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Resumen

CaMn;O1; es un semiconductor que en condiciones ambiente presenta la peculiaridad de que sus
atomos de manganeso acttian con distintas valencias. Este hecho hace que ciertos 4tomos de Mn
sufran el efecto Jahn-Teller y se encuentren en una coordinacién de octahedro comprimido. Se ha en-
contrado experimentalmente que este compuesto presenta una transicion de fase con reordenamiento
de carga al aumentar la presién. En esta transicién de fase, el efecto Jahn-Teller juega un papel im-
portante. En este trabajo se ha obtenido un pardmetro de Hubbard U capaz de describir las propiedades
electrénicas del CaMn7O1;, con cdlculos de teoria del funcional de la densidad. Con dicho pardmetro,
se han obtenido propiedades estructurales del compuesto en funcién de la presién, lo que permite
analizar en detalle la transicién de fase y el rol que juega el efecto Jahn-Teller en ella. Los resultados
tanto electrénicos como estructurales son consistentes con trabajos ya publicados.

Palabras clave: calcio, manganeso, oxigeno, Teorfa del Funcional de la Densidad, efecto Jahn-Teller,
pardmetro de Hubbard, transicion de fase, estructura.

Abstract

CaMn;Oy; is a semiconductor with the peculiarity that at ambient conditions, its manganese atoms
act with different valences. This fact makes certain Mn atoms suffer the Jahn-Teller effect, being in
a distorted octahedron coordination. It was found experimentally that this compound undergoes
a charge-ordering phase transition under pressure. The Jahn-Teller effect plays an important role
in this phase transition. In this work, a U Hubbard parameter capable of describing the electronic
properties of CaMn;O;, with Density Functional Theory calculations has been obtained. With that
parameter, structural properties of the compound have been obtained under pressure. This allows to
analyze with detail the phase transition and the role the Jahn-Teller effect plays on it. Results, both
electronic and structural, are consistent with published work.

Keywords: calcium, manganese, oxygen, Density Functional Theory, Jahn-Teller effect, Hubbard pa-
rameter, phase transition, structure.
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Each of us is carving a stone, erecting a
column, or cutting a piece of stained glass
in the construction of something much
bigger than ourselves.

Adrienne Clarkson

Chapter 1

Introduction

1.1 Why are we here?

The first acid test for the Schrodinger equation was the problem of the hydrogen atom: one proton
and one electron. The simplicity of the system allowed to find explicit solutions for the wavefunction
of the electron. The huge success of the solutions in terms of their concordance with experimental
results is greatly convincing about the fact that the Schrodinger equation is indeed a good computa-
tional tool to obtain the properties of quantum-mechanical systems.

The sad part of the story is that solving this equation explicitly or numerically is out of reach in many
cases, including most of those who involve several interacting particles. Fortunately, some geniuses
found an alternative way to approach these kind of problems, giving birth to Density Functional
Theory, which basically formulates interacting particles problems in terms of non-interacting parti-
cles problems.

Density Functional Theory was the first step into designing specialized software capable of obtain-
ing the properties of quantum-mechanical systems via ab initio-type calculations. One of the many
programs available to achieve such a thing is VASP (Vienna Ab initio Simulation Package) [1], the
one used in this work.

Our system of interest is the compound CaMn;O,, a semiconductor that presents some interesting
features such that being multiferroic, Jahn-Teller affected, having manganese acting with different va-
lences...[2]. This compound undergoes a charge-ordering phase transition under pressure in which
the Jahn-Teller effect plays an important role. This transition under pressure has been studied exper-
imentally in [2] but it is yet to be studied by means of ab initio-type calculations.

We will check how the U Hubbard parameter (a parameter used in a certain type of Density Functional
calculations) heavily influences both the electronic structure and the local structure. Finally, we will
see how a good description of the electronic properties leads to a good description of the structure.

Therefore, we will firstly obtain the optimal U Hubbard parameter that reproduces the electronic prop-
erties of the compound. Afterwards, we will obtain the structural properties (both at short and long
range) as a function of pressure and we will study the phase transition for the optimal U.

1.2 How to read this text

This text aims to be understood by all readers with a degree-level knowledge of physics. However,
all the contents of a typical physics degree are assumed to be known by the reader, in particular,
those related with basic solid state physics. Chapter 2 offers a deep enough theoretical introduction
to understand Density Functional Theory, the process and fundamentals of this work. Chapter 3 ex-
plains the details necessary to reproduce all calculations. Chapter 4 explains briefly the experimental
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results that motivate and serve as context for this work. Chapter 5 contains the important results,
with the less relevant being left for chapter 6. Finally, chapter 7 offers the conclusions and the closure
of this text.



Claims that cannot be tested, assertions
immune to disproof are veridically
worthless, whatever value they may have
in inspiring us or exciting our sense of
wonder.

Carl Sagan

Chapter 2

Theoretical backround

2.1 Introduction to Density Functional Theory (DFT)

In this section, the fundamentals of Density Functional Theory (DFT) will be introduced. The aim of
the section is to give the reader a deep enough introduction to the topic so that the computational
method is understood at a conceptual level. We will follow the steps of [3][Part II]. Any additional
references will be explicitly written.

2.1.1 Defining the general problem we want to solve

In order to unveil the properties of any system at a quantum scale, one must solve the Schrédinger
equation. Let us consider a system of electrons and nuclei. The Hamiltonian governing such a system
is [3][Page 52], [4][Page 77]:

5 i Zier 1 e?
H=—_—YV V2 o -
2m Zl: l+;|r1_R1|+ 27 |ni— x|
/ ! 2.1)
Z Z Z[Z]EZ
ZM[ I#]‘RI_R”’

Where m, is the electron mass, e its charge, Z;e is the charge of nuclei I, M its mass,R| its coordinates
and r; the coordinates of the electron i. Note that we are omitting a 1/4re, dividing factor in those
terms regarding potential energy.

Solving the Schrédinger equations means solving:

AY = EY (2.2)

Where Y is the wavefunction of the whole system and E its energy.
Solving the equation with such a complicated hamiltonian is a task so difficult that it is not worth
the effort. It is better to approach the problem by other means.

Firstly, we know that nuclei are way heavier than electrons. It is therefore reasonable to assume that
nuclei velocities are very small in comparison to electron velocities. Hence, we can neglect the nuclei
kinetic energy term in the previous hamiltonian:
. Z,e? 1 Z1Z;e?
H:— sz Z’rl l Z‘rl 4]

R)| (2.3)

]" I;é] IR —

This approximation is called the Born-Oppenheimer approximation. A good mathematical descrip-
tion can be found at [3][Appendix C], but for this text, it is enough to understand the fact that we are
considering the nuclei to be frozen. The wavefunction we will get is a wavefunction corresponding
to a certain fixed configuration of the nuclei.
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From now on, we will use Hartree atomic units, i.e i = m, = ¢ = 47w /¢y = 1. With these units, the
previous hamiltonian can be decomposed in different terms, starting with the kinetic energy of the
electrons:

. 1
T= Z —EVE (2.4)

The potential energy due to the interaction between nuclei and electrons:

A Ze
Vet = Y Vi (Iri = Ry|) = ) "o (25)
il o7 It — Ry
The potential energy due to the interaction between electrons:
. 1 1
V=5 ¥ 26)
i#] |xi — 5|
And finally, the potential energy due to the interaction between nuclei:
1 Z [Z ]62
En=3) 5—5 (2.7)
2 I;} IRr — Ry|
With the previous notation, the hamiltonian can be expressed as follows:
H=T + vext + Vint +Enn (2.8)

So, as it was stated at the begining of this section, to obtain the properties of the system under study,
we have to solve the Schrodinger equation. In our case, the hamiltonian we have to use is the one in
equation (2.8). Now the problem is that we have no means to solve the equation. For now, we can
only ask ourselves: how can we move on? Do we have any way to sort this issue?

2.1.2 The Hohenberg-Kohn theorems

Let us begin this section with the following question: what if there is a way to obtain all the proper-
ties we want without solving the Schrodinger equation with the hamiltonian in (2.8)?

The results we are going to expose here are definitely game changing, and alter completely the modus
operandi one should follow. These results are the Hohenberg-Kohn theorems, first published in 1964
[5]. Although the original formulations and proofs are in [5], we are going to present it the way is
done in [3][Page 122]. The proofs are not included here for the sake of concision.

Theorem 1 For any system of interacting particles in an external potential Voy (x), the potential Voy (r) is
determined uniquely, except for a constant, by the ground state particle density ny(r).

Note that the problem we are trying to solve (remember: solving the Schrodinger equation with the
hamiltonian in (2.8) ) is about a system of interacting particles (the electrons interact between them)
and are under the influence of an external potential (the potential created by the nuclei). Therefore,
the situation we are facing satisfies the hypothesis of the theorem. Now we proceed with an impor-
tant corollary.

Corollary 1 ng(r) determines Vex;(r), and Vex (r) determines the hamiltonian. Equivalently, the hamiltonian
determines the wavefunctions, and the wavefunctions determine the properties of the system. As a result, the
ground state particle density, ny(r), determines all the properties of the system.

