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Abstract. Infinite horizon open loop optimal control problems for semilinear parabolic equations
are investigated. The controls are subject to a cost functional which promotes sparsity in time. The
focus is put on deriving first order optimality conditions. This is achieved without relying on a well-
defined control-to-state mapping in a neighborhood of minimizers. The technique of proof is based
on the approximation of the original problem by a family of finite horizon problems. The optimality
conditions allow deduction of sparsity properties of the optimal controls in time.
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1. Introduction. In this paper we continue our investigations of infinite hori-
zon optimal control problems with sparsity promoting cost functionals, which we
commenced in [7]. While in the earlier work the nonlinearities appearing in the state
equation were restricted to be polynomials we now allow general nonlinearities satis-
fying appropriate properties at the origin and asymptotically. Moreover, differently
from [7], constraints on the controls are imposed.

While finite horizon open loop optimal control problems with partial differen-
tial equations as constraints have received a tremendous amount of attention over
the last fifty years, extremely little attention was paid to infinite horizon problems;
see, however, [10, Chapter II1.6] and [4] for an analysis of bilinear optimal control
problems. This is different for problems involving the control of ordinary differential
equations. The analysis of infinite horizon optimal control problems may have started
with Halkin’s work [9]. The motivation for investigating infinite horizon problems re-
lates to stabilization problems as well as to problems arising in the economic and
biological sciences, where placing a finite bound on the time horizon introduces an
artificial ambiguity. Some examples in economy, biology, and engineering motivating
this study and many aspects of extensive earlier work were described in [5]. More
recent contributions can be found, for instance, in [1] and [3]. In passing, let us recall
that the infinite horizon problem is well investigated for closed loop control, leading
to the Riccati synthesis for the linear-quadratic regulator problem and the stationary
Hamilton—Jacobi—Bellman equation otherwise.

In the present work we formulate an optimal tracking problem as an infinite
horizon optimal control problem. The control cost is chosen in such a manner that
it enhances sparsity in time. As a consequence the control will shut down to zero
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rather than be small, as it would be the case for a quadratic cost, for instance. A first
difficulty that needs to be addressed is the existence of feasible controls. This relates
to the stabilizability problem. While this is not in the focus of the present work we
establish certain sufficient conditions where stabilizability holds. The central difficulty
then is to provide first order optimality conditions. They are easily conjectured but
challenging to verify. Here we follow the technique of formulating a family of finite
horizon problems and analyze the asymptotic behavior as the horizon tends to infinity.

We now introduce the optimal control problem which will be analyzed in the
present work:

P in J _Lr 2dzdt - 2d 1/2dt
® i J0 =5 [ [ wrasdees [T ([ ata) T

where k > 0, y4 € L?(2 x (0,00)), and
Una = {u € L*(0,00; L*(w)) : u(t) € K for a.a. t € (0,00)}.

Above K denotes a closed, convex, and bounded set in L?(Q2), and ¥, is the solution
of the following parabolic equation:

0
(1.1) %—Ay+ay+f(w,t,y)=g+uxw in @ = x(0,00),
Oy =0o0n X =T x (0,00), y(0) =y in Q.

Here € is a bounded domain in R", 1 < n < 3, with a Lipschitz boundary I', w is a
measurable subset of {2 with positive Lebesgue measure, x,, denotes the characteristic
function of w, a € L>®(2),0<a # 0, g € L*(Q)NL>(0,00; L?(Q)), and 3o € L=(Q).
The conditions on the nonlinear term f(x,t,y) will be given below. For every u € Uyq,
the symbol uwy,, is defined as follows:

u(z,t) if (x,t) € Qu, = w x (0,00),

w0 ={ "G

otherwise.
Possible choices for K include
(1.2) ’C:BWZ{UELZ(M) : HUHLZ(w) S’y}, 0<vy<oo,
(1.3) K={vel?w):a<v(x)<pfforaa zcw} a<d<p.
In this paper, all the results remain valid if we replace the operator —A and the
normal derivative d,, by a more general elliptic operator Ay = — 37", 9, [a;;(2)9s, ]

and its associated normal derivative 0,,, with the coefficients a;; € L>(Q) satisfying
the usual ellipticity condition.

The contents of the paper are structured as follows. Section 2 contains an analysis
of the state equation and existence of a solution for (P). The auxiliary finite horizon
problems and their optimality systems are presented in section 3. Section 4 contains
the convergence analysis of the finite horizon problems. An optimality system for the
original problem can then be deduced in section 5. Its interpretation allows us to
derive the sparsity in time of the optimal controls.

It is worth pointing out that these conditions are obtained without relying on a
well-defined control-to-state mapping in an open neighborhood of optimal controls.
In the presence of the high generality that we allow for our nonlinearity f, at present
we do not know whether such a neighborhood exists.
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2. Well-posedness of the state equation and problem (P). We define
the notion of a solution for (1.1). First, let us fix some notation. We denote by
L2 (0,00; H*(9)) the space of functions y belonging to L?(0,T; H*(Q)) for 0 < T <

loc

0o. Analogously we define LY (0, 00; L?(2)) for 1 < p < oo.

loc

DEFINITION 2.1. We call y a solution to (1.1) if y € L2 (0,00; HY(R)), and for

loc

every T > 0 the restriction of y to Qr = Q x (0,T) belongs to W(0,T)NL>(Qr) and
satisfies the following equation in the variational sense:

oy .
(2.1) o0~ Ay+ay+ f(z,ty) = g+ uxe in Qr,
Oy =0 on X7, y(0) =y in .

Here W (0,T) denotes the space of functions y € L?(0,T; H'()) such that % €
L2(0,T; HY(Q)*).

In order to prove the existence and uniqueness of a solution to (1.1) we make the
following assumptions: f : @ x R — R is a Carathéodory function of class C' with
respect to the last variable satisfying

(2.2) f(2,1,0) =0,
My > 0,30 >0, and a Cc! functionf : R — R such that V|y| > My,
2.3) W < [f(@t,9) <[f()], sign f(y) = sign f(z,1,y) = signy, f'(y) >0,
—(x,t >0
ay (x7 ’y) —_ b
of

(2.4) VM > 0 3C); such that ‘a(az,uy)’ <CuyVyl <M
Y

for almost every (z,t) € Q.
Let us give some examples that fulfilled the assumptions (2.2)—(2.4). We start
with a polynomial function of y with coefficients depending on (z,t):

2m—+1
flz,t,y) = Z ak(x,t)yk with a, € L*(Q) Vk > 1 and agmy1(x,t) > dp > 0 in Q.
k=1

Setting K = maX1§k52m+1 ||ak||Loo(Q), Mf = max{l,%}, 5 = 2(273%, and

fy) = (2m +1)Ky?™+1 it is easy to check that (2.3) holds.
Next, given n € L>=(Q) such that n(x,t) > dy > 0 for a.a. (z,t) € Q, we consider
the following two examples:

[l t,y) =n(z,t)(e¥ —1) and f(z,t,y) =n(z,t)(y° + 10%sin(y)).

For the first case (2.3) holds with My =0, 0 = Hanﬁ’ and f(y) = [[nllL(g)(e’—1).

Fy - 5
For the second case we take My =104/, § = W"w@, and f(y) = 2[nllL=)y>.

Remark 2.2. (1) Assumptions (2.2) and (2.3) can be replaced by the following:

3M; >0, 36 > 0, and a C* function f : R — R such that Viy| > My,
Slf(w)l < [f(z, t,y) = f(z,t,0) < [f(W)], ['(y) ZfO,
sign f(y) = signy, y[f(x,t,y) — f(z,1,0)] >0, afy(x,tvy) >0
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for almost every (z,t) € Q. Indeed, under these hypotheses we can replace f(z,t,y)
by f(x,t,y) — f(z,t,0) and g(z,t) by g(z,t) — f(x,t,0) so that the new f satisfies
(2.2)-(2.4) and the new g belongs to L?(Q).

