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Abstract. A dissection of a convex d-polytope is a partition of the polytope into d-simplices
whose vertices are among the vertices of the polytope. Triangulations are dissections that have the
additional property that the set of all its simplices forms a simplicial complex. The size of a dissection
is the number of d-simplices it contains. This paper compares triangulations of maximal size with
dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of
a 3-polytope and analyze extremal size triangulations for specific nonsimplicial polytopes: prisms,
antiprisms, Archimedean solids, and combinatorial d-cubes.
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1. Introduction. Let A be a point configuration in Rd with its convex hull
conv(A) having dimension d. A set of d-simplices with vertices in A is a dissection
of A if no pair of simplices has an interior point in common and their union equals
conv(A). A dissection is a triangulation of A if in addition any pair of simplices
intersects at a common face (possibly empty). The size of a dissection is the number
of d-simplices it contains. We say that a dissection is mismatching when it is not a
triangulation (i.e., it is not a simplicial complex). In this paper we study mismatching
dissections of maximal possible size for a convex polytope and compare them with
maximal triangulations. This investigation is related to the study of Hilbert bases and
the hierarchy of covering properties for polyhedral cones which is relevant in algebraic
geometry and integer programming (see [5, 10, 24]). Maximal dissections are relevant
also in the enumeration of interior lattice points and its applications (see [2, 15] and
references therein).
It was first shown by Lagarias and Ziegler that dissections of maximal size turn

out to be, in general, larger than maximal triangulations, but their example uses
interior points [16]. Similar investigations were undertaken for mismatching minimal
dissections and minimal triangulations of convex polytopes [4]. In this paper we
augment previous results by showing that it is possible to have simultaneously, in
the same 3-polytope, that the size of a mismatching minimal (maximal) dissection
is smaller (larger) than any minimal (maximal) triangulation. In addition, we show
that the gap between the size of a mismatching maximal dissection and a maximal
triangulation can grow linearly on the number of vertices and that this occurs already
for a family of simplicial convex 3-polytopes. A natural question is how different
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144 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

are the upper and lower bounds for the size of mismatching dissections versus those
bounds known for triangulations (see [21]). We prove lower and upper bounds on their
size with respect to the number of vertices for dimension three and exhibit examples
showing that our technique of proof fails already in dimension four. Here is the first
summary of results.

Theorem 1.1.

(1) There exists an infinite family of convex simplicial 3-polytopes with increasing
number of vertices whose mismatching maximal dissections are larger than
their maximal triangulations. This gap is linear in the number of vertices
(Corollary 2.2).

(2) (a) There exists a lattice 3-polytope with eight vertices containing no other
lattice point other than its vertices whose maximal dissection is larger
than its maximal triangulations.

(b) There exists a 3-polytope with eight vertices for which, simultaneously, its
minimal dissection is smaller than minimal triangulations and maximal
dissection is larger than maximal triangulations (Proposition 2.3).

(3) If D is a mismatching dissection of a 3-polytope with n vertices, then the size
of D is at least n − 2. In addition, the size of D is bounded above by

(
n−2

2

)
(Proposition 3.2).

A consequence of our third point is that the result of [4], stating a linear gap
between the size of minimal dissections and minimal triangulations, is best possible.
The results are discussed in sections 2 and 3.

The last section presents a study of maximal and minimal triangulations for
combinatorial d-cubes, three-dimensional prisms and antiprisms, as well as other
Archimedean polytopes. The following theorem and table summarize the main re-
sults.

Theorem 1.2.

(1) There is a constant c > 1 such that for every d ≥ 3 the maximal triangulation
among all possible combinatorial d-cubes has size at least cdd! (Proposition
4.1).

(2) For a three-dimensional m-prism, in any of its possible coordinatizations, the
size of a minimal triangulation is 2m−5+ �m

2 �. For an m-antiprism, in any
of its possible coordinatizations, the size of a minimal triangulation is 3m− 5
(Proposition 4.3). The size of a maximal triangulation of an m-prism depends
on the coordinatization, and in certain natural cases it is (m2 + m − 6)/2
(Proposition 4.4).

(3) Table 1 specifies sizes of the minimal and maximal triangulations for some
Platonic and Archimidean solids. These results were obtained via integer pro-
gramming calculations using the approach described in [8]. All computations
used the canonical symmetric coordinatizations for these polytopes [6]. The
number of vertices is indicated in parenthesis (Remark 4.5).

2. Maximal dissections of 3-polytopes. We introduce some important defi-
nitions and conventions: We denote by Qm a convex m-gon with m an even positive
integer. Let v1v2 and u1u2 be two edges parallel to Qm, orthogonal to each other,
on opposite sides of the plane containing Qm, and such that the four segments viuj
intersect the interior of Qm. We suppose that v1v2 and u1u2 are not parallel to any
diagonal or edge of Qm. The convex hull Pm of these points has m + 4 vertices and
it is a simplicial polytope. We will call the north (respectively, south) vertex of Qm

the one which maximizes (respectively, minimizes) the scalar product with the vector
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EXTREMAL DISSECTIONS OF POLYTOPES 145

Table 1
Sizes of extremal triangulations of Platonic and Archimidean solids.

P |Tmin (P )| |Tmax (P )|
Icosahedron (12) 15 20
Dodecahedron (20) 23 36
Cuboctahedron (12) 13 17

Icosidodecahedron (30) 45 ?
Truncated Tetrahedron (12) 10 13
Truncated Octahedron (24) 27 ?

Truncated Cube (24) 25 48
Small Rhombicuboctahedron (24) 35 ?

Pentakis Dodecahedron (32) 54 ?
Rhombododecahedron (14) 12 21

e

w

N

E

S

W

v

v 2

u

1

1u 2

s

n

Fig. 1. North, south, east, and west vertices.

v2−v1. Similarly, we will call east (west) the vertex which maximizes (minimizes) the
scalar product with u2−u1. We denote these four vertices n, s, e and w, respectively.
See Figure 1.

