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Resumen

Las ĺıneas de fondeo sujetan las estructuras flotantes que se colocan en alta mar, soportando
aśı grandes tensiones producidas por dispositivos muy pesados siguiendo los movimientos de
las olas. Esto puede llevar al deterioro de las ĺıneas e incluso a la pérdida del dispositivo.
Para evitar estas situaciones, se simula el comportamiento de las ĺıneas de fondeo con toda
la precisión posible, lo que motiva a considerar la interacción de la ĺınea con el fondo marino
de forma muy precisa.

El objetivo de este TFG es diseñar e implementar un algoritmo capaz de simular las ĺıneas
de fondeo incluyendo su interacción con un fondo marino descrito por batimetŕıas complejas.
Para ello, se han estudiado las ecuaciones en derivadas parciales que definen la dinámica de
las ĺıneas de fondeo. Posteriormente, se ha encontrado una solución anaĺıtica para un caso
bidimensional estático con una configuración particular y por último, se ha resuelto el caso
genérico tridimensional de forma numérica utilizando el método de elementos finitos.

Para poder considerar la interacción con el fondo de forma genérica en la simulación numérica,
se ha desarrollado un nuevo algoritmo continuo de proyección que opera de forma eficiente
dependiendo del tipo de fondo marino: en los casos en los que es horizontal o tiene forma
de plano inclinado basta con utilizar un método directo de proyección mientras que, en
fondos irregulares, se contruye una triangulación que describe el suelo y se realiza un proceso
de proyección óptimo basado en las normales de vértice. La utilización de este algoritmo
permite calcular con precisión las fuerzas de fricción y normales a las que está sujeta la ĺınea,
mejorando su simulación.

Finalmente, la situación particular resuelta anaĺıticamente se ha resuelto también de forma
numérica, encontrando un acuerdo excelente entre los resultados de ambos métodos: las
diferencias relativas entre las posiciones obtenidas de las ĺıneas de fondeo son del orden del
0.01% mientras que las discrepancias en las tensiones en la parte final de la ĺınea son inferiores
al 0.1%. También se ha analizado la posición de la ĺınea simulada numéricamente en varios
fondos marinos descritos por batimetŕıas complejas.

Palabras clave: Ĺıneas de fondeo, método de elementos finitos, batimetŕıa compleja, algo-
ritmo continuo de proyección.
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Abstract

Mooring lines secure offshore floating structures, withstanding high stresses produced by
very heavy devices following wave movements. This can lead to the deterioration of the lines
and even to the loss of the device. To avoid these situations, the behavior of the mooring
lines is simulated with all the possible precision, which leads to consider the interaction of
the line with the seafloor.

The objective of this work is to develop and implement an algorithm able to simulate mooring
lines including its interaction with a seabed described by complex bathymetries. The first
step is to study the system of partial differential equations that define the dynamic behaviour
of the mooring lines. Later, a two-dimensional static case with a particular configuration will
be solved analytically. Then, the generic three-dimensional case will be solved numerically
using the finite element method.

In order to consider the interaction with the seabed, a new continuous projection algorithm
will be developed. The constructed algorithm operates efficiently depending on the type of
seabed: in cases where it is flat (horizontal or inclined plane), a direct projection method
can be used while, in an irregular seafloor, the seabed is described by a triangulation and
an optimal projection process based on the vertex normals is performed. The use of this
algorithm allows to accurately calculate the friction and normal forces on the mooring line,
improving its simulation.

Finally, the particular situation solved analytically will also be solved numerically, finding
an excellent agreement between both methods: the relative differences between them of the
order of a 0.01% for the obtained mooring line positions and less than 0.1% for the tensions
at the line endpoint. In addition, several qualitative tests which studied the numerically
obtained mooring line positioning in complex bathymetries were performed.

Keywords: Mooring lines, finite element method, complex bathymetry, continuous projec-
tion algorithm.
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1 Introduction

The development of renewable energy is one of the most important global issues today, as
it would be an alternative to the burning of fossil fuels that is causing global warming.
Therefore, a lot of money and effort is being invested in the study of clean energy sources,
including wind and wave power. The latter two can be efficiently exploited in deep water
areas by installing floating structures able to obtain electrical energy such as wind turbines
or wave energy converters.

The floating structures are secured by mooring systems commonly formed by several mooring
lines. A line is anchored to the seabed and ends in a point commonly located in the sea
surface called the fairlead, which in general is non-static and follows the wave movement.
The mooring line is constantly slacked and retighted by the wave, and it often holds very
heavy devices, imposing high peak tensions in the mooring line that can easily cause it to
break. However, a failure in mooring systems may cause a damage or even a loss of the
device, resulting in a severe economic loss. In fact, Kempener and Neumann (2014) list
moorings as a main priority in wave energy research and development.

Figure 1: A mooring system composed of several mooring lines securing a wind floating
turbine.

In order to reproduce with precision and improve the behavior and response of mooring lines,
numerical simulations which imitate its dynamics are developed. Most of them are based on
finite element method (Aamo and Fossen, 2000; Montano et al., 2007).

Gobat and Grosenbaugh (2001) concluded in his work that the seabed interaction affects the
tensions to which the mooring line is subjected. In addition, when the mooring line dynamics
is evaluated, friction and ground normal forces should be accurately described, as both of
them depend on the seabed surface. Nevertheless, the modelization of a floor distinct from
an horizontal one has barely been studied, introducing errors and worsening the numerical
simulations results. In addition, the error caused by this approximation even worsens at
deep waters, where the seabed usually describes more sloped configurations, which are the
common depths to install mooring devices. For instance, there are certain locations such as
the Canary Islands where the seafloor is commonly described by several irregularities.

There are certain previously developed models which consider the mooring line interaction
with a seafloor surface distinct from an horizontal plane such as the two dimensional static
numerical model of a mooring line in a slope developed by Feng et al. (2020). There are also
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three commercial software tools able to simulate mooring lines in irregular bathymetries:
OrcaFlex, ProteusDS and FlexCom. In the manual of Orcaflex (Orcaflex, 1987-2022) it is
explained that the seabed coordinates are used to construct a triangulation which is inter-
polated by either a linear or a cubic polynomial method, while FlexCom, as it is stated in its
manual (Flexcom, 2021), is also based on a cubic interpolation method of the triangulation.
ProteusDS software (ProteusDS, 2018) uses a mesh discretized into squares describing the
seabed equipped with polygonal normals able to model ground normal and friction forces.
Nevertheless, there is a gap in literature because none of the above methods are described
in detail.

The aim of this work is to equip the already developed mooring lines numerical model at
IHCantabria (Rodŕıguez et al., 2020) with a new developed tool able to evaluate the seabed
interaction. The tool is based on a state of the art continuous projection method (Orazi and
Reggiani, 2020) which describes the projection surface by a triangulation and uses vertex
normals to project. The developed projection method is capable of interpreting any seabed
configuration and of calculating friction and ground normal forces. This will allow to simulate
numerically a mooring line in a complex bathymetry.

This work is divided as follows: it starts with the mathematical formulation of the moor-
ing line dynamics, shown in section 2. Then, in section 3, the mooring is described in two
dimensions and a particular static configuration in which an analytical solution can be con-
structed, is studied. In section 4, the mooring line is studied in a three dimensional frame.
This time, the line is no longer static and the solution must be found numerically. The sec-
tion starts with a brief description of the finite element method used to solve the system and
then describes the continuous projection method developed to evaluate seabed interaction
and its application to the calculation of friction and ground forces. The last part of the
section studies how Newton-Armijo was used to search for the initial condition needed to
solve the problem. Finally, in section 5 the analytic results were compared with the ones
obtained numerically providing an excellent accordance. In addition, the results of some
qualitative tests are shown, demonstrating the ability of the simulation to model a mooring
line in a complex bathymetry. The work ends up with some conclusions and an analysis of
the possible further research in section 6.
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2 Formulation of the problem

The objective is to describe the mooring line positions along the time. The mooring dynamics
description will depend on the time variable t and on the arc length parameter s, with
s ∈ [0, L] being L the mooring length. The mooring line changes its positions, velocities and
accelerations with time because its fairlead moves following a vector that must be provided.

It is widely common to describe mooring lines in both two or three dimensions. The three
dimensional description is the natural approach, but it is also habitual to see descriptions
in two dimensions, as lines are much longer than wide, allowing to use a two dimensional
frame which describes the mooring line length and the depth it is submerged into. Therefore,
the equations in this section will be introduced in a variable dimensional environment Rn.
However, the only values n can take are n ∈ {2, 3}. In section 3, the mooring will be
described in a two dimensional frame while in section 4, three dimensions will be considered.

From now on, the vectors will be written in bold characters and all the points will be
described by its three coordinate vector position.

2.1 General formulation

A mooring line behaviour can be modelled by Newton’s equation expressed per unit of length:

γ0
∂2r(t, s)

∂t2
=

∂

∂s

(
T (t, s)

∂r(t, s)

∂s

)
+ f(t, s) (1)

where γ0 is the mooring line mass per meter, r : [0,∞) × [0, L] → Rn is the position of the
mooring, T : [0,∞) × [0, L] → R is the mooring tension, ∂r

∂s
: [0,∞) × [0, L] → Rn is the

unitary tangential vector to the mooring and f : [0,∞)× [0, L] → Rn is the external forces
vector. This formulation is based on Palm et al. (2013) model, and is a simplification of a
more complex model which has been briefly described in subsection 2.3.

The external forces vector f(t, s) per unit of length is the sum of the

f(t, s) = fbg(t, s) + fd(t, s) + fam(t, s) + fn(t, s) + ff (t, s) (2)

being

• fbg(t, s) Effective weight, which is the resultant between the buoyancy and weight
forces obtained by applying Archimedes Principle. It always appears, as the mooring
line is always submerged in the sea water.

• fd(t, s) Hydrodynamic drag force, which appears when the mooring line is not static
and opposes the mooring line motion through the water.

• fam(t, s) Added mass force, which models the displacement of fluid caused by the
mooring line motion.