(2) Let us observe that (2.2)—(2.4) imply that

(2.5) %(x,ty) > —Cyy, for aa. (2,t) € Q and Vy € R.

(3) If y € L>(Qr), then (2.2) and (2.4) imply that f(-,-,y) € L=(Qr) as well.

Remark 2.3. From the assumption 0 < a # 0 we infer the existence of a constant
C, depending on a such that

1/2
(26) (L1938 + ar?lan) " = ol v € (.

For homogeneous Dirichlet boundary condition, the assumption a # 0 is not required.

THEOREM 2.4. Under the previous assumptions on f, (1.1) has a unique solution
y for every u € L?(Q.,)NL>(0, 00; L?(w)). Moreover, if y € L*(Q) then the following
properties hold:

(27)  3C; such that |1, y)ll2@) < Cr (lull2@u) + 9l + ¥l @) ).
(2.8)  y e L2(0, 00; H () N ([0, 00), L2()) and 2L € L2(0, 00, H'(9)"),

ot
(29)  Jim [y(0)zo) = 0.

Proof. Due to u € L*(0, 00; L?(w)) and g € L>(0, 00; L%(Q)), under the assump-
tions on f and inequality (2.5), the proof of existence and uniqueness of a solution
y € W(0,T)NL>®(Qr) for (2.1) for every T > 0 is standard; see, for instance, [8]. This
proves the first statement of the theorem. The rest of the proof, under the assumption
y € L?(Q), is divided into three steps.

Step 1. f(,-y) € L*(Q). Given M = max{My, |[yo||=(0)}, we define the
following sets:

(2.10) QY ={(z,) € Q:ly(z. )| > M}, QFf =QrnQ™,
(2.11) OM ={zcQ:(x,t) € QM} for t € (0, 00).

Using (2.2), (2.4), and the mean value theorem we have for 6(z,t) € (0,1)
2 of % 9 2 11,112
(2.12) FatylPdrdt= [ |Zh@toy)[ 4 dedt < Gl
Q\QM Q\QM 1Y

It remains to prove that fQM |f(x,t,y)|? da dt is uniformly bounded with respect to
T

T. For this purpose we consider the decomposition Q¥ = Q%‘F U Q]:,EI’_, where

Q¥’+ ={(z,t) € Q¥ cy(x,t) > M} and ij\f[’_ ={(z,t) € Q%/I cy(x,t) < —M}.

We will prove that fQM,+ |f(x,t,y)|?>dzdt < C for some constant C' independent of
T

T > 0. Similar arguments can be applied to prove the uniform boundedness on the
sets Qé\f’*. We define the function fa; : R — R by fu(s) = f(max{s, M}) — f(M).
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Then fys is locally Lipschitz, and fys(s) = 0 for s < M. Furthermore, from (2.3) we
get that fas(s) >0 for s > M and f},(s) > 0 for almost all s € R

We also introduce the C! function Fj; : R — R given by Fi( f fu(t)
Then, we have that Fps(s) = 0 for every s < M. In particular, due to the ch01ce of
M we have that Fys(yo(z)) = 0 for almost all x € Q. Since fpr(s) > 0 for all s € R,
we also have that Fys(s) > 0 for every s € R.

Due to the embedding W (0,T) C C([0,T]; L*(9)), we find that lim;—0y(t) = yo
in L?(). Hence, we can take a sequence of points {t;}3, C (0,7) converging to 0
such that y(z,¢x) — yo(x) for almost all x € Q. We set z(x,t) = far(y(z,t)). Since
y € L>®(Qr) N HY(Q x (t,T)) for every k (see, for instance, [11, Corollary I11.2.4])
and fys is locally Lipschitz, we deduce that z € L>®(Q7) N HY(Q x (t,T)) as well.
Testing (2.1) with 2z and integrating in  x (¢, T) we infer

T 8y T
/ / —zdzdt + / / [VyVz+ ayz] dz dt
tk Q 8t Tk Q
T T
(2.13) + / / f(z, t,y)zdadt = / / (9 + xou)zdz dt.
tr Q tr Q

We study the first two terms of the above identity. From the definition of Fj; we get

/ %zd dt = /:éit/QFM(y)dxdt:/QFM(y(T))dff—/QFM(y(tk))dx.

Taking limits in this equality when k — oo and using that Fys(yo) = 0 we infer

(2.14) lim /%/gzgizdxdt:/(zFM(y(T))deO.

k—o0o [y

To deal with the second term we observe that z(z,t) = 0 1f g QM ={req:
(x,t) € Qé\f *1. Using that y(z,t) > M and z(z,t) > 0 in Q" we infer with (2.3)

T T
lim / / [VyVz + ayz]dx dt = / / [VyVz+ ayz]dz dt
tr 0 Q

k—o0

(2.15) / / (¥)|Vy* + ayz] dz dt > 0.
szﬂl +
Passing to the limit in (2.13) as k — oo, we deduce with (2.14), (2.15), and (2.3)

5/0 /QM+ — f(Mm dmdt—é/o /f zdxdt</ /f:ctyzdxdt

(2.16)

T
S/ /(g+wa)zdxdt:/ / (g + Xwu)zdz dt.
0 Q 0 QiVI,Jr

Observe that
1 1
(217 @15 3 [ v dwdt < g lvley

Let us set Qi\/[’Jr = A; U B; with

Ar={z e Q" fly(e, 1)) <2f(M)} and B, = {w € )" : f(y(x, 1)) 2

[\]
~
~—

g
—
—
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If x € By, then —f(M) > —1 f(y(z,t)), and, consequently, f(y(z,t)) — f(M) >
éf(y(a:, t)) holds. This yields

(2.18) / Btf d:cdt</ Btf Fy) — f(M)] da dt.
Using (2.18) and then (2.16) and the fact that f(y)[f(y) — f(M)] >0 in A, we infer

/ fly da:dt<6/ B,f (y) — f(M)]dz:dt

B,
_6A /QM+ )f(y f(M)]dmdt—é/O Atf(y)[f(y)—f(M)]dxdt

T T
< / / (g + xwu)zdzdt < / / (g+qu)zdxdt+/ / (g + xwu)zdaxdt
o JaoM+t o Ja, 0o JB,

T 1/2 T 1/2
< g + xwullz2 (@) / / 22 dadt + / / 22 dxdt
0 At 0 By

1 f(M) froN2
< g+ 2 + 2 f dx dt.

From here we obtain

T £ 2
) > 4 2f (M)
2 2 2
/0 . fly)?dzdt < (5 + 52) g + Xwullz2(q) + S yll72(0)-

In Ay, with (2.17) we deduce the estimate

4f(M)?
M

T
| fwrasar<afoaniov < 1912 0

These two estimates and the analogous ones in Qé\ff "~ along with (2.3) and (2.12) lead
to

(2.19)  1fCom ez < I1F W)z < Cf(”UHL?(Qw) +llgllz2@) + ||y||L2(Q))'

Step 2. Proof of (2.8). For every t > 0 we have with (2.1)
1 2 2 [T e 1 2 ' 2 2
SIyONz2(0) +C3 [ Nyllzr o) dt < Sly@l720) + (IVy[® + ay”] dz ds
2 0 2 0 Jo

t 1 )
= [ [+ xou= 1o telydads + Sl

0

t ) /2 1 )

<llg + xwu— f(, '»y)”L2(Q)</O ”y”Hl(Q) ds) + §||y0||L2(Q)

1 9 C t ) 1 )
< 202 g + xwu — f(, '7y)||L2(Q) + 7a/0 ||yHH1(Q) ds + EHyOHLQ(Q),
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which implies