We say that a directed path of edges inside Qm is monotone in the direction
v1v2 (respectively, u1u2) when the vertices of the path appear in the path following
the same order given by the scalar product with v2 − v1 (respectively, u2 − u1). An
equivalent formulation is that any line orthogonal to v1v2 cuts the path in at most one
point. We remark that by our choice of v1v2 and u1u2 all vertices of Qm are ordered
by the values of their scalar products with v2 − v1 and also with respect to u2 − u1.
In the same way, a sequence of vertices of Qm is ordered in the direction of v1v2
(respectively, u1u2) if the order is the same as the one provided by using the values
of the scalar products of the points with the vector v2 − v1 (respectively, u2 − u1).
Consider the two orderings induced by the directions of v1v2 and u1u2 on the set of
vertices of Qm. Let us call horizontal (respectively, vertical) any edge joining two
consecutive vertices in the direction of v1v2 (respectively, of u1u2). As an example, if
Qm is regular, then the vertical edges in Qm form a zig-zag path as shown in Figure
2.

Our examples in this section will be based on the following observation and are
inspired by a similar analysis of maximal dissections of dilated empty lattice tetra-
hedra in R3 by Lagarias and Ziegler [16]: Let Rm be the convex hull of the m + 2
vertices consisting of the m-gon Qm and v1, v2. Rm is exactly one half of the polytope
Pm. Consider a triangulation T0 of Qm and a path Γ of edges of T0 monotone with
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146 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI
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Fig. 2. The minimal monotone path (middle) and the maximal monotone path made by the
vertical edges (right) in the direction u1u2.

respect to the direction u1u2. Observe that Γ divides T0 in two regions, which we will
call the “north” and the “south.” Then, the following three families of tetrahedra
form a triangulation T of Rm: the edges of Γ joined to the edge v1v2, the southern
triangles of T0 joined to v1, and the northern triangles of T0 joined to v2 (see Figure
3). Moreover, all the triangulations of Rm are obtained in this way: Any triangulation
T of Rm induces a triangulation T0 of Qm. The link of v1v2 in T is a monotone path
of edges contained in T0 and it divides T0 in two regions joined, respectively, to v1
and v2.

v
1

v
2

n

s

e

w

v
1

v
2

n

s

e

w

v
1

v
2

n

s

e

w

Fig. 3. Three types of tetrahedra in Rm.

Using the Cayley trick, one can also think of the triangulations of Rm as the fine
mixed subdivisions of the Minkowski sum Qm+v1v2 (see [13] and references therein).

The size of a triangulation of Rm equals m− 2 + |Γ|, where |Γ| is the number of
edges in the path Γ. There is a unique minimal path in Qm of length one (Figure
2, middle) and a unique maximal path of length m − 1 (Figure 2, right). Hence the
minimal and maximal triangulations of Rm have, respectively, m − 1 and 2m − 3
tetrahedra. The maximal triangulation is unique, but the minimal one is not: after
choosing the diagonal in Γ the rest of the polygon Qm can be triangulated in many
ways. From the above discussion regarding Rm we see that we could independently
triangulate each of the two halves of Pm with any number of tetrahedra from m− 1
to 2m − 3. Hence Pm has dissections of sizes going from 2m − 2 to 4m − 6. Among
the triangulations of Pm, we will call halving triangulations those that triangulate the
two halves of Pm. Equivalently, the halving triangulations are those which do not
contain any of the four edges viuj .

Proposition 2.1. Let Pm be as described above with Qm being a regular m-gon.
No triangulation of Pm has more than 7m

2 + 1 tetrahedra. On the other hand, there
are mismatching dissections of Pm with 4m− 6 tetrahedra.

Proof. Let T be a triangulation of Pm. It is an easy application of Euler’s formulas
for the 3-ball and 2-sphere that the number of tetrahedra in a triangulation of any
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EXTREMAL DISSECTIONS OF POLYTOPES 147

3-ball without interior vertices equals the number of vertices plus interior edges minus
three (such a formula appears for instance in [9]). Hence our task is to prove that T
has at most 5m

2 interior edges. For this, we classify the interior edges according to
how many vertices of Qm they are incident to. There are only four edges not incident
to any vertex of Qm (the edges viuj , i, j ∈ {1, 2}). Moreover, T contains at most
m−3 edges incident to two vertices of Qm (i.e., diagonals of Qm), since in any family
of more than m−3 such edges there are pairs which cross each other. Thus, it suffices
to prove that T contains at most 3m

2 − 1 edges incident to just one vertex of Qm, i.e.,
of the form vip or uip with p ∈ Qm.
Let p be any vertex of Qm. If p equals w or e, then the edges pv1 and pv2 are both

in the boundary of Pm; for any other p, exactly one of pv1 and pv2 is on the boundary
and the other one is interior. Moreover, we claim that if pvi is an interior edge in a
triangulation T , then the triangle pv1v2 appears in T . This is so because there is a
plane containing pvi and having v3−i as the unique vertex on one side. At the same
time the link of pvi is a cycle going around the edge. Hence v3−i must appear in the
link of pvi. It follows from the above claim that the number of interior edges of the
form pvi in T equals the number of vertices of Qm other than w and e in the link of
v1v2. In a similar way, the number of interior edges of the form pui in T equals the
number of vertices of Qm other than n and s in the link of u1u2. In other words, if
we call Γu = linkT (v1v2) ∩ Qm and Γv = linkT (u1u2) ∩ Qm (the u, v in the index
and of the vertices are reversed because in this way Γu is monotone with respect to
u1u2, and Γv with respect to v1v2), then the number of interior edges in T incident
to exactly one vertex of Qm equals |vertices(Γv)|+ |vertices(Γu)| − 4. Our goal is to
bound this number. As an example, Figure 4 shows the intersection of Qm with a
certain triangulation of Pm (m = 12). The link of v1v2 in this triangulation is the
chain of vertices and edges wabu1nu2ce (the star of v1v2 is marked in thick and grey
in the figure). Γu consists of the chains wab and ce and the isolated vertex n. In turn,
the link of u1u2 is the chain nv1s and Γv consists of the isolated vertices n and s.

s

w

n

e

a

b

c

Fig. 4. Illustration of the proof of Proposition 2.1.