• fn(t, s) Ground normal force, which must be taken into account when the mooring is
in contact with the seabed. Its direction is perpendicular to the seabed surface. Its
modeling depends on the seafloor surface and has been described in Eq.(24).
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• ff (t, s) Friction force, which has to be considered when the mooring line touches the
seafloor. Its direction is contained in the seabed surface plane, and therefore, depends
on it. Its description can be seen in Eq.(25).

The description of the model used for each of these forces extends beyond the limits of this
work, but it is detailed in Desiré et al. (2022). All of them are treated as forces per unit of
length.

Eq.(1) describes a PDE System, with n equations. In addition, the problem is restricted to
certain conditions:

• The spatial boundaries are imposed by the anchor and fairlead: the anchor is fixed to
a point r0 and the fairlead position is described by the provided vector which depends
on time rF : [0,∞) → Rn:

r(t, 0) = r0 ; r(t, L) = rF (t)

The fairlead vector is usually described by a sinusoidal equation, imitating the wave
movement.

• The problem is described by certain initial conditions (t = 0) in the mooring line.
As Eq.(1) depends on second derivatives, the initial mooring line position r(0, s) and

velocity ∂r(0,s)
∂t

must be provided in order to solve the system. The initial mooring line
velocity will be considered zero while the initial mooring line position will be described
by a function g(s).

∂r(0, s)

∂t
= 0 ; r(0, s) = g(s)

Previous considerations let express the problem as follows:

γ0
∂2r(t,s)

∂t2
= ∂

∂s

(
T (t, s)∂r(t,s)

∂s

)
+ f(t, s) if s ∈ (0, L), t > 0 PDE system

r(t, 0) = r0 if t > 0
Boundary conditions

r(t, L) = rF (t) if t > 0

r(0, s) = g(s) if s ∈ (0, L)
Initial conditions∂r(0,s)

∂t
= 0 if s ∈ (0, L)

(3)
In this work, a particular static case of the mooring will be discussed in section 3, which will
allow to find an analytic solution for the system of PDEs obtained. However, resolving the
non-static equation in general is complicated and precises to use numerical methods. This
other perspective will be discussed in section 4.

2.2 Wave type equation formulation

Eq.(1) is a wave type equation. This can be seen more easily if certain external forces are
considered to be zero, f(t, s) = 0, and the tension is treated as constant, T (t, s) = T .
These considerations, although not being true in general, are useful to relate the mooring
line dynamics with a wave type equation.
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Under these conditions, Eq.(1) transforms into the following:

γ0
∂2r(t, s)

∂t2
= T

∂2r(t, s)

∂s2

which allows to express Eq.(3) and the whole problem as a wave equation:

∂2r(t,s)
∂t2

= v2 ∂
2r(t,s)
∂s2

if s ∈ (0, L), t > 0 PDE system

r(t, 0) = r0 if t > 0
Boundary conditions

r(t, L) = rF (t) if t > 0

r(0, s) = g(s) if s ∈ (0, L)
Initial conditions∂r(0,s)

∂t
= 0 if s ∈ (0, L)

being v =
√

T
γ0

the wave velocity, with units of m/s.

2.3 Brief description a more complex model

This work is based on the model described in subsection 2.1, which is a simplification of
a more complex model of the mooring line dynamics described by Rodŕıguez et al. (2020)
based on the following non-linear equation:

γ0
∂2r(t, s)

∂t2
=

∂

∂s

(
T (t, s)

∂r(t,s)
∂s

|∂r(t,s)
∂s

|

)
+ f(t, s)(1 + e(t, s)) (4)

where e : [0,∞)× [0, L] → R is the strain, defined by:∣∣∣∣∂r(t, s)∂s

∣∣∣∣ = 1 + e(t, s).

In general, e(t, s) is a small quantity, almost infinitesimal. In the model used in this work,

the strain is considered to be zero, e(t, s) = 0, leading to |∂r(t,s)
∂s

| = 1, which corresponds to
the theoretical definition of the arc length variable s. This approximation allows to reduce
the above expression Eq.(4) to the previously introduced Eq.(1).

Considering the strain introduces a non-linearity and greatly complicates the development of
the numerical method developed in section 4. The description of the numerical method with
this dynamic model is outside the scope of this work, although the mooring line dynamics
were modelled with this behaviour in Desiré et al. (2022).
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3 Bidimensional specific case: Mooring in a slope

In this section, the mooring line is described in a bidimensional frame. The elected coordinate
system to describe bidimensionally the mooring is to take as the origin the fairlead position.
e2 points upwards the sea surface, which is located at Y = 0. Therefore, the seafloor is
located at negative values of the Y axis. X axis decreases along the mooring, with the
anchor located at negative X values. Figure 2 shows the described frame.

3.1 Description of the specific static case

The objective of this subsection is to describe a particular case proposed by Batista and
Perkovic (2019) of a mooring line which allows to find an analytical solution for the problem
described in Eq.(3).

The following conditions are considered :

• It is an static solution, r(t, s) = r(s), which occurs because the fairlead is static,
rF (t) = rF (0) ∀t.

• The mooring line is anchored to an sloped plane seabed with an inclination α, while the
fairlead is subject to an horizontal external force H, making part of the mooring line
rise from the ground. Therefore, the mooring line is divided in two parts: one laying
on the slope until a point P1, and a second one in which the mooring line behaves as
a catenary.

• Although they will not be explained in this work, other two approaches have been
considered: treating the ground as impenetrable and the mooring line as inextensible.
A more detailed description can be found in the work developed (Desiré et al., 2022).

This specific situation is particularly interesting because is commonly found in several off-
shore facilities where the seabed surface can be treated as an inclined plane. The described
situation is shown in Figure 2:

Figure 2: A submerged mooring anchored at r0 = (r0,x, r0,y) to an inclined plane of inclina-
tion α and laying on it until the point P1. From P1 to its ending, rF , it forms a catenary.
The image has been taken from Batista and Perkovic (2019).
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Therefore, the general expression formulated in Eq.(3) can be described in this particular
case as 

d
ds

(
T (s)dr(s)

ds

)
+ f(s) = 0 if s ∈ (0, L) ODE system

r(0) = r0 if s = 0
Boundary conditions

r(L) = rF if s = L

(5)

where the PDE system has been transformed into a ODE system because the whole for-
mulation depends on a single variable s and the initial condition of the position is trivial
r(s) = g(s).

An analytic expression can describe the behaviour of a mooring line subject to the previous
exposed conditions. The next section 3.2 describes the process developed until the solution
of Eq.(3) under these circumstances was found.

3.2 Analytical resolution

The objective of this section is to find an analytical expression for a static mooring line
subject to an horizontal known force H in the previous introduced conditions.

In order to parameterize this problem, the mooring can be divided in two parts: one laying
in the slope until a certain point P1, and the other part, which forms a catenary. Therefore,
the followed steps in order to obtain the analytical solution are the following:

1º Deduction of the catenary equation

2º Parameterization of the catenary part of the mooring, which goes from P1 to the
fairlead position, rF .

3º Parameterization of the part of the mooring following the seabed surface, which goes
from the anchor position, r0 to P1.

4º Determination of l0, the length of the mooring line until the point P1.

5º Combination of the last two steps in order to describe a total and continuous parame-
terization which depends on a single arc-length variable, s.

3.2.1 Deduction of catenary equation

The first step to obtain a parameterization of the catenary part of the mooring, is to develop
the corresponding equation, which has been performed following Simmons (1985)’s method.
The elected system of reference in this deduction has the origin in the catenary apex.
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Figure 3: Catenary tension T
produced by an horizontal force
H and the weight of the cate-
nary (γWgs).

Let a mooring submerged into the water form a catenary.
By the Figure 3, it can be seen that

H = T cosθ

γWgs = T senθ
(6)

where γW is the mooring line mass per unit of length inside
the water, g = 9.8m/s2 is the gravity acceleration and s is
the arc length parameter of the catenary. T is the mooring
line total tension, θ is the tension angle, and H is the hor-
izontal applied force. The effective weight of the mooring
inside the water is γWgs.

The characteristic length of the catenary, λ, is defined as follows:

λ =
H

γWg
. (7)

By dividing both terms in Eq.(6) and using the definition of λ in Eq.(7), the following
expression is obtained:

s

λ
= tanθ =

dy

dx
(8)

and deriving by x variable:
1

λ

ds

dx
=

d2y

dx2
.

Using the definition of the derivative of arc-length that comes from Pythagorean theorem

(ds2 = dx2 + dy2), ds
dx

=

√
1 +

(
dy
dx

)2
and creating a new variable q = dy

dx
, the previous

expression is reduced to:
1

λ

√
1 + q2 =

dq

dx
.

Integrating both terms ∫
dx

λ
=

∫
dq√
1 + q2

one of the possible solutions to the integrals above is:

ln(
√

1 + q2 + q) =
x

λ
.

Leading to the following expressions:

ex/λ =
√

1 + q2 + q

e−x/λ = 1√
1+q2+q

=
√
1 + q2 − q

which allow to express q as:
dy

dx
= q =

ex/λ − e−x/λ

2
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whose general solution is the following

y = λ
ex/λ + e−x/λ

2
+ c4,

where c4 is a variable constant. It can be seen that when x = 0, y = λ + c4. Therefore, in
order to define the apex at (0,0), c4 = −λ. Finally, the catenary equation for a system of
reference with its origin in the catenary apex is obtained:

y = λ
(
cosh

(x
λ

)
− 1
)

(9)

3.2.2 Parameterization of the catenary part

It must be remarked that the procedure followed in this section is based on the one used by
Batista and Perkovic (2019).

The catenary part goes from the point P1 to the fairlead position, rF . As l0 is the length of
the part of the mooring laying on the slope, the length of the catenary part will be L − l0.
Arc-length variable s is a convenient notation for these type of problems, which is defined
as follows:

s = λsinh
(x
λ

)
with s ∈ [s1, L− l0 + s1]

being s1 the arc-length point which determines the start of the parameterization or in other
words, the arc-length corresponding to the point P1. In order to determine s1, it should be
remembered that P1 has an inclination of −α. If Eq.(8) is applied, it leads to

s1 = −λtan(α). (10)

The definition of the arc-length parameter s provides a relation between X-coordinate and
s. By using that cosh2(x)− sinh2(x) = 1, it is obtained that

cosh
(x
λ

)
=

√
1 +

( s
λ

)2
.