¢ 1
ly (172 () + 03/0 Y11 () At < @Hg + Xt = £ W) 172 () + 190l 72(q)-
a

Using that y € W(0,T) C C([0,T]; L3(2)) for every T < oo along with the above
inequality we infer that y € L?(0, 00; H1(Q)) N C([0, 00); L(€2)). Finally, we have
0 _ A L2(0,00; H'(Q)*
g_g—i_qu_f(vvy)—"_ y—aye (700, ( ))
Step 3. Proof of (2.9). The fact that y € L?(Q) implies the existence of a
monotone increasing sequence of positive numbers {¢;}72; converging to oo such that
lly(te)llL2(o) — 0 as k — oo. Given T' > 0 and taking ¢ > T we get

T a
Y
) ey = Nty =2 [ [ (e a
T Q
2 dy
< yt)llzz@) + 2|‘y||L2(T,oo;H1(Q))IlEHLQ(O,oo;Hl(Q)*y

where (-,-) denotes the duality between H'()* and H'(Q2). Taking the limit when
k — oo we get

y
19(T) |72 < 20yl 2 (r,00 20l 5 220,001 (007 -

Passing to the limit when 7' — oo, (2.9) follows. d

Now, we analyze the existence of a solution for (P). First, we observe that
Theorem 2.4 guarantees that .J : L>(0, 00; L?(w)) N L?(Q.) — [0, 0] is well defined.
We introduce the following functions:

(2.20) {j : LY0, 00; L*(w)) — R and jr : L1(0,T; L*(w)) — R by
' J(u) = llull£1(0,00:2(w)) and jr(u) = [lullL1(0,7;22(w))-
THEOREM 2.5. If there exists a control & € Uyq N L1(0,00; L?(w)) such that its
associated state § € L*(Q), then (P) has at least one solution .

Proof. Let {ux}72; C Uqq be a minimizing sequence for (P) with associated states
{yr}22;- Then, for k big enough we have that J(uy) < J(@), unless 4 is already a
solution of (P). As a consequence of this inequality and the control constraint we
get that {ug}?2, and {yx}72, are bounded in L>(0,00; L*(2)) N L'(0, 005 L?(w))
and L?(Q), respectively. As L°°(0,00; L2(2)) N L*(0, 00; L?(w)) C L?(Q.), we take
subsequences, denoted in the same form, such that uy, — 4 in L*(Q.,), us X % in
L>(0,00; L*(w)), and gy — § in L*(Q). Since {yk g, }22, is bounded in W(0,T) N
L>(Qr) for every T > 0, we can pass to the limit in (2.1) satisfied by (ug,yx) to
deduce that (@,y) satisfies (2.1) for all 7. Hence, § is the state associated to .

Since u, — @ in L*(Q,) and Uyq N L?*(Q,,) is convex and closed in L?(Q,,), we
infer that 4 € U,q. Moreover, the restrictions of the functionals jr to L*(Qr) are
convex and continuous, and thus jr (@) < liminfg_, o j7(ug). Therefore, we obtain

1, ) 1 ) .
515 = all3e gy + rir(@) < Tmint { Sl = val3aqp + wir () }

< liminf J(uy) = inf (P),
k— o0
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and, consequently,
u) = L7 2 i (@) b < inf (P
T() = sup { 5119 = vl + rir(@) | < inf (P).

Therefore, @ is a solution of (P). 0

We end this section by describing special situations in which the existence of
an admissible control as demanded in Theorem 2.5 is guaranteed. At first we give
a sufficient condition on f such that for all sufficiently small yy the zero-control is
admissible. The embedding constant from H!(Q) into L*(Q2) will be denoted by Cj.

PROPOSITION 2.6. Assume that f satisfies (2.2)~(2.4) as well as

Imy € (0, My) such that %(m,t,y) >0 if |y| < my.
Y

Then, for each yo with ||yo|r2) < Ky = % there exists A > 0 such that the
s
solution y to (2.2) with u = 0 satisfies

1
2 < —( 2 —+ 2 )
llyllz Q) I\ llvoll (Q) lgllz Q)

Proof. To verify this result we can follow the proof of [7, Theorem 2.5]. For
this purpose we use that our conditions on f imply that y(z,t)f(z,t, y(z,t)) > 0
for almost every (z,t) € @ satisfying |y(z,t)] < my or |y(z,t)] > M. We set
Ko = £(lwollr2) + K5) < K. Following the above-mentioned proof we obtain

1d

5%”1/(75)”%2(9) + MyOlI72 0y < (9(8), (1) 29

C,zwaZKo
myC3

where A = 1(C2 — ) > 0. From here we deduce that

d 1
Oz + My®)lliz0) < $1907z0)-

Multiplying by exp(As) and integrating on (0,t) we find

I
My(t)1720) < IIy(O)H%zmﬁX/O e**[lg(s) 172 () ds.

Multiplying by exp(—At) and integrating on (0, 00) we obtain the desired estimate

1 oo 1/2
Wlz=@ < 7 [lolzzy + ([ la®lEaopat) ] 0

For the following result we assume that f is independent of (x,t) and that f/(0) >
0. Then there exists p™ € (0,00] such that f has no change of sign in (0,p"), and
analogously there exists p~ € [—00,0) with no sign change in (p—,0).

PROPOSITION 2.7. Assume that f satisfies (2.2)~(2.4) as well as f'(0) > 0 and
that g = 0. Then for each p_ < yo < p* the solution y for u = 0 belongs to L*(Q)
and ||y(t)||Lz(Q) < e*CHtHyOHH(Q) for allt > 0.
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This can be verified by adapting the proof of [7, Theorem 2.6]. A special case
of f is given by the Schlogl model, where f(z,t,y) = y(y — &1)(y — &) with & € R,
i € {1,2}. It was investigated in [2] with finite dimensional controls of the form
u(t) = Zf\il wi (t)x o, where w™ C Q) and Zi\il |wM| = r|Q| for some fixed r € (0, 1)
independent of M. From these results it follows as a special case that for g = 0,y4 = 0,
Q a hypercube, and for each A > 0 there exist M, v > 0, and {w;}, such that the
controlled system decays exponentially with rate —\ and that the controls, which are
constructed in feedback form, are admissible. This holds globally for all yo € H'(Q).

3. Auxiliary finite horizon problems. We denote by @ a solution of (P) with
associated state y. In order to establish an optimality system satisfied by (u,y) we
introduce some auxiliary finite horizon control problems. For every T' > 0 we consider
the problem

(Pr) min Jp(u) = Fr(u) + &jr(u),

u€Uad, T

1 1 _ ,
where Fr(u) = Sllyru — yall72(qqp) + lyru = 72y r(w) = llullLro.r:L2 ()
Upar = {u € L=(0,T; L*(w)) : u(t) € K for a.a. t € (0,T)},
and Y7, is the solution of (2.1) corresponding to u. In the following theorem Jjr
denotes the convex subdifferential of the function jr and Qr ., = w x (0,T).

THEOREM 3.1. Problem (Pr) has at least one solution ur with associated state
yr. Furthermore, there exist pr € W(0,T), A\r € Ojr(ur) C L>(0,T; L*(w)), and
pur € L>=(0,T; L*(w)) such that

dor of _ .
(3.1) ot *A¢T+G¢T+afy(x,t7yT)sﬁT =2yr —ya — Y in Qr,
a1’7,90'1“ =0 on 2T7 SOT(T) =01n Q)
T
(3.2) / / pr(u—ur)dedt <0 Vu € Uy T,
0 w
(3.3) o1|Q., T EAT + pr = 0.