Observe that Γv has at most three connected components because it is obtained
by removing from linkT (u1u2) (a path) the parts of it incident to v1 and v2, if any.
Each component is monotone in the direction of v1v2 and the projections of any two
components to a line parallel to v1v2 do not overlap. The sequence of vertices of Qm

ordered in the direction of v1v2 can have a pair of consecutive vertices contained in
Γv only where there is a horizontal edge in Γv or in the (at most) two discontinuities
of Γv. This is true because Qm is a regular m-gon.
We denote nhor the number of horizontal edges in Γv and n

′
hor this number plus

the number of discontinuities in Γv (hence n
′
hor ≤ nhor + 2). Every nonhorizontal
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148 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

edge of Γv produces a jump of at least two in the v1v2-ordering of the vertices of Pm;
hence we have

|vertices(Γv)| − 1− n′hor ≤ m− 1− n′hor
2

.

Analogously, and with the obvious similar meaning for nvert and n
′
vert,

|vertices(Γu)| − 1− n′vert ≤
m− 1− n′vert

2
.

Since Γu∪Γv can be completed to a triangulation of Qm, and exactly four noninte-
rior edges of Qm are horizontal or vertical, we have nhor+nvert ≤ (m−3)+4 = m+1,
i.e., n′hor + n

′
vert ≤ m+ 5. Hence

|vertices(Γv)|+ |vertices(Γu)| ≤
⌊
2m+ 2 + n′hor + n

′
vert

2

⌋
≤

⌊
3m+ 7

2

⌋
=
3m

2
+ 3.

Thus, there are at most 3m
2 − 1 interior edges in T of the form pvi or pui and at

most 5m
2 interior edges in total, as desired.

Corollary 2.2. The polytope Pm described above has the following properties:
• It is a simplicial 3-polytope with m+ 4 vertices.
• Its maximal dissection has at least 4m− 6 tetrahedra.
• Its maximal triangulation has at most 7m

2 + 1 tetrahedra.
In particular, the gap between sizes of the maximal dissection and maximal triangu-
lation is linear on the number of vertices.
Three remarks are in order: First, the size of the maximal triangulation for Pm

may depend on the coordinates or, more specifically, on which diagonals of Qm inter-
sect the tetrahedron v1v2u1u2. Second, concerning the size of the minimal triangula-
tion of Pm, we can easily describe a triangulation of Pm with only m+ 5 tetrahedra:
let the vertices n, s, e, and w be as defined above (see Figure 1) and let us call
northeast, northwest, southeast, and southwest the edges in the arcs ne, nw, se, and
sw in the boundary of Qm. Then, the triangulation consists of the five tetrahedra
v1v2u1u2, v1v2u1w, v1v2u2e, v1u1u2s, and v2u1u2n (shown in the left part of Figure
5) together with the edges v2u2, v2u1, v1u2, and v1u1 joined, respectively, to the
northeast, northwest, southeast, and southwest edges of Qm. The right part of Figure
5 shows the result of slicing through the triangulation by the plane containing the
polygon Qm.
Finally, although the corollary above states a difference between maximal dissec-

tions and maximal triangulations only for Pm with m > 14, experimentally we have
observed there is a gap already for m = 8. Now we discuss two other interesting
examples. The following proposition constitutes the proof of Theorem 1.1 (2).

Proposition 2.3.
(1) Consider the following eight points in R3:

• The vertices s = (0, 0, 0), e = (1, 0, 0), w = (0, 1, 0), and n = (1, 1, 0) of
a square in the plane z = 0.

• The vertices v1 = (−1, 0, 1) and v2 = (1, 1, 1) of a horizontal edge above
the square, and

• the vertices u1 = (0, 1,−1) and u2 = (2, 0,−1) of a horizontal edge below
the square.

These eight points are the vertices of a polytope P whose only integer points
are precisely its eight vertices and with the following properties:
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EXTREMAL DISSECTIONS OF POLYTOPES 149

v
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2

u
2

u
1

v
1

v
2
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u
1

v
1

v
2

e

u
2
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1

s

u
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u
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1
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v
2
u

1
u

2
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Fig. 5. For the triangulation of Pm with m + 5 tetrahedra, its five central tetrahedra (left)
and the intersection of the triangulation with the polygon Qm (right) are shown. The four interior
vertices are the intersection points of the edges v1u1, v1u2, v2u1, and v2u2 with the plane containing
Qm.

(a) Its (unique) maximal dissection has 12 tetrahedra. All of them are uni-
modular, i.e., they have volume 1/6.

(b) Its (several) maximal triangulations have 11 tetrahedra.
(2) For the 3-polytope with vertices u1 = (1, 0, 0), w = (1, 0, 1), v1 = (−1, 0, 0),

s = (−1, 0,−1), v2 = (0, 1, 1), n = (1, 1, 1), u2 = (0, 1,−1), e = (−1, 1,−1),
the sizes of its (unique) minimal dissection and (several) minimal triangula-
tions are 6 and 7, respectively, and the sizes of its (several) maximal trian-
gulations and (unique) maximal dissection are 9 and 10, respectively.

Proof. The polytopes constructed are quite similar to P4 constructed earlier
except that Q4 is nonregular (in part (2)) and the segments u1u2 and v1v2 are longer
and are not orthogonal, thus ending with different polytopes. The polytopes are
shown in Figure 6. Figure 7 describes a maximal dissection of each of them in five
parallel slices. Observe that both polytopes have four vertices in the plane y = 0 and
another four in the plane y = 1. Hence the first and last slices in parts (a) and (b) of
Figure 7 completely describe the polytope.

v1 u1

u2

v2 n

e

w

sv1

es

u1

u2

n

v2

w

Fig. 6. The two polytopes in Proposition 2.3.

(1) The vertices in the planes y = 0 and y = 1 form convex quadrangles whose
only integer points are the four vertices. This proves that the eight points are in
convex position and that the polytope P contains no integer point other than its
vertices. Let us now prove the assertions on maximal dissections and triangulations
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y = 1y = .75y = .5y = .25y = 0

s e

v

u

1

2

w n

v

u

2

1

u

w

s

n2

v
1

1

v

e u
2

= 0 = .25 = .5 = .75 = 1

(a)

(b)

y y y y y

Fig. 7. Five 2-dimensional slices of the maximal dissections of the polytopes in Proposition 2.3.
The first and last slices are two facets of the polytopes containing all the vertices.

of P :

(a) Consider the paths of length three Γv = {esnw} and Γu = {sewn}, which are
monotone, respectively, in the directions orthogonal to v1v2 and u1u2. Using them,
we can construct two triangulations of size five of the polytopes conv(nsewv1v2) and
conv(nsewu1u2), respectively. However, they do not fill P completely. There is space
left for the tetrahedra swv1u1 and env2u2. This gives a dissection of P with 12
tetrahedra. All the tetrahedra are unimodular, so no bigger dissection is possible.

