30] ∩ N, when cd takes values 12, 20 and 28 mg/L. The other quantities of problem

(PN1 ) are those stated in Example 3.2.2.

Figure 3.4: Objective function of (PN
1 ) as a function of the number of doses N , when cd = 12, 20 and 28 mg/L.

Note that in these particular cases, there is only one N that makes JN minimal for each

cd. In addition, N increases as it does cd. In particular, when cd takes the smallest value, the

minimum value of the objective function is reached when N = 14. In this case, the JN function

takes low values when N is small, and once it increases, the function increases as it is easy to

surpass the ideal constant concentration with many doses.
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By contrast, when cd takes the highest value, we have the minimum value of the objective

function when the number of doses is 28. Moreover, JN increases notably as the N decreases

because with fewer doses, it is not possible to reach the steady-state around the ideal constant

concentration. Finally, when cd = 20 mg/L, the situation is similar to the previous one, but it

is less steep.

The next example shows the solutions of problem (PN1 ) for different fixed N in the particular

case of cd = 20 mg/L. Instead of displaying the times, we show the elapsed times between

dosages, as we explained in Example 2.2.3.

Example 3.2.2. Be D = 300 mg/kg the maximum total dosage, dmin = 10 mg/kg and dmax =

30 mg/kg. Be cd = 20 mg/L and λ = 0.38 day−1. Let us assume that the treatment can last 30

days at most, and the elapsed time between doses should be at least γ = 0.3 days. Then, we can

study the effect of the number of doses of a treatment on (PN1 ) problem.

Treatment JN (days mg2 L−2) ∆t (days) Doses (mg/kg)

18 doses 385.66 (1.67, 1.67,..., 1.67) (26.13, 12.26,..., 12.26)

21 doses 286.27 (1.43, 1.43,..., 1.43) (25.30, 10.60,..., 10.60)

22 doses 261.51 (1.36, 1.36,..., 1.37) (25.07, 10.14,..., 10.14)

23 doses 245.28 (1.12, 1.32,..., 1.32) (23.45, 10,..., 10)

24 doses 246.12 (1.10, 1.32,..., 1.32) (23.29, 10,..., 10)

25 doses 251.24 (0.30, 1.26,1.31,..., 1.31) (16.97, 10,..., 10)

27 doses 303.22 (0.30, 0.83, 1.25,..., 1.25, 0.93, 0.30) (13.89, 10,..., 10)

Table 3.1: Results of the minimization of (PN
1 ) for different number of doses N with cd = 20 mg/L and t1 = 0.

As we can observe from Table 3.1, the solution usually has a loading dose larger than the rest

of them, which allows the concentration to reach the level of the ideal constant concentration cd.

Then, the optimal strategy is to keep the doses constant, and they are dmin when the number

of doses is high enough. We can also see that the number of doses that makes the objective

function J minimal is 23. When it happens, the elapsed time between dosages is smaller at first,

and then it gets a constant higher value. It is also the case of the treatment of 24 doses. Before

that number of doses is reached, the elapsed time always takes the same value, and when the

number of doses is too high for cd = 20 mg/L, which happens with N = 27, the elapsed time’s

strategy changes to try to minimize the problem.

Once we have studied the behavior of both the elapsed times and the doses, we can try to

guess those values and also the number of doses (heuristic solution) in the problems in which we

already know dmin, Tf , λ and cd. It will allow us to obtain an approximated solution without

needing to use a mathematical software.

Let us start by finding a formula for the maximum possible number of doses. We have the

constraint of the maximum total administered drug and the minimum dose, and also the one of

the minimum elapsed time and Tf . Therefore,

Nmax = min

{⌊
D

dmin

⌋
,

⌈
Tf
γ

⌉}
.

Before guessing N , we have to observe its behavior when cd, Tf , λ and dmin vary. Let us

take the following example:
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Example 3.2.3. Under the hypothesis of Example 3.2.2, we can analyze the effect of some

quantities in the optimal N by changing only one of them in each case:

i) If we consider λ = 0.25 days−1, then N = 15, and if λ = 0.38 days−1, N = 23.

ii) Let us take cd = 10 mg/L and cd = 20 mg/L. In the first case we get N = 12, while in

the second one, N = 23.

iii) We get N = 46 if we suppose that dmin = 5 mg/kg, and N = 29 if dmin = 8 mg/kg.

iv) Be Tf = 20 days, and also Tf = 24 days. In the first variant, N took value 17, and in the

second one, N = 20.

We can observe that the ratio of λ, Tf , and cd to N is kept constant (considering a small

discrepancy because of the integer constraint of N) when the values of the first quantities are

changed. In the case of dmin it is the product with N the constant quantity. Therefore, we can

already establish that

N = max

{
min

{
λTfcd
dmin

, Nmax

}
, 1

}
. (3.6)

Once we have obtained our estimation of N , and we consider constant doses equal to dmin
except for the first one (if λ and cd take reasonable values), that is higher than cd, and certain

constant elapsed times, we can compare it with the results obtained numerically. If we take

different values of cd and the rest of the quantities are as expressed in Example 3.2.2, we can

complete the following table:

cd = 10 mg/L cd = 20 mg/L

Estimated 295.26 268.84

Numerically 238.13 245.28

Table 3.2: Values taken by the objective function of (P1), J (in days mg2 L−2), for different cd when the number

of doses, the doses themselves and the dosage elapsed time were both estimated and calculated numerically.

The concentration of the drug in the body by calculating the optimal treatment with both

methods are represented in Figure 3.5.

When cd = 10 mg/L and cd = 20 mg/L, the objective function has a lower value if the

treatment is calculated numerically. Nevertheless, we can see that the difference between both

methods is not very notorious.

However, when if cd is too high, the solutions that we propose could be not admissible

(for example, because the total dosage quantity exceeds the maximum possible one). In this

situation, we can add additional constraints to our heuristic reasoning to get closer to the original

problem.
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Figure 3.5: Concentration as a function of time when the treatment is estimated (green) and also when it is

calculated numerically (red).

To sum up, the solution to problem (P1) can be acceptably estimated with our method, but

in general, it will not be the optimal one. In addition, the results obtained are better when

there is no extra condition that we should consider, which happens when the constant ideal

concentration cd is too high.

3.2.2. Looking for the optimal constant drug level

Note that J , expressed in Equation (3.4), has a quadratic expression with respect to the

variable cd. If we fix N , the doses {di}i∈{1,...,N} and the times {ti}i∈{1,...,N}, we can look for

the cd that makes J minimum. It is important in order to get a concentration as closer to as

constant as possible, which will reduce the final fluctuations in the characteristics of the tumor:

∂J

∂cd
= 2cdTf −

2

λ
pTd = 0 =⇒ cmind =

1

Tfλ

N∑
i=1

di(1− eλ(ti−Tf )). (3.7)

We can ensure that function J has a minimum for that cmind because the second derivative

of J with respect to cd is positive (2Tf > 0).