Proof. The proof for existence of a solution ur is the same as in Theorem 2.5. Let
us derive the optimality conditions. It is well known that Frr : L>=(0,T; L*(w)) — R
is of class C', and its derivative at ur is given by

Fr(ur)v = / o v de dt,
QT,w
where o7, € W(0,T) is the solution of (3.1). Since o7 € W(0,T) C C([0,T]; L*(£2))
the linear form FJ.(ur) : L°°(0,T; L*(w)) — R can be extended to a continuous form
Fl(ur) : LY(0,T; L?*(w)) — R. Now, using the optimality of ur and the convexity
of jr we derive for every u € U,qr and every p € (0,1) small enough

Fr(ur + p(u —ur)) — Fr(ur)
p

S Jr(ur + p(u —ur)) — Jr(ur)

- p

+ kljr(u) — jr(ur)]

> 0.
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Then, passing to the limit when p — 0 we infer
/ (pT(U — ’LLT) dx dt + li[jT(u) — jT(uT)] >0 Yue Z/fad’T.
Qr,w

If we denote by Iy,, . : L'(0,T; L*(w)) — [0, 00] the indicator function taking the
value 0 if u € Uqq, 7 and oo otherwise, then the above inequality implies that ur is a
solution for the optimization problem

ueLl(Bl?qi{le(w)) /QT,w prudzdt + Kjr(u) + ., . (0).

From the subdifferential calculus we deduce that

0¢€ QDT|QTM + "{ajT(uT) + aIMa,d,T(uT)'

Hence, there exist A\r € jr(ur) and pr € 0ly,, - (ur) such that (3.3) holds. Further,
pr € Oly,, - (ur) is equivalent to (3.2), which completes the proof. 0

Let us observe that Ay € djp(ur) implies that
HAT(t)”LZ(w) <1 fora.a.tc€ (O,T),

(3.4) ur(x,t)

Ar(x,t) = for a.a. (z,t) € o i |lur(t W) £ 0;
T Ol (@8) € Qru il llur Wilzee #

see, for instance, [6, Proposition 3.8].
Regarding pr we consider separately the two cases specified in (1.2) and (1.3).

LEMMA 3.2. If K is chosen as in (1.2), then pur has the following properties:

(3.5) / b () (v — ur()) dz < 0 Yo € Bu;
(3.6) if lur ()| L2y <7, then ||pr(t)||L2(w) = 0
(3.7) if lr (8)]| 12wy # 0, then ug(w,t) = pr(@,t)

VI S A
[z ()]l 2> (@)
for almost all t € (0,T).

Proof. For the proof of (3.5) the reader is referred to the first statement of [8,
Corollary 3.1]. To prove (3.6) and (3.7) we proceed as follows:

1
T ()| 2wy = = sup /,UT(t)vda:
Y veBy Jw

1 1
<= [ wr(Ourt) s < Zlur @)l ler Ol

If [Jur(t)||L2(w) < 7, the above inequality is only possible if ||ur(t)||12(,) = 0, which
proves (3.6). Otherwise we get the equality

/ pr()ur (t) dz = [lpr @) L2 @) lur (#)]] 22 @) -

This is only possible if there exists a number g(¢t) > 0 such that ur(x,t) = g(t)pr(z,t)
for almost all z € w. But, we have
v = [lur ()| 22w) = 9@ b1 ()] L2 ()

therefore g(t) , which implies (3.7). ad

_ ¥
lur ()l L2,
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LEMMA 3.3. If K is chosen as in (1.3), then ur satisfies

<0 ifuT(.'L',t):Oé,
(3.8) pr(z, ) =0 if a <urp(x,t) <p,
for almost all (x,t) € w x (0,T).

This a well-known property following from the fact that u € 0y, , . (ur).

4. Convergence of the auxiliary problems. In this section, ur denotes a
solution of (Pr) for T > 0. Associated with uy we have the corresponding state yr
and elements @7 € W(0,T), A\r € djr(ur), and up € L>(0,T; L?(w)) satisfying the
optimality conditions (3.1)—(3.3). We extend all these elements by 0 for ¢ > T" and

denote these extensions by (@r,¥yr, 1, AT, fiT). The analysis of the convergence of
(ur,yr), @1, and (A1, fiir) is split into three subsections.

4.1. Convergence of the controls and associated states. We have a first
convergence result.

THEOREM 4.1. The following convergence properties hold:

(4.1) gr — 7 in L*(Q),
(4.2) ar = 1 in L>(0, 00; L?(w)) N L3(Q.,),
(4.3) 7]l L1 (0,00:2(w)) = Nl £1(0,00;22(w))-

Proof. Using the optimality of ur we get
1 ) L, o
§HyT —Yallizq) + gHyT = Yl12q) + Kilur)
_ 1 1,
= Jr(ur) + §||yd|\2L2(T,oo;L2(Q)) + §||yH2L2(T,oo;L2(Q))
1 1,
< Jr(u) + §||yd||2L2(T,oo;L2(Q)) + §||y||2L2(T,oo;L2(Q))
_ 1 1, _
(4.4) < J(u)+ §Hyd||2L2(Q) + §Hy||2L2(Q)-

This implies the boundedness of {gr}7s0 and {ar}7>0 in L?(Q) and L (0, oo; L?(w)),
respectively. Additionally, since ar € U,q for every T > 0, we have that {tr}rso
is also bounded in L>°(0, 00; L?(w)). As a consequence, {tr }1=0 is also bounded in
L?*(Q.,). Therefore, there exist sequences {T}}72, converging to oo such that

(4.5) g, — ¢ in L*(Q) and @p, — @ in L>(0,00; L?(w)) N L*(Q,,) as k — oo

with (@,9) € Uy,g x L*(Q). Let us fix T > 0. Then, for every k large enough we
have that (@q,,yr,) satisfies (2.1) in Q. Using the boundedness of {ap, }r, > in
L>(0,T, L*(w)) we infer that {gr, }7,>7 is bounded in W (0, T)NL>*(Qr). Then, it is
easy to pass to the limit in (2.1) and deduce that (@, §) € L*(Qr) x W (0, T)NL>®(Q7)
satisfies the equation in Q7. Consequently, 7 is the solution of the state equation (1.1)
associated with @. To prove that @ = @ we first observe that iz, — @ in L*(Qr) for
every T' > (. This implies that

k—o0 k—o0
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Therefore, we have j(a) = supT>0 Jr(a) < liminfy o j(@r,). Using this property
and the fact that g, — 7 in L?(Q) we infer

~ 1 . 12 . 1, 2 1 12 S
50)+ 315~ 3 < mint { 51m, ~ vl + 51~ 3y + witor,)

1 . _
= hkn_ljnf Jr, (ur,) + ) klggo {”deQLQ(Tk,oo;L?(Q)) + ||y||2L2(Tk,oo;L2(Q))}

<liminf Jr, (@) = J(u) < J(a).
k—o0

We have used the optimality of up, and @ in (Pp,) and (P), respectively, and the fact
that @ is a feasible control for (P). From the above inequalities we obtain that § = ¢
and, hence, the state equation yields & = w. The uniqueness of the limit implies that
(4.2) and the weak convergence yr — ¥ in L?(Q) hold. Arguing similarly as above
we obtain

1 1
J(@) < lim inf {2|3JT yall72(q) + EJ(UT)} < li;n_folip {2||?JT —yal72(q) + Kj(UT)}

. _ 1 _
< limsup Jr(ur) + 50 hm 1yallZe 7,002 () < limsup Jr(@) = J(a).

T— 00 T—o0

The previous inequalities yield

. 1 _ _
Th_{rgo {|yT — yd||L2 y + k|| L1 (0,005 Lz(w))} = §||y—yd||%2(cg)+'€||U||L1(0,00;L2(w))'

From Lemma 4.2 below we infer that

. _ 2 _ 2 . _ _
Th_{réo 197 = yallz2() = 19 — vallz2(q) and Tlgnoo [ar |l L1 (0,00:L2(w)) = I8l L1(0,00;22(w))-
Finally, (4.1) and (4.3) are straightforward consequences of these limits. |

LEMMA 4.2. Let {ar}r>0 and {br}rs0o be two families of real numbers satisfying

a< h%nmfaT, b< hmlnbe, and hm (aT +br)=a+b
— 00

for a,b € R. Then, we have that limp_, ar = a and limp_, o, by = b.

Proof. We prove that ap — a as follows:

a< hmmfaT <limsupar < limsup(ar + br) — hmlnbe <(a+b)—b=a.

