
Applied Mathematics & Optimization           (2022) 86:16 
https://doi.org/10.1007/s00245-022-09888-7

Stability for Semilinear Parabolic Optimal Control Problems
with Respect to Initial Data

Eduardo Casas1 · Fredi Tröltzsch2

Accepted: 20 May 2022
© The Author(s) 2022

Abstract
A distributed optimal control problem for a semilinear parabolic partial differential
equation is investigated. The stability of locally optimal solutions with respect to per-
turbations of the initial data is studied. Based on different types of sufficient optimality
conditions for a local solution of the unperturbed problem, Lipschitz or Hölder sta-
bility with respect to perturbations are proved. Moreover, a particular example with
semilinear equation, constant initial data, and standard quadratic tracking type objec-
tive functional is constructed that has at least two different locally optimal solutions.
By the perturbation analysis, the existence of a problem with non-constant initial data
is shown that also has at least two different locally optimal solutions.
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1 Introduction

We consider the optimal control problem

(P) min
u∈Uad

J (u) := 1

2

∫
Q
(yu − yQ)2 dx dt+ γ

2

∫
�

(yu(T ) − y�)2 dx + κ

2

∫
Q
u2 dx dt,

where yu denotes the solution of the semilinear parabolic Neumann problem

⎧⎪⎨
⎪⎩

∂ y

∂t
− �y + f (x, t, y) = u in Q = � × (0, T ),

∂ν y = 0 on � = 	 × (0, T ),

y(0) = y0 in �,

(1.1)

and the set of admissible controls Uad is defined by

Uad = {u ∈ L∞(Q) : α ≤ u(x, t) ≤ β a.e. in Q}

with numbers −∞ ≤ α < β ≤ ∞. We assume that γ and κ are nonnegative real
numbers, and yQ , y�, and f are given functions to be specified later.

We address two main issues. The first is the stability of selected local solutions
of the optimal control problem with respect to a perturbation of the initial function
y0. We select a fixed local minimizer ū of the problem and estimate the distance to
an associated local minimizer of the problem with perturbed initial function y0 + φ,
where ‖φ‖L2(�) is small enough. Such stability results might be of some interest for
investigations on the value function in the context of feedback control, although the
case T = ∞ is needed there. We refer, for instance, to the recent contributions [2, 20,
27]. For feedback control, the unbounded case (α = −∞, β = ∞) is important that
is allowed in our paper as a particular case.

In Sect. 3, the associated stability analysis is performed for Tikhonov parameter
κ > 0 under a second order sufficient optimality condition imposed on ū. The main
result of this section is Theorem 3.4 on Lipschitz stability of local solutions with
respect to φ. In Sect. 4, we investigate the same issue for κ = 0, where the second
order sufficient optimality condition of Sect. 3 cannot be expected to hold. Here, we
apply a second order condition that is sufficient for strong local minimizers in the
sense of calculus of variations. Under this second order condition, in Theorem 4.4 we
derive Hölder stability of associated optimal states with respect to the perturbation.
For the stability of strong locally optimal controls we invoke the known condition
(4.13) on the level set of optimal adjoint states, cf. [14]. Under this assumption, in
Theorem 4.6 we are able to prove Hölder or even Lipschitz stability of strong locally
optimal controls.

To our best knowledge, these results are new. In the literature on optimal control of
partial differential equations, several contributions to the stability analysis with respect
to perturbations were published, we mention [1, 11, 19, 21–23, 28, 29].

Moreover, we refer to the discussion of general control and optimization problems
in [18] and to the case of optimal control problems for ODEs in [17]. However, we
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do not know associated works, where perturbations of the initial data were addressed
in the context of PDE control. Moreover, the application of our type of critical cone
to such problems is new. In the above-mentioned papers on the control of PDEs,
perturbations appeared in the differential equation, in its boundary condition, in the
objective functional, or in inequality constraints. Handling perturbations of the initial
data is more complicated for a nonlinear state equation, in particular since bounded
initial data are needed to have a differentiable control-to-state mapping.

In Sect. 3, we construct a particular example of (P) that has two different local min-
imizers. It was a longstanding problem for optimal control problems with semilinear
PDEs and quadratic objective, if more than one optimal solution can exist. Recently,
in [24] this question was answered for a semilinear elliptic boundary control problem
by constructing a problem with two different optimal solutions. The reader is also
referred to [16], where the non-uniqueness of minimizers is established for abstract
tracking type problems with quite general state equations generating non affine-linear
control-to-state mappings.

While [16] and [24] prove the existence of problems with non-unique minimizers,
they do not construct a concrete example. In our paper, we proceed in a different
way and provide a concrete example with two different local minimizers. It uses the
nonlinearity f (y) = y3 − y. For a nonconvex objective functional, an example with
two different global solutions was given in [4].

2 Assumptions and Preliminary Results

We impose the following assumptions on the problem (P):
(A1)� is an open bounded set inRn , 1 ≤ n ≤ 3, with a Lipschitz boundary 	. The

time T is finite, 0 < T < ∞. (A2) We assume that f : Q×R → R is a Carathéodory
function of classC2 with respect to the last variable satisfying the following properties:

∃C f ∈ R : ∂ f

∂ y
(x, t, y) ≥ C f ∀y ∈ R, (2.1)

f (·, ·, 0) ∈ L p̂(0, T ; Lq̂(�)) for some p̂, q̂ ≥ 2 with
1

p̂
+ n

2q̂
< 1, (2.2)

∀M > 0 ∃C f ,M > 0 :
∣∣∣∣∂

j f

∂ y j
(x, t, y)

∣∣∣∣ ≤ C f ,M ∀|y| ≤ M and j = 1, 2, (2.3)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂
2 f

∂ y2
(x, t, y1) − ∂2 f

∂ y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤ M with |y1 − y2| < ε,
(2.4)

for almost all (x, t) ∈ Q. (A3) Functions y0 ∈ L∞(�), yQ ∈ Lr̂ (0, T ; Lŝ(�)) for
some r̂ , ŝ ≥ 2 with 1

r̂ + n
2ŝ < 1, and y� ∈ L∞(�) are given. (A4) We assume that

κ > 0 or −∞ < α < β < +∞.

Remark 2.1 In the quite common case p̂ = q̂ , the inequality in (2.2) amounts to
p̂ > n

2 + 1.
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Assumption (A2) is fulfilled in particular by any polynomial f of odd degree
and with a positive leading coefficient or f (y) = ey . In particular, the function
f (y) = (y − y1)(y − y2)(y − y3) with fixed real numbers yi , i = 1, 2, 3, satis-
fies our assumptions. This function that appears in the so-called Schlögl model, will
be used in Sect. 5.

Throughout the paper, we use the standard space W (0, T ) = L2(0, T ; H1(�)) ∩
H1(0, T ; H1(�)∗).

Let us recall the following known results :

Theorem 2.1 Under the previous assumptions, for every u ∈ Lr (0, T ; Ls(�)) with
1
r + n

2s < 1 and r , s ≥ 2, there exists a unique solution yu ∈ L∞(Q) ∩ W (0, T ) of
(1.1). Moreover, the following estimates hold :

‖yu‖L∞(Q) ≤ η
(‖u‖Lr (0,T ;Ls (�)) + ‖ f (·, ·, 0)‖L p̂(0,T ;Lq̂ (�)) + ‖y0‖L∞(�)

)
, (2.5)

‖yu‖C([0,T ],L2(�)) + ‖yu‖L2(0,T ;H1(�))

≤ K
(‖u‖L2(Q) + ‖ f (·, ·, 0)‖L2(Q) + ‖y0‖L2(�)

)
, (2.6)

for a monotone non-decreasing function η : [0,∞) −→ [0,∞) and some constant
K both independent of u. Finally, if uk⇀u in Lr (0, T ; Ls(�)), then

‖yuk − yu‖L∞(Q) + ‖yuk − yu‖L2(0,T ;H1(�)) + ‖yuk (T ) − yu(T )‖L2(�) → 0 (2.7)

holds.

The reader is referred to [5] and [6] for the proof of this result. Then, the mapping
G : Lr (0, T ; Ls(�)) −→ L∞(Q) ∩ W (0, T ) given by G(u) = yu , the solution of
(1.1), is well defined. The following differentiability properties of G are known:

Theorem 2.2 The mapping G is of class C2. For u, v, v1, v2 ∈ Lr (0, T ; Ls(�)), the
derivatives zv = G ′(u)v and zv1,v2 = G ′′(u)(v1, v2) are the solutions of the equations

⎧⎨
⎩

∂zv
∂t

− �zv + ∂ f

∂ y
(x, t, yu)zv = v in Q,

∂νzv = 0 on �, zv(0) = 0 in �,

(2.8)

⎧⎨
⎩

∂zv1,v2
∂t

− �zv1,v2 + ∂ f

∂ y
(x, t, yu)zv1,v2 + ∂2 f

∂ y2
(x, t, yu)zv1 zv2 = 0 in Q,

∂νzv1,v2 = 0 on �, zv1,v2(0) = 0 in �.