(b) A triangulation of size 11 can be obtained using the same idea as above, but
with paths Γv and Γu of lengths three and two, respectively, which can be taken from
the same triangulation of the square nswe.

To prove that no triangulation has bigger size, it suffices to show that P does not
have any unimodular triangulation. This means all tetrahedra have volume 1/6. We
start by recalling a well-known fact (see Corollary 4.5 in [25]). A lattice tetrahedron
has volume 1/6 if and only if each of its vertices v lies in a consecutive lattice plane
parallel to the supporting plane of the opposite facet to v. Two parallel planes are
said to be consecutive if their equations are ax+ by+ cz = d and ax+ by+ cz = d−1.
Suppose that T is a unimodular triangulation of P . We will first prove that

the triangle u1u2e is in T . The triangular facet u1u2s of P , lying in the hyperplane
x+ 2y + 2z = 0, has to be joined to a vertex in the plane x+ 2y + 2z = 1. The two
possibilities are e and v1. With the same argument, if the tetrahedron u1u2sv1 is in
T , its facet u1u2v1, which lies in the hyperplane 2x+ 4y + 3z = 1, will be joined to a
vertex in 2x+ 4y + 3z = 2, and the only one is e. This finishes the proof that u1u2e
is a triangle in T . Now u1u2e is in the plane x+ 2y + z = 1 and must be joined to a
vertex in x+2y+z = 2, i.e., to w. Hence u1u2ew is in T and, in particular, T uses the
edge ew. P is symmetric under the rotation of order two on the axis {z = 0, x = 1

2}.
Applying this symmetry to the previous arguments we conclude that T uses the edge
ns too. However, this is impossible since the edges ns and ew cross each other.

(2) This polytope almost fits the description of P4, except for the fact that the
edges v1u1, v2u2 intersect the boundary and not the interior of the planar quadrangle
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EXTREMAL DISSECTIONS OF POLYTOPES 151

nsew. With the general techniques we have described, it is easy to construct halving
dissections of this polytope with sizes from 6 to 10. Combinatorially, the polytope
is a 4-antiprism. Hence, Proposition 4.3 shows that its minimal triangulation has
seven tetrahedra. The rest of the assertions in the statement were proved using
the integer programming approach proposed in [8], which we describe in Remark
4.5. We have also verified them by enumerating all triangulations [19, 29]. It is
interesting to observe that if we perturb the coordinates a little so that the planar
quadrilateral u1v1u2e becomes a tetrahedron with the right orientation and without
changing the face lattice of the polytope, then the following becomes a triangulation
with 10 tetrahedra: {u1u2se, u1u2ev1, u1u2v1w, u1u2wn, v1v2en, v1v2nw, u1v1se,
v1u2ew, u2wne, v1wne}.

3. Bounds for the size of a dissection. Let D be a dissection of a d-polytope
P . Say two (d − 1)-simplices S1 and S2 of D intersect improperly in a (d − 1)-
hyperplane H if both lie in H, are not identical, and they intersect with a nonempty
relative interior. Consider the following auxiliary graph: take as nodes the (d − 1)-
simplices of a dissection, and say that two (d−1)-simplices are adjacent if they intersect
improperly in a certain hyperplane. A mismatched region is the subset of Rd that is
the union of (d− 1)-simplices over a connected component of size larger than one in
such a graph. Later, in Proposition 3.4, we will show some of the complications that
can occur in higher dimensions.

Define the simplicial complex of a dissection as all the simplices of the dissection
together with their faces, where only faces that are identical (in Rd) are identified.
This construction corresponds intuitively to an inflation of the dissection, where for
each mismatched region we move the two groups of (d − 1)-simplices slightly apart
leaving the relative boundary of the mismatched region joined. Clearly, the simplicial
complex of a dissection may be not homeomorphic to a ball.

The deformed d-simplices intersect properly, and the mismatched regions become
holes. The numbers of vertices and d-simplices do not change.

Lemma 3.1. All mismatched regions for a dissection of a convex 3-polytope P
are convex polygons with all vertices among the vertices of P . Distinct mismatched
regions have disjoint relative interiors.

Proof. Let Q be a mismatched region and H the plane containing it. Since a
mismatched region is a union of overlapping triangles, it is a polygon in H with a
connected interior. If two triangles forming the mismatched region have interior points
in common, they should be facets of tetrahedra in different sides of H. Otherwise the
two tetrahedra would have interior points in common, contradicting the definition of
dissection. Triangles which are facets of tetrahedra in one side ofH cover Q. Triangles
coming from the other side of H also cover Q.

Now take triangles coming from one side. As mentioned above, they have no
interior points in common. Their vertices are among the vertices of the tetrahedra in
the dissection, thus among the vertices of the polytope P . Hence the vertices of the
triangles are in convex position, thus the triangles are forming a triangulation of a
convex polygon in H whose vertices are among the vertices of P .

For the second claim, suppose there were distinct mismatched regions having an
interior point in common. Then their intersection should be an interior segment for
each. Let Q be one of the mismatched regions. It is triangulated in two different
ways each coming from the tetrahedra in one side of the hyperplane. The triangles in
either triangulation cannot intersect improperly with the interior segment. Thus the
two triangulations of Q have an interior diagonal edge in common. This means the
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152 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

triangles in Q consist of more than one connected component of the auxiliary graph,
contradicting the definition of mismatched region.

Proposition 3.2.
(1) The size of a mismatching dissection D of a convex 3-polytope with n vertices

is at least n− 2.
(2) The size of a dissection of a 3-polytope with n vertices is bounded from above

by
(
n−2

2

)
.