Substituting this value in the catenary equation provided in Eq.(9) leads to the following
expression:

x = λ · asinh
(
s
λ

)
y = λ

(√
1 +

(
s
λ

)2 − 1

) (11)

which is the catenary description parameterized by its arc length coordinate s in a coordinate
system where the origin is the apex.

However, as it has been previously described, in the presented work the coordinate system
has its origin at the fairlead position rF . In that frame, the apex coordinates can be expressed
as (X0, Y0), and the previous expression transforms into the following:

X = X0 + λ · asinh
(
s
λ

)
Y = Y0 + λ

(√
1 +

(
s
λ

)2 − 1

)
12



Nevertheless, the apex coordinates (X0, Y0) are unknown whereas P1 = (X1, Y1) will be
determined by Eq.(15), as it will be further discussed. Therefore, the following expression
can be used to express (X0, Y0) in terms of P1:

X0 = X1 − λ · asinh
(
s1
λ

)
= X1 + λ · asinh(tan(α))

Y0 = Y1 − λ

(√
1 +

(
s1
λ

)2 − 1

)
= Y1 − λ

(√
1 + tan2(α)− 1

)
where the definition of s1 provided by Eq.(10) has been used.

Finally, by joining the last two expressions, it is obtained the final parameterization of the
catenary in terms of its arc-length coordinate s:

rcat(s) =


rcat, X(s) = X1 + λ · asinh

(
s
λ

)
+ λ · asinh (tan(α))

rcat, Y(s) = Y1 + λ

(√
1 +

(
s
λ

)2 −√1 + tan2(α)

) (12)

with s ∈ [−λtan(α), L− l0 − λtan(α)]

To complete this expression, P1 = (X1, Y1) coordinates must be determined, which can be
done by applying Eq.(15) below.

It is interesting to get the analytical expression for the tension of the catenary points, specif-
ically at the fairlead rF , which is a easily measurable quantity used in a lot of experimental
tests that can verify the correct behaviour of the proposed analytical solution. Regarding
Eq.(6), the total tension T at a catenary point with arc-length parameter s can be obtained
the following way:

T (s) =
√
H2 + (γWgs)2 = H

√
1 +

( s
λ

)2
with s ∈ [−λtan(α), L− l0 − λtan(α)] (13)

where the introduced definition of λ in Eq.(7) has been used. The tension at the fairlead
can be easily calculated by replacing s by L− l0 − λtan(α), as it will be done in the results
(see section 5).

3.2.3 Parameterization of the part which lays on the slope

From the anchor r0 = (r0,x, r0,y) to the point P1, the mooring line follows the seabed surface.
Let l0 be the length of this part of the line. Then, the mooring can be parametrized as:

rslope(s) =

{
rslope,X(s) = r0,x + s · cos(α)
rslope,Y(s) = r0,y − s · sin(α)

with s ∈ [0, l0] (14)

where s is the arc parameter of this part of the mooring. l0 is determined by Eq.(16) devel-
oped in the next section. Once l0 is obtained, by substituting s by l0 in the parameterization
of the slope part described in Eq.(14), P1 coordinates can be obtained:

P1 = (r0,x + l0 · cos(α), r0,y − l0 · sin(α)). (15)
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3.2.4 Determination of l0

Calculating l0 allows to determine P1 coordinates with Eq.(15) as well as the arc-length
parameters defined in Eq.(12), completing the expression.

However, as P1 is not determined yet, in this deduction, the catenary apex has been con-
sidered as the frame origin. Then, rF is not located at (0,0) in this section. This will not
affect the calculation of l0 distance.

By Figure 2 the following relation can be induced:

∆y = rF,y − Y1 = l0sin(α) + hA

where hA is the distance from the anchor to the sea level, in other words, hA = −r0,y. As the
current frame is the one that has the origin in the catenary appex, the catenary equation
described for this frame of reference in Eq.(11) can be used:

λ

[√
1 +

(s2
λ

)2
− 1

]
− λ

[√
1 +

(s1
λ

)2
− 1

]
= l0sin(α) + hA

where s1 and s2 are the catenary arc-length parameters of the points P1 and rF respectively.
It should be remembered that the length of this mooring line part is L − l0, leading to
s2 = L− l0 + s1. Then, the definition of s1 provided in Eq.(10) is applied:√

λ2 + (L− l0 − λtan(α))2 −
√

λ2 + λ2tan2(α) = l0sin(α) + hA.

In addition, the variable p was created:

p = tan(α) ⇒ sin(α) =
sin(α)√

sin2(α) + cos2(α)
=

tan(α)√
1 + sin2(α)

cos2(α)

=
p√

1 + p2
.

Substituting p into the previous equation, the following expression is obtained:√
λ2 + (L− l0 − λp)2 − λ

√
1 + p2 = hA + l0

p√
1 + p2

.

After doing some calculations, the following quadratic equation is obtained:

l20 − 2l0

[
L(1 + p2) + hAp

√
1 + p2

]
+ (1 + p2)

[
L− 2Lλp− h2

A − 2λhA

√
1 + p2

]
= 0

providing a unique realistic solution that has been taken from Batista and Perkovic (2019):

l0 = L(1+p2)+
√

1 + p2
[
hAp−

√
h2
A + 2hA(λ+ Lp)

√
1 + p2 + 2λLp+ (L2 + h2

A)p
2

]
(16)
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3.2.5 Final solution

Both of the mooring line parts (the catenary and the slope) separated by P1 can be joined
in a common expression r(s) with s ∈ [0, L] that is the solution of the proposed problem in
Eq.(5).

The parameterization corresponding to the part of the mooring line laying on the slope
described by Eq.(14) goes from the anchor r0, which corresponds to s = 0, to the point P1,
corresponding to s = l0.

Then, the part of the mooring line which described a catenary shown in Eq.(12) was defined
with s ∈ [−λtan(α), L − l0 − λtan(α)] whereas in the desired general description, the arc-
length parameter in this part should be described by s ∈ [l0, L]. This is achieved by a simple
translation of the arc-parameter.

rcat(s− l0 − λtan(α)) = r(s)

which veryfies the desired condition: r(l0) = rcat(−λtan(α)) = P1 and r(L) = rcat(L− l0 −
λtan(α)) = rF . Then, the following continuous solution is obtained:

r(s) =

{
rslope(s) if s ∈ [0, l0]

rcat(s− l0 − λtan(α)) if s ∈ (l0, L]
(17)

With this expression, it is possible to reproduce analytically the behaviour of the complete
mooring in the described situation. Later, in subsection 5.1, the results provided by this
equation will be compared with the ones obtained numerically by the method developed in
section 4, showing great accordance.

3.2.6 Verification of the obtained expressions

The obtained solution r(s) must verify the formulation of the considered problem described
in Eq.(5). Therefore, both parts of the mooring line, rcat(s) and rslope(s), must accomplish
the ODE system. On the other hand, the boundary conditions are accomplished by the
proper definition of the expressions, which have been constructed with this propose.

• Checking that rcat(s) veryfies the ODE system:

rcat(s), which was described in Eq.(12) satisfies:

d
ds
rcat, X = λ 1/λ√

1+( s
λ)

2 = λ/
√
λ2 + s2

d
ds
rcat,Y = λ 2s/λ2

2
√

1+( s
λ)

2 = s/
√
λ2 + s2

verifying
(

d
ds
rcat, X

)2
+
(

d
ds
rcat,Y

)2
= λ2

λ2+s2
+ s2

λ2+s2
= 1, which is the arc-length definition.

If the tension expression formulated in Eq.(13) and the definition of λ provided in Eq.(7) are
used:

T (s) =
√
(γWgs)2 +H2 = γWg

√
λ2 + s2
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obtaining:

d
ds

(
T (s) d

ds
rcat,X

)
= d

ds
λγWg = 0

d
ds

(
T (s) d

ds
rcat,Y

)
= d

ds
γWgs = γWg

whereas the only external force per unit of length that appears from the ones considered in
Eq.(2) is the effective weight per unit of length, fbg(s) = −γWg, which is in the Y-axis:

f(s) = (0,−γWg),

satisfying the ODE system which describes the mooring dynamics.

d

ds

(
T (s)

drcat(s)

ds

)
+ f(s) = (0, 0)

• Checking that the part of the mooring which lays on the slope rslope(s) verifies the
ODE system:

Based on the parameterization of rslope shown in Eq.(14):

d
ds
rslope, X = cos(α)

d
ds
rslope,Y = −sin(α)

which do also verify the arc length definition,
(

d
ds
rslope, X

)2
+
(

d
ds
rslope,Y

)2
= 1.

This time, the tension is constant (T (s) = T ) because the angle of inclination is fixed (α).
Therefore,

d

ds

(
T
drslope(s)

ds

)
= (0, 0)

whereas the external forces that intervene
in this process from the ones considered in
Eq.(2) are again the effective weight per unit
of length fbg(s) and the ones which appear
when the mooring touches the seabed: the
normal fn(s) and friction ff (s) forces per
unit of length. However, by definition, in a
static system, all these forces sum zero, as
it can be seen in Figure 4. This leads to
f(s) = (0, 0), which satisfies the ODE sys-
tem

d

ds

(
T (s)

drslope(s)

ds

)
+ f(s) = (0, 0)

Figure 4: Forces in the part of the mooring
which lays on the slope. fbg(s) is the effective
weight, fn(s) is the normal force and ff (s)
the friction force.
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4 Three dimensional general case

In this section, the mooring is described into its three dimensions. Its fairlead is free to move,
which makes the mooring line vary its position along the time. Therefore, there is no static
approach able to simplify the general problem formulation described in Eq.(3). A numerical
method must be developed, which will be described in subsection 4.1. The necessary initial
condition to describe the mooring dynamics is obtained by searching the static equilibrium
in the mooring line, as it will be discussed in subsection 4.3.