Now, by substituting expression (3.7) into Equation (3.3), we get

Jcmin
d

(N, d1, ..., dN , t1, ...tN ) =
1

2λ

 N∑
i=1

d2i (1− e2λ(ti−Tf )) + 2

N−1∑
k=1

N∑
j=k+1

djdk(e
λ(tk−tj)−

−eλ(tj+tk−2Tf ))

]
− 1

λ2Tf

(
N∑
i=1

di(1− eλ(ti−Tf ))

)2

,

(3.8)

which can be formulated matricially as

Jcmin
d

=
1

2λ
dT
(
H − 2

λTf
H̃

)
d,

where matrix H has already been defined and H̃ is such that

H̃(i, j) = (1− ri)(1− rj), ∀i, j ∈ {1, ..., N}.
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Let us focus again on the objective function Jcmin
d

of the general case (Equation (3.8)), and

we fix N , as we did in the previous section, such that

(PN1,cmin
d

)



min
{di}Ni=1,{ti}Ni=1⊂R+

JN
cmin
d

(d1, ..., dN , t1, ...tN )

subject to ti + γ ≤ ti+1, ∀i ∈ {1, ...N − 1}
tN ≤ Tf
dmin ≤ di ≤ dmax, ∀i ∈ {1, ...N}
N∑
i=1

di ≤ D

The objective JN
cmin
d

function is continuous (the expression is Jcmin
d

but with N fixed), as it

is composed of sums and products of continuous functions. In addition, the restriction set is

compact, as we have proved in Theorem 3.2.1. Therefore, there exist at least one solution to

this problem.

We can look now for solutions of problem (PN
1,cmin

d
) for different number of doses. As a result,

we will be able to check which treatment would be the optimum one among a list of them that

have the same conditions of dmin, dmax, D, λ, and Tf . In each case, we will provide the ideal

constant concentration obtained by using Equation (3.7).

However, it is not the right criterion to choose the optimum treatment just by comparing the

objective functions of (PN
1,cmin

d
). When we are considering very low Ns, the optimum constant

concentration will also be low, which would automatically imply a smaller JN
cmin
d

. For that

reason, it is better to compare the different options by using relative errors ER, such that

ER = JN
cmin
d

/(cmind )2.

Example 3.2.4. Let us take D, dmin, dmax, λ, Tf and γ as expressed in Example 3.2.2. We

can observe the effect of the number of doses in the objective function of (PN
1,cmin

d
) in Figure 3.6.

We have also performed the optimum constant concentration in each case by using Equation

(3.7), so that we could plot the relative errors for each N .

Figure 3.6: Objective function of (PN
1,cmin

d
), JN

cmin
d

(left) and relative error (right), as a function of the number

of doses N .

Some of those treatments are also presented in the following table:
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Treatment cmin
d (mg/L) JN

cmin
d

(days mg2 L−2) ER (days)

5 doses 3.44 215.28 18.19

13 doses 11.02 239.04 1.970

20 doses 17.16 243.70 0.827

27 doses 23.31 245.62 0.452

28 doses 24.19 245.81 0.420

29 doses 24.39 252.74 0.424

30 doses 23.57 313.32 0.564

Table 3.3: Results of the minimization of (PN
1,cmin

d
) for different number of doses, the optimum concentration

cmin
d and the relative error ER in each case.

By looking at both Figure 3.6 and Table 3.3, we can observe that the minimum value of the

objective function is reached at the smallest N value. However, the optimum constant concen-

tration is low (cmind = 3.44 mg/L), so that we can not reach a steady-state because we have dmin
= 10 mg/kg and it is impossible to get the concentration centered in the ideal constant one. In

addition, cmind is too low to get a significant reduction both in the final volume and carrying ca-

pacity of the tumor (Example 2.3), so it is not reasonable to consider it due to biological reasons.

When we compute the relative error, we can see that taking 5 doses is the worst option. Here

we can see the importance of using this criterion to compare the different treatments.

On the other hand, if we look at the column of the relative error of the table, 28 doses seem to

be the best option. Furthermore, the constant concentration looks reasonable. In fact, if we take a

look at the heuristic formula we got in the previous section (Equation 3.6), under the hypothesis

of this example we get cd = 24.56 mg/L if N = 28. We have to take into consideration that

by this method we did not find the optimal solution to the problem, so the obtained constant

concentration could not be the one we got now. However, both results are very similar.

Moreover, we can distinguish two different cases with the cmind expression (Equation (3.7))

according to the value of the elimination rate λ:

If λ >> 0, then (1 − eλ(ti−Tf )) ≈ 1. Consequently, cmind ≈ 1

Tfλ

N∑
i=1

di ≤
D

Tfλ
. It is the

maximum value that this quantity can reach, as eλ(ti−Tf ) ∈ (0, 1).

If λ ≈ 0, by using infinitesimals we get (1 − eλ(ti−Tf )) ≈ λ(Tf − ti). As a result, cmind ≈
N∑
i=1

di

(
1− ti

Tf

)
≤ D −

N∑
i=1

di
ti
Tf

.

3.2.2.1. Considering a large elimination rate

Let us study first the consequences of applying a drug with a large elimination rate. As

λ >> 0, we are in the first case of the previous distinction, so cd ≈
1

Tfλ

N∑
i=1

di. By substituting

it in (3.3) we get

Jmax(N, d) =
1

2λ

N∑
i=1

d2i −
1

Tfλ2

(
N∑
i=1

di

)2

, (3.9)
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where we have considered that the negative exponential functions are approximately null.

As a result, if we consider a fixed number of doses N ≤ D
dmin

, which makes the problem easier

because otherwise, it would have both natural and real variables, we have the next alternative

optimization problem:

(PN1,max)



min
d∈RN

JNmax(d) =
1

2

N∑
i=1

d2i −
1

Tfλ

(
N∑
i=1

di

)2

subject to dmin ≤ di ≤ dmax, ∀i ∈ {1, ...N}
N∑
i=1

di ≤ D

For simplicity, we have also removed a λ > 0 from expression (3.9). This has no effect on

the problem being minimized.

Note that if the elimination rate is much larger than one, then the times when the doses are

applied do not have an influence on the value of the objective function JN . Let us observe it in

a numerical example:

Example 3.2.5. Be N = 10, d = (10, ...10), Tf= 30 days and cd = 4 mg/L. Let’s suppose

t = (0, 3, 6, 9, 12, 15, 18, 21, 24, 27), and t′ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Then:

If we consider a drug with λ = 10.1 days−1, we obtain JN (d) = 450.30 days mg2 L−2

independently on the times when the doses are applied.

When we use a drug with an elimination rate of λ = 0.38 days−1, we obtain JN = 815.87

days mg2 L−2 using t, and JN = 3622.93 days mg2 L−2, with t′. We can observe that

when λ ≈ 0, the times at which doses are applied have a strong influence on the objective

function.

Theorem 3.2.2. Problem (PN1,max) has, at least, a solution.