The previous corollary suggests a different way to solve our problem. If we had the ground state
particle density and a method to obtain all magnitudes with it, we would had everything. But note
that these results do not give you any hint on how to do so.

Figure 2.1 shows how these two results add a twist to the way we would proceed before.
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Vet @) &= no(r)

Y )
Wi(lr})) = Wo(ir))

Figure 2.1: This scheme illustrates the contribution of theorem 1. The usual procedure was solving
the Schrodinger equation with a known potential. Then obtaining all possible states (in particular,
the ground state) and then, the ground state particle density. With theorem 1, we know that with the
ground state particle density we can get the external potential and the circle is complete. The figure
has been extracted from [3][Page 122].

The two previous results claim that there should be a way to obtain all properties from the ground
state particle density. They do not say a thing about how to do it. The following theorem solves
partially this issue for the energy of the system and the ground state particle density.

Theorem 2 A universal functional for the enerqy E[n] in terms of the density n(r) can be defined, valid for
any external potential Vo (r). For any particular Vey (r), the exact ground state energy of the system is the
global minimum value of this functional, and the density n(r) that minimizes the functional is the exact ground
state density no(r).

The weakness of the theorem is that it does not give any clue about how to build such a functional.
From the theorem, we get the obvious corrollary:

Corollary 2 If E[n] is given, the ground state energy can be obtained by minimizing it and no(r) is the
function n that minimizes it. Hence the functional E[n] alone is sufficient to determine the exact ground state
energy and density.

Although we are not writing the proof, we write an important step of it. From theorem 1, we know
that all properties of the system are determined by the ground state density. As a result, all kind of
energies must be a functional of the density, including the total energy [3][Page 124]:

Exk[n] = T[n] + Eine[n] + /d3rVext(r)n(r) + Enr
(2.9)
= Fux[n] + /d3rVext(r)n(r) +Epg

Where Fyk[n] is:
Fux[n] = T[n] + Ein[n] (2.10)

In these expressions, the subindex HK refers to Hohenberg-Kohn. Ein[n] is the interaction energy
between electrons. This term includes repulsion between electrons and the exchange energy. The
term with the integral includes the potential energy of the electrons due to the presence of an exter-
nal potential. The last term Ej; is the already defined potential energy due to the interaction between
nuclei. Note that this term does not include a dependence on n. The reason for this is that in our
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context, nuclei are fixed, and therefore, this value is a constant.

After arriving at this point, our desire is to have an explicit version of Fyx [n] in order to obtain the
total energy and the ground state particle density of the system. Sad news are we do not have such
an explicit functional.

Even though we have no explicit form for the previous functionals, these expressions will come on
handy, as it is explained in the following section.

2.2 The Kohn-Sahm approach

In 1965, Kohn and Sahm proposed a different approach to sort out the issue of solving the Schrodinger
equation with a hamiltonian of a system of interacting particles [6]. Their idea was to substitute the
original interacting particles problem by an easier problem of non interacting particles with a spe-
cial hamiltonian. Note that hamiltonians of non-interacting particles systems are way easier to solve
that those with interacting particles. Before going on, let us write the assumptions in which their
approach rests [3][Page 134]:

¢ The ground state particle density of the interacting system is equal to the ground state particle
density of some non-interacting system.

* The auxiliary hamiltonian is chosen to have the usual kinetic operator and an effective local
potential V% (r) acting on an electron of spin ¢ at point r.

Ve &5 nor) &5 aom 2 vs)
() ) ) (]
vi({r}) = Yo(r}) Yi=1,n,(X) & Yi(r)

Figure 2.2: On the right, the Kohn-Sham auxiliary system. The arrow with HK( represents the
Hohenberg-Kohn theorem applied to the auxilary system of non-interacting particles. The arrow
labeled KS represents the connection between the auxilary system and the real system. Since every
two points are connected, thanks to the HK theorems, solving for the auxiliary system determines all
properties of the real many-body system. The figure has been extracted from [3][Page 137].

Leaving aside whether or not these assumptions are reasonable, the fact is that their approach has
proved to be really successful for many problems.

With these assumptions, we would have a hamiltonian with the following form':

~ 1
Hauw = =5 V2 + Vi (r) (211)

mportant remark: this is a case of a non-interacting particles system. Therefore, the solutions of the Schrodinger
equation are going to represent one possible state for a single particle (one specific energy for a specific spin). In other
words, the solutions do not represent the wavefunction of the whole system. The ground state of the whole system can be
obtained by filling the orbitals with the lowest energies until we have N particles. A clear example can be a hidrogen-like
system of N non-interacting electrons. To get the ground state, we would fill the orbitals with lowest energies until we fill
N (of course, considering that each orbital can have 2 electrons, one for each spin).
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Let us write the solutions of the Schrédinger equation with the previous hamiltonian as w?(r), and
€ as its eigenvalues. ¢ represents the spin. If we consider a case of N independent particles, the
ground state can be obtained by filling the spin-dependent orbitals with lowest energies until we fill
a total of N. After doing so, we would have filled N orbitals for each spin ¢. With this notation, the
particle density is:

e
n(r) =Y n(r,o) = Z; g7 (r)? (2.12)

And the kinetic energy:
1 Na (4 o 1 Na (4
L= BV = g K [ @rlvyof (213)
O i= 0 1=

Where the s as a subindex is written to clarify that it is the kinetic energy for the non-interacting
particles system (The auxiliary system).

Let us define now the Hartee energy functional:
1 n(r)n (v
EHartree [7’1] = E /dST’ d3r,|(1'>—1(‘/|) (214)

This functional gives the potential energy due to the interaction between electrons (remember that
we are working with Hartree atomic units) in the classical sense.

Now, we shall go back to the interacting particles system. Recall that the total energy could be written
as a functional of the density (equation (2.9)):

Er[] = T[] + Ee[n] + / BrVee(r)n(r) + Exg
— Fi[n] + / & Vexe(£)1(x) + Eny

Remember that HK is just a subindex to reference the Hohenberg-Kohn theorems. The idea of Kohn
and Sahm is to rewrite the previous expression the following way:

EKS [”] = TS [”] + /dSYVeXt(I')Tl(I') + EHartree [”] + EII + EXC [”] (215)

Where the subindex KS is just a reference to the Kohn and Sahm approach. E[n] is the so called
exchange-correlation functional. This functional includes the exchange energy and all the correlation
effects. Note that T[n] is different from T;[n] since in the auxliary system, the particles are not inter-
acting. As a consequence, there are some effects that T;[n] is not taking into consideration. This is
why we do not only need to include an exchange term but also a contribution for the correlation.

Both energies, Exs[n] and Epk [n] must be equal. If we make them equal and we solve for Ey.[n], we
obtain:

Exc[n] = PHK[”] - (Ts [Tl] + EHartree [Tl]) (216)

Exc [1’1] = T[]’l] - Ts [TZ] + Eint [1’1] - EHartree [1’1] (217)

Which express mathematically the form of the exchange-correlation functional. The importance of
the previous two equations will be understood in the following section.
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2.3 The Kohn-Sahm equations

With equation (2.15) and after some mathematical tools (check [3][Pages 138-139] for details about
the derivation), the following equations are obtained:

(His —€7) ¢j (r) =0 (2.18)
HYs(r) = —%VZ + Vis(r) (2.19)

) EHartree 0 Exc
on(r,c)  on(r,0) (2.20)
= ext(r) + VHartree (I‘) + V)?c(r)'

These three equations are the so called Kohn-Sahm equations. Note that equation (2.18) is a Schrédinger-
like equation for a non-interacting particles system. Its hamiltonian depends on the particle density,
which depends on the orbitals that are the solution of the equation. We have a situation in which the
potential depends on the solutions but at the same time, the solutions depend on the potential. To
solve this, one tries with a first trial density and a self consistent algorithm [7][Page 14]. More details

of how to solve the equations will be given in section 2.5.

Viis (1) = Ve (1) +

We can go back to the question of the importance of equations (2.16) and (2.17). Note that if we knew
the exact form of E,.[n] and the external potential, we would know V{s(r) and therefore, we could
solve the Schrodinger-like Kohn-Sahm equation (2.18) with a self consistent algorithm. By solving
that equation, we could obtain all the auxiliary system wavefunctions, then the ground state particle
density of the auxliary system and its energy. The energy of the interacting particles system would
be equal to that of the auxiliary system since both have the same ground state particle density (theo-
rem 1). And all of this, with all the precision our numerical software can manage. If Ey.[n] is known
exactly, the results are exact. To summarize, what we have here is an exact tool. In practice, the only
errors will be a consequence of numerical errors and approximations for the effective potential.

The reality is that we do not have the exact form of the exchange-correlation functional and we have
to use approximations [4][Pages 80-81]. How to face this issue and the ins and outs of solving the
Kohn-Sahm equations is the goal of section 2.5.

2.4 The meaning of the Kohn-Sahm eigenstates

Recall the main idea of the Kohn-Sahm approach: replacing the original system of interacting par-
ticles by an auxiliary system of non-interacting particles with a different Hamiltonian. A logical
question after this ansatz is: do the solutions for the auxilary system have a meaning? Let us try to
answer that.