Proof. (1) Do an inflation of each mismatched region. This produces as many holes
as mismatched regions, say, m of them. Each hole is bounded by two triangulations
of a polygon. This is guaranteed by the previous lemma. Denote by ki the number
of vertices of the polygon associated with the ith mismatched region. In each of the
holes introduce an auxiliary interior point. The point can be used to triangulate the
interior of the holes by filling in the holes with the coning of the vertex with the
triangles it sees. We now have a triangulated ball.
Denote by |D| the size of the original dissection. The triangulated ball has then

|D|+∑m
i=1 2(ki−2) tetrahedra in total. The number of interior edges of this triangu-

lation is the number of interior edges in the dissection, denoted by ei(D), plus the new
additions; for each hole of length ki we added ki interior edges. In a triangulation T
of a 3-ball with n boundary vertices and n′ interior vertices, the number of tetrahedra
|T | is related to the number of interior edges ei of T by the formula |T | = n+ei−n′−3.
The proof is a simple application of Euler’s formula for triangulated 2-spheres and
3-balls and we omit the easy details.
Thus, we have the following equation:

|D|+
m∑
i=1

2(ki − 2) = n+ ei(D) +
m∑
i=1

ki −m− 3.

This can be rewritten as |D| = n + ei(D) −
∑m

i=1 ki + 3m − 3. Taking into account
that ei(D) ≥

∑m
i=1 2(ki − 3) (because diagonals in a polygon are interior edges of the

dissection), we get an inequality

|D| ≥ n+
m∑
i=1

ki − 3m− 3.

Finally, note that in a mismatching dissection we have m ≥ 1 and ki ≥ 4. This
gives the desired lower bound.
(2) Now we look at the proof of the upper bound on dissections. Given a 3-

dissection, we add tetrahedra of volume zero to complete a triangulation with flat
simplices that has the same number of vertices. One can also think we are filling in
the holes created by an inflation with (deformed) tetrahedra.
Lemma 3.1 states that mismatched regions were of the shape of convex polygons.

The 2-simplices forming a mismatched region were divided into two groups (those
becoming apart by an inflation). The two groups formed different triangulations of a
convex polygon, and they had no interior edges in common. In this situation, we can
make a sequence of flips (see [17]) between the two triangulations with the property
that any edge once disappeared does not appear again (see Figure 8). We add one
abstract, volume zero tetrahedron for each flip and obtain an abstract triangulation
of a 3-ball.
The triangulation with flat simplices we created is a triangulated 3-ball with n

vertices. By adding a new point in a fourth dimension, and coning from the boundary
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EXTREMAL DISSECTIONS OF POLYTOPES 153

Fig. 8. Filling in holes with tetrahedra according to flips.

2-simplices to the point, we obtain a triangulated 3-sphere containing the original 3-
ball in its boundary. From the upper bound theorem for spheres (for an introduction
to this topic, see [30]) its size is bounded from above by the number of facets of a cyclic
4-polytope minus 2n− 4, the number of 2-simplices in the boundary of D. The four-
dimensional cyclic polytope with n+1 vertices is well known to have (n+1)(n−2)/2
facets (see [11, p. 63]), which completes the proof after a trivial algebraic calcula-
tion.

Open Problem 3.3. What is the correct upper bound theorem for dissections of
d-dimensional polytopes with d ≥ 4?
In our proof of Proposition 3.2 we built a triangulated PL-ball from a three-

dimensional dissection using the flip connectivity of triangulations of a convex n-
gon. Unfortunately the same cannot be applied in higher dimensions, as the flip
connectivity of triangulations of d-polytopes is known to be false for convex polytopes
in general [22]. Even worse, however, the easy property we used from Lemma 3.1 that
mismatched regions are convex polyhedra fails in dimension d ≥ 4.

Proposition 3.4. The mismatched regions of a dissection of a convex 4-polytope
can be nonconvex polyhedra.

Proof. The key idea is as follows. Suppose we have a 3-dimensional convex poly-
tope P and two triangulations T1 and T2 of it with the following properties: removing
from P the tetrahedra that T1 and T2 have in common, the rest is a nonconvex poly-
hedron P ′ such that the triangulations T ′

1 and T
′
2 of it obtained from T1 and T2 do

not have any interior 2-simplex in common (actually, something weaker would suffice:
that their common interior triangles, if any, do not divide the interior of the polytope).
In these conditions, we can construct the dissection we want as a bipyramid over

P , coning T1 to one of the apices and T2 to the other one. The bipyramid over the
nonconvex polyhedron P ′ will be a mismatched region of the dissection.
For a concrete example, start with Schönhardt’s polyhedron whose vertices are

labeled 1, 2, 3 in the lower face and 4, 5, 6 in the top face. This is a nonconvex polyhe-
dron made, for example, by twisting the three vertices on the top of a triangular prism.
Add two antipodal points 7 and 8 close to the “top” triangular facets (those not break-
ing the quadrilaterals); see Figure 9. For example, take as coordinates for the points
1 = (10, 0, 0), 2 = (−6, 8, 0), 3 = (−6,−8, 0), 4 = (10,−0.1, 10), 5 = (−6.1, 8, 10),
6 = (−5.9,−8.1, 10), 7 = (0, 0, 10.1), 8 = (0, 0,−0.1).
Let P ′ be this nonconvex polyhedron and let T ′

1 = {1278, 1378, 2378, 1247, 2457,
2357, 3567, 1367, 1467} and T ′

2 = {4578, 4678, 5678, 1248, 2458, 2358, 3568, 1368,
1468}. T ′

1 cones vertex 7 to the rest of the boundary of P
′, and T ′

2 cones vertex 8.
Any common interior triangle of T ′

1 and T
′
2 would use the edge 78. But the link of 78

in T ′
1 contains only the points 1, 2, and 3, and the link in T

′
2 contains only 4, 5, and

6.
Let P be the convex hull of the eight points, and let T1 and T2 be obtained from
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7

64

5

3

2

1

8

Fig. 9. The mismatched region of a four-dimensional dissection.

T ′
1 and T

′
2 by adding the three tetrahedra 1245, 2356, and 1346.

4. Optimal dissections for specific polytopes. The regular cube has been
widely studied for its smallest dissections [12, 14, 18]. This receives the name of
simplexity of the cube. In contrast, because of the type of simplices inside a regular d-
cube, a simple volume argument shows that the maximal size of a dissection is d!, the
same as for triangulations. On the other hand, we know that the size of the maximal
triangulation of a combinatorial cube can be larger than that: For example, the
combinatorial 3-cube obtained as the prism over a trapezoid (vertices on a parabola
for instance) has triangulations of size 7. Figure 10 shows a triangulation with seven
simplices for those coordinatizations, where the edges AB and GH are not coplanar.
The tetrahedron ABGH splits the polytope into two nonconvex parts, each of which
can be triangulated with three simplices. To see this, suppose that our polytope is
a very small perturbation of a regular 3-cube. In the regular cube, ABGH becomes
a diagonal plane which divides the cube into two triangular prisms, ABCDGH and
ABEFGH. In the nonregular cube, the diagonals AH and BG, respectively, become
nonconvex. Any pair of triangulations of the two prisms, each using the corresponding
diagonal, together with tetrahedron ABGH give a triangulation of the perturbed cube
with seven tetrahedra. The boundary triangulation is shown in the flat diagram. It is
worth noticing that for the regular cube the boundary triangulation we showed does
not extend to a triangulation of the interior.