In the subsection 4.2, a continuous projection algorithm has been constructed and integrated
in the general previous existing numerical method developed by IHCantabria Rodŕıguez et al.
(2020), allowing the mooring simulation to interpret an irregular seabed surface.

Figure 5: Coordinate system used. A view
of the plane XZ can be seen.

The three dimensional used frame can be
seen in Figure 5. The defined Y axis in the
previous section 3 becomes now the Z axis,
reaching Z = 0 at the sea surface and with
e3 pointing over the sea level, giving neg-
ative Z-values for the mooring depth. The
newly defined Y axis describes the width of
the mooring line andX axis keeps parallel to
the length of the mooring, as it is described
in the left image. The origin is the fairlead
initial position, rF (0).

4.1 Numerical method (FEM)

The objective is to solve numerically the problem formulated in Eq.(3), which is shown again:

γ0
∂2r(t,s)

∂t2
= ∂

∂s

(
T (t, s)∂r(t,s)

∂s

)
+ f(t, s) if s ∈ (0, L), t > 0 PDE system

r(t, 0) = r0 if t > 0
Boundary conditions

r(t, L) = rF (t) if t > 0

r(0, s) = g(s) if s ∈ (0, L)
Initial conditions∂r(0,s)

∂t
= 0 if s ∈ (0, L)

As it was previously discussed, the proposed problem can be understood as a wave type
equation with a second order partial differential equation system (PDE System), two bound-
ary conditions defined for the mooring line extremes (r(t, 0) and r(t, L)) and two initial
conditions that come from the order of the PDE system: initial positions (r(0, s)) and the
considered zero initial velocities (∂r

∂t
(0, s)). The remaining initial condition is defined by the

function g(s), which will be calculated in subsection 4.3 and will be treated as known for
the time being.
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The numerical method used to solve the proposed problem is the finite element method
(FEM). As a resume, FEM allows to transform the PDE system into a second order system
of ordinary differential equations (ODEs) by discretizing the mooring line into N nodes and
defining a basis of functions which allow to express the solution as a linear combination of
them. The system can be solved numerically, providing the accelerations of the line nodes
of the mooring line.

Finally, the second order ODE system can be reduced to first order, which allows to integrate
and construct the temporal simulation.

4.1.1 Homogenization of the problem

As it will be further discussed, applying FEM is much more simple when the boundary
conditions are null in the extremes, which is known as an homogeneous problem. This can
be reached by constructing the following term r̂(t, s):

r̂(t, s) =
s

L
rF (t) +

(
1− s

L

)
r0

and performing a change of unknown functions:

r̃(t, s) = r(t, s)− r̂(t, s).

The formulation of the problem described in Eq.(3) can be applied to r̃(t, s), obtaining the
following expressions:

• PDE System

γ0
∂2r̃(t, s)

∂t2
− ∂

∂s

(
T (t, s)

∂r̃(t, s)

∂s

)
=

= γ0
∂2r(t, s)

∂t2
− ∂

∂s

(
T (t, s)

∂r(t, s)

∂s

)
− γ0

∂2r̂(t, s)

∂t2
+

∂

∂s

(
T (t, s)

∂r̂(t, s)

∂s

)
=

= f(t, s)− γ0
s

L

d2rF (t)

dt2
+

∂T (t, s)

∂s

(
rF (t)

L
− r0

L

)
= f̃(t, s).

• Boundary conditions
r̃(t, 0) = r(t, 0)− r0 = 0

r̃(t, L) = r(t, L)− rF (t) = 0

• Initial conditions

r̃(0, s) = r(0, s)− s
L
rF (0)−

(
1− s

L

)
r0 = g̃(s)

∂r̃(0,s)
∂t

= ∂r(0,s)
∂s

− s
L

drF (0)
dt

= − s
L

drF (0)
dt
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As the boundary conditions are now null in the extremes, this change of unknown functions
allows to express Eq.(3) as an homogeneous problem:

γ0
∂2r̃(t,s)

∂t2
= ∂

∂s

(
T (t, s)∂r̃(t,s)

∂s

)
+ f̃(t, s) if s ∈ (0, L), t > 0 PDE system

r̃(t, 0) = 0 if t > 0
Boundary conditions

r̃(t, L) = 0 if t > 0

r̃(0, s) = g̃(s) if s ∈ (0, L)
Initial conditions∂r̃(0,s)

∂t
= − s

L
drF (0)

dt
if s ∈ (0, L)

(18)
Homogenizing the problem simplifies the next steps of the FEM method.

4.1.2 Weak formulation

FEM method is based on searching for the solution in a concrete space of functions, which
is known as weak formulation. In order to understand the concept of weak formulation,
Sobolev spaces must be introduced:

Definition 1 For a certain domain Ω and m, p ∈ N, the Sobolev space of functions Wm,p(Ω)
can be defined as:

Wm,p(Ω) = {f ∈ Lp(Ω)| ∂αf ∈ Lp(Ω) ∀|α| ≤ m}

where ∂α is the partial derivative of order α and (Lp(Ω), ||.||p) is the normed function space.

The vector space Lp(Ω) is composed by the measurable functions f : Ω → R defined in the
measurable space (Ω, µ) for which their integral satisfies

∫
|f |pdµ < ∞.

The p-norm which defines the normed function space is described as ||.||p = p

√∫
|f |pdµ.

If, for a certain Sobolev space p = 2, the Sobolev space is dotted with Hilbert Space structure
and can be expressed as:

Hm(Ω) = {f ∈ L2(Ω)| ∂αf ∈ L2(Ω) ∀|α| ≤ m}

The unknown solution of the homogenized problem in Eq.(18) must satisfy the imposed
boundary conditions, which are null in the mooring line extremes. Let V be an infinite
dimension space composed of functions w : R → R which verify:

V = {w(s) ∈ H1([0, L]) that w(0) = w(L) = 0}

where H1([0, L]) = {w(s) ∈ L2([0, L]) | dw(s)
ds

∈ L2([0, L]) } is the corresponding Sobolev
space defined in the domain [0, L] with m = 1, understanding derivatives in the sense of
distributions.

It can be seen that, ∀t, r̃(t, s) ∈ V 3 (with V 3 = V × V × V ) which means that each of the
coordinates of the solution is expected to be in the space V . Finite element method starts by
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selecting a test function w(s) ∈ V . If the homogenized PDE system in Eq.(18 is multiplied
by the test function w(s), it is obtained:

γ0
∂2r̃(t, s)

∂t2
w(s) =

∂

∂s

(
T (t, s)

∂r̃(t, s)

∂s

)
w(s) + f̃(t, s)w(s).

Integrating along the length leads to the following expression∫ L

0

γ0
∂2r̃(t, s)

∂t2
w(s)ds =

∫ L

0

∂

∂s

(
T (t, s)

∂r̃(t, s)

∂s

)
w(s)ds+

∫ L

0

f̃(t, s)w(s)ds

and integrating by parts∫ L

0

γ0
∂2r̃(t, s)

∂t2
w(s)ds =

[
T (t, s)

∂r̃(t, s)

∂s
w(s)

]L
0

−
∫ L

0

T (t, s)
∂r̃(t, s)

∂s

d

ds
w(s)ds+

∫ L

0

f̃(t, s)w(s)ds.

Finally, using the properties of the test function w(s) ∈ V , w(0) = w(L) = 0, it is obtained:∫ L

0

γ0
∂2r̃(t, s)

∂t2
w(s)ds = −

∫ L

0

T (t, s)
∂r̃(t, s)

∂s

d

ds
w(s)ds+

∫ L

0

f̃(t, s)w(s)ds (19)

which is called the weak formulation of the problem, equivalent to finding the minimum error
(minimization problem) in L2 (Burden and Faires, 2013).

4.1.3 Discretization/ Galerkin continuos method

Finite element method lays on searching for the solution in a finite dimension subspace of
the previously introduced V , which will be called VN from now on.

The method starts by dividing the mooring line length into N equispaced nodes, {si}N−1
i=0 .

VN will have dimension N and its basis will be formed by the functions {ϕi}N−1
i=0 ∈ V which

must satisfy ϕi(0) = ϕi(L) = 0 and will be later described in 4.1.4.

Once the basis is constructed, the mooring line position homogenized vector r̃(t, s) can be
expressed as a linear combination of the basis elements:

r̃(t, s) =
N−1∑
i=0

ri(t)ϕi(s)

being ri(t) = r̃(si, t) the mooring line nodes positions: three-coordinate vectors which con-
tain the position of each node i. On the other hand, ϕi(s) are scalar functions. The tangential

vector, which is the spatial derivative of the mooring line position vector ∂r̃(t,s)
∂s

can be cal-
culated as follows:

∂r̃(t, s)

∂s
=

N−1∑
i=0

ri(t)
dϕi(s)

ds
.

The discretization is also applied to external force vectors.

f(t, s) =
N−1∑
i=0

fi(t)ϕi(s).
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The test function w(s) ∈ V used in the weak formulation is chosen to be a function of the
basis of VN , w(s) = ϕj(s). If the described discretizations are applied to the integral in
Eq.(19), it is obtained that:

γ0

∫ L

0

(
N−1∑
i=0

∂2ri(t)

∂t2
ϕi(s)

)
ϕj(s)ds = ...

... = −
∫ L

0

(
N−1∑
i=0

T (t, s)ri(t)
dϕi(s)

ds

)
dϕj(s)

ds
ds+

∫ L

0

(
N−1∑
i=0

f i(t)ϕi(s)

)
ϕj(s)ds

which can be expressed as

γ0

N−1∑
i=0

∂2ri(t)

∂t2

∫ L

0

ϕi(s)ϕj(s)ds = −
N−1∑
i=0

ri(t)

∫ L

0

T (t, s)
dϕi(s)

ds

dϕj(s)

ds
ds+

N−1∑
i=0

f i(t)

∫ L

0

ϕi(s)ϕj(s)ds,

obtaining a second order system of ODEs, as the equations depend only on time:

γ0M


d2r0(t)
dt2

d2r1(t)
dt2

...
d2rN−1(t)

dt2

 = −K(t)


r0(t)

r1(t)
...

rN−1(t)

+M


f0(t)

f1(t)
...

fN−1(t)

 (20)

being

Mi,j =

∫ L

0

ϕi(s)ϕj(s)ds

and

Ki,j(t) =

∫ L

0

T (t, s)
dϕi(s)

ds

dϕj(s)

ds
ds.