Now that we know the details of the Hamiltonian (equations (2.18-2.20)) we can see that despite hav-
ing a Hamiltonian of non-interacting particles, the effects of the interactions between particles are
implicitly considered with the different terms of equation (2.20). This could lead us to think that the
Kohn-Sahm eigenstates i.e the solutions of equation (2.18) have a meaning as parts of the interacting
system.

This last idea is a bit tricky. Keep in mind that we started with a system of interacting particles
with a many-body wavefunction i.e a single wavefunction that describes the whole system. After
all the ideas exposed in this chapter, we arrived to a system of non-interacting particles that we can
describe via single-particle wavefunctions but all the interactions are somehow considered via an
effective potential. So, actually, we are expressing the properties of the interacting-system in terms
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of single-particle wavefunctions, in contrast with the real solution that would be a many-body wave-
function.

Regarding this, excellent clarifications are given in [8][Section 2.6]. The Kohn-Sahm eigenstates rep-
resent ficticious particles (Since they belong to the auxiliary ficticious system) but they are extremely
useful to describe the properties of the system in terms of them. In fact, this ficticious particles re-
semble a bit their real counterparts since the effects of interaction, exchange and correlation are taken
into account into the effective potential.

The success of this description will be obvious when analyzing the band structure of CaMn;O1; in
chapter 5.

2.5 How to handle the Kohn-Sahm equations

The Kohn-Sahm equations are usually solved with a self consistent algorithm as shown in figure 2.3.
Some steps require further explanation and deserve more attention. We will use these subsections to
give more details about those steps.

Initial guess

n't (r),n 4 (r)

>

Calculate effective potential

V() = Vext(r) + Viartree[n] + Vi&In T, n*]

Solve KS equation

[—%vz + VG |f (1) = 7y (1)

Calculate electron density

no @) =Y f7|ve @

Self-consistent?

Output quantities

Energy, forces, stresses, eigenvalues, ...

Figure 2.3: Flow chart of a self consistent algorithm to solve the Kohn-Sahm equations. The scheme
has been extracted from [3][Page 173].
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2,51 Calculation of the exchange-correlation potential

As it was said before, we have no exact form for the exchange-correlation functional and we have
to go to approximations. Having an approximated functional allows us to obtain the exchange-
correlation potential that appears in the Schrodinger-like Kohn-Sahm equation (2.18) and from there,
move on. We are going to introduce four different approximations for the sake of learning and com-
pleteness.

Local density approximation (LDA)

First proposed in 1965 by Kohn and Sahm [6][Page 1135], this approximation consists on approxi-
mating the exchange-correlation functional as follows [7][Page 18],[9][Page 22]:

EPA ] = [ n(r)es(n(x))dr @21)
unif

where 50" (n) is the exchange-correlation energy per particle of the infinite uniform electron gas with
density n.

The function 2% (1) has exchange and correlation contributions i.e el () = (1) + if (n).
The exchange energy per particle is well known analytically, but the correlation energy per parti-
cle is not. However, the correlation contribution has been numerically calculated via Monte Carlo

calculations [10].

Local spin density approximation (LSDA)

The local density approximation does not take into account the spin polarization of the system. Let
n' be the particle density for spin up particles and n+ the particle density for spin down particles.
The LSDA approximation consists on approximating the exchange correlation functional as follows
[3][Page 153]:

ELSPA {nT, ni} = /dBrn(r)e)‘jé‘if (nT(r),ni(r))

(2.22)

= / d®rn(r) [e}mif (nT(r), n\L(r)) 4 eunif (nT(r), ni(r))}
Where e\nif (nT (1), ni(r)) is the exchange-correlation energy per particle of the infinite uniform elec-
tron gas with spin up density n'(r) and spin down density n*(r). So essentially, it is analogous to the
LDA approximation for spin polarized systems. The last equality of equation (2.22) follows from the
division of the exchange-correlation energy per particle into an exchange contribution and a correla-
tion contribution.

This approximation works better for systems similar to the uniform electron gas such as nearly-free
electron metals.

Generalized-Gradient Approximations (GGAs)

This kind of approximations were born to take into consideration the non-uniform density of solids
[7][Page 18] (Remember that the previous approximations considered a situation akin to a uniform
electron gas). In order to do so, the designed exchange-correlation functional is not only a functional
of the density but a functional of both density and its gradients [9][Page 24]. A general form for this
functionals is [3][Page 154]:

ESCGA [nT, ni] = /da‘rn(r)eXC (nT, nt, ’VnT‘ , ‘Vni) ,) (2.23)

GGA’s approximations are better than LSDAs in many cases [3][Page 153]. They work well for atoms
and molecules since they describe well exchange-correlation effects on low density zones. Neverthe-
less, they are not good for strongly correlated systems [7][Page 19].
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DFT+U approximations for the exchange-correlation functional

DEFT is successful in many cases, but it fails in the description of highly correlated systems due to
inability of the exchange-correlation functional to represent the many body effects. These functionals
tend to overlocalize valence electrons and assign lower energies to metallic ground states. [11][Page
5].

In strongly correlated systems, the coulombic repulsion between electrons make them localized in
such a way they cannot move between atoms, they can move only by hopping?[11][Page 6].

DFT+U is a method to obtain better exchange-correlation functionals which aim for a better descrip-
tion of strongly correlated systems. In this context, U is the so called Hubbard parameter. The ob-
jective is to introduce a correction in the functional to take into consideration the strong coulombic
repulsion between the very localized electrons. These kind of corrections improve the description
of correlated states while keeping the same good description of valence states given by DFT. In par-
ticular, this approach serves as a good description of the d and f orbitals, which in many cases are
the ones participating in the bonds and hence, they determine a lot of properties of a compound
[11][Page 7]. The corrections are dependent on two parameters: U and ] (both with energy units.
We will omit units to work only with eV) which measure the coulomb interaction and the exchange
respectively. The choice of this parameters is done semiemipirically, choosing those values that make
the best agreement of a certain magnitude with experimental data [12].

Putting everything into equations, the exchange-correlation functional would be like [13][Page 4]:
Eprr+u = Eprr + Eu (2.24)

Where E;; is the new contribution to the functional.

No more details are needed for the understanding of this work, but the interested reader can find
more information on [11], [12], [13] and the references therein.

2.5.2 Approximations for the external potential: pseudopotentials

In the effective potential of the Kohn-Sahm equations (2.20), there is a contribution of the external
potential acting on the system, Vey (r). This external potential is originated by the ions and acts over
all electrons. The electrons that influence the most the properties of a system are those in the outer
shells of the atoms i.e the valence electrons. These valence electrons interact with valence electrons of
other atoms. Their interaction, their bond, determines greatly the physical and chemical properties.

The idea of a pseudopotential is to focus only on these valence electrons. Instead of considering all
the electrons in our auxiliary system of non-interacting electrons, we can consider only the valence
electrons. Then, core electrons do not contribute to the particle density” but their effect on the system
is considered by means of an alternative external potential called a pseudopotential.

To sum up, pseudopotentials are effective potentials acting on valence electrons that aim to represent
the effect of the nucleus and the core electrons on the valence electrons [3][Page 204]. By using them,
the original problem is replaced by other with a different Hamiltonian and a different external poten-
tial. The eigenfunctions of the new hamiltonian are called pseudowavefunctions. The wavefunctions
of the original Hamiltonian (the one that considers all electrons) are called all-electron wavefunctions.

Good pseudopotentials satisfy the following properties [3][Page 213]:

2We are referring to the quantum hopping effect.

3Remember that the effective potential of the Kohn-Sahm equations is a functional of the particle density. If the core
electrons are not considered in the particle density, the effective potential changes. To compensate this change, the effects
of the core electrons on the total energy are incorporated in the pseudopotential.
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1. All-electron eigenvalues and pseudoeigenvalues agree for the chosen atomic configuration.

2. All-electron wavefunctions and pseudowavefunctions agree for values of r greater than a cutoff
radius 7.

3. The logarithmic derivatives* of the wavefunctions and pseudowavefunctions agree at the cutoff
radius.

4. The integral of the wavefunctions and pseudowavefunctions between 0 and r. are equal.

The usefulness of pseudopotentials is that they make calculations way faster thanks to the fact that
they consider only the valence electrons. The four previous properties translate intuitively as shown
in figure 2.4.

A

pseudo wavefunction Full wavefunction

/

_~ Full potential

Figure 2.4: In blue: the pseudowavefunction (Dashed) and the all-electron wavefunction (Plain). In
red: pseudopotential (Dashed) and full potential (Plain). The dashed black vertical line shows the
cutoff radius, named r, in the plot. The figure has been extracted from [14][Figure 4.1].

2.5.3 The PAW approach

The projector augmented wave method (PAW) serves to simplify calculations by solving an alterna-
tive Schrodinger-like equation with smooth solutions [3][Page 225]. Only the essential details will be

4The logarithmic derivative is defined as D; (e, ) = ryp](e,7) /4 (e,7) = r% Iny; (e, 1)
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given in this section. The interested reader can go to [3][Section 11.11].