One can then ask, “What is the general growth for the size of a maximal dissection
of a combinatorial cube?” To answer this question, at least partially, we use the above
construction and we adapt an idea of Haiman, originally devised to produce small
triangulations of regular cubes [12]. The idea is that from triangulations of a d1-
cube and a d2-cube of sizes s1 and s2, respectively, we can get triangulations of the
(d1 + d2)-cube by first subdividing it into s1×s2 copies of the product of two simplices
of dimensions d1 and d2 and then triangulating each such piece. We recall that any
triangulation of the Cartesian product of a d1-simplex and a d2-simplex has

(
d1+d2

d1

)
maximal simplices. Hence in total we have a triangulation of the (d1 + d2)-cube into
s1 × s2 ×

(
d1+d2

d1

)
maximal simplices. Recursively, if one starts with a triangulation of

size s of the d-cube, one obtains triangulations for the rd-cube of size (rd)!( sd! )
r. In

Haiman’s context one wants s to be small, but here we want it to be big.

More precisely, denote by f(d) the function maxC: d-cube(maxT of C |T |) and call
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A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

Fig. 10. A triangulation of a combinatorial 3-cube into seven tetrahedra.

g(d) = (f(d)/d!)
1/d
. Haiman’s argument shows that if f(d1) ≥ c1

d1d1! and f(d2) ≥
c2

d2d2! for certain constants c1 and c2, then f(d1 + d2) ≥ c1
d1c2

d2(d1 + d2)! (put

differently, that g(d1 + d2) ≥
(
g(d1)

d1g(d2)
d2
)1/(d1+d2)

). The value on the right-hand
side is the weighted geometric mean of g(d1) and g(d2). In particular, if both g(d1)
and g(d2) are ≥ 1 and one of them is > 1, then g(d1 + d2) is > 1 as well.
We have constructed above a triangulation of size 7 for the Klee–Minty 3-cube,

which proves g(3) ≥ 3
√
7/6 = 1.053. With Haiman’s idea we can now construct

“large” triangulations of certain 4-cubes and 5-cubes, which prove, respectively, that
g(4) ≥ 4

√
7/6 = 1.039 and g(5) ≥ 5

√
7/6 = 1.031 (take d1 = 3 and d2 equal to one and

two, respectively). Finally, since any d > 5 can be expressed as a sum of 3’s and 4’s,
we have g(d) ≥ min{g(3), g(4)} ≥ 1.039 for any d > 5. Hence we have the following
proposition.

Proposition 4.1. For the family of combinatorial d-cubes with d > 2 the func-
tion f(d) = maxC: d-cube(maxT of C |T |) admits the lower bound f(d) ≥ cdd! where
c ≥ 1.031.
Exactly as in Haiman’s paper, the constant c can be improved (asymptotically)

if one starts with larger triangulations for the smaller-dimensional cubes. Using com-
puter calculations (see Remark 4.5), we obtained a maximal triangulation for the
Klee–Minty 4-cube with 38 maximal simplices, which shows that g(d) ≥ 4

√
38/24 =

1.122 for every d divisible by 4 (see [1] for a complete study of this family of cubes).
We omit listing the triangulation here, but it is available from the authors by request.

Open Problem 4.2. Is the sequence g(d) bounded? In other words, is there an
upper bound of type cdd! for the function f(d)? Observe that the same question for
minimal triangulations of the regular d-cube (whether there is a lower bound of type
cdd! for some c > 0) is open as well. See [26] for the best lower bound known.
We continue our discussion with the study of optimal triangulations for three-

dimensional prisms and antiprisms. We will call an m-prism any 3-polytope with
the combinatorial type of the product of a convex m-gon with a line segment. An m-
antiprism will be any 3-polytope whose faces are two convexm-gons and 2m triangles,
each m-gon being adjacent to half of the triangles. Vertices of the two m-gons are
connected with a band of alternately up and down pointing triangles.
Each such polyhedron has a regular coordinatization in which all the faces are

regular polygons and a realization space which is the set of all possible coordinatiza-
tions that yield the same combinatorial information [20]. Our first result is valid in
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the whole realization space.
Proposition 4.3. For any three-dimensional m-prism, in any of its possible

coordinatizations, the number of tetrahedra in a minimal triangulation is 2m−5+�m
2 �.

For any three-dimensional m-antiprism, in any of its possible coordinatizations,
the number of tetrahedra in a minimal triangulation is 3m− 5.

Proof. In what follows we use the word cap to refer to the m-gon facets appearing
in a prism or antiprism. We begin our discussion proving that any triangulation of
the prism or antiprism has at least the size we state, and then we will construct
triangulations with exactly that size.
We first prove that every triangulation of the m-prism requires at least 2m− 5+

�m
2 � tetrahedra. We call a tetrahedron of the m-prism mixed if it has two vertices on
the top cap and two vertices on the bottom cap of the prism; otherwise we say that
the tetrahedron is top-supported when it has three vertices on the top (respectively,
bottom-supported). For example, Figure 11 shows a triangulation of the regular 12-
prism in three slices. Parts (a) and (c) represent, respectively, the bottom and top
caps. Part (b) is the intersection of the prism with the parallel plane at equal distance
to both caps. In this intermediate slice, bottom or top supported tetrahedra appear
as triangles, while mixed tetrahedra appear as quadrilaterals.

(b)(a) (c)

Fig. 11. A minimal triangulation of the regular 12-prism.