(2.9)

We refer to [5] for the proof of these theorems. Though the proof of Theorem 2.1
in [5] is performed for Dirichlet condition, the same arguments can be applied for
the Neumann case with obvious modifications. In [5], the proof of Theorem 2.2 was
carried out for s = 2, but it remains valid for our setting of r and s.

As a consequence of Theorem 2.2 and the chain rule, we deduce the following
result:
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Corollary 2.1 The functional J : Lr (0, T ; Ls(�)) −→ R is of class C2. Its first and
second order derivatives are given by the expressions

J ′(u)v =
∫
Q
(ϕu + κu)v dx dt, (2.10)

J ′′(u)(v1, v2)

=
∫
Q

[(
1 − ∂2 f

∂ y2
(x, t, yu)ϕu

)
zv1 zv2 + κv1v2

]
dx dt + γ

∫
�

zv1(T )zv2(T ) dx,

(2.11)

where zvi = G ′(u)vi , i = 1, 2, and ϕu ∈ W (0, T ) ∩ L∞(Q) is the solution of the
adjoint state equation

⎧⎨
⎩

−∂ϕ

∂t
− �ϕ + ∂ f

∂ y
(x, t, yu)ϕ = yu − yQ in Q,

∂νϕ = 0 on �, ϕ(T ) = γ (yu(T ) − y�) in �.

(2.12)

Remark 2.2 Though J is neither differentiable nor well defined in L2(Q) for n > 1,
the linear and bilinear forms J ′(u) and J ′′(u) can be extended to continuous forms
defined on L2(Q) and L2(Q) × L2(Q), respectively, by the same expressions (2.10)
and (2.11).

Problem (P) is a non-convex problem in general; see [24]. Therefore, we will
distinguish between local and global minimizers for (P).

Definition 2.1 Given r , s ∈ [1,∞], we say that ū is an Lr (0, T ; Ls(�))-local min-
imizer of (P), if u ∈ Uad and there exists an Lr (0, T ; Ls(�)) ball Bε(ū) such that
J (ū) ≤ J (u) ∀u ∈ Uad ∩ Bε(ū). If this inequality is strict whenever u = ū, then ū is
called an Lr (0, T ; Ls(�))-strict local minimizer of (P). We say that ū is a solution of
(P) or a global minimizer if u ∈ Uad and J (ū) ≤ J (u) ∀u ∈ Uad .

Theorem 2.3 Problem (P) has at least one solution.

This result is well known if −∞ < α < β < +∞. In the other case, due to
Assumption (A4) we have that κ > 0. Then, the existence of a solution for (P) is
also true; see [4] or [8]. This is remarkable because the L2(Q)-Tikhonov term implies
the boundedness of minimizing sequences only in L2(Q). This is not sufficient for
dealing with the state equation, see Theorem 2.1.

FromCorollary 2.1, the followingwell known results are deduced; see, for instance,
[10] or [12] :

Theorem 2.4 Let ū be an Lr (0, T ; Ls(�))-local minimizer of (P) with 1
r + n

2s < 1
and r , s ≥ 2. Then, there exist unique functions ȳ, ϕ̄ ∈ W (0, T ) ∩ L∞(Q) such that

{
∂ ȳ

∂t
− �ȳ + f (x, t, ȳ) = ū in Q,

∂ν ȳ = 0 on �, ȳ(0) = y0 in �,
(2.13)
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⎧⎨
⎩

−∂ϕ̄

∂t
− �ϕ̄ + ∂ f

∂ y
(x, t, ȳ)ϕ̄ = ȳ − yQ in Q,

∂νϕ̄ = 0 on �, ϕ̄(T ) = γ (ȳ(T ) − y�) in �,

(2.14)

∫
Q
(ϕ̄ + κ ū)(u − ū) dx dt ≥ 0 ∀u ∈ Uad . (2.15)

Moreover, the inequality J ′′(ū)v2 ≥ 0 ∀v ∈ Cū holds, where Cū is the cone of critical
directions defined by

Cū =
{
v ∈ L2(Q) : v(x, t)

⎧⎨
⎩

≥ 0 if ū(x, t) = α,

≤ 0 if ū(x, t) = β,

= 0 if ϕ̄(x, t) + κ ū(x, t) = 0

}
. (2.16)

This theorem provides the first and second order necessary conditions for local
optimality. To establish our stability results of (P), we need sufficient second order
conditions. They will be addressed in Sects. 3 and 4.

Remark 2.3 Observe that (2.15) implies

∫
Q
(ϕ̄ + κ ū)(u − ū) dx dt ≥ 0

for every u ∈ L2(Q) satisfying the control constraints. Indeed, it is enough to take
into account that these controls u can be approximated in L2(Q) by controls of Uad .

Remark 2.4 It is important to remark that there exists a constant KU such that any
global minimizer ū for (P) satisfies ‖ū‖L∞(Q) ≤ KU . Indeed, this is obvious if−∞ <

α < β < +∞. If this is not the case, then from Assumption (A4) we have that κ > 0
and we argue as follows: Let u0 ∈ Uad be a fixed control. From the optimality of ū

we know that κ
2‖ū‖2

L2(Q)
≤ J (ū) ≤ J (u0). This yields ‖ū‖L2(Q) ≤

√
2
κ
J (u0). Then,

we get with (2.6)

‖ȳ‖C([0,T ]:L2(�)) ≤ C1 = K
(√

2

κ
J (u0) + ‖ f (·, ·, 0)‖L2(Q) + ‖y0‖L2(�)

)
.

Hence, invoking yQ ∈ Lr̂ (0, T ; Lŝ(�)) with 1
r̂ + n

2ŝ < 1 and y� ∈ L∞(�), we
infer from (2.14)

‖ϕ̄‖L∞(Q) ≤ C2
(‖ȳ‖C([0,T ],L2(�)) + ‖yQ‖Lr̂ (0,T ;Lŝ (�)) + ‖y�‖L∞(�)

)
≤ C3 = C2

(
C1 + ‖yQ‖Lr̂ (0,T ;Lŝ (�)) + ‖y�‖L∞(�)

)
.

It is well known that (2.15) implies

ū(x, t) = Proj[α,β]
( − 1

κ
ϕ̄(x, t)

)
for a.a. (x, t) ∈ Q. (2.17)
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Hence, the inequality ‖ū‖L∞(Q) ≤ max
{C3

κ
, α+, (−β)+

}
follows.

Remark 2.5 (1) Let ū ∈ Uad be a global minimizer for (P) and u ∈ Lr (0, T ; Ls(�))

with r , s ≥ 2 and 1
r + n

2s < 1 satisfy the control constraints α ≤ u(x, t) ≤
β for almost all (x, t) ∈ Q. Since Uad was selected as a subset of L∞(Q),
this control u is not necessarily admissible for (P). Can it happen that J (u) <

J (ū)? The answer is no. Indeed, for every integer k ≥ 1 we set uk(x, t) =
Proj[−k,+k](u(x, t)). Then uk ∈ Uad holds for every k ≥ max{α+, (−β)+}. The
convergence uk → u in Lr (0, T ; Ls(�)) follows from Lebesgue’s dominated
convergence theorem. Using the estimates (2.5) and (2.6), it is easy to prove that
yuk → yu in W (0, T ). From the optimality of ū, we get that J (ū) ≤ J (uk) for
every k ≥ 1 and, consequently, J (ū) ≤ limk→∞ J (uk) = J (u).

(2) Assume now that ū ∈ Lr (0, T ; Ls(�)) satisfies the control constraints and that
ū is a local minimizer for J in the following sense: there exists ρ > 0 such
that J (ū) ≤ J (u) for every u satisfying the control constraints and such that
‖u − ū‖Lr (0,T ;Ls (�)) ≤ ρ. Then, ū ∈ L∞(Q) holds. Once again this is obvious
if −∞ < α < β < +∞. Otherwise, we observe that (2.10) leads to (2.15)
and, hence, (2.17) is satisfied. Then, we can argue as in Remark 2.2 to deduce
that ū ∈ L∞(Q). These observations justify the selection of Uad as a subset of
L∞(Q).