The PAW approach consists on defining a smooth part of a valence wavefunction: ¢?(r) and a linear
transformation ¢* = T ¢” relating the all-electron wavefunctions ¢ and the smooth valence wave-
functions. The transformation is unity except in a sphere centered in the nucleus.

With those definitions and after some good and difficult ideas, an alternative Schrodinger-like equa-
tion for the smooth wavefunctions can be obtained:

AMAg @) = | =372+ V4 () = e .29

This new Schrodinger-like equation is easier to solve than the original one and the full wavefunction
can be obtained via the transformation 7 previously defined.

2.5.4 Solutions of the Schrodinger-like equations

Bloch’s theorem states that the wavefunctions of the electrons (In the one-electron frame) in a periodic
crystal can be written as [7][Pages 24-25]:

Pic(r) = e™Tu (r) (2.26)

Which means that k is a good quantum number. uy (r) is a function with the periodicity of the direct
lattice, this means that if R is a vector of the direct lattice, uy (r) = uy(r + R). Functions that satisfy
this last property can be expanded as a sum of reciprocal lattice plane waves:

u(r) = Z eC o g (2.27)
{G}

{G} represents the set of reciprocal lattice vectors, G, a specific reciprocal lattice vector and cy g are
the coefficients of the expansion. By inserting (2.27) into (2.26), we get:

Pic(r) = Y i gel G (2.28)
{G}
As a result, we can write the one-electron wavefunctions as in equation (2.28). The coefficients cy g
can be calculated by inserting equation (2.28) into a Schrodinger equation, then multypling both sides
by a plane wave el®* and then integrating in all real space.

The issue now is that (2.28) runs over an infinite number of plane waves, which is not possible to
implement in numerical calculations. In practice, we need to take a finite number of terms. To do
so, an energy cutoff is specified in such a way, only the plane waves with equal or less energy are
considered. Mathematically, for a fixed k and energy cutoff E,c,:, the sum in (2.28) is truncated to:

Pic(r) = Y o el (G (2.29)

12|G+k|2
{G:%SEFWUU}

Finding an appropiate energy cutoff is part of every DFT calculation.

2.6 Ionic relaxations

This work required many geometry optimizations. A geometry optimization process finds the posi-
tions of the nuclei such that the total energy is in a local minima. In a local minima, the nuclei are in
equilibrium. As a result, the total force acting on each nuclei is zero (in practice, numerically zero).
Nevertheless, nuclei belong to a unit cell with a specific volume and shape and therefore, the total
force on each nuclei must be zero with the requirement of a certain volume and shape of the unit cell.
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The shape and volume of the unit cell is determined by the stress tensor 0,5. As a result, in order to
find such the equilibrium configuration, we need a method to calculate the values of the stress tensor
and another one to calculate the forces acting on each atom.

The forces acting on an atom can be calculated with the Hellmann-Feynman theorem [3][Page 57].
Let F; be the force acting on the nuclei I, with coordinates R;. The Hellman-Feynman theorem states
that:

F— — / & (r) Velr) _ OEu (2.30)

3R1 JR; JR;

Giving then an explicit way to calculate forces on the nuclei.

The components 0, of the stress tensor can be calculated analitically [3][Page 59]:

h? 1 )y (Xee)g /1 d
U'ucﬁ = — <‘Y ;TrnkV}mv;{ﬁ — E Z ( V)

k2K Xik! dxkk/
Where the sum over k and k" runs over all particles, both nuclei and electrons.

‘P> (2.31)

In this work we wanted to subject the CaMn;Oj, system to hydrostatic pressure. Having an explicit
way of calculating the components of the stress tensor serves as a way to check wether or not the
pressure is hydrostatic. If the pressure is hydrostatic, the stress tensor is diagonal.

2.7 The Jahn-Teller effect

The Jahn-Teller effect is the consequence of the Jahn-Teller theorem, formulated by them in 1937 [15]:
"We shall show that stability and degeneracy are not possible simultaneously unless the molecule is a linear
one”. Although the statement refers explicitly to molecules, it also applies to complexes in solids.
Our case of interest is its effect on octahedral complexes.

So now, let us take as example a Mn3*- Og octahedron in a solid. The electronic configuration of the
manganese atom is [Ar]3d*. A regular octahedron belongs to the space group O;. We already know
that the O, symmetry affecting the manganese atom leads to a shift of its energy levels, in particular,
the 3d energy levels [16][Pages 255-260]. The 3d energy levels get divided into an e, doublet with en-
ergy above the initial and a 5, triplet with energy below the initial. The e, doublet and the t,¢ triplet
are separated by an amount of energy named A. Depending on the value of A, the split orbitals are
filled differently [17]. If A is greater than the energy required to pair two electrons, the t, is filled
completely before the e,. When A is less than the pairing energy, the e, is filled before pairing the
electrons in t,. Examples of these two situations are depicted in figure 2.5. Figure 2.5 up shows one
and only one spin down electron. Note that this spin down electron could be placed in either the
dy, or the dy, orbitals while maintaining the same total energy. Therefore, the state is degenerate.
Similarly, figure 2.5 down has only one electron on the e, level. This electron could be placed in
the d,._,» and the system would maintain the same energy. Therefore, the state is degenerate. The

conclusion is: does not matter the value of A, the Mn3*- Og octahedron is in a degenerate state. As
a result, the Jahn-Teller theorem applies, the system is not stable and this degeneracy must be broken.

Degeneracy is broken by splitting the e, and t,¢ levels. This splitting can be done in the two different
ways figure 2.6 shows [17]. In practice, the break of degeneracy translates into a distortion at the
octahedron, making it elongated or compressed along its long axis.

So in the end, the Jahn-Teller effect leads to a distortion at the octahedron which leads to a lower
energy configuration (more stable).
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Figure 2.5: Filling of the t>; and e, depending of the value of A. Up: large A. Down: small A Note
that in both examples, the state is degenerate. Therefore, Jahn-Teller theorem applies.
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Figure 2.6: Splitting of the t5; and e,. Up: the splitting for the elongated octahedron. Down: the

splitting for the compressed octahedron.



The good thing about computers is that
they do what you tell them to do. The bad
news is that they do what you tell them to
do.

Ted Nelson

Chapter 3

Computational procedure with VASP

The aim of this chapter is to give details of the procedure followed to carry out all calculations and,
at the same time, give a brief explanation of how VASP works. The reader unfamiliar with DFT cal-
culations should get basic ideas so that the procedure does not seem opaque.

Remember that we aim to find the appropiate U Hubbard parameter and structural properties we can
compare with experimental data (next chapter). Hence, we will explain briefly what was done to
obtain such magnitudes.

3.1

VASP input files

VASP requires 4 input text files, with names INCAR, POSCAR, POTCAR and KPOINTS, each with a
specific function:

3.2

INCAR: this file is to ask for what to calculate and how.

POSCAR: this file contains the geometry of the lattice (lattice vectors) and the positions of the
atoms. In this work we used two different type of POSCARs, one type for the low pressure
phase and another one for the high pressure phase.

POTCAR: contains the pseudopotential used for each atomic species and the electrons consid-
ered as valence electrons.

KPOINTS: defines a mesh over the first Brillouin zone. The reciprocal space points of this mesh
(k-points) will be those considered in the calculations.

VASP output files

VASP has many output files (way more than input files). In this text, we will introduce only the
relevant ones for this context:

OUTCAR: contains the resulting forces, stress tensor, pressure, cell volume internal energy...

CONTCAR: it has the same format as POSCAR. It contains the lattice vectors and the positions
of the atoms after the ionic relaxation.

DOSCAR: contains the density of states and the integrated density of states.
CHGCAR: contains the charge-density

vasprun.xml: main output in different format. In this work, it was used to obtain the band
structure.

17
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3.3 Scheme to obtain the results

In this work, we wanted to obtain the appropiate U Hubbard parameter capable of correctly describing
the electronic properties and structure of CaMn;O15.

With that being said, we can write the procedure to obtain these magnitudes:
1. Finding the energy cutoff and the size of the k-points mesh for proper convergence.

2. Finding the relaxed structure for the low pressure phase at 0 GPa i.e ambient pressure (for each
value of the U Hubbard parameter).

3. Obtaining the density of states for the low pressure phase at 0 GPa with a big enough mesh (for
each value of the U Hubbard parameter).

4. Obtaining the band structure for the low pressure phase at 0 GPa (for each value of the U
Hubbard parameter).

5. Choosing the most appropiate value of the U Hubbard parameter.

6. Relaxing both phases for different values of pressure (With the U Hubbard parameter chosen in
the previous step).

3.4 General considerations in all calculations

All calculations were performed with VASP under the Density Functional Theory approach. The
PAW pseudopotential method and GGA+U were used with the functional PBEsol[18]. The ] param-
eter was chosen to be 1.4 for all calculations as it was in [19],[20]. For Ca, 3]96452 electrons were
considered as valence electrons. For Mn, 3p°3d%4s! electrons were considered as valence electrons.
For O, 2523p* electrons were considered as valence electrons. Converged results were obtained by
setting the energy cutoff to 500 eV. The Ry parameter (defined in the following section) was set to 40,
resulting in a 8 x 8 x 8 k-points mesh. For each volume (or pressure), the structure was relaxed after
the calculation of forces on the atoms and the stress tensor. In the relaxed configuration, the forces
acting on the atoms were lower than 0.005 eVA~! and the stress tensor differed from a diagonal form
in less than 0.1 GPa.