—o0 T—o0 T—o00

Now, the convergence of {br}r~¢ is immediate. 1]
The next theorem establishes stronger convergence properties of {§r}r=0 to .

THEOREM 4.3. The following convergences hold:

(46) .f(7 '7.7]T> - f(7 7?]) n Lz(Q)v
gr — ¢ in L*(0,00; H'(Q)),
(4.8) Th_fgo g7 (T)|L2(0) = 0.
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Proof. Arguing as in the proof of (2.7) we get

1£C g2 @) < Crllarlizaqu) + l9llca@) + 1772 (@)-

From Theorem 4.1 we deduce that the right-hand side of the above inequality is
uniformly bounded in T'. Hence, there exist subsequences {f(-,-, ¥, )}7>, with T}, —
oo such that f(-,-,97,) — ® in L?(Q). Due to the strong convergence yr, — ¥ in
L?(Q), we can extract a subsequence, denoted in the same way, such that gz, (z,t) —
y(z,t) for almost all (z,t) € Q. Then, the continuity of f with respect to y implies
that f(z,t,yr, (z,t)) — f(x,t,y(x,t)) almost everywhere. Hence, ¢ = f(-,+,y), and
the whole family {f(-, -, 1)} >0 converges weakly in L?(Q) to f(-,-,%).

Let us prove that g7 — 4 in L?(0,00; H}(Q)). From the equation satisfied by
yr we get ‘%T — AYr + ayr = g+ rxw — f(-,-,Jr) in Q. Since the right-hand
side is uniformly bounded in L?(Q), we deduce the existence of a constant C such
that ||gr|w,r) < C for every T' > 0. Therefore, the estimate ||yr||L2(0,7;m1(0)) < C
holds for every T. Due to the fact that gr = 0 in @ \ @1, we conclude that {Fr}rs0
is bounded in L?(0, 00; H!(Q)). Then, the convergence §7 — ¢ in L?(Q) implies that
gr — § in L?(0,00; H1(Q)). To prove (4.7) and (4.8) we argue, using (4.1) and (4.2),
as follows:

/[|Vg|2+ag2] dxdtSliminf/[|V§T|2+a§%] dz dt
Q T—o0 Q
< limsup/ (|Vyr|? + ag?] dz dt
T— o0 Q
. 1, L
< timsup { 5107 + [ (95217 + oo e
T— o0 Q
T— o0

. _ _ o 1
thsup{/(9+UTXw)de$dt—/ f(m,t7yT)de$dt+2yo||%2(9)}
Q Q

N N 1 _ _
—/Q(g+uxw)ydwdt—/Qf(:v,tvy)ydwdﬂr2||yo||%z(n> —/Q[IVyI2+ay2]dxdt~

These inequalities yield

Jm g7 22 0,00m10)) = 1922 (0,001 (2)) and . {[g7(T)|[220) = 0,
which concludes the proof. O

THEOREM 4.4. For every € > 0 there exists T, > 0 such that

(4.9) ||gT(t)HL2(Q) <e VT >T. and vVt > T..

Proof. In the proof of Theorem 4.3, the existence of a constant C' such that
llyrllwo,ry < C for every T was established. Hence, we have that

H oyr

WHLz(O,T,Hl(Q)*) <C VT >D0.

By Theorem 4.3, for every € > 0 there exists T. > 0 such that for every T' > T the
inequalities
c &2 2
yr (T <—0= l¥y—-¥ o < == WU L2(T. 005 <=
|97 (T) 2 7 19 = grllr20.00m @) < g5 19lle2 oom@) < 5
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hold. Let us take T' > T, arbitrary. For ¢ = T, (4.9) follows from the choice of e. If
t > T, then we have yr(t) = 0, and (4.9) holds. Let us take ¢ € (T, T); then

T
i (s = i (T oy =2 | (S i)t

_ oyr _
< |gr(T) 172y + 2 o I 22 (0,7;1 @) 197 || L2 8,717 (2))
< gr(T) 20y + 20 (17 = Frllzaco cosmr o) + 18l sty ) < %

which proves (4.9). ad

Remark 4.5. Let us observe that {gr}r>¢ is uniformly bounded in L>(Q) for
each T” € (0,00). Indeed, using (2.5), we can derive the usual L>®(Q1) estimates
for each g depending on 1", ||yo ||z (q), and ||g + trXwl £ (0,77;L2(02), Which is uni-
formly bounded. As a consequence of this, (2.2), and (2.4), we also have the uniform
boundedness of {f(-,-,r)}r>o and {%(-, 1) Yrso in L®(Qqv).

4.2. Convergence of the adjoint states. In this section, besides the assump-
tions (2.2)—(2.4), we will make the following assumption:

0
(4.10) Imy € (0, My) such that a—i(w,ty) >0 if |y| < my

for almost all (z,t) € @, where My is the constant introduced in (2.3). Let us start
proving some auxiliary results before analyzing the convergence of {@r}r>0.

LEMMA 4.6. For every T > 0 let zp € W(0,T) be the solution of the equation

8ZT af B o
(4.11) Bt~ Atz + 5o (@t gr)er = or in Qr,

Onzr =0 on X7, zp(0) =0 in Q.
Then, there exists a constant C, such that

(4.12) lerllzn < Cellerllzzon VT > 0.

Proof. Tt is well known that H'() is continuously embedded in L*(Q) for 1 <
n < 3. Hence, there exists a constant Cy such that ||y||z1(q) < Cully| g1 (q) for all y €
H'(). From (2.4) we deduce the existence of a constant C)y, such that

0
(4.13) ’a—]yc(x,ty)’ < Cwu; Vy| < My for a.a. (z,t) € Q.

2
Applying Theorem 4.4 with € = %, where C, was introduced in (2.6), we infer
aCbmy
the existence of 75 s > 0 such that
2

_ m 'Ca
(4.14) 157 () || L2y < W VT > T, p and Vi > T, 5.
4~ My

For T' < T, ; inequality (4.12) is obvious. Henceforth we consider the case T' > T, ;.
We obtain in a standard manner

(4.15) lzrllz2(@r, ) < Clerlez@ry VT > Taf
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for some constant C' independent of T'. For every ¢ € (0,T) we define the sets
M _
QT ={w € Qrmy < |gr(z,t)] < My}

Assumptions (2.3) and (4.10) imply that 2L (z,t,gr(x,1)) > 0 for x € Q\ Q"
Then, from (2.6) and (4.11) we get

T
c? / 22

1 r of
< ~|lzr (D)) Var|? 2'ddt// == (z,t,yr)zf dzdt
< gl Ml + [ (Ver vactlarars [° [ Gt e
= o @Tszzdtf/ /mf ) 8 (z,t, gr) 2% da dt
(4.16)

T
) af
< ezl iomllerliz@n + / / %y b gr)| B deat,
o JariMs oy

Let us estimate the last integral. We split the integral into two parts. Inequalities
(4.13) and (4.15) yield

Ta,z af
A /me,Mf }Fy(mvtagT”Z%d(Edt

(4.17) < CMf||ZT||2L2(0,T L) = CMfC ||‘PT||L2 (Qr)*

Now, from (4.13)—(4.14) we infer

Cu, [T
Jgr)|z2 dedt < —L |22 dz dt

CM Cum CZ ’
< / Jrllrzollzrl|7ag dt < —L / grllrz 27 |3 o) dt
my o, lorllL2@)llerllTa) my ., | @ 27l @)
02 T
(4.18) < =¢ ; 27131 o dt-

From (4.16)—(4.18) we get with Young’s inequality

02 2 T )
Pl < [ Nerlin & < 2l lorlian

_ C2 _
+ CMfCQHWTH%?(QT) < T”ZT”%HQT (02 + Oy 2)||90T||2L2(QT)a

which proves (4.12) for T > T, 5. |

LEMMA 4.7. There exists a constant C, such that

(4.19) ||@T||L2(Q) < CLP vT > 0.
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Proof. Let zr be as in Lemma 4.6. From (3.1) and (4.11) and inequality (4.12)
we infer

0z of
el =Ierlisan = [ [ - dor-tasr+ @ t.arier)orasar
_ opr _ B of B
_/Q {_W_A@T""‘WT+@(fyt,yT)wT}szxdt

= / (207 — ya — §)zrdedt < C. (2||2?THL2(Q) + lyall z2(Q) + ||Z7||L2(Q)) o7l 22(@)-

T

Since {§r}r>0 is uniformly bounded in L?(Q), the above inequalities imply (4.19). 0

Using Lemma 4.7 we infer the existence of an increasing sequence {7}, con-
verging to oo and a function ¢ € L?(Q) such that g7, — @ in L*(Q) as k — oo. The
next lemma establishes stronger convergences properties of the adjoint states.