3 Lipschitz Stability. Case � > 0

Let ū ∈ Uad satisfy the first order necessary optimality conditions (2.13)–(2.15). A
sufficient condition for strict local optimality of ū is the following

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (3.1)

where the critical cone Cū is defined above. Even more, the next theorem establishes
that, under this assumption, the quadratic growth condition holds.

Theorem 3.1 Let us assume that ū ∈ Uad satisfies the first order optimality conditions
(2.13)–(2.15) and the second order condition (3.1). Then, given r , s ≥ 2 such that
1
r + n

2s < 1 , it holds that

∃δ > 0 and ε > 0 such that J (ū) + δ

2
‖u − ū‖2L2(Q)

≤ J (u) ∀u ∈ Uad ∩ Bε(ū),

(3.2)

where Bε(ū) is the Lr (0, T ; Ls(�))-ball. Therefore, ū is a local minimizer in the
sense of Lr (0, T ; Ls(�)). Moreover, if −∞ < α < β < +∞, then (3.2) holds with
r = s = 2.

Proof In the case −∞ < α < β < +∞, the proof of (3.2) with r = s = 2 can
be found in [10]. In the other case, due to (A4) we have that κ > 0. Then the proof
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follows the same steps as in [10] with some technical differences. Thus, we argue by
contradiction: If (3.2) fails, then there exists a sequence {uk}∞k=1 ⊂ Uad such that

‖uk − ū‖Lr (0,T ;Ls (�)) <
1

k
and J (ū) + 1

2k
‖uk − ū‖2L2(Q)

> J (uk).

We set ρk = ‖uk − ū‖L2(Q) and vk = 1
ρk

(uk − ū). By taking a subsequence, we

can assume that vk⇀v in L2(Q). Then, the proof follows as in [10]. The differences
concern the proof of the following facts :

lim
k→∞ J ′(ū + ρkvk)vk = J ′(ū)v,

J ′′(ū)v2 ≤ lim inf
k→∞ J ′′(ū + θkρkvk)v

2
k ,

where θk ∈ [0, 1]. To prove this, we first observe that ū + ρkvk = uk → ū and ū +
θkρkvk = ū+θk(uk − ū) → ū strongly in Lr (0, T ; Ls(�)). Hence, from Theorem 2.1
we get yk → ȳ and yθk → ȳ strongly in L∞(Q)∩W (0, T ). Denote by ϕk and ϕθk the
adjoint states corresponding to uk and ū + θk(uk − ū), respectively. Subtracting the
equations satisfied by them and invoking (2.3), it is easy to deduce that that ϕk → ϕ̄

and ϕθk → ϕ̄ strongly in L∞(Q)∩W (0, T ). Finally, looking at the equation satisfied
by zk,vk = G ′(ū + θk(uk − ū))vk , it is easy to confirm that zk,vk⇀zv in W (0, T ),
where zv is the solution of (2.8) for yu = ȳ. Therefore, zk,vk → zv strongly in
L2(Q). Combining all these convergence properties and recalling the expressions for
the derivatives of J , (2.10) and (2.11), we readily confirm the desired convergences.

��
Let us point out that, as proved in [10], the condition (3.1) is equivalent to

∃τ > 0 and ∃μ > 0 such that J ′′(ū)v2 ≥ μ‖v‖2L2(Q)
∀v ∈ Eτ

ū , (3.3)

where

Eτ
ū = {v ∈ L2(Q) satisfying (3.5) below and J ′(ū)v ≤ τ‖v‖L2(Q)}, (3.4)

v(x, t) =
{≥ 0 if ū(x, t) = α,

≤ 0 if ū(x, t) = β.
(3.5)

Now, we consider perturbations in the initial condition of (1.1) leading to a family
of perturbed optimal control problems (Pε). Let {φε}ε>0 ⊂ L∞(�) be a family of
functions satisfying

∃Mφ < ∞ such that ‖φε‖L∞(�) ≤ Mφ ∀ε > 0, (3.6)

lim
ε→0

‖φε‖L2(�) = 0. (3.7)

Let us comment on this class of admissible perturbations: We need φε ∈ L∞(�)

to have associated states in L∞(Q). Otherwise we cannot prove the differentiability
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of the control-to-state mapping that is needed for first and second order optimality
conditions. The selection of the L2-norm in (3.7) is to obtain better and more practical
perturbation results. In practice, perturbations are bounded in L∞(�). However, the
requirement limε→0 ‖φε‖L∞(�) = 0 is too strong. For instance, let �ε ⊂ � be a
sequence of measurable subsets with |�ε| → 0 and φε = δεχ�ε with {δε}ε>0 ⊂ R

bounded. This sequence of perturbation functions obeys (3.7), but not in the norm of
L∞(�).

We associate with this family the state equations

{
∂ y

∂t
− �y + f (x, t, y) = u in Q,

∂ν y = 0 on �, y(0) = y0 + φε in �.
(3.8)

For given ε and u, the solution of this equation will be denoted by yε
u . Then, we

consider the perturbed optimal control problems

(Pε) min
u∈Uad

Jε(u) := 1

2

∫
Q
(yε

u − yQ)2 dx dt + γ

2

∫
�

(yε
u(T ) − y�)2 dx

+κ

2

∫
Q
u2 dx dt .

Analogously to problem (P), every problem (Pε) has at least one global minimizer uε.
All these minimizers are uniformly bounded in L∞(Q) by a constant depending on
‖y0 + φε‖L∞(�); see Remark 2.4. Then, due to (3.6), this constant can be selected
independently of ε, hence

∃M∞ such that ‖uε‖L∞(Q) ≤ M∞ ∀ε > 0. (3.9)

The next two theorems analyze the relation between the solutions of (P) and (Pε).

Theorem 3.2 Let {uε}ε>0 be a family of global minimizers of problems (Pε). Any
control ū that is the weak∗ limit in L∞(Q) of a sequence {uεk }∞k=1 with εk → 0 as
k → ∞ is a global minimizer of (P). Moreover, the convergence is strong in L2(Q).

Proof Notice that the existence of such weakly∗ converging sequences {uεk }∞k=1 fol-
lows from (3.9). We denote by yεk and ȳ the states associated with uεk and ū, solutions
of (3.8) and (1.1), respectively. FromTheorem2.1, (3.7), and (3.9),we infer that yεk⇀ȳ
in W (0, T ), hence strongly in L2(Q). Using this fact and the optimality of uεk , we
deduce for every u ∈ Uad

J (ū) ≤ lim inf
k→∞ Jεk (uεk ) ≤ lim sup

k→∞
Jεk (uεk ) ≤ lim sup

k→∞
Jεk (u) = J (u).

Since ū ∈ Uad , the above inequalities imply that ū is a global minimizer of (P). With
the convergence yεk → ȳ in L2(Q) and κ > 0, the strong convergence uεk → ū in
L2(Q) follows. ��

Conversely, we have the following result:
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Theorem 3.3 Let ū be a strict local minimizer of (P) in the Lr (0, T ; Ls(�))-sense.
Then, there exists a set {uε}ε>0 of local minimizers of the problems (Pε) such that
uε → ū strongly in L2(Q) when ε → 0.

Proof Since ū is a strict local minimizer for (P), there exists a closed L2(Q)-ball Bρ(ū)

such that J (ū) < J (u) for every u ∈ Uad ∩ Bρ(ū) \ {ū}. Let us consider the control
problems

(P) min
u∈Uad∩Bρ(ū)

J (u) and (Pε) min
u∈Uad∩Bρ(ū)

Jε(u).

Obviously, ū is the unique solution of (P) and every (Pε) has at least one solution uε.
As in Theorem 3.2, we deduce that everyweak limit of a converging sequence {uεk }∞k=1
is a solution of (P). Since ū is the unique solution of (P), we deduce that the whole
family {uε}ε>0 converges to ū. Moreover, arguing as in the proof of Theorem 3.2, we
infer that this convergence is strong in L2(Q). This implies that there exists ε0 > 0
such that ‖uε − ū‖L2(Q) < ρ for every ε < ε0. Therefore, uε is a local minimizer of
(Pε) for every ε < ε0. Indeed, for each ε < ε0 we take a constant ρε > 0 such that
ρε + ‖uε − ū‖L2(Q) < ρ. Then, for every u ∈ Uad ∩ Bρε (uε) we have

‖u − ū‖L2(Q) ≤ ‖u − uε‖L2(Q) + ‖uε − ū‖L2(Q) ≤ ρε + ‖uε − ū‖L2(Q) < ρ.