Proof. Let’s consider K the set of restrictions of (PN1,max), such that

K =

{
d ∈ RN :

N∑
i=1

di −D ≤ 0, dmin ≤ di ≤ dmax, ∀i ∈ {1, ..., N}

}
,

and the following continuous functions:

gi : RN −→ R such that gi(d) = di, ∀i ∈ {1, ..., N},

gN+1 : RN −→ R such that gN+1(d) =

N∑
i=1

di −D.

Then, we can represent the set K as:

K =

[
N⋂
i=1

g−1i ([dmin, dmax])

]⋂
g−1N+1((−∞, 0]).

K is compact because it is a bounded and closed set. In addition, JNmax is a continuous

function, so by using the Weierstrass’ theorem, we can conclude that there exists at least one

solution to problem (PN1,max).
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Note that the function of problem (PN1,max) can be written matricially as JNmax(d) =
1

2
dĤd,

where

Ĥ =

1 . . . 0
...

. . .
...

0 . . . 1


N×N

− ρ

1 . . . 1
...

. . .
...

1 . . . 1


N×N

=


1− ρ −ρ . . . −ρ

−ρ . . .
. . .

...
...

. . .
. . . −ρ

−ρ . . . −ρ 1− ρ


N×N

,

with ρ =
2

Tfλ
. Thus, we have the following property:

Proposition 3.2.1. Ĥ is a symmetric and positive-definite matrix if N <
λTf

2
. In fact, the

eigenvalues are 1 (with multiplicity N − 1) and 1-Nρ.

Proof. Let us prove first that 1 and 1-Nρ are the eigenvalues of matrix Ĥ.

If 1 is an eigenvalue it should be satisfied that (Ĥ − I)x=0, for a certain x ∈ RN\(0, ...0).

Note that

Ĥ − I =

−ρ . . . −ρ
...

. . .
...

−ρ . . . −ρ


N×N

∼


−ρ . . . −ρ
0 . . . 0
...

. . .
...

0 . . . 0


N×N

,

where ∼ denotes that both matrices are equivalent.

Therefore, x = (x1, ..., xN ) should fulfill that
N∑
i=1

xi = 0. The equation has N − 1 degrees of

freedom, which implies that 1 is an eigenvalue of Ĥ and it has multiplicity N − 1.

Reasoning in a similar way with eigenvalue 1-Nρ we have that (Ĥ − (1 − Nρ)I)x=0, with

x ∈ RN\(0, ...0) is satisfied if (N − 1)xi −
N∑

j=1,j 6=i
xj = 0, ∀i ∈ {1, ..., N}. Now, there is only one

possible solution, xi =
1

N
∀i ∈ {1, ..., N}, which implies that 1−Nρ is an eigenvalue of Ĥ with

multiplicity 1.

In order to prove that Ĥ is definite-positive, we need to check whether the eigenvalues are

positive. Once we have proved their form, note that they are all positive if and only if

1−Nρ > 0⇐⇒ 1− 2N

λTf
> 0⇐⇒ N <

λTf
2
.

Finally, the property of symmetry of this matrix can be easily proved, as it is a linear

combination of two symmetric matrices (a matrix of ones and an identity one).

Therefore, if N <
λTf

2
, we have that JNmax is convex. This property will be utilized in the

following theorem.

Theorem 3.2.3. Let us fix quantities D, N, λ >> 0 and Tf , all of them positive and with

N ∈
[
1, D

dmin

]
∩ N. If N <

λTf
2

, then the solution of problem (PN1,max) is d̄ = (dmin, ..., dmin).
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Proof. Be the function JNmax : RN −→ R and

gi : RN −→ R such that gi(d) = di − dmax, ∀i ∈ {1, ..., N},
g̃i : RN −→ R such that g̃i(d) = dmin − di, ∀i ∈ {1, ..., N},

ĝ : RN −→ R such that ĝ(d) =

N∑
i=1

di −D.

We have that the set of restrictions K, such that

K =
{
d ∈ RN : ĝ(d) ≤ 0, gi(d) ≤ 0, g̃i(d) ≤ 0, ∀i ∈ {1, ..., N}

}
,

is convex, because all the restrictions included in the set are linear. We also have that the

objective function is strictly convex, so the first-order necessary optimality conditions are also

sufficient.

Then, we can prove that d̄ is a solution of the system, if it is a Kuhn-Tucker point, i.e., if it

satisfies the following the Lagrange multipliers’ conditions:

1.


d̄1 −

2

Tfλ

N∑
i=1

d̄i

...

d̄N −
2

Tfλ

N∑
i=1

d̄i


+

 µ̄1
...

µ̄N

-

 µ̃1
...

µ̃N

+

µ̂...
µ̂

=

0
...

0

.

2. µ̄i(d̄i − dmax) = 0, µ̃i(dmin − d̄i) = 0, ∀i ∈ {1, ..., N}, and µ̂

(
N∑
i=1

d̄i −D

)
= 0.

3. d̄i − dmax ≤ 0, dmin − d̄i ≤ 0, ∀i ∈ {1, ..., N}, and
N∑
i=1

d̄i −D ≤ 0.

where {µ̄i}i∈{1,...N}, {µ̃i}i∈{1,...N} ⊂ [0,+∞) and µ̂ ∈ [0,+∞).

Let us demonstrate that there are Lagrange multipliers satisfying the conditions if d̄i =

dmin ∀i ∈ {1, ...N}.
By using condition 2, we already know that µ̄i = 0, ∀i ∈ {1, ...N}, because dmin 6= dmax,

and we can take µ̂ = 0. In addition, condition 3 is also fulfilled with d̄i = dmin. Therefore, from

the first condition, and considering these facts, we get that

µ̃i = dmin

(
1− 2N

Tfλ

)
, ∀i ∈ {1, ...N}.

µ̃i should be positive, and it occurs if N <
λTf

2
, which is satisfied by hypothesis.

As a result, d̄ = (dmin, ..., dmin) is a Kuhn-Tucker point, so it is the solution of (PN1,max).
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Now, as the solution d̄ of Problem (PN1,max) under the hypotheses of Theorem 3.2.3 has all the

doses equal to the minimum dosage dmin, we can rewrite expressions (3.7) and (3.9), respectively,

as follows:

cmind ≈ Ndmin
Tfλ

, Jmax(N, d̄) ≈
(

1

2
− 1

Tfλ
N

)
Nd2min
λ

.

We can observe that the concentration cmind that makes (P1) minimum when a large-elimina-

tion-rate drug is applied is directly proportional to N and dmin, so it is constant if the product

between N and dmin is too. Moreover, the objective function of our initial optimization problem

is directly proportional to the product Nd2min. Let us look at a numerical example to check

these statements:

Example 3.2.6. Be λ = 10.1 days−1, and Tf = 50 days. We can solve (PN
1,cmin

d
) and then obtain

cmind . This last quantity can be introduced in problem (PN1 ) to get the value of the objective

function JN :

We obtain cmind = 0.198 mg/L if N = 10 and dmin = 10 mg/kg, and also in the cases N

= 20 and dmin = 5 mg/kg, and if N = 50 and dmin = 2 mg/kg. We can observe that

if Ndmin is constant, then cmind keeps constant too. Moreover, the objective function of

problem (P1) decreases its value as dmin decreases. Its values are JN = 47.544, 22.792 and

7.941 days mg2 L−2, respectively. This is consistent with the fact that the concentration

function is closer to a constant as shorter the doses are.