The density of states and the band structure were obtained with a dense 16 x 16 x 16 mesh. The
band structure was calculated along the high symmetry pathT —X|]Y - T —Z[R-T—-T|U-T — V.

3.5 Finding the appropiate k-point mesh and energy cutoff for conver-
gence

As it was explained in section 2.5.3, calculations require an energy cutoff in order to choose a finite
number of plane waves. Besides, the KPOINTS file determines the number of points in the first Bril-
louin zone considered. What is the influence of the cutoff and the number of points on the results?
For an accurate representation of a real world system, both variables should be high enough so that
we get results compatible with experimental measurements. However, choosing excessively high
values will delay the calculations. As a consequence, the scientist must think of a balance between
precision, accuracy and computational time. The computational time has to be the minimal such that
the results are obtained with the desired accuracy.

So the question now is, how do you balance the energy cutoff and the number of k-points so that you
get accurate results? In this work, we analyzed the behaviour of the total energy as a function of both
the energy cutoff and the number of k-points.
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The first step was to take two different states for the low pressure phase (analogous for the high

pressure phase) i.e at two different but very similar pressures. After doing so, the procedure was as
follows:

* For a fixed number of k-points, an ionic relaxation followed by an energy calculation was per-
formed for different values of the energy cutoff (for both pressures).

* For the highest energy cutoff considered in the previous step, an ionic relaxation followed by
an energy calculation was performed for a different number of k-points (for both pressures).

Once the calculations were finished, the difference in energy between both states was analyzed as a
function of both the energy cutoff and the number of k-points. Both differences should converge to a
certain value for a high enough energy cutoff and a dense enough mesh.

When the number of k-points was fixed, the mesh was created with the regular mesh option with 6
subdivisions along the direction of each vector of the conventional reciprocal lattice basis. The format
of the resulting KPOINTS file is shown in figure 3.1.

Automatic mesh

5 I' number of k-points = 8 -»automatic generation scheme
Gamma I generate a Gamma centered grid

6 6 b ! subdivisions N_1, N_2 and N_3 along recipr. 1. vectors
8. 8. a. I optional shift of the mesh (s 1, s 2, s 3)

Figure 3.1: Format of the KPOINTS file for a regular mesh.

With the energy cutoff being fixed, the mesh was created with the automatic option and changing
the value of the Ry parameter. The Ry parameter is a number such that [21] the mesh is:

k=) b;

1

3
Vn; € [0, Ni[ (3.1)
-1

Zl=s

Where b; is a vector of the conventional reciprocal lattice basis and
N; = int (max (1, R |b;| +0.5)) (3.2)
The format of the resulting KPOINTS file is shown in figure 3.2.

Automatic mesh

5 I' number of k-points = @ -» automatic generation scheme
Auto ! fully automatic
48 I length (R_k)

Figure 3.2: Format of the KPOINTS file for an automatic generated mesh. The Ry parameter is speci-
fied on the last line of the file.

Once an appropiate selection of the mesh and the cutoff has been made, one can proceed with the
calculations with a proper convergence guaranteed.



History is the version of past events that
people have decided to agree upon.

Napoleon Bonaparte

Chapter 4

Current relevant knowledge about
CaMn;0Oq»

It is said that any work of art cannot be understood without its context. In a similar way, the results
of this work can not be completely understood without their context. Therefore, in this chapter we
will introduce some of the state of the art. The results exposed in this chapter will serve as context
for the following chapters and as a source to compare the results with experimental data.

4.1 Its crystal structure at low and high pressure

CaMn;Ox; crystallizes at ambient conditions in a rhombohedral lattice with space group R3 [22][Page
14903]. Its main peculiarity is that Mn occupies three different non-equivalent positions and acts with
two different valences, Mn®* and Mn**. One of those positions is in a square-planar coordination
(Mn1). The other two are in a octahedral coordination, but the difference in the valence makes one of
them a distorted octahedron (space group Dy;,) whereas the other one is a perfect octahedron (space
group Oy) [2][Page 1]. At the distorted octahedron (Mn2) and in the square-planar coordination, the
oxidation state of manganese is Mn3* whereas in the regular octahedron (Mn3) is Mn**. The origin
of the distortion is the Jahn-Teller effect [2][Page 1], [19][Page 4].

CaMn;Og; structure at ambient conditions is represented in figure 4.1. Note that the figure does not
show its primitive cell. The three different non-equivalent sites for Mn are shown in figure 4.2. Note
that for the compressed octahedron, there are two different distances. A distortion quenching would
make the two kind of octahedra equivalent, leading to an increase in symmetry and hence, to a phase
transition. There are many ways to eliminate that distortion, and applying pressure is one of those.

In [2], they show how at ambient temperature, CaMn;O1, undergoes a first-order charge-ordering
phase transition with pressure (around 28 GPa) from a rhombohedral lattice with space group R3 to
a cubic lattice with space group Im3. The details of the phase transition are object of the next sec-
tion, but we can anticipate that the increase in pressure leads to a different charge order that ends up
eliminating the distortion and the two different kinds of octahedra become equivalent. As a result
in the high pressure Im3 phase, there are only two different non-equivalent positions for Mn, one in
a square planar coordination and another one in a perfect octahedral coordination. This situation is
shown in figure 4.3.

It is important to remark that these two structures are very similar. So similar that in [2][Page 4], the

X-ray diffraction refinement was convergent for the Im3 phase even for pressures below the phase
transition pressure.

20
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Figure 4.1: Ambient conditions crystal structure of CaMn;Oy,. Its lattice is rhombohedral type with
spatial group R3. Blue octahedra are those for Mn2 i.e distorted octahedra with Mn®*. Pink octahedra

are the regular octahedra (Mn3 with Mn*"). Green squares show the square-planar coordination of
Mnl.

D4n

Compressed
octahedron

Mn3+

Figure 4.2: The three different positions that Mn can occupy at the low pressure R3 phase of
CaMny;Oq,. The distorted octahedron has 2 different distances.
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Figure 4.3: Ambient temperature high pressure crystal structure of CaMn;O;. Its lattice is cubic type
with spatial group Im3. Note that in this case, there is only one type of octahedron, depicted in pink.

4.2 Pressure-induced charge-ordering phase transition
In [2], they performed resistivity and single-crystal X-ray diffraction experiments on CaMn;O1; to

study its pressure-induced phase transition and to analyze the role of the distortion at the distorted
octahedron along the phase transition. The first result relevant for this text is shown in figure 4.4:
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Figure 4.4: Results of resistivity measurements as a function of pressure for CaMn;O;, at ambient

temperature. Note the logarithmic scale on the y-axis. The figure has been extracted from [2][Figure
2].

The huge drop in resistivity in the range between 18 and 28 GPa might suggest the existence of a
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pressure-induced phase transition, but further investigation is required to verify whether that hy-
pothesis is correct. Figure 4.4 will allow us to check if our DFT calculations are properly predicting
the beginning of the pressure-induced phase transition.

The single-crystal X-ray diffraction experiment allowed to obtain the distances in the Mn-O octahedra
with pressure (Figure 4.5). In blue, the longest distance in the distorted octahedron. In pink, the
distance in the regular octahedron. In yellow, the shortest distance in the distorted octahedron. In
green, the points for the high pressure phase, which correspond to the only distance in the regular
octahedron in the high pressure phase. All distances converge to a single one at a pressure around 28
GPa. This pressure should be the end of the phase transition according to figure 4.4. The convergence
of all distances to a single value is a proof that the two types of octahedra became equivalent positions
and hence, the distortion that was affecting the distorted octahedron is gone. It is also remarkable
how between 20 and 28 GPa, the shortest distances increase while the largest distance decreases at a
higher rate.

2.053} * . . (a)
2.00:_ i}} { ) 4x Mn3*-0 ]
< ] by i
: 1.95} A i -
i i
o g * \'6x Mn**-0
s 1.90; *** ; -
U 4 byt ¢ ; * ¥
"/.;/. 2x Mn3*-0

Pressure (GPa)

Figure 4.5: Graph of the evolution of the Mn-O distance with pressure. In blue, the longest distance
in the distorted octahedron. In pink, the distance in the regular octahedron. In yellow, the shortest
distance in the distorted octahedron. In green, the points for the high pressure phase, which corre-
spond to the only distance in the regular octahedron in the high pressure phase. The plain lines are
just guides for the eye. The figure has been extracted from [2][Figure 3].