Then, u is an admissible control for (Pε) and, consequently, J (uε) ≤ J (u). ��
In the remainder of this section, ū will denote a local minimizer of (P) satisfying

the sufficient second order condition (3.1). Its corresponding state and adjoint state
will be denoted by ȳ and ϕ̄, respectively. Hence, Theorem 3.3 implies the existence
of a set {uε}ε>0 of local minimizers of the problems (Pε) such that uε → ū strongly
in L2(Q) as ε → 0. The next theorem estimates uε − ū.

Theorem 3.4 Let ū be a local minimizer of (P) satisfying the sufficient second order
condition (3.1). Then, with the notation above, there exist ε0 > 0 and Lκ such that

‖uε − ū‖L2(Q) ≤ Lκ‖φε‖L2(Q) ∀ε ∈ (0, ε0). (3.10)

Before proving this theorem, we establish two auxiliary results. First, we fix the
following notation: yε and yε denote the solutions of the unperturbed equation (1.1)
and the perturbed equation (3.8), respectively, corresponding to u = uε. Analogously,
ϕε and ϕε stand for the corresponding adjoint states.

Lemma 3.1 There exist constants C > 0 and ε1 > 0 such that

‖yε − yε‖C([0,T ],L2(�)) + ‖ϕε − ϕε‖C([0,T ],L2(�)) ≤ C‖φε‖L2(�) ∀ε ∈ (0, ε1).

(3.11)
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Proof Since uε → ū in L2(Q), there exist constants C1 > 0 and ε1 > 0 such that
‖uε‖L2(Q) ≤ C1 for every ε ∈ (0, ε1). From (2.6) and (3.6) we infer

‖yε‖C([0,T ],L2(�)) ≤ K
(‖uε‖L2(Q) + ‖ f (·, ·, 0)‖L p̂(0,T ;Lq̂ (�)) + ‖y0 + φε‖L2(�)

)
≤ C2 = K

(
C1 + ‖ f (·, ·, 0)‖L p̂(0,T ;Lq̂ (�)) + ‖y0‖L2(�) + Mφ

√|�|) ∀ε ∈ (0, ε1).

With the adjoint state equations satisfied by ϕε, we obtain

‖ϕε‖L∞(Q) ≤ C3
(‖yε‖C([0,T ],L2(�)) + ‖yQ‖Lr̂ (0,T ;Lŝ (�)) + ‖y�‖L∞(�)

)
≤ C4 = C3

(
C2 + ‖yQ‖Lr̂ (0,T ;Lŝ (�)) + ‖y�‖L∞(�)

) ∀ε ∈ (0, ε1).

Since uε is a local minimum for (Pε), the projection formula (2.17) yields

uε(x, t) = Proj[α,β]
( − 1

κ
ϕε(x, t)

)
for a.a. (x, t) ∈ Q ∀ε ∈ (0, ε1).

Therefore, the estimate ‖uε‖L∞(Q) ≤ Mκ = max
{C4

κ
, α+, (−β)+} holds for every

ε ∈ (0, ε1). Now, invoking (2.5) and (3.6) we infer the estimates

‖yε‖L∞(Q) ≤ η
(
Mκ |�| 1s T 1

r + ‖ f (·, ·, 0)‖L p̂(0,T ;Lq̂ (�)) + ‖y0‖L∞(�)

)
,

‖yε‖L∞(Q) ≤ η
(
Mκ |�| 1s T 1

r + ‖ f (·, ·, 0)‖L p̂(0,T ;Lq̂ (�)) + ‖y0‖L∞(�) + Mφ

)

for every ε ∈ (0, ε1). This leads to the existence of a constant M such that

‖yε‖L∞(Q) + ‖yε‖L∞(Q) ≤ M ∀ε ∈ (0, ε1). (3.12)

We set wε = yε − yε and subtract the equations for yε and yε. By the mean value
theorem for real-valued functions, we get for some intermediate function ŷε = yε +
θε(yε − yε) with measurable 0 ≤ θε(x, t) ≤ 1,

⎧⎨
⎩

∂wε

∂t
− �wε + ∂ f

∂ y
(x, t, ŷε)wε = 0 in Q,

∂νwε = 0 on �, wε(0) = φε in �.

(3.13)

Using (3.12) and Assumption (2.3), we deduce that ∂ f
∂ y (x, t, ŷε) is uniformly bounded

in L∞(Q) by a constant C f ,M . Hence, (2.6) implies that

‖wε‖C([0,T ],L2(�)) ≤ K‖φε‖L2(�) ∀ε ∈ (0, ε1),
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which proves the first part of (3.11). To prove the second part, we put ψε = ϕε − ϕε.
Subtracting their corresponding equations we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂ψε

∂t
− �ψε + ∂ f

∂ y
(x, t, yε)ψε = yε − yε

+
[
∂ f

∂ y
(x, t, yε) − ∂ f

∂ y
(x, t, yε)

]
ϕε in Q,

∂νψε = 0 on �, ψε(T ) = γ (yε(T ) − yε(T )) in �.

With (2.3), (3.12), the mean value theorem, and the estimate ‖ϕε‖L∞(Q) ≤ C4 estab-
lished above, we infer

∥∥∥∥
[
∂ f

∂ y
(x, t, yε) − ∂ f

∂ y
(x, t, yε)

]
ϕε

∥∥∥∥
L2(Q)

≤ C f ,MC4‖yε − yε‖L2(Q).

Thus, the estimate

‖ψε‖C([0,T ],L2(�)) ≤ C ′(‖yε − yε‖L2(0,T ;L2(�)) + γ ‖yε(T ) − yε(T )‖L2(�)

)

≤ C ′′‖yε − yε‖C([0,T ],L2(�))

follows from the partial differential equation above, which concludes the proof. ��
Lemma 3.2 There exists ε0 ∈ (0, ε1] such that

J ′′(ū + θ(uε − ū))(uε − ū)2 ≥ μ

2
‖uε − ū‖2L2(Q)

∀ε ∈ (0, ε0) and ∀θ ∈ (0, 1),

(3.14)

where μ is given by (3.3).

Proof Let us take τ > 0 as in (3.3). We first prove that uε − ū ∈ Eτ
ū for every

sufficiently small ε. Since obviously uε − ū satisfies the sign conditions (3.5), it is
enough to show that J ′(ū)(uε − ū) ≤ τ‖uε − ū‖L2(Q) for ε small enough. To this end

we set vε = uε−ū
‖uε−ū‖L2(Q)

. Taking a subsequence, we can assume that vε⇀v in L2(Q).

In the proof of Lemma 3.1, the boundedness of {uε}ε>0 in L∞(Q) was established.
Therefore, uε → ū strongly in every L p(Q) for p < ∞. Using this fact along with
the optimality of ū and uε, we obtain

J ′(ū)v = lim
ε→0

J ′(ū)vε ≥ 0 and J ′(ū)v = lim
ε→0

J ′(uε)vε ≤ 0.

Hence, limε→0 J ′(ū)vε = J ′(ū)v = 0 holds. Since this is true for any convergent
subsequence of {vε}ε>0, we infer that the convergence J ′(ū)vε → 0 as ε → 0 holds
for the whole family. Therefore, there exists ε0 such that J ′(ū)vε ≤ τ for every
ε ∈ (0, ε0) or equivalently J ′(ū)(uε − ū) ≤ τ‖uε − ū‖L2(Q). This implies that
uε − ū ∈ Eτ

ū . Then, (3.3) yields J ′′(ū)v2 ≥ μ‖uε − ū‖2
L2(Q)

. Hence, (3.14) follows
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from the fact that J is of class C2 in Lr (0, T ; Ls(�)) with 1
r + n

2s < 1, r , s ≥ 2, and
the convergence ū + θ(uε − ū) → ū in this space. ��

Proof of Theorem 3.4 From the local optimality of ū and uε, we infer

J ′(ū)(uε − ū) ≥ 0 and J ′
ε(uε)(ū − uε) ≥ 0.

Adding these inequalities, we get

[J ′(uε) − J ′(ū)](uε − ū) ≤ [J ′
ε(uε) − J ′(uε)](ū − uε).

Then, using (3.14), the mean value theorem, (2.10), and (3.11), we deduce for ε small
enough

μ

2
‖uε − ū‖2L2(Q)

≤ J ′′(ū + θk(uε − ū))(uε − ū)2

= [J ′(uε) − J ′(ū)](uε − ū) ≤ [J ′
ε(uε) − J ′(uε)](ū − uε)

=
∫
Q
(ϕε − ϕε)(ū − uε) dx dt ≤ ‖ϕε − ϕε‖L2(Q)‖ū − uε‖L2(Q)

≤ C‖φε‖L2(�)‖ū − uε‖L2(Q).