Now, we keep the product Nd2min constant to observe the behavior of the objective function

of (PN1 ). Let N = 8 and dmin = 4 mg/kg. Then cmind = 0.0063 mg/L, and JN = 6.300

days mg2 L−2. If we consider N = 16 and dmin = 2.83 mg/kg, we obtain cmind = 0.009

mg/L, and JN = 6.267 days mg2 L−2. Finally, if N = 32 and dmin = 2 mg/kg, then we

get cmind = 0.253 mg/L and JN = 6.331 days mg2 L−2. Note that the objective function

is constant, which is consistent with the approximations we have obtained theoretically in

the lines preceding this example.

We can proceed with a similar reasoning in case N >
λTf

2
. Nevertheless, we should notice

that now the objective function of (PN1,max) is not convex, so we have to study the necessary

conditions for optimality and not the sufficient ones.

Theorem 3.2.4. Be D, λ >> 0 and Tf , as in the previous theorem. Let us take a number of

doses satisfying that N ∈
[
1, D

dmin

]
∩N and also N >

λTf
2

. Under these hypotheses, the solution

of problem (PN1,max) is constant, i.e. d̄ = (dc, ...dc), where dc =
D

N
, if

D

N
≤ dmax, and dc = dmax,

otherwise.

Proof. Given gi, g̃i, ∀i ∈ {1, ..., N} and ĝ as defined in Theorem 3.2.3, all of them C1 functions.

Let us consider the Kuhn-Tucker conditions expressed in the previous theorem.

Let us prove the theorem without distinguishing whether

N∑
i=1

di = D or not. The only

difference would be that in the second case µ̂ is null, but it does not make any difference in our

reasoning. By using the first Kuhn Tucker’s condition we have:

di −
2

Tfλ

N∑
i=1

di + µ̄i − µ̃i + µ̂ = 0, ∀i ∈ {1, ..., N}. (3.10)
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We prove that the solution of the problem is constant arguing by contradiction. Let us

assume d̄ has at least two different doses di, dj ∈ [dmin, dmax], such that di 6= dj . We can

distinguish the following cases:

i) Let us suppose that di, dj 6∈ {dmin, dmax}, so by using condition 2, µ̄i = µ̃i = µ̄j = µ̃j = 0.

Then, by using Equation (3.10) we get that

di −
2

Tfλ

N∑
k=1

dk + µ̂ = 0 dj −
2

Tfλ

N∑
k=1

dk + µ̂ = 0,

which is satisfied only if di = dj .

ii) If di = dmin then µ̄i = 0, and µ̃i = dmin −
2

Tfλ

N∑
k=1

dk + µ̂ ≥ 0. If dj 6∈ {dmin, dmax}, it

results that dj −
2

Tfλ

N∑
k=1

dk + µ̂ = 0, which implies that dmin > dj and it contradicts the

previous statement.

iii) If we take dj = dmax (µ̃j = 0) and di 6∈ {dmin, dmax}, we are in a situation similar to the

previous one, because we get that

−µ̄j = dmax −
2

Tfλ

N∑
k=1

dk + µ̂ ≤ 0 di −
2

Tfλ

N∑
k=1

dk + µ̂ = 0.

It is not possible either to have this situation because dmax > di.

iv) Finally, we can suppose that di = dmin and dj = dmax. By using the values of both µ̃i
and µ̄j , from cases ii) and iii), respectively, we know that it is not possible to have this

situation because dmax > dmin.

As a consequence, the treatment must have only one type of doses, so d̄i = dc, ∀i ∈ {1, ..., N}.
Therefore, we can write the objective function of problem (PN1,max) as follows:

JNmax =

(
1

2
− 1

Tfλ
N

)
Nd2c ,

which is a negative quantity by hypothesis. As a result, dc = dmax if N <
D

dmax
, and dc =

D

N
,

otherwise.

3.2.3. Using the total cumulative dose to choose an ideal concentration level

Finally, we can also study the situation in which we have to use the total cumulative dose

available when the number of doses is fixed. This approach can help us to obtain the highest

level that the drug concentration can reach and keep a steady state. Therefore, we will deal now

with the following problem:

33



(PN1,D)



min
{di}Ni=1,{ti}Ni=1⊂R+

JN (d1, ..., dN , t1, ...tN ) =

∫ Tf

0
(c(t)− cd)2dt

subject to ti + γ ≤ ti+1, ∀i ∈ {1, ...N − 1}
tN ≤ Tf
dmin ≤ di ≤ dmax, ∀i ∈ {1, ...N}
N∑
i=1

di = D.

As we are considering the condition of consuming the total cumulative dosage, the number

of doses N has both upper and lower bounds, such that N ∈
[

D
dmax

, D
dmin

]
∩ N.

Theorem 3.2.5. There is at least one solution of Problem (PN1,D).

Proof. The proof is similar to the one considered in Theorem 3.2.1, but instead of considering

the restriction
N∑
i=1

di − D ≤ 0, we have to consider
N∑
i=1

di − D = 0. The set of restrictions is

still compact, and we already know that JN is continuous. Therefore, by using the Weierstrass’

theorem we can conclude that there exists a solution of Problem (PN1,D).

In addition, we take cd as higher as possible such that the effect on the tumor is optimized

while we keep the concentration in the body in a steady state along the duration of the treatment

(i.e., we want to avoid the tails that appear in Example 3.2.1 when cd is too high).

However, there are some cases in which the ideal concentration level that produces this effect

is very similar to the one obtained in the previous sections, where the sum of the doses could

be lower than the cumulative dosage. We have already seen in Example 3.2.1 that when the

elimination rate is too high (λ = 10 days−1), the results obtained suggest that the best strategy

is to apply the maximum number of dmin doses possible, D
dmin

. As a result, the maximum

cumulative dosage was used.

When λ = 0.38 days−1, we have already explore an example where we found the optimum

concentration level when it was not needed to consume all the amount of drug (see Example

3.2.4). We now see which is the best cd when

N∑
i=1

di = D.

Example 3.2.7. Let us consider D = 300 mg/kg, dmin = 10 mg/kg, dmax = 30 mg/kg, γ = 0.3

days and Tf = 30 days. Given λ = 0.38 days−1, the maximum cd that can be reached without

detecting a tail in the drug concentration in the body is approximately 25 mg/L. In Example

3.2.4 we saw that the optimum cd when we solved Problem (PN
1,cmin

d
) was 24.19 mg/L. In Figure

3.7, we represent the drug concentration in the body with the treatment provided by the solution

of Problem (PN1,D) when cd = 24.19 mg/L and 25 mg/L, respectively.