LEMMA 4.8. The following convergences hold:

(4.20) ¢r. = ¢ in L*(0,00; H'(2)) N L™(0, 00; L*(Q2)),
(4.21) @, — @ in W(0,T) VT € (0,00).

Moreover, there exists a subsequence of {Ti}7° |, denoted in the same way, such that
(422) lim (57, ()]l z2(0) = 19Ol 20 Jor a.e. t € (0,00).
Proof. Taking Q)" M a5 in the proof of Lemma 4.6, from the adjoint state equa-

tion satisfied by @7, and (2.6) it follows for every ¢t € (0,7) with T' > 0 arbitrary
that

DN =

T
B ()220 + C2 / 167, 12y ds

T T
_ _ _ af o
< 1B ()25 + / / (Von [ +ag2 | dods + / / L w5, 9m ), dads
t Q t Q 9y

T
of o
_/t /me,Mf ?y(xasaka)QD%k dx ds

< (2Ngmllx@) + Iallzz@ + 192 ) 167 2@

T of L
+ f Q;nf’Mf yaiy(xvsvkaH(PTk dx ds.

The last two terms are bounded by a constant independent of k. Indeed, for the
first term this boundedness follows from the boundedness of {gr, }72; (see (4.1)) and
Lemma 4.7. The boundedness of the second term is a consequence of (4.13) and
again Lemma 4.7. Since T' > 0 and ¢ € (0,T) were arbitrary and @r, (x,t) = 0 for
t > Ty, the above inequalities imply that {@7, }72, is bounded in L(0,00; L%(Q2)).
Additionally, taking ¢ — 0, we also infer that {@7, }32, is bounded in L?(0, c0; H(Q2)).
This boundedness and the convergence @1, — ¢ in L?(Q) yield (4.20).

Using (2.5) and the fact that the functions gr, are uniformly bounded with respect
to k in L (Qr) for every T, it follows from (3.1) that {7, }72 , is bounded in W (0,T)
by a constant Cp. Then (4.21) follows from (4.20).

N |

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/22 to 193.144.185.28 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2086 EDUARDO CASAS AND KARL KUNISCH

Since the embedding W(0,T) C L?*(Qr) is compact, we have that @7, — @
strongly in L?(Qr) for every T < oo. Then, we can extract a subsequence of
{@1, 372, denoted by {@1,;}52, such that [|[@1 ;(¢)][2() — |#(t)]|z2(q) for almost all
t € (0,1). In a second step, a further subsequence of {¢1 ;}32,, denoted by {@2 ;}524,
is taken such that the pointwise convergence in time holds almost everywhere in
(0,2). Proceeding in this way we obtain for every i a subsequence {@; ;}52, such that
i, (D)l 2() — Io()||L2(q) for almost all ¢ € (0,7) when j — co. Hence, the choice
{@i.i 152, satisfies (4.22). |

Remark 4.9. Let us observe that the convergence g1, — @ in W(0,T) implies
that @, (t) — @(t) in L2(Q) for every t € [0,T]. Indeed, given t € [0,T], from
the continuous embedding W (0,7) C C([0,T); L?>(2)) we infer the continuity of the
mapping z € W(0,T) — z(t) € L*(Q). Therefore, if z; — z in W(0,T), then
zp(t) — z(t) in L3(Q).

LEMMA 4.10. For every € > 0 there exists T, € (0,00) such that

o 1/2
(4.23) (||¢Tk(t)||§2(ﬂ) + / e dt) <e VT >T. and¥t> T,

€

Proof. Given € > 0, Theorem 4.4 yields the existence of T, € (0, 00) such that
(4.24) lgr(t)| 22y <&® Vt>T. and VT > T..
Moreover, since §jr — ¥ in L?(Q) and 3 — yq € L?(Q), for T. sufficiently large we get

o min{1, C? _ min{1, C?
197 =9l L2(@) < Mﬁ VI'>T. and ||§—yallr2(1.,00:02(0) < MEQ,
1C, 10,

where C,, is the constant appearing in (4.19). From these estimates we infer

1297 — ya — UllL2(1. ,00;22(2))
_ _ min{1, C2}
(4.25) <91 = Yll2(1e 00s22()) + 19 = Yall2 (12 ,00s22(2)) < Ta€2-
%)

Now, taking T, < t < T}, and proceeding similarly as in the proof of Lemma 4.8
we get with (4.19) and (4.25)

1, Te
S10r Ol + €2 [ 1om @y ds
t

T af
<1297, — Ya — YllL2(1. 00:2(2) 1P | L2 (@) +/ /m =@ s, um,)| @7, dods
t Q, dy

(4.26)

min{1,C2} , T of =\ =2
< +/t /Q;"ffo ‘a—y(x,s,ka)laka dz ds.
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To estimate the last term we use (4.24) and argue as in (4.18) to deduce

Tk Tk

/ /mf My :IZ 5, Y1 |<ka Qs My |yT|(ka dz dt
Cu _ CM C4 _ B

<G [ \|kauLz<m||soTk||%4<m at < / 197122000 |2 s

t t
(4.27)

Cu,CF 5 [T

< n;f52/t 187, 1711 (g2 At

2 .
Without loss of generality we can assume that Cﬂ;iffc“sz < %Ci} Then, (4.22)
follows from (4.26) and (4.27). ad

As a consequence of this lemma we infer the following corollary.

COROLLARY 4.11. The following convergence holds:

(4.28) Jm (lg()][ 2y = 0.

Proof. Given ¢ > 0, we obtain with Lemma 4.10 the existence of T, > 0 such that
lm, ()l L2y < e ¥t > T and YTy > T..
From this inequality and (4.22), we have that

o) z20) = klirrgo o1, (t)|lL2(0) <€ foraa. t>T..

Since ¢ : (0, 00) — L*(€) is continuous, the above inequality implies [|@¢(t)|| r2(q) < €
for every t > T, which proves the corollary. 0

LEMMA 4.12. For every t > 0 the following identity holds:

1 o > 0
)20 + / / (Vo +ag?] dads + / / OF (0,1, 5)@ de dt
2 t Q t Q 8?!