These inequalities imply (3.10). ��

4 Stability Analysis. Case � = 0

In this case, due to Assumption (A4), the set Uad is bounded in L∞(Q). This simpli-
fies some aspects of the analysis of (P). However, the second order analysis is more
complicated. We follow [6] to formulate sufficient second order conditions for local
optimality. Given ū ∈ Uad satisfying the first order necessary optimality conditions
(2.13)–(2.15), we define the following cones for arbitrary τ > 0:

Gτ
ū = {v ∈ L2(Q) satisfying (3.5) and J ′(ū)v ≤ τ

(‖zv‖L1(Q) + γ ‖zv(T )‖L1(�)

)},
(4.1)

Dτ
ū = {v ∈ L2(Q) satisfying (3.5) and v(x, t) = 0 if |ϕ̄(x, t)| > τ }, (4.2)

Cτ
ū = Gτ

ū ∩ Dτ
ū . (4.3)

The next result was proved in [6].

Theorem 4.1 Let ū ∈ Uad satisfy the first order optimality conditions (2.13)–(2.15).
Suppose in addition that there exist μ > 0 and τ > 0 such that

J ′′(ū)v2 ≥ μ
(‖zv‖2L2(Q)

+ γ ‖zv(T )‖2L2(Q)

) ∀v ∈ Cτ
ū , (4.4)
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where zv = G ′(ū)v. Then, there exist δ > 0 and ε > 0 such that

J (ū) + δ

2

(
‖yu − ȳ‖2L2(Q)

+ γ ‖yu(T ) − ȳ(T )‖2L2(�)

)
≤ J (u) (4.5)

for all u ∈ Uad such that ‖yu − ȳ‖L∞(Q) ≤ ε.

Definition 4.1 We say that ū is a strong local minimizer of (P) if there exists ε > 0
such that J (ū) ≤ J (u) for every u ∈ Uad with ‖yu − ȳ‖L∞(Q) ≤ ε. If the inequality
is strict for u = ū, we say that ū is a strict strong local minimizer. If J (ū) ≤ J (u)

holds for every u ∈ Uad such that ‖yu − ȳ‖L∞(0,T ;L2(�)) ≤ ε, then ū is said to be a
strong local minimizer in the sense of L∞(0, T ; L2(�)).

Remark 4.1 The following properties hold:

1. ū is an L1(Q)-local minimizer of (P) iff it is an Lr (0, T ; Ls(�))-local minimizer
of (P) for every r , s ∈ [1,+∞).

2. If ū is an Lr (0, T ; Ls(�))-local minimizer of (P) for some s, r ∈ [1,∞), then it
is an L∞(Q)-local minimizer of (P).

3. If ū ∈ Uad is a strong local minimizer of (P), then it is an Lr (0, T ; Ls(�))-local
minimizer of (P) for every s, r ∈ [1,∞].

The reader is referred to [6,Lemma 2.8] for the proof of these statements.

Corollary 4.1 The control ū is a strong local minimizer of (P) if and only if it is a strong
local minimizer of (P) in the sense of L∞(0; T ; L2(�)).

Proof If ū is a strong local minimizer of (P) in the sense of L∞(0; T ; L2(�)), then
from the inequality ‖yu − ȳ‖L∞(0,T ;L2(�)) ≤ √|�| ‖yu − ȳ‖L∞(Q) we infer that ū is
also a strong local minimizer of (P). The converse is proved by contradiction:

Let {uk}∞k=1 ⊂ Uad with associated states {yk}∞k=1 satisfy

‖yk − ȳ‖L∞(0,T ;L2(�)) ≤ 1

k
and J (uk) < J (ū). (4.6)

Since {uk}∞k=1 is a bounded sequence in L
∞(Q), we can extract a subsequence denoted

in the same way such that uk
∗
⇀ ũ in L∞(Q). Moreover, it follows from Theorem 2.1

that yk → yũ in L∞(Q). Then, (4.6) implies that yũ = ȳ and, hence, ũ = ū. We select
ε > 0 such that J (ū) ≤ J (u) for every u ∈ Uad with ‖yu − ȳ‖L∞(Q) ≤ ε. However,
there exists k0 such that ‖yk − ȳ‖L∞(Q) ≤ ε for all k ≥ k0. This contradicts (4.6). ��
Corollary 4.2 Let ū ∈ Uad satisfy the first and second order optimality conditions
(2.13)–(2.15) and (4.4) for some μ > 0 and τ > 0. Then, there exist δ > 0 and ε > 0
such that (4.5) holds for all u ∈ Uad such that ‖yu − ȳ‖L∞(0,T ;L2(�)) ≤ ε.

Proof We argue again by contradiction. Let {uk}∞k=1 ⊂ Uad with associated states
{yk}∞k=1 satisfy

‖yk − ȳ‖L∞(0,T ;L2(�)) ≤ 1

k
, (4.7)

123



Applied Mathematics & Optimization            (2022) 86:16 Page 15 of 31    16 

J (uk) < J (ū) + 1

2k

(
‖yk − ȳ‖2L2(Q)

+ γ ‖yk(T ) − ȳ(T )‖2L2(�)

)
. (4.8)

As in the proof of Corollary 4.1, we find that yk → ȳ in L∞(Q). From Theorem 4.1,
we deduce the existence of ε > 0 and δ > 0 such that (4.5) holds. Let us take k0 such
that ‖yk − ȳ‖L∞(Q) ≤ ε and 1

k < δ for every k ≥ k0. Then, (4.8) contradicts (4.5) ��
From this corollary, we deduce that any control ū ∈ Uad satisfying the first and

second order optimality conditions (2.13)–(2.15) and (4.4) is a strict strong local
minimizer of (P) in the sense of L∞(0, T ; L2(�)). Now, we analyze the relationship
between (P) and the perturbed problems (Pε) introduced in Sect. 3. We adopt the
notation introduced there for the states yε = yε

uε
and yε = yuε , as well as for the

adjoint states ϕε = ϕε
uε

and ϕε = ϕuε . Theorems 3.2 and 3.3 are reformulated as
follows:

Theorem 4.2 Let {uε}ε>0 be a family of global minimizers of problems (Pε). Any
control ū that is a weak∗ limit in L∞(Q) of a sequence {uεk }∞k=1 with εk → 0 as
k → ∞ is a global minimizer of (P). Moreover, the strong convergence yεk → ȳ in
L∞(0, T ; L2(�)) holds.

The proof of this theorem is almost the same as that of Theorem 3.2. The only
difference is that we cannot prove the strong convergence of {uεk }∞k=1 to ū in L2(Q),
because κ = 0. Instead, the strong convergence yεk → ȳ in L∞(0, T ; L2(�)) can be
obtained. Indeed, if we subtract the equations satisfied by yεk and ȳ we get yεk − ȳ =
ψk + ηk , where ψk and ηk satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ψk

∂t
− �ψk + ∂ f

∂ y
(x, t, ȳ)ψk

= (uεk − ū) +
[∂ f

∂ y
(x, t, ȳ) − ∂ f

∂ y
(x, t, yεk )

]
yεk in Q,

∂νψk = 0 on �, ψk(0) = 0 in �,⎧⎨
⎩

∂ηk

∂t
− �ηk + ∂ f

∂ y
(x, t, ȳ)ηk = 0 in Q,

∂νηk = 0 on �, ηk(0) = φεk in �.

From the first equation, we deduce that {ψk}∞k=1 is bounded in C0,θ (Q̄) for some
θ ∈ (0, 1). From this boundedness, we immediately obtain that ψk → 0 in C(Q̄) ⊂
L∞(0, T ; L2(�)) as k → ∞. From the second equation,we infer ‖ηk‖C([0,T ],L2(�)) ≤
C‖φεk‖L2(�) for some constant C independent of k. Hence, {ηk}∞k=1 converges to zero
in C([0, T ], L2(�)). This proves the convergence yk → ȳ in L∞(0, T ; L2(�)).

Theorem 4.3 Let ū be a strict strong local minimizer of (P). Then, there exist ε0 > 0

and a family {uε}ε≤ε0 of strong local minimizers of the problems (Pε) such that uε

∗
⇀ ū

in L∞(Q) as ε → 0. Moreover, {yε}ε>0 converges strongly to ȳ in L∞(0, T ; L2(�)).