When cd = 24.19 mg/L, the concentration c(t) at the end of the treatment (day 30th), is

not as low as the minimum value reached during the previous days (around 20 mg/L). It is the

opposite of getting a tail, so we decided to increase cd until 25 mg/L. It is the highest possible

level to keep a steady-state.

It is noteworthy to mention that with cd = 25 mg/L, the objective function JN takes value

255.02 days mg2 L−2. As expected, this value is higher than the one obtained in Example 3.2.4

(245.81 days mg2 L−2) because the restrictions now are more stringent.
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Figure 3.7: Drug concentration in the body when the maximum cumulative dose is reached, with cd = 24.19

mg/L (left) and cd = 25 mg/L (right).

In view of Example 3.2.7, we could think that the concentration level we aim to reach in this

subsection is similar to the optimum constant concentration we could obtain with the previous

subsection approach. However, it is not always true. In the following example we represent a

situation in which, under the same hypotheses, the results of cmind and cd with
N∑
i=1

di = D vary

notably.

Example 3.2.8. Let us take D, dmin, dmax, γ and Tf as in the previous example. We will

suppose now that the administered drug has an elimination rate of λ = 0.1 days−1. Given

N = 22, we can distinguish then the following situations:

The solution provided by (PN
1,cmin

d
) makes that the objective function takes value JN

cmin
d

=

547.8 days mg2 L−2. The optimum cd in this situation, computed using Equation (3.7) is

59.18 mg/L.

When we want to use the maximum cumulative dosage, the highest cd we can require to

get a steady state of the drug concentration in the body is approximately 77 mg/L. The

objective function of Problem (PN1,D) takes value JN = 1027.3 days mg2 L−2.

In Example 3.2.8, it is clear the difference between both approaches. There is a variation

not only in the concentration level but also in the objective function of each problem. It would

imply more fluctuations in both the volume and the carrying capacity of the tumor, but at the

same time, the effect of the second treatment on the tumor would be greater.
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Chapter 4

Simulations

In this chapter, we will show the effects produced by three angiogenesis inhibitors which have

a different impact on the tumor dynamics and clearance. They are Angiostatin, Endostatin, and

TNP-470, included in the analysis of Hahnfeldt et al. (see [6]). We will distinguish between

treatments that aim to keep the tumor volume constant (palliative therapy) and those that

expect to eliminate cancer (curative therapy). We will also simulate different situations of each

case, which will provide us with evidence of the aspects we have already explored in the previous

chapters.

Let us describe first the three drugs that we will consider in this chapter. TNP-470[8] is the

first angiogenesis inhibitor discovered, in 1992. It is a synthetic drug created as an alternative to

an antibiotic called Fumagillin to avoid the side effects it causes. It can reduce the growth and

vascularization not only of primary tumors but also in metastatic cancers. Nowadays, it is one

of the most used antiangiogenic drugs, and it is utilized to treat patients with breast, ovarian,

and prostate cancer, among others. It has a large elimination rate (λ = 10.1 days−1), i.e., its

half-life is about 1.65 hours.

The second is Angiostatin[12], which also produces the blocking of tumor growth and neovas-

cularization. However, unlike TNP-470, it is not synthetic, but it is generated from fragments

of a protein called Plasminogen. It was the first antiangiogenic peptide discovered (in 1994, by

O’Reilly et al.). Its clearance is λ = 0.38 days−1, noticeably lower than the previous one.

Finally, Endostatin[12], also discovered by O’Reilly et al. in 1997, is an inhibitor similar to

Angiostatin but with a higher elimination rate (λ = 1.3 days−1). It is a product of a specific

type of collagen and can be applied to treat different types of cancer.

4.1. Palliative therapy

When cancer is in an advanced stage, it is usually not possible to cure it. However, a patient

in these circumstances can receive treatment to relieve the symptoms of the illness and even

increase its survival if possible. We will provide here some examples of this type, in which the

therapy is taken to slow the growth of the tumor that is causing the pain or shrink it.

4.1.1. Keeping the cumulative dose constant

As we have proved in Chapter 3, when we want to keep the concentration in a steady state,

the best option is to take doses equal to the minimum individual dose dmin during the whole
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treatment except for the first ones, that usually take a higher value.

In this subsection, we will see the effect of the variation of dmin in the fluctuations of both

the tumor volume and the carrying capacity. To do so, we keep the cumulative dose constant.

Note that it would imply that the number of doses of each treatment has to be also changed.

We will analyze the following treatments:

dmin (mg/kg) ∆t (days) Number of doses N

Treatment 1.a. 5 0.6 1000

Treatment 1.b. 10 1.2 500

Treatment 1.c. 15 1.8 333

Treatment 1.d. 20 2.4 250

Table 4.1: Different options of treatments to observe the effect of the doses. In all cases, t1 = 0.

Before considering the three different inhibitors of the Hahnfeldt et al. article (see [6]),

we observe their concentration in the body when Treatment 1.a. is applied, such that we can

know in advance the limits of the final constant volume (’set point’). Those concentrations are

represented as follows:

Figure 4.1: Drug concentration in the body with the different inhibitors by considering Treatment 1.a.

The elimination rates are λ = 0.38 days−1 for Angiostatin, λ = 1.7 days−1 in the case of

Endostatin and λ = 10.1 days−1 for TNP-470.

Let us analyze both the effect of the concentration in the body and the treatment admin-

istered with each inhibitor separately. The figures that appear represent the solutions of the

Cauchy problem (2.11), where b = 5.85 day−1, λ2 = 0 day−1, and d = 0.00873 day−1 mm−2

(taken from [6]). If no drug is applied, the set point is approximately 17300 mm3 (see Example

2.2.1). Quantity e, which measures the impact of the treatment on the dynamics of the carrying

capacity, depends on the drug used. Moreover, we will consider that the initial points are V0 =

1000 mm3 and K0 = 1025 mm3.

Angiostatin

In view of Figure 4.1, we can see that when Angiostatin is administered, the concentration

in the body can reach certain quasi-constant value, limited by the amount of dose administered.

It moves around c1 = 19.5 mg/L minimum and c2 = 24.5 mg/L maximum. Now, we can make

use of Equation (2.12) to obtain an estimation of the limits of the set point, with e = 0.15 mg−1
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L day−1. Using Theorem 2.2.1, as 5.85 = b > λ2 + ec2 = 3.68, we get that both for the volume

and the carrying capacity will be between 3932.5 and 6132.9 mm3.

Note that even though the cumulative dose is kept constant with the four treatments, the

level reached by the concentration could be slightly different. When Treatment 1.d. is applied,

this level is between 14 and 34 mg/L approximately. As a result, the final tumor volume will be

in the range of 796.3 and 8902.8 mm3.

As both treatments 1.a. and 1.d. are the extremes of the ones considered, we expect that

in all cases, the maximum volume would stay between both limits. Let us show the figures

representing those situations:

Figure 4.2: Evolution of the tumor volume (V ) and carrying capacity (K) when the treatments of Table 4.1 are

applied with Angiostatin.