(4.29) :/ /(g — yq)pdz dt.
¢ Ja
Proof. We split the proof into two steps.
1 12
Step 1. %(’ )| /2 goTk — { ,-,y)‘ / @ in L*(Q). Let us first prove the

boundedness of {|£Ty . -,ka)‘ oT, }k=1 in L?(Q). We use (3.1), (2.4), and (4.10) to

of of

Tk
Ty 8f Ty af
_ _2 = =2
- 9. dedt 9. de dt
/0 /Q\anf’Mf 83/(’ 7ka)(ka T +A /anf’Mf ‘ay(v 7ka)|90Tk L

Ty af
< / (2ng —yd—ﬂ)@Tk dxdt+2/ /m " ’87(77ng)|@%€ dx dt
QT 0 Q, "0y

1207, — ya = Fll2@ 187 22(@) + Crr, 167 72 -
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Using the boundedness of {@r, }72, and {yr, }72, in L?(Q) we deduce the desired
boundedness. Then, there exist subsequences, denoting in the same way, such that

g—;j(.,.,yn_ﬂ 1/2 o1, — ¥ in L*(Q). From (4.21) and the compactness of the em-
bedding W (0,T) C L*(Qr) we get the strong convergence @1, — ¢ in L*(Qr) for
every T' < co. Then, taking subsequences we can assume that yr, (x,t) — y(z,t) and
o1, (z,t) = @(x,t) for almost all (z,t) € Qr. This implies that

| 1/2

(x,t, g1, (2, )| @, (x,t) — |8 x,t, y(x, t))’l/Qaﬁ(x,t) for a.a. (z,t) € Qr,

|8
Ay
and consequently 1 (z,t) = 85 (z,t,y(z,t))

infer that ‘%(-, ,y)‘l/ 2<p 1. Since all subsequences have the same limit, the whole

sequence converges to the claimed limit.
Step 2. Proof of (4.29). Given z € L%(0,T; H'(2)), we deduce from (3.1)

T a@T T
_ / ( 8tk ,z)yds + / / Vor,Vz + agr, 2| de ds
t t Jao

T 8f T
+/ / —(z,t, g7, )pr, 2 drds = / /(ZQTk —yq—§)zdards
¢ Ja 0y t Ja

for every T > 0, T, > T, and t € [0,T). Using (4.1), (4.20), and (4.21) we can pass
to the limit in the above identity and obtain

T a@ T T af
—/ (—,z)ds—i—/ /[V@Vz—l—a@z]dxds—&—/ /—(m,t,gj)@zdxds
¢ Ot ¢ Ja Oy

(4.30) / /y ya)zdzds Vi e [0,T).

| 1/2 @(x,t) in Qr. As T was arbitrary we

The only limit which is not obvious is

T T
. of o of N
] Lt drds = Lt dz ds.
kljgo/t /Qay(x’ , U1, )P, 2 dw ds /t /Qay(w, ,9)pzdrds

It follows from Step 1 and the fact that

of
|87y(’ "ka)’

1/2 1/2

0 0 0
sign 50 (o2 =[5 ,n0) [ sin 5, )2 in (@),
This last convergence can be easily deduced taking into account Lebesgue’s dominated

convergence theorem and Remark 4.5. Now, taking z = @ in (4.30) and recalling that
@ € W(0,T) for every T < oo, we get

L2 ! 2 | o Llof 2
Sle@ + [ [(1VeP+aptlards+ [ [ D aspezas
2 t JQ t Jo Oy
~ [ [ G- vpdeds+ 310D 0
t

Finally, taking 7' — oo and using (4.28) identity (4.29) follows. ad
LEMMA 4.13. Strong convergence @r, — ¢ in L*(0,00; H*(Q)) as k — oo holds.
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Proof. First we prove that
(4.31) / P (z,t,5)@> dzdt < hmmf/ 7 (z,t ka)goTk dx dt.

We decompose g—g(%t,y) ajyc (x,t,y)t 35 (x,t,y)~ for every y € R. Then, from

the weak convergence established in Step 1 of the previous proof we infer

(4.32) /g—f(z,t, dxdt<hm1nf/ ?(w,t,gn)+¢%€ dx dt.
QY Q 9y

k—o0

Now, we observe that (2.3) implies that |y| < Mj if a—f(m t,y)~ # 0. Hence, with (2.4)
we have ‘af (z,t,y) } < O, . This together with the convergence (yr,, ¢1,.) — (U, P)

in L?(Qr)? for every T < oo, and Lebesgue’s dominated convergence theorem, yield

(4.33) of —(z,t,9)" @>dedt = hm / 2 (z,t,91,)” 7, dzdt.

QTa

Given € > 0 arbitrarily, we deduce from the fact that ¢ € L?(0, 00; L?(£2)) (see Lemma
4.8) and from (4.23) the existence of T, such that

o Of o
2 2
/ / ’ 8y (‘Tv tv ka) QDT;C

<Cw, /T (||¢||L2<Q on ey dodt <<

dx dt

for all Ty, > T.. This along with (4.33) implies
of of -2
—(z,t 2dzdt = 1i —(z,t dx dt.
/Q ay (l’, ay 90 €L 111 o ay (I, 7ka~) YT, AT

k—o00

Combining this with (4.32) we obtain (4.31).
Recalling Remark 4.9 and using (4.31) we get with (3.1) and (4.29)

1 i _ _
1O+ [ [ (Ve +apldzar
. 1, 2 < =2 =2
< liminf § Sllor, (0)]z2() + (IVer, + agp, ] dedt
— 00 0 O
. 1, > _ _
<timsup { Jlon Ol ey + [ [ 19, +ahlasar)
k—o0 0 Q

, L o : :
=11£nsup{2||m<o>||iz(m [ [va, +aso%k1dxdt}
0

— 00

. o0 B N o0 a B B
= hlrcnsup {/ /(2ka —Yd — §)pr, drdt — / / a*f(ﬂf,t,yn)@%k dz df}
—00
/ / Y — Yd cpdxdtfhmmf/ / (x,t,97,) <pT dz dt

1
< SIeOeey + [ /|ww2+amdxdt
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Utilizing Lemma 4.2, the above inequalities imply the convergence

lim/ [|V¢2Tk+a¢2Tk]dxdt:/ (V3] + a@? der dt.
Q 0 Q

k—o0 Jq

This identity and the weak convergence @r, — @ in L?(0, co; H'(Q)) prove the strong
convergence. 0

Analogously to Definition 2.1 we have the following definition.

DEFINITION 4.14. We call ¢ a solution to

dp of I ‘
(4.34) —gr ~Avtapt g (@tie = -y inQ,
0

Onp = on X

if ¢ € L*(0,00; HY(Q)) and for every T > 0 the restriction of ¢ to Qr belongs to
W(0,T) and satisfies

—/ —zdt—k/ /V@Vz—kagozdxdt—k/ /8 (z,t,9)pzdedt
0

(4.35) = / /(gj —ya)zdxdt Vze L*(0,T; HY(Q)),
0o Ja
(4.36) Jm (@)l L2(0) = 0.

THEOREM 4.15. The function @ is the unique solution of (4.34) and g1 — @
strongly in L*(0,00; HY(Q)) as T — oo.

Proof. The fact that ¢ is a solution of (4.34) follows from (4.28) and (4.30). Let
us prove the uniqueness. It is enough to prove that the unique function satisfying
(4.35) and (4.36) with a zero right-hand side in (4.35) is the zero function. From (2.9)
we deduce the existence of T, ; < oo such that

_ me'2
Oz < =—=2=2— Vt>T,¢.
1) L2 2C’ZCMf f
Using this inequality and arguing as in (4.18) we infer
c2 o,
(4.37) / /mf Mf (2,t,9)|¢* dodt < =2 5 / [l 21 (o dt VI > To .
Ta,s

Now, we take

()= { €T gt i E<Ty,
o(z,t) otherwise.