Proof Since ū is a strict local minimizer for (P), in view of Corollary 4.1 there exists
ρ > 0 such that J (ū) < J (u) for every u ∈ Uρ

ad \ {ū}, where
Uρ
ad = {u ∈ Uad : ‖yu − ȳ‖L∞(0,T ;L2(�)) ≤ ρ}.
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Let us consider the control problems

(P) min
u∈Uρ

ad

J (u) and (Pε) min
u∈Uρ

ad

Jε(u).

Despite that Uρ
ad is not convex in general, with (2.7) it is easy to prove that Uρ

ad is
bounded and weakly∗ sequentially closed in L∞(Q). Hence, every problem (Pε) has
at least one solution uε. Moreover, ū is the unique solution of (P). As in Theorem 3.3,
every weak∗ limit in L∞(Q) of a weakly∗ converging subsequence of {uε}ε>0 is ū.
Therefore, the whole family {uε}ε>0 converges weakly∗ to ū in L∞(Q). In addition,
arguing as in the previous theorem, the associated states {yε}ε>0 converge strongly to ȳ
in L∞(0, T ; L2(�)). This implies the existence of ε1 > 0 such that ‖yε − ȳ‖L∞(Q) <

ρ/3 for every ε ≤ ε1. We prove that uε is a strong local minimizer of (Pε) in the sense
of L∞(0, T ; L2(�)). Let u ∈ Uad be such that ‖yε

u − yε‖L∞(0,T ;L2(�)) < ρ/3. Using
(2.5) and (3.6) we infer that {yε

u}ε>0 is bounded in L∞(Q). Hence, we argue as in
(3.13) to deduce the existence of a constant K independent of u ∈ Uad such that

‖yu − yε
u‖C([0,T ],L2(�)) ≤ K‖φε‖L2(�).

Selecting ε ∈ (0, ε1] such that K‖φε‖L2(�) < ρ/3 for every ε ≤ ε0, we obtain

‖yu − ȳ‖L∞(0,T ;L2(�)) ≤ ‖yu − yε
u‖L∞(0,T ;L2(�)) + ‖yε

u − yε‖L∞(0,T ;L2(�))

+ ‖yε − ȳ‖L∞(0,T ;L2(�)) < ρ.

Therefore, u ∈ Uρ
ad and, consequently, Jε(uε) ≤ Jε(u) holds. This proves that uε is

a strong local minimizer of (Pε) in the sense of L∞(0, T ; L2(�)) for every ε < ε0.
By Corollary 4.1 this also holds in the sense of L∞(Q), hence uε is a strong local
minimizer of (Pε). ��

Let ū be a strong local minimizer of (P) satisfying the sufficient second order
condition (4.4). Its corresponding state and adjoint state will be denoted by ȳ and
ϕ̄, respectively. From the quadratic growth condition (4.5) we know that ū is a strict
strong local minimizer of (P). In view of this, Theorem 4.3 implies the existence of

a set {uε}ε>0 of strong local minimizers of the problems (Pε) such that uε

∗
⇀ ū in

L∞(Q) and yε → ȳ strongly in L∞(0, T ; L2(�)).

Remark 4.2 Though κ = 0, due to the boundedness of Uad in L∞(Q), Lemma 3.1 is
still valid. Moreover, taking wε = yε

ū − ȳ and ψε = ϕε
ū − ϕ̄ and arguing as in the last

part of the proof of Lemma 3.1, we deduce the existence of ε0 > 0 such that

‖yε
ū − ȳ‖C([0,T ],L2(�)) + ‖ϕε

ū − ϕ̄‖C([0,T ],L2(�)) ≤ C‖φε‖L2(�) ∀ε ∈ (0, ε0). (4.9)

Now, we are able to prove a result on Hölder stability of optimal states. We recall
the notation yε = yε

uε
and ϕε = ϕε

uε
.
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Theorem 4.4 If {uε}ε>0 is a sequence of strong local minimizers of the problems (Pε)

according to Theorem 4.3, there exists a constant L0 such that

‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�) ≤ L0‖φε‖
1
2
L2(Q)

∀ε > 0. (4.10)

Proof From (3.11) and the triangle inequality we infer

‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�)

≤ C‖φε‖L2(�) + ‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�). (4.11)

As in the proof of Theorem 4.2, we have that yε → ȳ strongly in L∞(0, T ; L2(�))

as ε → 0. Therefore, we can apply (4.5) to deduce for every sufficiently small ε

δ

2

(
‖yε − ȳ‖2L2(Q)

+ γ ‖yε(T ) − ȳ(T )‖2L2(�)

)
≤ J (uε) − J (ū)

= [J (uε) − Jε(uε)] + [Jε(uε) − Jε(ū)] + [Jε(ū) − J (ū)] = I1 + I2 + I3. (4.12)

Using again (3.11), we estimate I1 as follows :

|I1| ≤ 1

2

∫
Q

|yε + yε − 2yQ ||yε − yε| dx dt

+ γ

2

∫
�

|yε(T ) + yε(T ) − 2y�||yε(T ) − yε(T )| dx

≤ C1

(
‖yε − yε‖L2(Q) + ‖yε(T ) − yε(T )‖L2(�)

)
≤ C2‖φε‖L2(�).

Since uε is a global minimizer of (Pε) and ū is a feasible control for this problem, we
have that I2 ≤ 0. Finally, we can estimate I3 as I1 by using (4.9) instead of (3.11).
Inserting these estimates in (4.12) and invoking (4.11), we obtain (4.10). ��

Unlike in the case κ > 0, in order to prove a stability estimate for the controls
as κ = 0, we need an extra assumption. The proof of the stability inequality (3.10)
was based on the second order condition (3.3). This condition does not hold if κ = 0
except for a few extreme cases; see [3]. That is why we have used (4.4).

Nevertheless, (4.4) leads only to the quadratic growth condition (4.5) that has been
crucial in the proof of the stability estimate (4.10). The question is if we could have
an inequality of type

J (ū) + δ‖u − ū‖λ
Lr (Q) ≤ J (u)

for all u ∈ Uad such that ‖yu − ȳ‖L∞(Q) ≤ ε with some δ > 0, ε > 0, and r ∈ [1,∞).
An inequality of this type would allow us to get some stability estimate for optimal
controls. It was proved in [15] that an inequality of this type is impossible unless ū
is a bang-bang control. In [14], an inequality of the above type was proved under a
structural assumption on the adjoint state ϕ̄. Following this idea, we assume
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∃λ ∈ (0, 1] and Cλ > 0 such that |{(x, t) ∈ Q : |ϕ̄(x, t)| ≤ ε}| ≤ Cλε
λ ∀ε > 0.

(4.13)

This assumption includes that ū is a bang-bang control. Indeed, (4.13) implies that the
set of points where ϕ̄ vanishes has a zero Lebesgue measure. Moreover, (2.15) with
κ = 0 yields that ū(x, t) = α if ϕ̄(x, t) > 0 and ū(x, t) = β if ϕ̄(x, t) < 0. Therefore,
ū(x, t) belongs to {α, β} for almost every point (x, t) ∈ Q. We will prove that (4.13),
along with the sufficient second order optimality condition (4.4), implies the stability
of the optimal control with respect to the perturbations of the initial condition. We
prepare the proof by some technical results.

Lemma 4.1 There exists a constant Cα,β such that

‖zu−ū‖C(Q̄) ≤ Cα,β‖yu − ȳ‖L∞(Q) ∀u ∈ Uad , (4.14)

where zu−ū = G ′(ū)(u − ū).

Proof From Theorem 2.1 and the boundedness of Uad in L∞(Q), we deduce the
existence of a constant M such that ‖yu‖L∞(Q) ≤ M ∀u ∈ Uad . Moreover, taking
u = ū and v = u − ū in (2.8) with u ∈ Uad arbitrary, we conclude that zu−ū ∈ C(Q̄).
Subtracting the equations satisfied by yu , ȳ, and zu−ū , and settingw = yu − ȳ− zu−ū ,
we get

⎧⎨
⎩

∂w

∂t
− �w + ∂ f

∂ y
(x, t, ȳ)w =

[∂ f

∂ y
(x, t, ȳ) − ∂ f

∂ y
(x, t, yu)

]
yu in Q,

∂νw = 0 on �, w(0) = 0 in �.

Then, using (2.3) we obtain

‖w‖C(Q̄) ≤ C1

∥∥∥∂ f

∂ y
(x, t, ȳ) − ∂ f

∂ y
(x, t, yu)

∥∥∥
L∞(Q)

‖yu‖L∞(Q)

≤ C1C f ,MM‖yu − ȳ‖L∞(Q).