The most notorious aspect we can observe from the figures is the large fluctuations of the

carrying capacity compared to the ones of the tumor volume. Nevertheless, it should not be

surprising, as we are applying an angiogenesis inhibitor, which affects the environment that

makes the tumor grow but does not affect it directly. In addition, we see that the fluctuations

increase as they do the doses, which is consistent with what we studied in Chapter 3 that when

looking for a steady-state in concentration, it is better to apply small doses. Thus, when these

are large, the fluctuations in concentration translate into substantial variations in the carrying

capacity K and the tumor volume V .

Last but not least, note that the maximum volume that is reached by the tumor is between
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the ranges of values we expected. Moreover, it barely varies when the different treatments are

applied, as it seemed to do according to the theoretical estimations made.

Endostatin

In the case of Endostatin, it seems that the concentration of the drug is in a range of 2.5

and 7.5 mg/L approximately (see Figure 4.1). Now, by using Equation (2.12), where e = 0.66

mg−1 L day−1, and Theorem 2.2.1 (we are under the hypothesis of case i)) we get that the set

point will be between 1046.7 and 10552.4 mm3 for Treatment 1.a..

When Treatment 1.d. is applied, the quasi-constant concentration level is between c̃1 = 0.5

and c̃2 = 20.5 mg/L.

Figure 4.3: Evolution of the tumor volume (V ) and carrying capacity (K) when the treatments of Table 4.1 are

applied with Endostatin.

In Figure 4.3, we observe that the tumor is reduced until a quasi-constant that increases

with the doses quantities, from around 5500 to 6750 mm3. It can be seen then that increasing

them makes the impact on tumor shrinkage minor.

Moreover, note that the fluctuations now are much greater than in the case of Angiostatin

for any of the treatments used. It is because the effect of Endostatin on both the tumor volume

and the carrying capacity is greater than when Angiostatin is used, so any variation in the con-

centration has a major impact on these quantities. Finally, as before, increasing the quantity of
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the doses applied causes the variation of K and V to be greater, again being larger in the case

of the first quantity.

TNP-470

Finally, note that the drug TNP-470, which has a large elimination rate, can not be used

to keep a high concentration in the body (Figure 4.1). We have already detected this situation

in Example 3.2.1. As a result, when we increase the dosage applied, for instance, by taking

Treatment 1.b., we will observe that the concentration moves only from 0 to 10 mg/L. As the

concentration varies quickly because of the high clearance, we could not expect the tumor volume

to be highly reduced compared to the case in which we do not apply any treatment.

Figure 4.4: Evolution of the tumor volume (V ) and carrying capacity (K) when the treatments of Table 4.1 are

applied with TNP-470.

In fact, by looking at Figure 4.4 we can observe that the level reached with all treatments

is approximately 13500 mm3, which is much larger than with Angiostatin and Endostatin. The

fluctuations now are even more notorious than before, but we have to take into consideration

that in this case, e = 1.3 mg−1 L day−1, i.e., the effect of the drug concentration in the tumor

is greater. The two highest peaks in the graph of Treatment 1.d. seem to be due to MATLAB

numerical limitations.

Furthermore, note that when we increase the dosage, K seems to be asymmetrical compared
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to the volume, and the maximum value reached is around 17000 mm3. It is approximately the

value of the set point when we are considering that no drug is applied. It is consistent with the

fact that the inferior bound of the concentration is zero (see Theorem 2.2.1, case i) with c1 = 0).

To sum up, regardless of the drug used, it seems that the optimal strategy consists of using

many small doses spaced over a short time interval so that fluctuations in concentrations are

not transmitted to the tumor’s properties. Moreover, it is with the smaller dose treatment that

the greatest benefit is obtained in terms of tumor shrinkage. Therefore, we have shown that it

is better to apply a metronomic type therapy rather than a maximum tolerated dose one.

Note that by using the palliative treatment condition b > λ2 + ecd (see Section 2.2) we

can find the upper bounds of the ideal constant concentration for each drug. Taking b and

λ2 as presented in this subsection, and the value e of each drug, we get cmaxA,d = 39 mg/L for

Angiostatin, cmaxE,d = 8.86 mg/L for Endostatin, and for TNP-470 we obtain cmaxT,d = 4.5 mg/L.

As can be seen, there is a big difference between the maximum concentration levels that can be

reached for a palliative treatment by each drug.

4.1.2. Varying the initial tumor size

In the previous subsection, we have considered in all cases the same tumor volume and

carrying capacity at which the treatment is initialized. Nevertheless, looking at Equation (2.12),

we observe that the set point attained does not depend on the characteristics of the tumor at

the beginning of the treatment.

Here, we verify that the set point is independent of the initial properties of the tumor. We

do this with two of the angiogenesis inhibitors previously mentioned, as the impact of the drug

on the tumor depends on them. We suppose that the treatment applied is Treatment 1.b. of

Table 4.1, which we have already seen that is insufficient to eliminate completely the tumor.

Angiostatin

For Angiostatin, Treatment 1.b. had a set point of about 5000 mm3, both for V and K.

Thus, we have decided to start the treatment with an initial tumor volume of 2000, 5000, and

7000 mm3, respectively (see Figure 4.5). Regarding the carrying capacity, taking into account

that it has to be higher, we have decided that for this inhibitor as well as for Endostatin it will

be 25 mm3 higher than the initial volume in each case.

Figure 4.5: Evolution of the tumor volume (V ) and carrying capacity (K) when Treatment 1.b. is applied with

Angiostatin for different initial points.
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By starting the treatment with a tumor size below the set point, it can be seen that it tends

to rise to the set point value and remains there for the duration of the therapy. Nevertheless,

the behavior of the tumor when treatment is initiated if its size is similar or larger than the set

point is different. In these situations, an increase in tumor size is observed during the first few

days of therapy, followed by an asymptotic decrease until reaching the same quasi-constant level

as in the previous case.

It is reasonable to think that this rise and fall is due to the fact that the concentration

takes several days to reach its maximum quasi-constant value, as can be seen in Figure 4.1 with

Treatment 1.a. As a result, during those days, the impact of the doses on the tumor is lower so

that the tumor increases above the set point first.

Endostatin

Now, we proceed as before, but in this case, the set point is approximately 5500 mm3. Thus,

we take as the initial tumor size of treatment 2000, 5500, and 9000 mm3, respectively.

Note that when using Endostatin as an angiogenesis inhibitor, the concentration needs less

days to reach the quasi-constant value than with Angiostatin. It could imply that the initial

peak does not appear in this case.

Figure 4.6: Evolution of the tumor volume (V ) and carrying capacity (K) when Treatment 1.b. is applied with

Endostatin for different initial points.

Given the results in Figure 4.6, we see that if the treatment starts when the size is already

5500 mm3, it is maintained at that value, and no increase is seen in the first days. Nor is a

peak observed when the treatment starts with larger tumor size, as expected. In this case, the

treatment shrinks the tumor to the asymptotic set point (note that the tumor does not reach a

size beyond that point).