In FEM method, M is commonly referred as mass matrix while K(t) is the stiffness matrix.

4.1.4 Definition of the basis

The election of the basis functions {ϕi}N−1
i=0 is specially important in order to reduce the

computational cost in solving the system in Eq.(20). This is achieved by constructing sparse
matrices, which starts by defining linear basis functions:

ϕi(s) =


0 if s < si−1

(s− si−1)/l if si−1 ≤ s < si
(−s+ si+1)/l if si ≤ s < si+1

0 if si+1 ≤ s

where l = L/(N − 1) is the length of an interval and {si}N−1
i=0 are the mooring line nodes.

These basis functions have been chosen following the steps in Aamo and Fossen (2000). The
advantage provided by these functions is that they accomplish the following condition:∫ L

0

ϕi(s)ϕj(s)ds = 0 ∀j ̸= {i, i− 1, i+ 1}.
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Then, the matrix M in the ODE system in Eq.(20) becomes tridiagonal.

It is also interesting to study the derivatives of the basis functions, which are the defined as
follows:

dϕi(s)

ds
=


0 if s < si−1

1/l if si−1 ≤ s < si
−1/l if si ≤ s < si+1

0 if si+1 ≤ s

It can be seen that the derivatives are well defined in the Sobolev space H1, because as it
has been said, they must be understood in the sense of distributions. Again,

dϕi(s)

ds

dϕj(s)

ds
= 0 ∀j ̸= {i, i− 1, i+ 1},

making the stiffness matrix K(t) in the ODE system in Eq.(20) tridiagonal.

The functions ϕi(s) may be easier to understand with this Figure:

Figure 6: Representation of the basis functions used in the developed finite element method.
The image has been taken from Aamo and Fossen (2000).

The election of the functions which construct the basis is not unique: there are other ap-
proaches which use higher order functions as a basis, for example B-splines or higher order
polynomials (Burden and Faires, 2013). The advantage of these approaches is that they
provide a continuous derivative without needing to define it in the sense of distributions.
However, using these other functions introduces more terms in the mass and stiffness matri-
ces, producing an increment in the computational cost of solving the ODE system in Eq.(20)
as long as the number of mooring line nodes is not decreased.

4.1.5 From second order to first order ODEs system

The final expression obtained by FEM, which was Eq.(20), was a second order system of
ODEs which did only depend on time. However, there is a general procedure which allows to
reduce the order of the ODEs by duplicating the number of equations defining the system.

From Eq.(20) it is obtained that

d2ri(t)

dt2
= − 1

γ0
M−1K(t)ri(t) +

1

γ0
fi(t) ∀i ∈ {0, ..., N − 1}
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Let ui(t) = ri(t) and vi(t) =
dri(t)
dt

∀i ∈ {0, ..., N − 1}. It is obtained that

dui(t)

dt
= vi(t);

dvi(t)

dt
=

d2ri(t)

dt2
= − 1

γ0
M−1K(t)ui(t) +

1

γ0
fi(t) ∀i ∈ {0, ..., N − 1}

which can be reordered in a linear system that must be solved ∀i ∈ {0, ..., N − 1}:(dui(t)
dt

dvi(t)
dt

)
=

(
0 1

− 1
γ0
M−1K(t) 0

)(
ui(t)

vi(t)

)
+

(
0

1
γ0
fi(t)

)

4.2 Continuous projection algorithm

The mooring line is subject to several external forces, which were introduced in Eq.(2). Two
of these forces depend on the seafloor structure: ground normal and friction forces. In order
to reproduce them with accuracy, the interaction between the mooring line and the seafloor
should be evaluated.

If these two forces are ignored, the external vector force in Eq.(1) will not be complete, and
the numerical solution found by the finite element method may not be appropriate. This
way, the objective is to calculate the terms of these two forces which are able to quantify the
mooring line and seafloor, for whatever the seabed surface is.

4.2.1 Definition of the terms

Let S be the seabed surface. As it was defined above, {ri}i∈0,...,N−1 is the position of a
mooring line node i and it is a three dimensional vector with the point coordinates.

For a particular mooring line node ri, let r
′
i be the closest point to ri contained in the surface

S. In other words, it is the point which satisfies the following condition:

r′
i ∈ S | ∀rG ∈ S, ||ri − r′

i|| ≤ ||ri − rG||.

r′
i is the projection of the mooring line node ri in the surface. For non-convex surfaces, the

projection point may not be unique, but this problem has already been considered in 4.2.3.

In the projection point r′
i, the unitary normal vector to the seabed surface S pointing

outwards the sea (in the positive direction of Z axis) is defined as nS,i. With this definition,
it is possible to introduce the terms needed to describe friction and ground forces:

• dP,i is the direction of projection, a unitary vector pointing to the sea level described
by:

dP,i = nS,i (21)

• dG,i is the penetration depth of the mooring line node i in the seabed S, a scalar
quantity defined as follows:

dG,i = (ri − r′
i) · nS,i (22)

dG,i is positive when the mooring line is over the seabed surface (when the vector
−−→
r′
iri

points to the sea level) and negative when it is buried into it.
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Figure 7 describes graphically the introduced terms:

Figure 7: Graphical description of the terms dG,i (in red, a scalar) and dP,i (in blue, a vector)
for a certain mooring line (blue) node i in a surface S (black). ri is the vector position of
the mooring line node and r′

i its projection position.

These terms are obtained by a continuous projection method described in the following
sections. The proposed projection method is suitable to be applied at any type of seafloor.
However, if the seafloor surface is an inclined or horizontal plane, (which are commonly found
structures) the general method can be replaced by a point-to-plane projection expression,
reducing the computational cost required in these cases.

4.2.2 Specific cases: Horizontal or inclined plane seabed surface

In this subsection, the projection process for both horizontal or inclined plane seabeds is
described. Figure 8 schemes the proposed method. Let ri be the position vector of a
mooring line node i and r′

i be the position vector of the projected line node i.

The case in which the floor is an horizontal plane, which is the used seafloor surface descrip-
tion in most of mooring simulations, is the simplest one. The projected point ri

′ has the
same X and Y coordinates as the mooring line node ri (ri,x = r′i,x and ri,y = r′i,y), while its
z-coordinate is the same as the seafloor height, zg (r′i,z = zg). The direction of projection
always follows the Z axis, dP,i = e3.

Therefore, when the seafloor defines an horizontal plane, the previously introduced terms
dG,i defined in Eq.(22) and dP,i in Eq.(21) are the following:

Horizontal plane

{
dP,i = e3 ∀i ∈ {0, ..., N − 1}
dG,i = ri,z − zg.

On the other hand, when the seabed structure forms an inclined plane, its unitary normal
vector pointing upwards n defines the direction of projection for every mooring line node,
dP,i = n.

To obtain the projected mooring line nodes coordinates r′
i, it must be noticed that r′

i is
contained in the inclined plane which defines the seabed surface and satisfies its equation:

r′
i · n = k.
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In addition, r′
i is contained in the line with direction n that also contains ri. Therefore, it

satisfies the following parametric equation:

r′
i = ri + µi.n

Joining both previous equations, for each mooring line node i, it is obtained that µi =
k−ri ·n, allowing to calculate r′

i by replacing the term µi. Once r′
i is obtained, it is possible

to determine dG,i following its definition in Eq.(22) dG,i = (ri − r′
i) · nS,i = µin · n = µi.

To sum up, if the seabed structure forms an inclined plane, the searched terms dG,i defined
in Eq.(22) and dP,i in Eq.(21) are defined as follows:

Inclined plane

{
dP,i = n ∀i ∈ {0, ..., N − 1}.
dG,i = µi

Figure 8 shows the process of projected a mooring line node in both a horizontal and an
inclined seabed.

Figure 8: Mooring line node ri and its projection r′
i in two different seabeads. On the left,

an horizontal seabed is shown, at height zg. On the right, an inclined seabed.

4.2.3 General case: Complex bathymetry

When the seabed surface is neither horizontal or plane, several difficulties appear. The
different steps to follow are described below.

1) Interpretation of the seabed

The first concern may be the interpretation of the seabed surface, which can be carried out
by triangulating the seafloor surface. In order to avoid an unnecessary computational cost,
the surface should be described with the least triangles needed.

In order to construct the triangulation, the seabed surface must be firstly described by several
points. Then, a triangulation using all the mentioned points as vertexes of different triangles
is created.

2) Ensuring continuity in the projection algorithm

A second problem to treat is the necessity of obtaining a projection direction which is well-
defined and varies continuously in order to avoid computational problems in the calculus of
the jacobian needed for the temporal simulation.
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The proposed method uses an algorithm to project into a triangulated surface (in this case,
the seabed surface) developed by Orazi and Reggiani (2020) based on the vertex normals.
Given a certain vertex of the triangulation V , its vertex normal is defined as the average
of the normals of each triangle that has V as its vertex. Between the two normals of the
triangles, the one pointing upwards, (to the sea level) is used. In Figure 9, it is shown an
example.

Figure 9: In blue, the normals for each triangle. In red, the vertex normals for each vertex.

The interest of using vertex normals instead of the normals of each triangle is that they
ensure a continuous variation of the projection of direction, whereas with the normals of
each triangle, not all the points are ensured to be projected. An example of this situation is
represented in Figure 10

Figure 10: The left image shows the problem of using the normal vectors of the triangles
forming the triangulation, painted in blue. The point A will be projected in the triangle T1

whereas the point C will be projected in triangle T2. However, the projection of point B
is not well defined. On the other hand, the right image shows the direction of projection
that will be developed in this method, painted in green, which is based on normal vertexes,
painted in blue. It can be seen that it varies continuously.