This yields

‖zu−ū‖C(Q̄) ≤ ‖w‖C(Q̄) + ‖yu − ȳ‖C(Q̄) ≤ (C1C f ,MM + 1)‖yu − ȳ‖L∞(Q),

which proves the lemma. ��
Lemma 4.2 There exists a constant Cγ such that

‖zv‖L1(Q) + γ ‖zv(T )‖L1(�) ≤ Cγ ‖v‖L1(Q) ∀v ∈ L2(Q), (4.15)

where zv = G ′(ū)v.

123



Applied Mathematics & Optimization            (2022) 86:16 Page 19 of 31    16 

Proof Let ψ ∈ W (0, T ) ∩ L∞(Q) be the solution of

⎧⎨
⎩

−∂ψ

∂t
− �ψ + ∂ f

∂ y
(x, t, ȳ)ψ = sign(zv) in Q,

∂νψ = 0 on �, ψ(T ) = γ sign(zv(T )) in �.

Then, we have that ‖ψ‖L∞(Q) ≤ Cγ and consequently

‖zv‖L1(Q) + γ ‖zv(T )‖L1(�)

=
∫
Q

(
− ∂ψ

∂t
− �ψ + ∂ f

∂ y
(x, t, ȳ)ψ

)
zv dx dt +

∫
�

ψ(T )zv(T ) dx

=
∫
Q

(∂zv
∂t

− �zv + ∂ f

∂ y
(x, t, ȳ)zv

)
ψ dx dt =

∫
Q

ψv dx dt

≤ ‖ψ‖L∞(Q)‖v‖L1(Q) ≤ Cγ ‖v‖L1(Q).

��

Lemma 4.3 Let ū ∈ Uad satisfy the first and secondorder optimality conditions (2.13)–
(2.15) and (4.4). Then, to every ρ > 0 an ερ > 0 can be found such that

ρ J ′(ū)(u − ū) + J ′′(ū + θ(u − ū))(u − ū)2

≥ μ

4

(
‖yu − ȳ‖2L2(Q)

+ γ ‖yu(T ) − ȳ(T )‖2L2(�))

)
(4.16)

for all θ ∈ [0, 1] and for all u ∈ Uad satisfying ‖yu − ȳ‖L∞(Q) < ερ .

Proof The proof of this lemma follows the steps of the corresponding proof for
[7,Lemma 2] established for the elliptic case. We will use the following property:
for all � > 0 there exists ε� > 0 such that, if u ∈ Uad and ‖yu − ȳ‖L∞(Q) < ε�, we
have

|[J ′′(uθ ) − J ′′(ū)]v2|≤�
(
‖zv‖2L2(Q)

+ γ ‖zv(T )‖2L2(�)

)
∀v ∈ L2(Q), ∀θ ∈[0, 1],

(4.17)

where uθ = ū + θ(u − ū), zv = G ′(ū)v, and zu−ū = G ′(ū)(u − ū). For the proof of
(4.17), the reader is referred to [13,Lemma 6]; see also [9,Lemma 3.5]. Moreover, we
will use the following fact established in the proof of Corollary 3 in [13]: there exists
ε1 > 0 such that

‖yu − ȳ‖2L2(Q)
+ γ ‖yu(T ) − ȳ(T )‖2L2(�)

≤ 2
(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

(4.18)
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for every u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε0. We will prove that

ρ J ′(ū)(u − ū) + J ′′(uθ )(u − ū)2 ≥ μ

2

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

(4.19)

for all u ∈ Uad satisfying that ‖yu − ȳ‖L∞(Q) < ερ for some ερ ∈ (0, ε0]. Then,
(4.16) is a straightforward consequence of (4.18) and (4.19). The proof is split into
three cases.

Case I - u − ū ∈ Cτ
ū . Since ū satisfies the first order optimality conditions, we have

that J ′(ū)(u − ū) ≥ 0. Moreover, from (4.4) we get

J ′′(ū)(u − ū)2 ≥ μ
(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)
.

Then, taking � = μ
2 in (4.17) and using the above inequality, (4.16) follows with

ερ = ε�.
Case II - u − ū /∈ Gτ

ū . Since u − ū satisfies the sign condition (3.5), we infer from
(4.1) that

J ′(ū)(u − ū) > τ
(‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)
. (4.20)

From (4.14) we obtain

‖zu−ū‖2L2(Q)
+ γ ‖zu−ū(T )‖2L2(�)

≤ Cα,β‖zu−ū‖C(Q̄)

(‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)
≤ Cα,β‖yu − ȳ‖L∞(Q)

(‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)
≤ Cα,βερ

(‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)
.

Inserting this inequality in (4.20), we obtain

ρ J ′(ū)(u − ū) >
ρτ

Cα,βερ

(‖zu−ū‖2L2(Q)
+ γ ‖zu−ū(T )‖2L2(�)

)
.

Moreover, from (2.11) we infer the existence of a constant C1 such that

|J ′′(u)(v1, v2)| ≤ C1
(‖zv1‖L2(Q)‖zv2‖L2(Q) + γ ‖zv1(T )‖L2(�)‖zv2(T )‖L2(�)

)
(4.21)

for all u ∈ Uad and all v1, v2 ∈ L2(Q). It is enough to select ερ such that
ρτ

Cα,βερ
−C1 ≥

μ
2 to get (4.19).
Case III - u − ū /∈ Dτ

ū and u − ū ∈ Gτ
ū . Let Cγ be the constant introduced in (4.15)

and set τ ∗ = τ/max{1,Cγ }. If u − ū /∈ Gτ∗
ū , then case II applies. Otherwise, we

define the sets

Q2 = {(x, t) ∈ Q : |ϕ̄(x, t)| > τ and (u − ū)(x, t) = 0} and Q1 = Q \ Q2.
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Associated with these sets, we consider the controls u1 = (u − ū)χQ1 and u2 = (u −
ū)χQ2 , where χQi is the characteristic function of Qi . It is an immediate consequence
of (2.10) that

J ′(ū)(u − ū) = J ′(ū)u1 + J ′(ū)u2 ≥ J ′(ū)u1 + τ‖u2‖L1(Q) ≥ τ‖u2‖L1(Q).

(4.22)

The definition of u1 yields u1 ∈ Dτ
ū . Let us prove that u1 ∈ Gτ

ū holds as well. Using
(4.22), (4.15), and recalling the definition of τ ∗, we infer

J ′(ū)(u − ū) ≥ J ′(ū)u1 + τ ∗(‖zu2‖L1(Q) + γ ‖zu2(T )‖L1(�)

)
.

Moreover, since u − ū ∈ Gτ∗
ū , we get

J ′(ū)(u − ū) ≤ τ ∗(‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)

≤ τ ∗(‖zu1‖L1(Q) + γ ‖zu1(T )‖L1(�)

)
+ τ ∗(‖zu2‖L1(Q) + γ ‖zu2(T )‖L1(�)

)
.

From the last two estimates for J ′(ū)(u − ū) and the fact that τ ∗ ≤ τ , we get

J ′(ū)u1 ≤ τ
(
‖zu1‖L1(Q) + γ ‖zu1(T )‖L1(�)

)
.

This implies u1 ∈ Gτ
ū and, consequently, u1 ∈ Cτ

ū . Let us confirm that u2 is a small
perturbation of u1. Indeed, using (4.22), the fact that u− ū ∈ Gτ

ū , and (4.14) it follows

τ‖u2‖L1(Q) ≤ J ′(ū)(u − ū) ≤ τ
(
‖zu−ū‖L1(Q) + γ ‖zu−ū(T )‖L1(�)

)

≤ τ(T + γ )|�|‖zu−ū‖C(Q̄) ≤ τ(T + γ )|�|Cα,β‖yu − ȳ‖L∞(Q).

This leads to

‖u2‖L1(Q) ≤ (T + γ )|�|Cα,βερ.