Inserting this function in (4.35) we obtain for every T' > T, ¢
(4.38)

1 T“’fzc (tTa)d 2 L[ 2
_ iA Mg I ||§D( )||L2(Q) dt — 2/Ta7f H(P( )||L2(Q) dt

Ta,s
+/ /e2CMf(t’T“vf)[\V<p|2 + ap?] dxdt+/ /[|V<,0|2 + ap?| dx dt
0 Q Ta,p /82

Ta,f 9 T o
+ / / 2Oy (t=Ta.s) —f(;v, t,7)p? do dt + / / —f(x, t,9)p? dadt = 0.
0 Q dy Ta; JQ y
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Integrating by parts and using (2.5) we deduce

(4.39)

1 [T
_ 5/ 2CMf(t Ta,5) & d H‘P( )||L2 )dt+/ / QCMf(t Ta, f)ggf/(x 3 y) dl‘df,
0

exp (7QCM Ta,f)
> 5 le(0)lI72(0 —§H90(Ta,f)lliz(m-

We also have with (2.6)

1
(140 / () oy At = 3 0Ty — 5 10T By
o Ta, s
aanf” / FOTDTp 4 ag drde > €T C2 [ ol o
Q 0

Finally, from (2.6), (4.10), and (4.37) we get
(4.42)

Cc?
/ / ([Vel? + ap?] dxdt+/ / (z,t,9)@* dedt > =2 / ||g0||H1(Q
Ta,s Ta,s a Ta,

Adding the relationships (4.39)—(4.42) we obtain with (4.38)

—_

exp (—QCjufTaJ
2

) T
[1p(0) 20y + €2 / el oy dt] < 5120

Taking T — oo and using (4.36) we conclude that |¢||12(0,00;11(0)) = 0, and the
uniqueness follows. This also implies the uniqueness of the limits of subsequences, and
hence with Lemma 4.13, the whole family {1 }7~0 converges to @ in L?(0, 00; H(£2))
as T — oo. ]

4.3. Convergence of {(Ar, fir)}r>0. The aim of this section is to prove the
following theorem.
THEOREM 4.16. The family {(Ar, fir) }7>0 is bounded in L>=(0, 00; L*(Q))2. There-

fore, there exist sequences {T},}32., converging to oo such that (A, fi,) — (A, i) in
L>°(0,00; L*(Q))? as k — oo holds. Moreover, each of these limits satisfies

(4.43) X € 9j(a),
(4.44) / / u—a)dedt <0 Yu € Uygq,
(4.45) Plo. + KA+ =0.

In addition, if K is given by (1.2) or (1.3), then (X, i) is unique, and (A, fir) — (X, i)
in L>(0,00; L2(Q))? as T — <.

Proof. The boundedness of {(@r|q.,, Ar)}r>0 in L>(0,00; L(£2))? follows from
(3.4) and (4.20). This along with the identity (3.3) yields the boundedness of {fi } 0.

Hence, there exists a subsequence {T},}3° | converging to oo such that {(Ar,, fir, )}32,
converges weakly* in L>(0, 00; L?(2))? to elements (), i) as k — oo.Then, (4.45) is
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obtained passing to the limit in (3.3). Let us prove that A and f satisfy (4.43) and
(4.44), respectively. Since A1, € Ojr, (ur, ), for every u € L'(0, 00; L*(Q2)) we have

/ /E\Tk(u—ﬂTk)dJZdt—Fj(ﬂTk)
0 w
Ty B
— [ [ At ) dodt + i ) < i () < ).
0 w
Weak* convergence Ap, — X in L>°(0, 00; L?(2)) and (4.3) yield
lim / /S\Tkudxdtz/ /Xudmdt and j(w) = lim j(up,).
k—oo Jo w 0 ) k—o0
To establish (4.43) we shall verify

(o) _ o0 _
(4.46) lim / / Ar, iz, do dt = / / i dz dt
k=oo Jo  Ju 0 Jw

below. Inequality (4.44) is obtained passing to the limit in (3.2) assuming that the
convergence

(4.47) lim / pr,ur, dedt = / / pudedt
0 w 0 w

k—oc0

holds. To prove (4.46) and (4.47) we use Lemma 4.2. For this purpose we take into
account the strong convergence ¢, — ¢ in L3(Q), (3.3), (4.2), and (4.45) to get

lim (/{ / / Ny dig, dae dt + / / fir, i, dz dt)
k—ro0 0 w ’ / 0 w ’ ’
= — lim / / @1, U, dedt = 7/ / pudadt
k=00 Jo w 0 w
(4.48) = /1/ / M dz dt + / / pudz dt.
0 w 0 w

From (3.2) we infer

/ / pudrdt = lim / pir,ude dt <lim inf/ / pr,ur, dedt Yu € Ugg.
0 w 0 w 0 w

k— o0 k—o0

Taking u = %, we obtain
(4.49) / / pudedt < lim inf/ fr, U, do dt.
0 w k—oo  Jg

Further, from (34) we get ||5“|L°C(0,00;L2(w)) < hmlnfk_,oo HS‘TkHLC’O(O,oo;Lz(w)) < 1.
Using this fact, (4.3), and again (3.4) we deduce

/ /Xadxdtg l%]] 21 (0,005 22 (w))
0 w

(4.50) = lim HaTk||L1(0,oo;L2(w)) = lim /;\TkﬂTk dz dt.
k— o0 0 w

k—o0

Then, (4.48), (4.49), (4.50), and Lemma 4.2 imply (4.46) and (4.47). Thus, (4.43)-
(4.45) are satisfied by (@, @, A, fi).
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Now, we assume that K is given by (1.2) or (1.3). From A € 9j(u) we know that
[6, Proposition 3.8]

Mz, t) =

W for a.a. (z,t) € Qu if [[u(t)|[2(w) # 0.

12 22 (w)

Furthermore, from (4.44), similarly to (3.6) and (3.8), we infer that ||z(t)[|z2() = 0
if [|u(t)]|z2(w) = 0. These facts along with (4.45) lead to

1
B —;(pww (.’L‘7 t) if ||u(t)||L2(w) =0,
(4.51) Nz, t) = ala, b) for a.a. (2,t) € Qu.
——————  otherwise,
@)l L2 (w)

Therefore, the limit A is uniquely defined. Consequently, the whole family {A7}7s0
converges to \. Using again (4.45), we deduce that the whole family {fir}r~o con-
verges to —(@|q,, + #A) = fi. This concludes the proof. O

5. Optimality conditions for problem (P). The following theorem is a con-
sequence of Lemma 4.8, Theorems 4.15 and 4.16, and Corollary 4.11.

THEOREM 5.1. If 4 is a solution of (P) with associated state g, then there exist
@ € L?(0,00; HY(Q)) N L>(0, 00; L*(2)) such that Plo, € W(0,T) for every T' < oo,
A € dj(w) € L=(0,00; L?(w)), and ji € L>=(0,00; L?(w)) satisfying

@ N af o .
(5.1) 5 ~A¢tapt afy(:at,y)w J—ya inQ,
Onp=0 on¥ and lim; o ||@(t)]12() =0,
(5.2) / / plu—a)dedt <0 Yu € Uyg,
0 w
(5.3) Plg., T KA+ i =0.

The adjoint state @ is unique. Moreover, if K is given by (1.2) or (1.3), then \ and
I are unique as well.

The function X satisfies (4.51). Moreover, if K is given by (1.2) or (1.3), then
(I, ) satisty (3.5)—(3.7) or (3.8), respectively, with (u7,ur) replaced by (j1,u) and
for almost all T € (0,00). In particular, these properties imply that sign A(z,t) =
sign fi(x,t) = signa(x, t) for almost all (z,t) € Q.. Therefore, we have the inequality

(5.4) [KA() + f(t) | 2wy = EIIA(E) || 2@y for a.a. t € (0,00).

Using it, we deduce the following consequence from Theorem 5.1.

COROLLARY 5.2. Let K be given by (1.2) or (1.3). Then, the following sparsity
property holds for almost all t € (0,00):

' if la()r2@) =0 = ||s5(t)HL2(w < k.

Proof. Let us assume that ||@(t)||2(.) # 0; then (4.51) implies that | A(t)]| z2() =
1. From this fact, (5.3), and (5.4) we infer

16() )| 22wy = EIIAE) || L2(w) = K-
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This proves the first implication of (5.5). Assume now that [|u(t)||r2() = 0. As
mentioned above, this implies that [|fi(?)||2(.) = 0. Hence, from (5.3) and (4.51) we
deduce that ||@¢(t)||r2(w) = &IIAE) | L2(w) < K. |

COROLLARY 5.3. Let K be given by (1.2) or (1.3). Then, there exists Ty < o0
such that a(x,t) =0 for almost all x € w and t > Ty.

This corollary is a straightforward consequence of (5.5) and (4.28). This shows
that the optimal control shuts down to zero in finite time. It is due to the appearance
of the nonsmooth term in the cost functional.

8] E.

9] H.
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