The distortion at the compressed octahedron can be quantified with the Jahn-Teller distortion param-
eter oj7. In this text, we will use the definition given in [23][Page 4221]:

] 1/2
o = ( (Rvn—o0 — <RMn—O>)2> (4.1)
i-1
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Where Ry o is one of the six distances in the octahedron and (Ryn—0) is the mean distance. The
evolution of this parameter with pressure is shown in figure 4.6. The figure shows how the distortion
starts decreasing heavily at around 18 GPa and is completely gone at around 28 GPa. As a conse-
quence, all the octahedra become equivalent, leading to the R3 to Im3 phase transition discussed in
the previous section. The dashed line shows how the initial tendency would lead to a Jahn-Teller

quenching well above 40 GPa. This fact suggests that the Jahn-Teller distortion has not disappeared
because of the action of the pressure.

Experimental Jahn-Teller distortion with pressure
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Figure 4.6: Evolution of the distortion affecting the compressed octahedron with pressure. The dis-
tortion starts decreasing heavily at around 20 GPa and is completely gone at around 30 GPa. The

dashed line shows a linear extrapolation considering the points below 20 GPa. This extrapolation
shows the pressure for the Jahn-Teller quenching. Data extracted from [2][Figure 3].

Figure 4.7 shows the evolution of the volume of the different types of Mn-Og octahedra. Between
0 and 20 GPa, there is a monotonic decrease in the volumes of the octahedra, consistent with an
increase in the hydrostatic pressure. After 20 GPa, we can see how the two different volumes start
getting closer one to the other. The volume of the regular octahedra increases between 20 and 28 GPa,
getting closer to the volume of the distorted octahedra. At around 28 GPa, the two volumes turn into
only one, the phase transition is complete and there is only one type of octahedra

The dashed lines show a fit of the data below 20 GPa to a third order Birch-Murnaghan equation of

state [24][Page 5]:
AL 3, o\’
(V) _<V) {1+4(K°_4) <V> _1” 42

Where Kj is the bulk modulus and Kj is its derivative. Mathematically:

_ 3K

P(V) =3
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Figure 4.7: Evolution of the volume of the Mn-Og octahedra. In blue, points for the distorted octa-
hedra. In pink, points for the regular octahedra. In green, points for the regular octahedra of the
high pressure phase. The dashed lines show the fit of the data below 20 GPa to a third order Birch-
Murnaghan equation of state [24][Page 5]. The figure has been extracted from [2][Figure 3].

The lattice parameters (Figure 4.8 (a)) are two below 30 GPa. Around 30 GPa, there is a change from
having two different parameters to only one. This is consistent with a phase transition between the
R3 phase and the Im3 phase.

There is a monotonic decrease in the cell volume (Figure 4.8 (b)) as pressure increases. The dashed
line is a fit of the data to a third order Birch-Murnaghan equation. Its range is shown by the dashed
line itself.
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Figure 4.8: (a) Evolution of the lattice parameters a and ¢ with pressure. The subindex . corresponds
to the cubic phase whereas the subindex y corresponds to the rombohedral phase.

(b) Evolution of the cell volume with pressure. The dashed line is a fit of the data to a third order
Birch-Murnaghan equation. Its range is shown by the dashed line itself. The yellow straight line is
just a guide for the eye that shows the extrapolation of the fit. The /Z in the y-axis is an erratum.
The figure has been extracted from [2][Figure 4].

In [2], they claim that the mechanism of this phase transition is via charge ordering with the Mn>"
changing to a new oxidation state. How can we infer that with the results presented in this text? Let
us recall some conclusions of the previous figures:

¢ Figure 4.4 shows a huge drop in resistivity. As a consequence, we can conclude that there has
been some charge delocalization during the phase transition.

¢ Figure 4.6, specifically, its linear extrapolation, hints that the Jahn-Teller pressure quenching
should happen at around 45 GPa. However, the Jahn-Teller distortion is extinct at 28 GPa. This
fact suggests that pressure has not been the agent responsible for the vanishing of the Jahn-
Teller distortion.

These two deductions already hint the charge-ordering mechanism, but the pressure quenching of
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the Jahn-Teller distortion must still be discarded.

To do so, the ideas of [25] can be used. In that paper, it is shown how the Jahn-Teller quenching
pressure can be estimated with the Jahn-Teller energy, Ejr, defined as the energy required to turn a
Dy, distorted octahedron into a Oy, regular octahedron. The greater the value of Ejr. the bigger the
quenching pressure. Under the assumptions' of [25], the Jahn-Teller energy can be calculated with
the following formula:

K()V() xl_Ké — K(/)
Er = 4.
JT K] ( K1 +x (4.5)

Where x = Verit/Vy and V., is the final volume of the regular octahedron (Right after the phase tran-
sition is complete). Vp, Ko and KJ are the fit parameters of the third order Birch-Murnaghan equation
as shown in equation (4.2).

With this method, they obtain for Mn-Og distorted octahedron in LaMnOj3 that Eyr = 0.25 eV with
P.it = 30 GPa [25][Page 4]. In [2][Page 5], they obtain for the distorted octahedron in CaMn;O, that
Ejr = 0.46 eV, which is higher than that for the same type of octahedron in LaMnOj3 and as a result,
P,,it must be greater than 30 GPa in the case of CaMn;O;.

However, the Jahn-Teller distortion is already gone by 30 GPa. It is concluded then that pressure is
not responsible for the quenching of the Jahn-Teller distortion and that another mechanism must be
behind it.

In [19], a temperature-induced charge-ordering phase transition is reported. In this phase transition,
the Mn®** changes to a Mn*#* oxidation state.

After this discussion and in analogy with the temperature-induced charge-ordering phase transition
reported in [19] it is concluded that the mechanism of the phase transition must be a change in the
charge ordering with the Mn>" changing to Mn>2>" .

IWhich are quasiadiabatic conditions and a Murnaghan equation of state: P(V) = 22



This is where the fun begins

Anakin Skywalker

Chapter 5

Results and analysis

5.1 Finding the proper parameters for convergence

After following the procedure of section 3.5, the results shown in figures 5.1 and 5.2 were obtained.

Figure 5.1 shows the energy cutoff convergence (left) and the k-points convergence (right) for the
low pressure phase. The energy difference has already converged for energy cut offs of 300 eV and
above. For the k-points convergence, note that the scale is of the order of 10~2. The converged values
on Figure 5.1 left are about this exact same order of magnitude. This means that all values in figure
5.1 can be considered converged (with the chosen energy cutoff) .
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Figure 5.1: Convergence results for the low pressure phase. The difference in energy |AE]| is taken
as the internal energy of the system with a 194.755 A3 volume cell minus the internal energy of the
system with a 194.72 A3 volume cell. On the left, the behaviour of |AE| as a function of the energy
cutoff with a 6 X 6 x 6 mesh. On the right, the evolution of |AE| with the parameter Ry, which controls
the number of k-points in the mesh with an energy cutoff of 540 eV.

Figure 5.2 shows the energy cutoff convergence (left) and the k-point (right) convergence for the high
pressure phase. The energy difference has already converged for energy cutoffs of about 450 eV and
above. The case of convergence as a function of Ry is more clear this time. All points have a |AE| of
the order of 1073, which is good enough. For values of Ry of 45 and above, the energy difference
seems to converge to a value of 10~2.

28
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Figure 5.2: Convergence results for the high pressure phase. The difference in energy |AE| is taken
as the internal energy of the system with a 191.05 A3 volume cell minus the internal energy of the
system with a 191.6 A3 volume cell. On the left, the behaviour of |AE| as a function of the energy
cutoff with a 6 x 6 x 6 mesh. On the right, the evolution of |AE| with the parameter Ry, which controls
the number of k-points in the mesh with an energy cutoff of 540 eV.

From the analysis of the two previous cases, we find out that:

 For both phases (high and low pressure), the energy difference has converged for energy cutoffs
above 450 eV.

* For both phases (high and low pressure), the energy difference is low enough for values of Ry
above 40.

The rest of the calculations were carried out with an energy cut off of 500 eV and a Ry = 40. Ry = 40
corresponds to an 8 x 8 x 8 mesh.

5.2 Band structure and gap as a function of the Hubbard parameter

Table 5.1 shows the value of the band gap for different values of the U Hubbard parameter. We can ob-
serve an increase in the energy band gap as U increases. This tendency is also reported in [26][Figure
7] and [27][Figure 3]. The energy band gap was found to be indirect in every case and always between
the same k points of the path followed.

U (Hubbard parameter) 5 4 3.5 3 2
Energy band gap (eV) 0.7435 0.4221 0.2369 0.0472 0

Table 5.1: Values of the energy band gap as a function of the U Hubbard parameter.

The influence of the U Hubbard parameter on the band structure can be noted in figure 5.3. For U=2,
CaMn;Oz; is a metal, with no gap at all. Several bands cross the Fermi level. For the rest of the values
of U, CaMn;Oy; behaves as a semiconductor, with a very small band gap. Despite the increase in the
band gap with increasing U, the shape of the bands remains almost unchanged. The indirect band
gap is specified for the case U=3.5 with a double arrow. When explaining DFT+U functionals, we
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stated that DFT+U served as a better description of d and f electrons than DFT by itself. The partic-
ular influence on d bands can be observed in figure 5.4. This figure shows the spin-dependent total
density of states with the contributions of the p oxygen electrons and the d manganese electrons. All
DOSs are affected by the change in U. Regarding the 3d bands, their location in energy changes with
U but not their energy bandwidth.