3) Reducing the computational cost of projecting in a triangulation constructing
a change of frame matrix for each triangle

Orazi and Reggiani (2020) also conclude in their work that it is computationally profitable
to construct a change-of-frame matrix G for each of the triangles that form the triangulation
of the seabed surface. G lays the chosen triangle into the XY plane before starting the
projection process, as Figure 11 shows. In order to achieve this, G is constructed by rotations
and translations.
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By laying the triangle into the XY plane, the projection process is much easier. For example,
the previously introduced term dG,i can be easily calculated now. If it is found that the node
i must be projected into a certain triangle of the seabed triangulation, with G being the
matrix which lays the triangle into the XY plane, dG,i is the z-coordinate of the obtained
point once both the triangle and the point have been multiplied by G, that is dG,i = (Gri)z.

Figure 11: Matrix G converts the red triangle into the green one, laying it to the XY plane.

G and G−1 must be constructed and saved for each of the triangles which form the triangu-
lation and describes the seabed surface. G will allow to move to the change-of-frame where
the triangle lays on the XY plane whereas G−1 will be used to return to the usual system of
reference.

4) Projection process

To be able to project a mooring line node on the triangulation which describes the seafloor
surface, it is firstly necessary to calculate in which triangle it has to be projected. Therefore,
the projection process starts by selecting a mooring line node ri and one of the triangles
which describe the seafloor surface. The line node is moved to the layed triangle change-of-
frame with the matrix G for that triangle. The next step is to check whether the mooring
line node has to be projected into the selected triangle or not. If it is not the case, another
triangle is selected and the process is repeated until the desired triangle is found. The whole
process followed in this section is based on Orazi and Reggiani (2020).

4.1) Checking if a point should be projected in a certain triangle

Let ri the mooring line node to be projected and T the triangle in which it wants to be
checked whether ri must be projected there or not. T has vertexes {Vj}j=0,1,2 and unitary
normal vertexes of {nj}j=0,1,2. The first step is to construct another triangle Tpoint parallel
to T which contains ri and with vertexes {Uj}j=0,1,2, as it can be sen in Figure 12. The new
triangle vertexes can be expressed by:

Uj = Vj + knj with j ∈ {0, 1, 2}

where k is a scalar that represents the distance between the triangle in the seabed surface
T and the one constructed Tpoint containing the point to project, ri.
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Figure 12: The point to project is ri and the seabed surface triangle in which it is desired
to be projected is T , with vertexes {Vj}j=0,1,2 and normal vertexes {n0}j=0,1,2. A parallel
triangle to T which contains ri is constructed, Tpoint, with vertexes {Uj}j=0,1,2. The image
has been taken from Orazi and Reggiani (2020).

Then, the vectors u′, v′ and w′ that are described in Figure 12, are defined the following
way:

u′ = U1 −U0

v′ = U2 −U0

w′ = ri −U0

These vectors allow to define the barycentric coordinates (s, t) which define the position of
ri in the new created triangle Tpoint:

w′ = u′s+ v′t

which must be verified for each component, defining a system of linear equations where the
solution gives the values of s and t.

The point ri will be contained into the new constructed triangle Tpoint if its barycentric
coordinates accomplish the following condition:

s ≥ 0

t ≥ 0

s+ t ≤ 1

In this case, ri will be projected in T so r′
i, the projection of the point ri, will be contained

in T .

4.2) Calculating the projected point

By Figure 12, it can be seen that barycentric coordinates (s, t) of the projected point r′
i

in T will remain the same as previous calculated for the point to project ri in Tpoint. The
coordinates of r′

i can be easily obtained by using these set of vectors {u,v} defined as follows:

u = V1 − V0

v = V2 − V0
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Giving
r′
i = V0 + us+ vt

providing the coordinates of r′
i. The direction of projection will be d in Figure 12 and can

be calculated by
d = r′

i − ri ∀i ∈ {0, ..., N − 1}.

Finally, it is obtained that d = dP,i for each mooring line node, obtaining all the needed terms
to calculate the mooring dynamics in a complex bathymetry. d is a good approximation of
the seabed surface normal, although it is not the normal of the triangle in which the point
has been projected, as it can be seen in Figure 12.

To sum up, when the seafloor has an irregular seabed surface, the desired terms dG,i defined
in Eq.(22) and dP,i in Eq.(21) are calculated as follows:

Irregular bathymetry

{
dP,i = V0 + us+ vt− ri ∀i ∈ {0, ..., N − 1}
dG,i = (Gri)z

with the obtained G, u, v, V0 for the triangle in which the mooring line node ri is projected
and (s, t) the barycentric coordinates of the projected point in that triangle.

4.2.4 Application: Calculation of ground normal and friction forces.

The previously introduced terms dG,i and dP,i are used to describe friction ff and ground
normal fn forces which were introduced in Eq.(2) in any type of seafloor.

Ground normal force model fn.

The ground normal force is perpendicular to the seafloor surface and should only be con-
sidered when the mooring line touches the seafloor, which introduces a step discontinuous
function. However, its mathematical description has to be smooth in order to avoid numerical
divergences.

To solve this problem, a tool able to smooth a step function f(x) was developed. The step
function can be described as follows:

f(x) =

{
f0 if x < p

ff if x ≥ p

Let fsm(x) be the smoothed version of the function f(x). The idea is to approximate the
discontinuity by a polynomial in a interval [p0, pf ] (being pf = p the discontinuity), obtaining
the situation presented in Figure 13:

29



Figure 13: In red, a step function f(x) with a discontinuity in p = 0. The step function values
f0 = 0 at x < 0 and ff = 1 at x ≥ 0. In blue, the smoothed function which approximates
the step function by a polynomial in the interval [p0 = −2, pf = 0].

The physical meaning of introducing a step function in the ground normal force is that it
starts acting gradually, instead of varying from zero to a certain value in the exact moment
in which the mooring line touches the seafloor.

The polynomial of approximation has to verify four boundary conditions: two of them are
related to the function in the extremes of the interval, fsm(p0) = f0 and fsm(pf ) = ff .

The other two refer to having null derivatives in the limits of the interval, dfsm(p0)
dx

= 0 and
dfsm(pf )

dx
= 0.

As there are four boundary conditions, the step discontinuity can be modelled by a third
degree polynomial defined in the interval [p0, pf ]. In other words,

fsm(x) =


f0 if x < p0
ax3 + bx2 + cx+ d if x ∈ [p0, pf ]

ff if x > pf

Applying the boundary conditions to the polynomial defined in the interval [p0, pf ] leads to
the following system of equations

ap30 + bp20 + cp0 + d = f0
ap3f + bp2f + cpf + d = ff
3ap20 + 2bp0 + c = 0

3ap2f + 2bpf + c = 0

where the coefficients (CF ) of the polynomial can be obtained by solving the system A∗CF =
b, where the following matrices are introduced:

A =


p30 p20 p0 1

p3f p2f pf 1

3p20 2p0 1 0

3p20 2p0 1 0

 ; b =


f0
ff
0

0

 ; CF =


a

b

c

d

 .

From now on, the following notation will be considered:

fsm(x) = sm(x, p0, f0, pf , ff ).
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This smoothed function is introduced in the description of the ground normal force model
by a term α, as it can be seen in Eq.(24). α is a scalar coefficient which varies continuosly
from 0 to 1 that multiplies the ground normal force depending on the ground penetration of
the mooring line node. In other words, α is a smoothed function which evaluates the ground
penetration for a certain mooring line node, fsm(dG,i). It is considered that, when the lowest
part of the mooring line touches the seafloor (dG,i = −d/2, being d the mooring diameter),
the ground normal force starts to act gradually until it reaches its full potential when the
center of the mooring line touches the seafloor (dG,i = 0). Therefore,

α = sm(dG,i,−d/2, 0, 0, 1). (23)

Introducing α converts the ground normal force into a smooth function, which improves the
behaviour of the numerical method and avoids divergences.

The description used to model ground normal force is based on a combination of Palm et al.
(2013) and Trubat et al. (2020) ground normal force models. However, both articles describe
its models in a horizontal seabed, so the terms dG,i and dP,i had to be introduced in their
equations, allowing to consider the interaction between the mooring line and an irregular
seafloor. In addition, the provided description has been modelled with smooth coefficients
that improve the computational behaviour of the simulation.

The expression obtained for the ground normal force in a certain mooring line node i is the
following:

fn = α(fspring + fdamp + fusual) (24)

where α was described in Eq.(23) and

• fspring = −dGKdG,idP,i is the force which models the mooring line as an spring.

• fdamp = −2
√
GKdγ0min(0, vn)dP,i is the term which quantifies the damping of the

spring.

• fusual = ||pn||dP,i is the common approach to the normal force, which depends on the
effective weight.

Let’s start by defining the terms which have taken from Palm et al. (2017) and Trubat et al.
(2020) models. d and γ0 are defined as in Eq.(1) and GK is the ground normal stiffness per
unit area.

Apart from the previously introduced dP,i and dG,i, the next terms have been newly devel-
oped in order to consider the interaction with a variable seafloor:

• vn is the velocity normal to the seafloor vn = v · dP,i, where v is the total mooring
node velocity.

• ||pn|| is the normal component of the effective weight and is given by the expression:

||pn|| = (γW − γ0) ge3 · dP,i

with g = 9.8 m/s2 the scalar value of Earth’s gravity and γW described as in Eq.(29).
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Friction force model ff

The friction force is contained in the plane of the seabed and it opposes the movement of
the mooring line. The model used is based on Devries (2018).

ff =

 −Ck||fn||vπ

vc
, if ||vπ|| < vc.

−Ck||fn|| vπ

||vπ || , otherwise.
(25)

being Ck the kinetic friction coefficient, vc a velocity threshold (a scalar, usually taken as
vc = 0.01m/s) and fn the previous calculated normal force. vπ is the velocity contained in
the seafloor surface plane, and can be obtained by vπ = v − vndP,i.

As the friction force directly depends on the ground normal force, which is a smooth function,
there is no need to apply any smoothed coefficient to this formulation.

Finally, the description of ground normal and friction forces allows to consider the interaction
between an irregular seabed surface and the mooring line in the numerical simulation, which
was the main objective of this work.