Therefore, when applying this treatment with Endostatin, the effect of the drug concentra-

tion in the body before reaching the constant level does not have an impact on tumor dynamics.

Finally, TNP-470 provides a very similar result to the previous case because its clearance

rate is large (λ = 10.1 days−1) as the one of Endostatin. We do not add this case to avoid

repeating it.

In summary, we have numerically verified that the set point does not depend on tumor size

when treatment begins for any of the inhibitors analyzed. However, if clearance is slow, the

treatment will take longer to take effect, which translates into a peak in tumor volume at onset

in the cases where V0 is equal to or greater than the set point.
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4.2. Curative therapy

There is another type of therapy that can be carried out if the tumor we have to deal with,

and the patient’s own situation allows it. It is the curative therapy whose objective is to eradicate

cancer. In this section, we will look at different strategies included in this therapy for the three

inhibitors we are working with. The initial size of the tumor V0 = 1000 mm3 will be the same

during the whole section. Note that we are now under the hypothesis of the case ii) of Theorem

2.2.1.

4.2.1. Keeping the cumulative dose constant

Let us now consider that the cumulative dose is kept constant so that we can see the effect

of applying different doses, as we did before. In this case, we consider specific treatments for

each drug because the variation in their clearance rates causes them to behave very distinctively

when trying to eliminate the tumor.

Angiostatin

First of all, we are going to analyze Angiostatin treatments. Due to its short clearance,

we know that it is not necessary to apply doses very frequently to achieve a high level of

concentration in the body. We then plan the following curative treatments so that the cumulative

dose remains at D = 9000 mg/kg.

dmin (mg/kg) ∆t (days) Number of doses N

Treatment 2.a. 10 0.66 900

Treatment 2.b. 15 1 600

Treatment 2.c. 20 1.33 450

Table 4.2: Different options of treatments with Angiostatin to observe the effect of the doses when we want to

eliminate the tumor. In all cases, t1 = 0.

Solving system (2.11) again with the same hypotheses of Subsection 4.1.1, and the treatments

of Table 4.2, we obtain the results provided below:

Figure 4.7: Evolution of the tumor volume (V ) and carrying capacity (K) when treatments of Table 4.2 are

applied.

We can see the initial peak in both volume and carrying capacity due to the low elimination

rate of Angiostatin as before. The height reached by the summit decreases as d increases because
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the concentration reaches the quasi-constant level earlier.

It can also be appreciated that now the fluctuations that occur, which increase as it does

d, are much smaller than those that occurred in palliative therapy for the same dose values.

Moreover, at day 100th of treatment, there is still tumor to be reduced, while in Subsection

4.1.1 the maximum tumor size value was already reached at that time.

Endostatin

Now, we study the case of Endostatin, where the time between doses must be shorter than

for Angiostatin if we want to eradicate the tumor since the clearance is now larger. The following

treatments are proposed for analysis so that the cumulative dose is now D = 10000 mg/kg:

dmin (mg/kg) ∆t (days) Number of doses N

Treatment 3.a. 10 0.6 1000

Treatment 3.b. 15 0.9 666

Treatment 3.c. 20 1.2 500

Table 4.3: Different options of treatments with Endostatin to observe the effect of the doses when we want to

eliminate the tumor. In all cases, t1 = 0.

Figure 4.8 represents the evolution of V and K for the above treatments. Now, fluctuations

are more noticeable than with Angiostatin, as we had before because the impact of the drug on

the carrying capacity is greater.

It is noteworthy to mention that it takes about 400 days to remove the tumor with any

treatment applied. It takes less time than with Angiostatin, but we have to take into account

that now, the cumulative dose is higher.

As expected from what we saw in the previous section, in this case, there is no initial peak

but rather a continuous decline until it is eradicated.

Figure 4.8: Evolution of the tumor volume (V ) and carrying capacity (K) when treatments of Table 4.3 are

applied.

TNP-470

Lastly, if we want to use TNP-470 as the angiogenesis inhibitor, we have to take into account

its large elimination rate. We have seen that it is difficult to reach a high concentration of the

drug in the body that is capable of significantly reducing the tumor size. Therefore, in order to

eliminate it, it is necessary that the treatment doses are applied within a very short period of
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time between doses so that the drug is not completely eliminated from the organism during the

time interval between doses.

dmin (mg/kg) ∆t (days) Number of doses N

Treatment 4.a. 10 0.2 3000

Treatment 4.b. 15 0.3 2000

Treatment 4.c. 20 0.4 1500

Table 4.4: Different options of treatments with TNP-470 to observe the effect of the doses when we want to

eliminate the tumor. In all cases, t1 = 0.

The treatments to be analyzed are those shown in the table above. Note the difference in

∆t compared to the previous cases. In addition, the sum of all treatment doses results in D =

30000 mg/kg, tripling the ones of Angiostatin and Endostatin.

Figure 4.9: Evolution of the tumor volume (V ) and carrying capacity (K) when treatments of Table 4.4 are

applied.

The graphs observed with TNP-470 are very similar to the ones of Endostatin (Figure 4.8).

The only difference is that, in this case, the descent is not so homogeneous, having irregular

fluctuations until the tumor is eradicated. They may be due to the inhibitor’s difficulty in main-

taining the necessary concentration level in the body to eliminate the tumor.

Given the obtained results, it seems that TNP-470 is not an appropiate drug to perform

curative therapy. We see that the tumor evolution is the same as that of Endostatin, but the

patient will be subjected to a higher total dose, which may be more harmful to him. Angiostatin

also allows tumor elimination without needing to use so much drug, although it takes a little

longer to eradicate it. The administration of one or other drug will depend on their particular

characteristics and the patient’s situation.

4.2.2. Testing with alternative treatments combination

We have mentioned the possibility that treatments may be harmful or toxic to the patient.

In this subsection, we analyze the effect of reducing the cumulative dose of curative treatments

applied during a certain time. We do this only for the case of Angiostatin because the results

are similar to the rest of the inhibitors.

In all treatments, we start with an initial dose of 10 mg/kg, which is increased in constant

steps ∆d of 0.015, 0.0125, and 0.01 mg/kg, respectively (see Figure 4.10). The application time

between them is 1.2 days. Thus, the cumulative dose is 17500, 16250, and 15000 mg/kg in each
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case. However, in the first 600 days, we will apply 8696, 8246, and 7797 mg/kg, unlike the 9000

mg/kg applied in the previous subsection.

Figure 4.10: Evolution of the tumor volume (V ) and carrying capacity (K) when alternative curative treatments

are applied with Angiostatin.

We see that under these regimens, it is also possible to eradicate the tumor, although, in the

first 100 days, its volume increases to a bit more than 4000 mm3. The largest size is reached

when ∆d takes the smallest value since it takes longer to achieve a high drug concentration in

the body. Moreover, unlike before, when it took about 600 days to cure cancer, now it takes

800 days if ∆d = 0.015 mg/kg, and even this time is doubled if the increase between doses

is 0.01 mg/kg. All of the situations are examples of the case ii) of Theorem 2.2.1. The final

decision will depend on the physician, but we have shown that it is not necessary to have so

much cumulative dose to achieve its elimination, and it may involve fewer side effects for the

patient.
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Chapter 5

Conclusions

This study allows us to predict the results that can be expected from antiangiogenic treat-

ments, depending on the type of tumor, the drug used, the total dose administered, the way it

is administered, the total duration of treatment, etc...