The energy band gap can also be observed with the DOS. Figure 5.5 is a closer look at the DOS around
the band gap (using the same energy range as in the band structure of figure 5.3). For U=3, the band
gap is so small that the energy resolution available is not enough to see the actual band gap. With
this zoom-in, We can see that the band gap corresponds to transitions from the 2p oxygen orbitals to
3d manganese orbitals. This transition is dipole allowed and hence, optically accessible.

In [19][Page 4], they claim the electronic band gap of CaMn;O;; is 240 meV. For U= 3.5, we obtained
a bandgap of 236.9 meV which is consistent with the cited result. Therefore, we chose U=3.5 as the
appropiate value for the description of the electronic properties and the structure. In the following
sections, only the results for U=3.5 will be presented. The results for the rest of the U Hubbard param-
eters are left for chapter 6.

But why a good description of the electronic properties should translate into a good description of the
structure? The structure is determined by all electrostatic interactions. The most important ones are
those of the outer shell electrons, which interact with the electrons of other ligands and participate in
the bonding. If we manage to find a good description of all the electrons and in particular, of those
of the outer shells that interact with electrons of other atoms, we will have found a good description
of the electrostatic interactions between atoms and since these determine the structure, we will have
found a good description of the structure. The following sections will serve as the acid test for this
reasoning.
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Band structure for U=2 Band structure for U=3
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Figure 5.3: Band structure for each value of the U Hubbard parameter along the high symmetry path
I =X|Y-T—-Z|R—T —T|U —T — V. The red line (zero energy) is located at the chemical poten-
tial. The x-axis indicates the high symmetry path along the first Brillouin zone. The double arrow on
the U=3.5 plot shows the indirect gap.
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Figure 5.4: Density of states for different orbitals and values of the U Hubbard parameter. Positive density
is spin up DOS whereas negative density is spin down DOS. Zero energy corresponds to the value of the
chemical potential. The energy range was chosen to observe the influence of U on the distribution in energy of

the orbitals.
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5.3 Stability of each phase and the phase transition: enthalpy

The stability of a phase can be measured via thermodynamic potentials. Every thermodynamic po-
tential (excluding entropy) decreases when transiting to a more stable phase. In our case, we can use
enthalpy as the thermodynamic potential to check the stability of the high pressure phase vs the low
pressure phase. Enthalpy H is defined as:

H=U+PV (5.1)

Where U is the internal energy of the system, P its pressure and V its volume. The difference in
enthalpy between the high pressure phase and the low pressure phase (Figure 5.6) changes its sign
at around 20 GPa indicating the beginning of the phase transition. Hence, the Im3 phases starts
being more stable from 20 GPa. This is consistent with the resitivity measurements (Figure 4.4) that
concluded the phase transition takes place between 18 and 28 GPa, having a phase coexistence due
to the first order nature of the phase transition.

Difference in enthalpy for U=3.5
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Figure 5.6: Difference in enthalpy between the high pressure phase (Im3 phase) and the low pressure
phase (R3) phase. The red line marks the zero value. The difference turns negative at around 20 GPa,
indicating that the phase transitions starts at that value.
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5.4 Long-range order structure

According to the agreement of the electronic structure with experimental information for U=3.5, we
should observe good agreement as well for the structure-related magnitudes.

The pressure evolution of cell volume (Figure 5.7 left) is very similar to the experimental data (Figure
4.8 (b)), with a starting point around 200 A3, a complete phase transition around 28 GPa and the
volume of the high pressure phase well around 175 A3. We can check the similarity between com-
putational and experimental data with the fits to a third order Birch-Murnaghan equation of state.
Considering the errors shown in figure 4.8 (b), the values for Ky and K{, obtained here are compatible.
The opposite goes for Vy which does not overlap with the error interval. Nevertheless, the value
presented here is very close to the one in figure 4.8 (a).

Volume of cell with pressure for U=3.5 Lattice parameter with pressure for U=3.5
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Figure 5.7: (Left) Volume of the primitive cell under pressure. The dashed line is a fit to a third order
Birch-Murnaghan equation of state with parameters shown in the bottom-left side of the plot. The
points considered for the fit are those under 20 GPa.

(Right) Value of the lattice parameters under pressure. The rhombohedral low pressure phase has
two lattice parameters whereas the cubic high pressure phase has one.

The lattice parameters (Figure 5.7 right) present a great agreement with the experimental ones (Figure
4.8). For the lattice parameter a of the low pressure phase, we observe its starting point around 10.5
A, reaching a value around 10 A right before the phase transition is complete, which compares very
well with figure 4.8 (a). The values of c lie between 6.5 and 6 A approximately, in good agreement
with the experimental data of figure 4.8 (a). The few values for the high pressure phase are around 7
A both computationally and experimentally.

5.5 Short-range order structure

The Jahn-Teller distortion with pressure (Figure 5.8 left) features a linear decrease in the distortion
with pressure that can be observed up to 28-30 GPa. The linear tendency is already broken between
the last two points of the low pressure phase, where a greater decrease can be observed. After 28-30
GPa, the high pressure phase is present, and hence, the distortion is vanished. This vanishing of the
distortion coincides with the ending of the phase transition. The linear extrapolation made with the
points of the low pressure phase indicates that the Jahn-Teller quenching pressure should be around
59 GPa, suggesting that the vanishing of the distortion has not been produced by pressure itself but
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by other factors.

The values of the distortion presented here are of the same order of magnitude that of experimen-
tal ones (Figure 4.6). At around 0 GPa, the value of ojr is around 0.17 A both in experiment and
calculations. Then, it drops to 0.08 A right before the ending of the phase transition.

Jahn-Teller distortion with pressure for U=3.5
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Figure 5.8: (Left) Evolution of the Jahn-Teller distortion with pressure. The dashed line shows a linear
extrapolation. The fit is done to the points of the low pressure phase.
(Right) Evolution of the distances in the different types of Mn-Og octahedra.

Figure 5.8 right shows the evolution of the distances in the different octahedra with pressure. All
distances decrease monotonically with pressure and converge to one after around 28 GPa i.e after the
phase transition. After the phase transition (Above 28 GPa) there must be only one distance since the
present phase is the cubic high pressure phase.

Comparing with the experimental values of figure 4.5, we can see both qualitative and quantitative
agreement for all the different distances. It is remarkable how the GGA+U calculations also repro-
duce the change in the slope of the pink and yellow curves (corresponding to the distance in the
regular octahedra and the short distance in the distorted octahedra respectively). The experimental
data of figure 4.5 shows a smoother slope in the range of 15-30 GPa with an slight increase for these
curves. The same feature can be seen in figure 5.8 right.

Figure 5.9 represents the behaviour of the volume of the different types of octahedra with pressure.
For all the octahedra, the volume decreases under pressure. Again, after around 28 GPa the phase
transition is over and hence, we have only one type of octahedra.

Comparing with figure 4.7, the agreement between the experimental data and the computational
results is good both qualitatively and quantitatively. In fact, figure 5.9 shows a change in the slope of
volume of the regular octahedra between 25 and 30 GPa, almost changing to an increasing tendency
(as in figure 4.7). A good way to compare the results is by comparing the fit parameters of the
third order Birch-Murnaghan equations. Starting with the distorted octahedra (data in blue), we can
see that the values of Ky and K|, are compatible considering the error with those of the fit to the
experimental data. The case for Vj is different since the value obtained here does not lie in the error
interval of the value of figure 4.7. However, the absolute difference is very small. Following with the
regular octahedra (data in pink), the value we obtain for Vj is compatible with the one in figure 4.7.
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For Ky and K, it is the other way around. However, we must take into consideration that the fit of
4.7 fixes Kj, to be 4 whereas the one in figure 5.9 lets K], free.
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Figure 5.9: Evolution of the volume of the different types of octahedra with pressure. For the octahe-
dra of the low pressure phase, there are fits to a third order Birch-Murnaghan equation considering
those points below 20 GPa. The fit parameters are shown in the figure. The octahedra of the high

pressure phase are labeled as Mn**- Og due to the fact that the charge-ordering phase transition
changes the charge of the Mn at the octahedra.

After having analyzed the structural properties of CaMn;O;, for U=3.5, we have seen a very good
agreement with experimental data for all magnitudes considered. Therefore, we have verified that
our good electronic description of the system leads to a good description of the structural properties.
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Chapter 6

Results for the rest of the Hubbard
parameters

In the previous chapter we checked how according to the electronic properties, the U Hubbard pa-
rameter for the best description of the structural properties of CaMn;O1, was U=3.5. In this chapter,
we can double check it by taking a look the results for the rest of the U values considered. Some
features are similar to the ones seen for U=3.5, hence, we will only comment the relevant features
worth mentioning.

6.1 The case U=3

6.1.1 Enthalpy difference

Difference in enthalpy for U=3

0.15
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Figure 6.1: Difference in enthalpy between the high pressure phase (Im3 phase) and the low pressure

phase (R3) phase. The red line marks the zero value. The difference turns negative at around 10 GPa,
indicating that the phase transitions starts at that value.
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Figure 6.1 represents the difference in enthalpy between both phases. The change of sign of AH
lies between 10 and 11 GPa. However, experimental results, in particular figure 4.4, show that the
beginning of the phase transition lies somewhere between 18 and 28 GPa, a range of pressures in-
compatible with what figure 6.1 offers.