4.3 Initial condition problem: Newton-Armijo

The mooring simulation is based on a wave equation formulation and therefore depends
on two initial conditions: initial mooring line positions (r(0, s)) and velocities (dr(0,s)

dt
) ,

as it was discussed in section 2. However, the initial velocities are considered to be zero
(static approach) so the initial condition problem is reduced to find the initial mooring line
positioning r(0, s) = g(s).

Before implementing an irregular seabed surface, a catenary between the fairlead and the
anchor was used as a initial condition. However, this situation does not represent a reliable
behaviour when the seafloor is not flat because there could be buried parts, as Figure 14
shows, which will increase tensions as well as providing an unrealistic position of the mooring
line. Therefore, the initial condition was changed to the static equilibrium of the mooring
line.

• Newton’s method

The static equilibrium is found by Newton’s iterative method, which is capable of solving
non-linear systems in the form F (r) = 0 by approximating them to a linear system, where r
is the vector with the mooring line nodes initial positions. Its size is 3N , being N the number
of nodes in which the mooring line has been discretized and 3 the number of dimensions. In
other words,

r = (r0,x, r0,y, r0,z, ..., rN−1,x, rN−1,y, rN−1,z).

F (r) is again a 3N sized vector which contains the forces in those positions.

Newton’s method starts by an initial approach r(0) in which a good convergence is ensured.
This is achieved by choosing r(0) as a catenary between the anchor and the fairlead. Other
initial approaches were tried, such as the line between the fairlead and the anchor. However,
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by using these other mooring line positioninigs as initial points in Newton-Armijo method,
the static equilibrium was found at the inverse catenary as it can be seen in Figure 15, which
is not realistic.

Figure 14: The static approach of a cate-
nary between the fairlead and the anchor
using a sloped seabed (blue) can bury the
mooring line (red), as it happens in the
image, which is not realistic.

Figure 15: The initial mooring line position-
ing which Newton’s method uses as initial
point (r(0)) should be carefully selected in or-
der to avoid reaching the static equilibrium
in an inverse catenary.

Then, the method starts iterating and generating other points by following a descent direction
that approaches to the solution. The iterations in Newton’s method are constructed the
following way:

r(k+1) = r(k) + d(k) (26)

being d(k) the descendent direction, calculated by solving the following system:

JF (r(k))d(k) = −F (r(k))

where JF is the jacobian approximated by finite differences:

JF (r(k)) ≈
(

F (r(k)+h·e1)−F (r(k))
h

F (r(k)+h·e2)−F (r(k))
h

· · · F (r(k)+h·e3N )−F (r(k))
h

)
which shows that the Jacobian is a 3N × 3N matrix. h is the parameter of finite differences
which was chosen to be 10−12.

Newton’s maximum number of iterations must be restricted in order to avoid infinite loops
when no convergence is achieved: it was set to 30. If in 30 iterations the solution is not
found, the method will throw an exception and stop. The solution is considered to be found
when the iterations start being close:

Newton’s method

convergence criteria


||r(k+1) − r(k)|| < 10−6 Absolute error

or
||r(k+1)−r(k)||

||r(k)|| < 10−3 Relative error

(27)

• Introduction of Armijo’s variable step.

The descendent direction can be multiplied by a scalar called step that controls the distance
between two consecutive iterations. In Eq.(26), the step used is 1, which may define a too
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large separation between two interactions, as Figure 16 shows. The convergence was highly
improved when Armijo’s variable step ρ(k) (being k the number of iteration) was added to
Eq.(26), transforming it to the following:

r(k+1) = r(k) + ρ(k)d(k)

where ρ(k) is calculated in each iteration by finding a value which satisfies the following
condition:

||F (r(k) + ρ(k)d(k))|| ≤ (1− σρ(k))||F (r(k))|| (28)

where ρ(k) = 2n with n ∈ N and σ = 10−4. In order to find the value ρ(k) which satisfies the
condition in Eq.(28), n subiterates increasing from 0 until the desired condition is satisfied,
with a maximum number of 12 subiterations allowed.

Figure 16: Armijo’s variable step improvement shown in a specific example. In the left
image, the iteration has been generated with the Newton basic method defined in Eq.(26).
The direction is descent, but the step is too big, moving away from the solution. The right
image generates its iterations using the Armijo’s variable step described in Eq.(28), which is
shorter and allows to approach to the minimum in a lower number of iterations.
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5 Results

This section is specially important because it allows to verify the theoretical work previously
developed. In this work, only two different ways of validating the results will be consid-
ered, but there have been more methods used that can be consulted in the work developed
(Desiré et al., 2022), even experimental tests which required lab work performed by several
technicians of IHCantabria.

5.1 Comparison between the analytic and simulation results

In order to evaluate the agreement between the analytical and the numerical method, a first
experiment that consists of solving the static specific solution described in subsection 3.1
with the numerical method was performed. As the particular situation studied was defined
by a mooring line partially laying in a seafloor with an inclined plane structure, this method
also allows to verify the projection method constructed for inclined and flat seafloors.

The first step is to adjust the needed parameters for the numerical simulation in order to
imitate the particular situation desired, which are described as follows:

• The fairlead was imposed being static by defining its position vector as rF (t) = 0 ∀t.

• The mooring line was restricted to be in the plane Y = 0, reducing its description to
two dimensions.

• The projection algorithm used was the specific one developed for inclined plane seafloor
structures described in 4.2.2.

• The ground has been treated as impenetrable and the mooring line as inextensible
by increasing certain coefficients in the models which describe the forces. Although
explaining these coefficients is out of the limits of the work, a detailed description can
be found in the article developed (Desiré et al., 2022).

In order to reproduce the analytic solution provided by Eq.(17), the characteristic length
of the catenary (λ) must be calculated, which can be done using Eq.(7). This expression
depends on the mooring line weight per unit of length in the water γW , that can be calculated
by applying Archimedes principle:

γW = γ0 − ρWπ
d2

4
(29)

where ρW is the water density, d is the mooring diameter and γ0 is the mooring line per unit
of weight. These parameters are provided as external parameters to the simulation, and its
values are shown in Table 1.
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Abbreviation Parameter Value

r0 Anchor Position (m) [−601.4, 0,−83.5]

L Length (m) 635

γ0 Weight per unit of length (kg/m) 835.4

d Line diameter (m) 0.3539

ρW Water density (kg/m3) 1025

GK Ground normal stiffness per unit area (N/m3) 3 · 1014

vc Velocity threshold (m/s) 0.01

CK Kinetic friction coefficient 0.3

Table 1: Mooring line characterization and coefficients used to calculate ground normal force
in Eq.(24) and friction force in Eq.(25).

Once the needed parameters have been set, the results for both numerical and analytical
methods can be obtained and compared. Two different types of comparisons will be per-
formed: mooring line positioning and tension at the fairlead.

5.1.1 Tension at the fairlead comparison

As it was previously discussed, the tension at the fairlead is an important quantity because it
can be easily measured experimentally. Eq.(13) provides an analytical expression to obtain
it, while the one obtained numerically is an output of the execution of the code. Both of
them were compared, obtaining the following results:

H (kN) TN (kN) TA (kN) |TN − TA| (kN) δT

3500 5369 5373 4 0.0007

3700 5184 5188 4 0.0008

4000 4915 4912 3 0.0006

4300 4633 4637 4 0.0009

4500 4453 4454 1 0.0002

Table 2: Horizontal external force H used to calculate the analytical solution. TN and TA

are the obtained fairlead numerical and analytical tensions, respectively. δT is the relative
error, calculated by |TN−TA|

TA
.

The relative errors shown in Table 2 are all of them lower than 10−3, showing great ac-
cordance between the results of the analytic and numerical solutions. It can be seen that
there is certain inhomogeneity between the results, which leads to argue that those errors
are introduced by Newton-Armijo convergence criteria detailed in Eq.(27), which allowed a
magnitude of relative error of 10−3, the same magnitude as the relative errors shown above.
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5.1.2 Position comparison

The execution of the simulation leaves as an output the position of the mooring line nodes
in which the mooring was discretized, that could be compared with the analytical solution
obtained from Eq.(17). The results can be seen in Figure 17.

Figure 17: Comparative between the analytical expression (red) and the numerically obtained
mooring line nodes positions (blue) for different values of external horizontal force H. The image
below is a magnification of the above image which tries to make visible the differences between
both methods.

Figure 17 shows an excellent accordance between two methods. In order to obtain a numerical
comparison, the absolute differences between the positions of both methods were also shown
in Table 3. However, as the number of mooring line nodes is 31, in order to avoid an excessive
long table with the differences for all the nodes, only certain nodes have been discussed. The
selected nodes correspond to the rounded value of the n-th percentile of the 31 of them, with
n ∈ {10, 20, ..., 90}.
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H(N)

Node
2 6 9 12 16 19 22 25 29

4.5 · 106 0.031 0.085 0.042 0.159 0.169 0.182 0.129 0.23 0.249

4.3 · 106 0.014 0.051 0.039 0.162 0.185 0.187 0.148 0.237 0.255

4 · 106 0.023 0.012 0.064 0.167 0.211 0.142 0.178 0.208 0.255

3.7 · 106 0.014 0.123 0.029 0.178 0.177 0.2 0.125 0.255 0.275

3.5 · 106 0.017 0.078 0.037 0.161 0.231 0.181 0.204 0.244 0.277

Table 3: Absolute difference (in meters) between the numerical and analytic results for
certain mooring line nodes. The difference located in row i and column j, ∆(i, j), corresponds
to the results obtained applying an external force Hi and is associated with the node j. It has
been calculated as ∆(i, j) =

√
∆x(i, j)2 +∆z(i, j)2, where ∆x(i, j) is the absolute difference

between the numerical and the analytical values of the X-positions of the j-th node for the
external force Hi, and ∆z(i, j) is the same quantity for the Z-positions.

Table 3 shows differences in the position between the numerical and the analytical solution
of the order of centimeters. Regarding the total length of the mooring line, 635m (as it can
be seen in Table 1), it leads to relative errors of the order of 0.01%, from it which can be
concluded that the numerical method provides a very exact result.