In the work, an optimization problem has been studied to try to maintain the drug concen-

tration in the patient’s body in a steady-state. It has been used for the subsequent analysis of

a pharmacodynamic model that includes angiogenesis, which we have proved that has a unique

solution for all t > 0 (see Chapter 2).

Through the analysis carried out in Chapter 3, we have considered three different approaches

to select the ideal concentration level to be achieved in the body by solving the corresponding

optimization problem. Along this work, we have assumed σ = 1 kg/L in (3.1), for simplicity. In

the general case, expressions where di appears should be replaced by σdi, for example, in Table

5.1.

Example 3.2.1 shows the importance of selecting a good constant concentration cd to be

achieved and the differences that exist when using one or the other drug. It also illustrates that

the ideal concentration can take very low values when the drug used has a high value of λ (this

means, the drug is eliminated very quickly from the body), and reach up to the value of the

cumulative dose D when λ ≈ 0.

In the general case, it can be noticed that the optimal strategy to achieve a reasonable quasi-

steady state of the drug in the body is to take constant doses equispaced throughout most of the

treatment. Only the initial doses (loading doses) may vary depending on the drug to be applied

and the ideal concentration level to be considered. If λ is not too large, the number of initial

doses different to the maintenance ones is one if cd ∈ [dmin, dmax], such that it takes a similar

value to the concentration level to be reached. On the other hand, if cd > dmax, then as many

maximum doses dmax as necessary will be taken in the shortest possible time, i.e. equispaced

by γ, until the drug concentration is at a distance less than dmax from cd. At that point, a dose

d∗ sufficient to reach the constant concentration level could be taken.

In addition, in Subsection 3.2.1 we have seen that if we fix the dose concentration to be

achieved at a reasonable level, we can predict quite accurately the best treatment for each drug

by first estimating the number of doses that can be applied and utilizing the minimum individual

dose dmin as the maintenance ones. Moreover, we have seen that if we use a drug with a high

clearance rate, it would be best that all doses are constant. They should be the minimum

possible (dmin) if the number of doses is less than
λTf
2 , with Tf being the last possible day of

treatment (see Theorem 3.2.3). We can summarize the results seen in the following table, where
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t̃ ∈ [γ,
Tf
N ] and t∗ ∈ [γ, t̃]. Once more, we remark that t1 = 0 in all cases:

Type of drug Optimal treatment dosage
Optimal treatment

interval times

λ ≈ 0 & (dmax, ..., dmax, d
∗, dmin, ..., dmin) if cd > dmin (γ, ..., γ, t∗, t̃, ..., t̃)

intermediate λ (d∗, dmin, ..., dmin) if cd ≤ dmin (t∗, t̃, ..., t̃)

λ >> 0

(dmin, ..., dmin) if N <
λTf
2

(t̃, ..., t̃)(DN , ...,
D
N ) if N >

λTf
2 and N ≥ D

dmax

(dmax, ..., dmax) if N >
λTf
2 and N < D

dmax

Table 5.1: Summary of the results obtained in Chapter 3 for problem (P1).

The last question we have discussed in the chapter on drug concentration is to find the

ideal level when using the entire available dosage D. Although it is not the treatment that is

considered optimal to problem (P1), this is an interesting approach, since it would help to know

the maximum concentration level that can be reached with a drug. Example 3.2.8 shows that

this level varies significantly if a short-clearance inhibitor is considered, while there is hardly

any difference in other cases (Example 3.2.7).

On the other hand, in Chapter 4 we perform simulations to study the effect of different

treatments (with a scheme similar to those presented in Table 4) on the volume and carrying

capacity considered in the pharmacodynamic model. For this purpose, we have used three

inhibitors that have a different impact on the tumor, as well as a distinct clearance rate. We

have observed that if we take higher doses, the great fluctuations in the drug concentration

are transferred to the tumor size. We have seen, for example, that for TNP-470, with λ >> 0

and a high impact on the tumor carrying capacity, the maximum volume hardly decreases with

respect to the case in which the patient is not under treatment, unlike Angiostatin, and that

fluctuations are greater. These observations have been made for both curative and palliative

therapies. For the first case we have also seen that it is possible to use less cumulative dose to

eliminate the tumor, although it will take longer to do so (see Subsection 4.2).

Previous study has allowed us to show that the most recommended treatments are mainly

metronomic, ahead of MTD therapy, providing greater stability in the concentration of the drug

in the body, and translating into greater stability in tumor size (and carrying capacity) at the

time of treatment.

To continue with this research, and considering what has been studied in this thesis, we

suggest that it could be interesting to establish an optimization problem that encompasses the

approach of Subsection 3.2.3 to obtain the largest cd that is reasonable, and that was beyond

the scope of this work. We have also left unanalyzed the case of λ ≈ 0 when looking for the

optimal cd in Subsection 3.2.2.
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Appendix A

Glossary

Some definitions explored during the work are presented here. They are taken from the

National Cancer Institute (see [9]).

Angiogenesis: process of formation of new blood vessels, that provide nutrients and oxy-

gen to the body’s tissues they reach. It’s a vital physiological process in body growth

and development, but it also supplies the blood that tumors need to thrive, grow and

metastasize.

Antiangiogenic effect: it is the block of nutrients and oxygen needed by a tumor for its

development, by inhibiting the growth of new vasculature.

Carrying capacity: the maximum volume a tumor can reach.

Clearance λ: elimination rate, i.e. the rate at which the body eliminates the drug.

Half-life t1/2: the time required to reduce the drug concentration to one-half its initial value.

In pharmacology, it is considered that the drug is fully eliminated from the organism once

the elapsed time since it was applied is five times t1/2, where t1/2 = ln(2)
λ .

Loading dose: it is the initial dose applied in a treatment, and it is also the largest one.

The required drug concentration is quicker achieved if the loading dose is applied.

Maximum Tolerated Dose (MTD) therapy: the doses applied are the highest ones that

can be administered to a patient before unacceptable toxic effects appear. It is required a

low dosing frequency so that the drug concentration in the blood is eliminated before each

application. They target dividing tumor cells, i.e., they have a cytotoxic effect.

Metronomic (MN) therapy: doses below the MTD are applied frequently, to maintain the

plasma concentration constant. It is less toxic than MTD therapy, and it aims to control

tumors by targeting angiogenesis.

Pharmacodynamics (PD): it is the study of the effects the drugs cause in the body and

also their mechanisms of action that produce the therapeutic response. It is ’what the

drug does to the body’.

Steady-state: situation in which the amount of drug administered is equal to the amount

of drug eliminated in that same period.
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