Because all triangulations of an m-gon have m − 2 triangles there are always
exactly 2m − 4 tetrahedra that are bottom- or top-supported. In the rest, we show
there are at least �m

2 � − 1 mixed tetrahedra. Each mixed tetrahedra marks an edge
of the top, namely, the edge it uses from the top cap. Of course, several mixed
tetrahedra could mark the same top edge. Group together top-supported tetrahedra
that have the same bottom vertex. This grouping breaks the triangulated top m-gon
into polygonal regions. Note that every edge between two of these regions must be
marked. For example, in part (c) of Figure 11 the top cap is divided into six regions
by five marked edges (the thick edges in the figure). Let r equal the number of regions
under the equivalence relation we set. There are r − 1 interior edges separating the
r regions, and all of them are marked. Some boundary edges of the top cap may be
marked too (none of them is marked in the example of Figure 11).
We can estimate the marked edges in another way: There are m edges on the

boundary of the top, which appear partitioned among some of the regions (it could
be the case some region does not contain any boundary edge of the m-gon). We claim
that no more than two boundary edges per region will be unmarked (∗). This follows
because a boundary edge is not marked only when the top-supported tetrahedron that
contains it has the point in the bottom cap that is directly under one of the vertices
of the edge. In a region, at most two boundary edges can satisfy this. Hence we get
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EXTREMAL DISSECTIONS OF POLYTOPES 157

at least m− 2r marked edges on the boundary of the top and at least (r− 1) + (m−
2r) = m − r − 1 marked edges in total. Thus the number of mixed tetrahedra is at
least the maximum of r − 1 and m − r − 1. In conclusion, we get that, indeed, the
number of mixed tetrahedra is bounded below by �m

2 � − 1. Note that we use only
the combinatorics and convexity of the prism in our arguments. We will show that
minimal triangulations achieve this lower bound but then observe that if m is even, in
a minimal triangulation we must have r = m/2 and no boundary edge can be marked,
as is the case in Figure 11. If m is odd, then we must have r ∈ {(m−1)/2, (m+1)/2}
and at most one boundary edge can be marked.

The proof that any triangulation of an m-antiprism includes at least 3m−5 tetra-
hedra is similar. There are 2m − 4 top-supported and bottom-supported tetrahedra
in any triangulation and there are r − 1 marked edges between the regions in the
top. The only difference is that, instead of claim (∗), one has at most one unmarked
boundary edge per region. Thus there are at leastm−r marked edges in the boundary
of the top and in total at least (r − 1) + (m − r) = m − 1 marked edges in the top.
Hence there exist at least (2m−4)+(m−1) = 3m−5 tetrahedra in any triangulation.
For an m-antiprism we can easily create a triangulation of size 3m−5 by choosing

any triangulation of the bottom m-gon and then coning a chosen vertex v of the top
m-gon to the m−2 triangles in that triangulation and to the 2m−3 triangular facets
of the m-antiprism which do not contain v. This construction is exhibited in Figure
12. Parts (a) and (c) show the bottom and top caps triangulated (each with its five
marked edges) and part (b) shows an intermediate slice with the five mixed tetrahedra
appearing as quadrilaterals.

(c)(b)(a)

v

Fig. 12. A minimal triangulation of the regular 6-antiprism.

For an m-prism, let ui and vi, i = 1, . . . ,m denote the top and bottom vertices,
respectively, so that the vertices of each cap are labeled consecutively and uivi is
always an edge of the prism.

If m is even we can chop off the vertices ui for odd i and vj for even j, so that
the prism is decomposed into m tetrahedra and an (m2 )-antiprism. The antiprism can
be triangulated into 3m

2 − 5 tetrahedra, which gives a triangulation of the prism into
5m
2 −5 tetrahedra, as desired. Actually, this is how the triangulation of Figure 11 can
be obtained from that of Figure 12.

If m is odd we do the same, except that we chop off only the vertices u1, . . . , um−2

and v2, . . . , vm−1 (no vertex is chopped in the edge umvm). This produces m −
1 tetrahedra and an (m+1

2 )-antiprism. We triangulate the antiprism into
3m+3

2 −
5 tetrahedra and this gives a triangulation of the m-prism into 5m+1

2 − 5 tetrahe-
dra.
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We have seen that the coordinates are not important when calculating minimal
triangulations of the three-dimensional prisms and antiprisms. On the other hand,
the difference in size of the maximal triangulation can be quite dramatic. Below we

prove that in certain coordinatizations it is roughly m2

2 and show experimental data

indicating that for the regular prism it is close to m2

4 .

Proposition 4.4. Let Am be a prism of order m with all its side edges parallel.

(1) The size of a maximal triangulation of Am is bounded as

⌈
m2 + 6m− 16

4

⌉
≤ maxT of Am |T | ≤ m2 +m− 6

2
.

(2) The upper bound is achieved if the two caps (m-gon facets) are parallel and
there is a direction in which the whole prism projects onto one of its side
quadrangular facets. (For a concrete example, let one of the m-gon facets
have vertices on a parabola and let Am be the product of it with a segment.)

Proof. Let the vertices of the prism be labeled u1, . . . , um and v1, . . . , vm so that
the ui’s and the vj ’s form the two caps, vertices in each cap are labeled consecutively,
and uivi is always a side edge.

For the upper bound in part (1), we have to prove that a triangulation of Am has

at most m2+m−6
2 − 2m + 3 = m(m−3)

2 interior diagonals. The possible diagonals are
the edges uivj , where i − j is not in {−1, 0, 1} modulo m. This gives exactly twice
the number we want. However, for any i and j the diagonals uivj and ujvi intersect,
so only one of them can appear in each triangulation.

We now prove that the upper bound is achieved if Am is in the conditions of part
(2). In fact, the condition on Am that we will need is that for any 1 ≤ i < j ≤ k < l ≤
m, the point vj sees the triangle viukul from the same side as vk and vl (i.e., “from
above” if we call top cap the one containing the vi’s). With this we can construct a

triangulation with m2+m−6
2 =

(
m−1

2

)
+ 2m− 4 tetrahedra as follows.

First cone the vertex v1 to any triangulation of the bottom cap (this gives m− 2
tetrahedra). The m − 2 upper boundary facets of this cone are visible from v2, and
we cone them to it (again m− 2 tetrahedra). The new m− 2 upper facets are visible
from v3 and we cone them to it (m − 2 tetrahedra more). Now one of the upper
facets of the triangulation is v1v2v3, part of the upper cap, but the other m − 3 are
visible from v4, so we cone them and introduce m − 4 tetrahedra. Continuing the
process, we will introduce m− 4, m− 5, . . . , 2, 1 tetrahedra when coning the vertices
v5, v6, . . . , vm−1, vm, which gives a total of

(
m−1

2

)
+ 2m− 4 tetrahedra, as desired.