However, Figure 17 shows that the numerical solution is always slightly below the analyt-
ical, instead of finding the irregular errors present in the fairlead tensions. This can be
explained because the numerical simulation is not able to model perfectly inextensible moor-
ings, as it would imply setting an external parameter to be infinity, which makes no sense
computationally. The parameter must be a finite quantity, introducing certain error.

5.2 Qualitative tests

The previous comparison allowed to verify the accuracy of the projection method for seafloors
with an inclined plane structure. However, the general projection algorithm constructed in
4.2.3 has not been analyzed yet. In order to verify this method, several numerical simula-
tions with different seabed surfaces were performed. The idea is to compare graphically the
position results provided by the numerical method with the seafloor surfaces.

The first approach is to analyze the numerical solution behaviour when different seabed
surfaces with convex and concave changes in gradients were studied, obtaining the following
results:
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Figure 18: Graphical results of the mooring position r(t, s) (in red) in different seabed
configurations (convex and concave). It can be seen that the mooring follows accurately
the seabed surface in all cases. The projection method used was the general, described in
4.2.3. This method was based in a triangulation describing the seabed surface that has been
painted in blue.

Graphically, it can be seen that the obtained positions r(t, s) are coherent with the seabed
structure for all cases.

Then, a more complex seabed surface which was irregular along both X and Y axis has
also been studied. In this case, an extra comparison has been done. Figure 19 shows
the difference between the obtained positions for the numerical method equipped with the
projection algorithm and the one which was previously implemented, that was only able to
consider flat seabeds.

Figure 19: Graphical result of the mooring position obtained r(t, s) (in purple) by the
numerical simulation when the projection tool developed in 4.2.3 is used. In black, the
results obtained when the projection tool is not used. In blue, the triangulation describing
the seabed surface.
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Figure 19 showed how the obtained positions when the projection method was not used do
not follow the seabed surface, while in the case where the projection method was used, it
did. Therefore, the positions are more realistic in this last case.

Furthermore, not using the projection method leads to obtain buried parts of the mooring
line which are not realistic, as they are not produced when the general projection algorithm
is used. The buried parts will cause an increase in the mooring line tensions that does not
represent the real behaviour and therefore worsens the numerical simulation.
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6 Conclusions

The present work describes an optimal projection new method able to simulate a mooring
line in a seafloor surface described by an horizontal plane, inclined plane or a complex
bathymetry. The developed method allows to evaluate friction and ground normal forces in
any seabed structure, improving the accuracy of the simulations specially in deep waters,
where the seabed usually describes a sloped configuration.

The work started with the introduction of the mooring line dynamics as a PDE system re-
stricted to certain boundary and initial conditions, leading to a wave type problem. Then, the
mooring line was subject to a particular static situation described by Batista and Perkovic
(2019) in which the seafloor was an inclined plane, which could be solved analytically. The
solution was obtained by constructing a parameterization based on arc length coordinates.
However, the general non-static case could not be solved analytically. The problem was ho-
mogenized and later solved by a finite element method (FEM) based on Galerkin continuous
method which uses first order functions in its basis. The final result of applying this method
was a system of second order ODEs that were reduced to first order.

The novel part of this work was the developed continuous projection tool, which operated
differently depending on the seabed surface: horizontal, inclined plane or irregular. The
projection process in the two first types of seafloors was based in a point-to-plane projec-
tion, which allowed to reduce the computational cost in those simpler cases. For complex
bathymetries, it was necessary to construct a triangulation describing the seafloor surface.
The projection method used was based on vertex normals which provide method’s continu-
ity, as Orazi and Reggiani (2020). Finally, the projection tool calculated the direction of
projection and the penetration depth, terms which were used to model friction and ground
normal forces. These forces depend on the seafloor structure, so introducing these terms
greatly improved the precision of the simulation when a seafloor distinct from the flat one
is considered.

The initial condition of the problem was defined as the static equilibrium, instead of the
previously used catenary between the mooring line extremes. The static equilibrium was
found with Newton’s iterative method improved by using the variable Armijo step.

Finally, the particular static situation used to obtain the analytical solution was solved
numerically and the positions and tensions results of both methods were compared. The
accordance between them is excellent: the relative differences found in the positions are of
order of 0.01% and are attributed to not obtaining a complete inextensible mooring line
numerically, while the relative differences between the tensions are lower than 0.1%, which
is the criteria of convergence used in Newton-Armijo method. The obtained results verify
not only the numerical method but also the projection tool developed for inclined planes.
In order to validate the general projection method, several qualitative tests which included
irregular bathymetries were performed, obtaining a good coherence between the mooring line
positions and the seabed structure.

Further research can be oriented to improve the numerical method used by using discon-
tinuous Galerkin method in FEM formulation instead of the Galerkin continuous method
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which was used in this work. Discontinuous Galerkin was applied by Palm et al. (2017)
in mooring line simulations, obtaining really accurate results. In addition, the FEM basis
functions could be constructed with higher order polynomials.

Other possible point to improve is the friction model, as it does only include a unique fric-
tion coefficient and does not differentiate between static and dynamic friction. Stick and
slip model described in Marques et al. (2016) is a good candidate because it depends on
only four external parameters, easing the experimental calibration process, and models with
accuracy the transition between static and dynamic friction. In addition, when an irregular
bathymetry is considered, the friction should not be described by the same coefficients in
all of its directions. This is known as anisotropic behaviour. Friction force is defined in the
seabed plane, however, the anisotropic model differences between tangential and perpendic-
ular friction force components by describing them with different friction coefficients.

42



7 Additional work

In this section, a brief description of the work developed that has not been included in the
document is presented.

7.1 Implementation

The developed work can be divided in two different parts: the theoretical one, which has
been explained in the presented document, and a implementation part which was carried
out during a three-month full-time internship in IHCantabria (385h). The institution had
already developed a FEM numerical method implemented on C++ able to simulate three
dimensional mooring lines in an horizontal seafloor.

To make the method capable of evaluating the interaction with the seabed as explained in
the work, the following implementation was incorporated to the already existing code:

• Creation of a new class: Seafloor

The seafloor class is based in a system of inheritance in which the defined subclasses are
horizontal, inclined and irregular. All the subclasses share the existence of the projection
method described in subsection 4.2 as well as a reading method which allows to interpret the
provided inputs. However, for each of the subclasses, the mentioned algorithms are defined
differently.

It should be mentioned that the projection method in the irregular bathymetry subclass has
a lot of submethods defined. For example, there is a submethod which allows to calculate a
triangulation from a cloud of points as well as other that calculates the normal vertexes for
each of the triangles.

One of the most difficult submethods to design and implement was the one able to calculate
and store the change-of-frame G matrices described in 4.2.3, as it calculates and constructs
the needed rotations and translations which lay each of the existing triangles in the XY
plane.

• Implementation of ground normal and friction forces model in the existing description
of the mooring dynamics.

IHCantabria had a previous code which considered several of the external forces described in
Eq.(2). The newly developed models of ground normal force (see Eq.(24)) and friction force
(see Eq.(25)) were computationally incorporated to the existing code in the class Lines,
ensuring that they were smooth, as it was previously discussed, and therefore provided a
good convergence.

• Substituting the previous initial condition by the static equilibrium found by Newton-
Armijo.

As it was explained in subsection 4.3, the previous initial condition was a catenary between
the anchor and the fairlead, which has been substituted by a static equilibrium found by
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Newton-Armijo iterative method. This was performed following the numerical implemen-
tation of Newton-Armijo at Kelley (2003), and it was performed in another different class
called Solver.

• Creation of a graphical tool able to visualize the mooring line positioning and the
seabed

The images shown in the qualitative tests exposed in Subsection 5.2 were generated with
this constructed tool able to interpreter the code output as well as the description of the
seafloor, which is a code input. As this part only works with inputs and outputs, it does not
need to be done inside the C++ code, so it was decided to be implemented in Matlab. It is
also able to generate videos.

Finally, it should be mentioned that the execution time of this code is really high: some
of the tests performed to check whether the method was providing a good numerical con-
vergence took more than 4 days. This added an extra difficulty to the development of the
implementation.

7.2 Article

The presented work is the basis of an article which has already been submitted to the
journal Ocean Engineering (Desiré et al., 2022). In the article, there were several additional
considerations that can be sumed up as follows:

• The strain e(t, s) in the description of the mooring line dynamics introduced in 2.3 was
not treated as zero.

• The obtained results were also validated against several experimental tests developed
with different seabed configurations, obtaining a great accordance. Those tests were
performed by several technicians at IHCantabria. Some of them carried out the exper-
imental set-up while others worked on the calibration of external coefficients.

• The projection method developed for complex bathymetries in 4.2.3 was improved by
starting to iterate from the triangles with the closest barycenter to the mooring line
node in question, achieving an improvement of the computational time required when
the number of triangles is high.

• The article includes a method of verification that consists in performing a comparative
between the three projection methods studied: the ones developed for flat, inclined
plane and irregular seabed surfaces. The idea was to take an irregular inclined seafloor
surface and simulate the mooring with the general projection method. Later, the
seabed surface was interpolated by an inclined plane and the mooring line was simulated
with the developed projection method for inclined surfaces. Finally, the seafloor was
approximated by a flat surface with the mean depth of the points which described the
irregular initial surface and the numerical simulation was performed with the algorithm
developed for flat surfaces.

• The number of nodes in which the mooring should be discretized depends on the
seabed surface. If there are narrow irregularities, not only the triangulation of the
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seabed should be done carefully, but also the discretization of the chain, which must
be fine enough to be able to consider interactions. Otherwise, a situation similar to
the one described in Figure 20 can appear. However, describing the mooring line with
a too large amount of nodes will cause an excessive increase in the computational cost
required by the FEM method.

Therefore, the article includes a sensibility analysis with respect to the number of nodes
which ensures a correct interpretation of the seabed and mooring line interaction.

Figure 20: If the number of mooring line nodes is too small, some seabed irregularities
may not be considered, leading to a bad numerical simulation. However, overincreasing the
mooring line nodes will cause a huge increase in the computational cost of the projection
algorithm.
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