The value U=3 could not describe correctly the electronic structure and neither it does for the begin-
ning of the phase transition.

6.1.2 Long-range order structure

Results for the long-range structure (figure 6.2) are completely different to those for U=3.5 since the
phase transition starts way before. The cell volume (Figure 6.2 left) presents a discontinuity around
the phase transition about 12 GPa. Similarly, the lattice parameters (Figure 6.2 right) change from
two to a single one around 12 GPa.
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Figure 6.2: (Left) Volume of the primitive cell with pressure.
(Right) Value of the lattice parameters with pressure. The rhombohedral low pressure phase has two
lattice parameters whereas the cubic high pressure phase has one.

6.1.3 Short-range order structure

The Jahn-Teller distortion under pressure (Figure 6.3 left) shows a consistent result with figure 6.1.
The difference in enthalpy marked the beginning of the phase transition between 10 and 11 GPa and
the Jahn-Teller distortion vanishes on that range. Despite being shown as a low pressure phase point,
all distances (Figure 6.3 right) converge to a single one around 12 GPa, anticipating the ending of the
phase transition.

Figure 6.4 shows the same phenomena through the volume of the Mn-Og octahedra. Up to 11 GPa,
the volumes of the two different types of octahedra are different, but after 11 GPa, both converge to
a single value, indicating that both types become equivalent (and this condition means that there is a
phase transition to the Im3 phase).
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Figure 6.3: (Left) Evolution of the Jahn-Teller distortion with pressure.
(Right) Evolution of the distances in the different types of Mn-Og octahedra.

Volume of the Mn**- 06 with pressure for U=3

10.5 . : ‘
-A-Mn**- O_ (LP phase)
' 6
' -©-Mn*"- O_ (LP phase)
10 \A\A Mn**- O, (HP phase) |
n\
\A\
A\
o ) :
£ . . J
= e 54
S o -
8.5 ]
8 I
0 10 20 30 40
P (GPa)

Figure 6.4: Evolution of the volume of the different types of octahedra with pressure. The octahedra
of the high pressure phase are labeled as Mn**- O4 due to the fact that the charge-ordering phase

transition changes the charge of the Mn at the octahedra.
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6.2 The case U=4

6.2.1 Difference in enthalpy

The difference in enthalpy for this case is shown in figure 6.5. In this case, the change of sign is about
27 GPa. According to the experimental data exposed in chapter 4, this value is close to the end of the
phase transition. Hence, U=4 does not describe well the beginning of the phase transition.
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Figure 6.5: Difference in enthalpy between the high pressure phase (Im3 phase) and the low pressure
phase (R3) phase. The red line marks the zero value. The difference turns negative at around 27 GPa,
indicating that the phase transitions starts at that value.

6.2.2 Long-range order structure

The long-range structure for U=4 does not yield anything relevant in comparison with U=3.5. The
evolution of the volume of the primitive cell (Figure 6.6 left) is extremely similar to the one for U=3.5.
Even the fit parameters to the third-order Birch-Murnaghan equation are almost equal. The be-
haviour of the lattice parameters with pressure is also extremely similar to the case for U=3.5. These
two magnitudes do not show anything relevant.
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Figure 6.6: (Left) Volume of the primitive cell with pressure. The dashed line is a fit to a third order
Birch-Murnaghan equation of state with parameters shown in the bottom-left side of the plot. The

points considered for the fit are those under 20 GPa.

(Right) Value of the lattice parameters with pressure. The rhombohedral low pressure phase has two
lattice parameters whereas the cubic high pressure phase has one.

6.2.3

Short-range order structure

The Jahn-Teller distortion (Figure 6.7 left) starts from 0.18 A at 0 GPa (0.17 A experimentally) and gets
to 0.12 A right before the phase transition (0.09 A experimentally). Despite the general decreasing

trend is consistent with experimental data (Figure 4.6), the exact values are not as similar as in the
case U=3.5.
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Figure 6.7: (Left) Evolution of the Jahn-Teller distortion with pressure. The dashed line shows a linear
extrapolation. The fit is done to the points of the low pressure phase.
(Right) Evolution of the distances in the different types of Mn-Og octahedra.
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Another feature that is not consistent is the slight increase in the slope between the last two points
of the low pressure phase. As it happens for U=3.5 (Figure 5.8 left), the Jahn-Teller distortion should
decrease more and more as pressure increases.

The evolution of the distances (Figure 6.7 right) has a subtle qualitative difference with the U=3.5
case. The case U=4 does not reproduce the slight change in the slope of the curves in the range of
25-30 GPa as U=3.5 does.

Same thing applies for the evolution of the volumes of the Mn-Og octahedra (Figure 6.8). The values
are close to those for U=3.5 (Figure 5.9) and the experimental ones (Figure 4.7) but the change in slope
is not seen in this case. The fitting parameters obtained are very close to those obtained for U=3.5.
As it happened before, for the fit of the Mn3t- Og octahedra, the values of Ky and K], are consistent
with the ones in figure 4.7. V} is not since it lies out of the error interval but it is very close to the
experimental one. This is how it goes for the Mn*"- Og octahedra as well.

Volume of the Mn**- 06 with pressure for U=4

10.5; ' '
.\\n -A-Mn¥*- O, (LP phase)
'\‘&. —e-Mn%*- O, (LP phase)
ol "a\”\ Mn**- O, (HP phase) |
“a. V,= 10.4443 A
*a,“_ K,= 162.8171 GPa
- ‘\A. ‘=
5 05 . Ko=3.8801
) B ‘\A'\’\.
S e I
= e, e,
g 9 | ﬁ._\_e\.\e 7
e
.
-&'\-
5 . \S"'“‘-u
8.5 V,= 9-2676 A ey :
KD= 239.964 GPa
K, =5.3682
0
o , .
0 10 20 30 40

Figure 6.8: Evolution of the volume of the different types of octahedra with pressure. For the octahe-
dra of the low pressure phase, there are fits to a third order Birch-Murnaghan equation considering
those points below 20 GPa. The fit parameters are shown in the figure. The octahedra of the high
pressure phase are labeled as Mn*"- Og due to the fact that the charge-ordering phase transition
changes the charge of the Mn at the octahedra.

The long-range structure was almost unaffected by the change from U=3.5 to U=4. Nevertheless, the
short-range structure exhibits more differences as we have seen with the behaviour of the slopes and
the slight different values of the magnitudes with respect to the U=3.5 case.



Even though the future seems far away; it is
actually beginning right now.

Mattie Stepanek

Chapter 7

Conclusions

By carrying out this work, I have had a first contact with DFT calculations and everything that entails.

Firstly, I have learnt how to launch and manage calculations. As a student, I thought running calcu-
lations was a thing of launching and leaving until it ends. The reality is that it is not usually like that.
You have to check that calculations are still running as expected, relaunch them if necessary, check
that queues for calculations are available, that the outputs you get are sensible, running several cases
at the same time etc. What I found out is that you have to put your time on it the same way you
would do in a laboratory.

I also got a clear picture about how to prepare DFT calculations to obtain structural information. Be-
fore getting results, you have to make sure that you are simulating the system realistically. To do so,
you have to find an appropiate k-point mesh and energy cutoff. Equally, you have to find those pa-
rameters that allow you to perform a realistic simulation. In our case, it was the U Hubbard parameter.
We found the U value that yielded a realistic electronic structure. By finding that U, we could be sure
that the structural data we got with further calculations corresponded to a realistic system.

And of course, I have learnt and revisited a lot of theoretical content, and it has been equally reward-
ing and enjoyable.

In regards to the actual results, we have managed to find that U=3.5 as the Hubbard parameter is ca-
pable of properly describing the electronic structure. With the band structure and the DOS, we have
checked how the value of U heavily influences the electronic structure. We also found out that for
U=3.5, the structural properties are reproduced in excellent agreement with experimental data. This
supports our statement that a good description of the electronic structure leads to a good description
of the local structure.

The energy band gap was found to be indirect with a value of 236.9 meV in good agreement with
published data. We also found that the band gap corresponded to a dipole allowed transition be-
tween the 2p oxygen states and the 34 manganese states.

For U=3.5, the start of the phase transition was found to be around 20 GPa, in good agreement with
resistivity measurements. We showed that all distances converged to a single one after the phase
transition. Simultaneously, the Jahn-Teller distortion vanished at around 28 GPa. These facts are
consistent with the expected phase transition from space group R3 to Im3. Our results were quanti-
tatively and qualitatively consistent with experimental results. Even the subtle trends of the magni-
tudes were replicated with our results.

For all the values different than U=3.5, we found a poor or less good agreement with published

data. In particular, U=3 did not even reproduce the correct pressure for the phase transition. On the
other hand, U=4 was capable of giving good quantitative results, but the details of the trends of the

44
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magnitudes under pressure were not properly reproduced.
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