The triangulation we have constructed is the placing triangulation [17] associated
with any ordering of the vertices finishing with v1, . . . , vm. A different description of
the same triangulation is that it cones the bottom cap to v1, the top cap to um, and
its mixed tetrahedra are all the possible vivi+1ujuj+1 for 1 ≤ i < j ≤ m − 1. This
gives

(
m−1

2

)
mixed tetrahedra and

(
m−1

2

)
+ 2m− 4 tetrahedra in total.

We finally prove the lower bound stated in part (1). Without loss of general-
ity, we can assume that our prism has its two caps parallel (if not, do a projective
transformation keeping the side edges parallel). Then, Am can be divided into two
prisms in the conditions of part (2) of sizes k and l with k + l = m + 2: take any
two side edges of Am which possess parallel supporting planes and cut Am along the
plane containing both edges. By part (2), we can triangulate the two subprisms with(
k+1
2

)−3 and (l+1
2

)−3 tetrahedra, respectively, taking care that the two triangulations
use the same diagonal in the dividing plane. This gives a triangulation of Am with
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(
k+1
2

)
+

(
l+1
2

) − 6 = k2+l2+m−10
2 tetrahedra. This expression achieves its minimum

when k and l are as similar as possible, i.e., k = �m
2 �+ 1 and l = �m

2 �+ 1. Plugging
these values in the expression gives a triangulation of size �m2+6m−16

4 �.
Based on an integer programming approach we can compute maximal triangula-

tions of specific polytopes (see Remark 4.5). Our computations with regular prisms up
to m = 12 show that the size of their maximal triangulations achieve the lower bound
stated in part (1) of Proposition 4.4 (see Table 2). In other words, they show that the
procedure of dividing them into two prisms of sizes �m

2 �+ 1 and �m
2 �+ 1 in the con-

ditions of part (2) of Proposition 4.4 and triangulating the subprisms independently
yields maximal triangulations.

We have also computed maximal sizes of triangulations for the regularm-antiprisms

up to m = 12, which turn out to follow the formula �m2+8m−16
4 �. A construction of

a triangulation of this size for every m can be made as follows: Let the vertices of
the regular m-antiprism be labeled u1, . . . , um and v1, . . . , vm so they are forming
the vertices of the two caps consecutively in this order and viui and uivi+1 are side
edges. We let vm+1 = v1. The triangulation is made by placing the vertices in any
ordering finishing with v1, v2, vm, v3, vm−1, . . . , v�m

2 �+1. The tetrahedra used are the
bottom-supported tetrahedra with apex v1, top-supported tetrahedra with apex u�m

2 �,
and the mixed tetrahedra vivi+1ujuj+1 for 1 ≤ i ≤ j ≤ �m

2 � and uiui+1vjvj+1 for
�m

2 �+ 1 ≤ i < j ≤ m.
We conjecture that these formulas for regular base prisms and antiprisms actually

give the sizes of their maximal triangulations for every m, but we do not have a proof.

Table 2
Sizes of maximal triangulations of prisms and antiprisms.

m 3 4 5 6 7 8 9 10 11 12

Prism (regular base) 3 6 10 14 19 24 30 36 43 50

Antiprism (regular base) 4 8 12 17 22 28 34 41 48 56

Remark 4.5. How can one find minimal and maximal triangulations in specific
instances? The approach we followed for computing Tables 1 and 2 and some of
the results in Proposition 2.3 is the one proposed in [8], based on the solution of
an integer programming problem. We think of the triangulations of a polytope as
the vertices of the following high-dimensional polytope: Let A be a d-dimensional
polytope with n vertices. Let N be the number of d-simplices in A. We define PA

as the convex hull in RN of the set of incidence vectors of all triangulations of A.
For a triangulation T the incidence vector vT has coordinates (vT )σ = 1 if σ ∈ T
and (vT )σ = 0 if σ �∈ T . The polytope PA is the universal polytope defined in
general by Billera, Filliman, and Sturmfels [3], although it appeared in the case of
polygons in [7]. In [8], it was shown that the vertices of PA are precisely the integral
points inside a polyhedron that has a simple description in terms of the oriented
matroid of A (see [8] for information on oriented matroids). The concrete integer
programming problems were solved using C-plex Linear SolverTM . The program to
generate the linear constraints is a small C++ program written by Samuel Peterson
and the first author. Source code, brief instructions, and data files are available
via ftp at http://www.math.ucdavis.edu/˜deloera. An alternative implementation by
Tajima is also available [27, 28]. He used his program to corroborate some of these
results.

It should be mentioned that a simple variation of the ideas in [8] provides enough

D
ow

nl
oa

de
d 

06
/1

3/
13

 to
 1

93
.1

44
.1

98
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



160 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

equations for an integer program whose feasible vertices are precisely the 0/1-vectors
of dissections. The incidence vectors of dissections of conv(A), for a point set A,
are just the 0/1 solutions to the system of equations 〈x, vT 〉 = 1, where vT ’s are the
incidence vectors for every regular triangulation T of the Gale transform A∗ (regular
triangulations in the Gale transform are the same as chambers in A). Generating all
these equations is as hard as enumerating all the chambers of A. Nevertheless, it is
enough to use those equations coming from placing triangulations (see [23, section
32]), which gives a total of about nd+1 equations if A has n points and dimension d.
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[11] B. Grünbaum, Convex Polytopes, Interscience, London, 1967.
[12] M. Haiman, A simple and relatively efficient triangulation of the n-cube, Discrete Comput.

Geom., 6 (1991), pp. 287–289.
[13] B. Huber, J. Rambau, and F. Santos, The Cayley trick, lifting subdivisions and the Bohne-

Dress theorem on zonotopal tilings, J. Eur. Math. Soc. (JEMS), 2 (2000), pp. 179–198.
[14] R.B. Hughes and M.R. Anderson, Simplexity of the cube, Discrete Math., 158 (1996), pp.

99–150.
[15] J.-M. Kantor, Triangulations of integral polytopes and Ehrhart polynomials, Beiträge Algebra
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