Moreover, since |u2| ≤ |u − ū| ≤ β − α, we obtain

‖u2‖L3(Q) ≤ (β − α)2/3‖u2‖1/3L1(Q)
≤ C2 3

√
ερ,

that proves the smallness of u2. This implies

‖zu2‖C(Q̄) ≤ C3‖u2‖L3(Q) ≤ C2C3 3
√

ερ. (4.23)

To prove (4.19), we first analyze the term ρ J ′(ū)(u − ū). From (4.22) and (4.15) we
infer

ρ J ′(ū)(u − ū) ≥ ρτ‖u2‖L1(Q) ≥ ρτ

Cγ

(
‖zu2‖L1(Q) + γ ‖zu2(T )‖L1(�)

)
. (4.24)
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To estimate the term J ′′(uθ )(u − ū)2, we proceed as follows: using (4.17) with � =
μ/12, (4.4) and the fact that u1 ∈ Cτū , and(4.21)

J ′′(uθ )(u − ū)2 ≥ J ′′(ū)(u − ū)2 − μ

12

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

= J ′′(ū)u21 + J ′′(ū)u22 + 2J ′′(ū)(u1, u2) − μ

12

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

≥ μ
(
‖zu1‖2L2(Q)

+ γ ‖zu1(T )‖2L2(�)

)
− C1

(
‖zu2‖2L2(Q)

+ γ ‖zu2(T )‖2L2(�)

)

− 2C1

(
‖zu1‖L2(Q)‖zu2‖L2(Q) + γ ‖zu1(T )‖L2(�)‖zu2(T )‖L2(�)

)

− μ

12

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)
.

Applying the inequality 2ab ≤ μ

8
a2 + 8

μ
b2we continue by

J ′′(uθ )(u − ū)2 ≥ 7μ

8

(
‖zu1‖2L2(Q)

+ γ ‖zu1(T )‖2L2(�)

)

− (C1 + 8C2
1

μ
)
(
‖zu2‖2L2(Q)

+ γ ‖zu2(T )‖2L2(�)

)

− μ

12

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)
.

Sincezu1 = zu−ū − zu2 and in view of 2ab ≤ 1

3
a2 + 3b2we have

J ′′(uθ )(u − ū)2 ≥ μ

2

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

− (C1 + 21μ

8
+ 8C2

1

μ
)
(
‖zu2‖2L2(Q)

+ γ ‖zu2(T )‖2L2(�)

)

= μ

2

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)
− C4

(
‖zu2‖2L2(Q)

+ γ ‖zu2(T )‖2L2(�)

)
.

Combining this inequality with (4.23) and (4.24), we get

ρ J ′(ū)(u − ū) + J ′′(uθ )(u − ū)2 ≥ μ

2

(
‖zu−ū‖2L2(Q)

+ γ ‖zu−ū(T )‖2L2(�)

)

+
[ρτ

Cγ

− C2C3C4 3
√

ερ

](
‖zu2‖L1(Q) + γ ‖zu2(T )‖L1(�)

)
.

Then, it is enough to select ερ such that ρτ
Cγ

> C2C3C4 3
√

ερ to conclude the proof. ��

Lemma 4.4 Let ū ∈ Uad satisfy the first order optimality conditions (2.13)–(2.15) and
the structural assumption (4.13). Then, the following inequality holds:

J ′(ū)(u − ū) ≥ σ‖u − ū‖1+
1
λ

L1(Q)
∀u ∈ Uad , (4.25)

where σ = (
2[2(β − α)Cλ] 1

λ

)−1
.
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Proof Given ε > 0 to be fixed later, we set Qε = {(x, t) ∈ Q : |ϕ̄(x, t)| > ε}. From
(4.13) we have |Q \ Qε| ≤ Cλε

λ. Using this we get

J ′(ū)(u − ū) ≥ ε

∫
Qε

|u − ū| dx dt = ε‖u − ū‖L1(Q) − ε‖u − ū‖L1(Q\Qε)

≥ ε‖u − ū‖L1(Q) − (β − α)ε|Q \ Qε| ≥ ε‖u − ū‖L1(Q) − (β − α)Cλε
1+λ.

Then, taking ε = [2(β − α)Cλ]− 1
λ ‖u − ū‖

1
λ

L1(Q)
, (4.25) follows from the above

inequality. ��

The reader is referred to [26,Lemma 6.3] for an extension of this result to sparse
optimal control; see also [25]. Using the previous lemmas, we obtain the following
result:

Theorem 4.5 Let ū ∈ Uad satisfy the first and second order optimality conditions
(2.13)–(2.15) and (4.4) along with the structural assumption (4.13). Then, there exists
ε > 0 such that

J (ū) + σ

2
‖u − ū‖1+

1
λ

L1(Q)
+ μ

8

(
‖yu − ȳ‖2L2(Q)

+ γ ‖yu(T ) − ȳ(T )‖2L2(�)

)
≤ J (u)

(4.26)

∀u ∈ Uad such that ‖yu − ȳ‖L∞(Q) ≤ ε, where σ and μ are introduced in Lemma 4.4
and in the assumption (4.4), respectively.

Proof Performing a Taylor expansion, from (4.25) and (4.16) with ρ = 1, we infer

J (u) = J (ū) + J ′(ū)(u − ū) + 1

2
J ′′(ū + θ(u − ū))(u − ū)2

= J (ū) + 1

2
J ′(ū)(u − ū) + 1

2
[J ′(ū)(u − ū) + J ′′(ū + θ(u − ū))(u − ū))2]

≥ J (ū) + σ

2
‖u − ū‖1+

1
λ

L1(Q)
+ μ

8

(
‖yu − ȳ‖2L2(Q)

+ γ ‖yu(T ) − ȳ(T )‖2L2(�)

)
.

��

We finish this section by establishing a stability result for optimal controls and
associated states. Let ū be a strong local minimizer of (P) satisfying the sufficient
secondorder condition (4.4) andAssumption (4.13). Its corresponding state and adjoint
state will be denoted by ȳ and ϕ̄, respectively. From the growth condition (4.5), we
know that ū is a strict strong local minimizer of (P). Hence, Theorem 4.3 implies the
existence of a set {uε}ε>0 of strong local minimizers of the problems (Pε) such that

uε

∗
⇀ ū in L∞(Q) and yε → ȳ strongly in L∞(0, T ; L2(�)).
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Theorem 4.6 Under the above notation, there exist Lλ and ε0 > 0 such that

‖uε − ū‖L1(Q) ≤ Lλ‖φε‖
2λ

λ+2

L2(�)
, (4.27)

‖uε − ū‖L1(Q) ≤ Lλ‖φε‖λ
L∞(�), (4.28)

‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�) ≤ Lλ‖φε‖
λ+1
λ+2

L2(Q)
, (4.29)

‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�) ≤ Lλ‖φε‖
1+λ
2

L∞(�) (4.30)

hold for every ε < ε0.

Proof The convergence uε

∗
⇀ ū in L∞(Q) and Theorem 2.1 yield yε = yuε → ȳ

in L∞(Q). Taking ρ = 1
2 in (4.16), we deduce the existence of ε0 > 0 such that

‖yε − ȳ‖L∞(Q) < ερ ∀ε < ε0. Therefore, every uε with ε < ε0 satisfies (4.16) for
ρ = 1

2 .
Since uε is a strong local minimizer of (P), we have J ′

ε(uε)(ū − uε) ≥ 0. Using
(4.25), this variational inequality, and (2.10) we obtain

σ

2
‖uε − ū‖1+

1
λ

L1(Q)
+ 1

2
J ′(ū)(uε − ū) ≤ J ′(ū)(uε − ū)

≤ [J ′(ū) − J ′(uε)](uε − ū) + [J ′(uε) − J ′
ε(uε)](uε − ū)

= −J ′′(ū + θε(uε − ū))(uε − ū)2 +
∫
Q
(ϕε − ϕε)(uε − ū) dx dt .

Invoking (4.16) with ρ = 1
2 and (3.11), we infer from the above inequality

σ

2
‖uε − ū‖1+

1
λ

L1(Q)
+ μ

8

(
‖yε − ȳ‖2L2(Q)

+ γ ‖yε(T ) − ȳ(T )‖2L2(�))

)

≤ ‖ϕε − ϕε‖C([0,T ],L2(�))‖uε − ū‖L1(0,T ;L2(�))

≤ C
√

β − α‖φε‖L2(�)‖uε − ū‖
1
2
L1(Q)

. (4.31)

Estimate (4.27) follows from this inequality. Now, inserting (4.27) in (4.31), we infer

‖yε − ȳ‖L2(Q) + γ ‖yε(T ) − ȳ(T )‖L2(�) ≤ C1‖φε‖
λ+1
λ+2

L2(Q)
.

Combining this inequality with (3.11) and applying the triangle inequality, we get
(4.29). Finally, (4.28) and (4.30) are obtained using in (4.31) the estimate

∫
Q
(ϕε − ϕε)(uε − ū) dx dt ≤ ‖ϕε − ϕε‖L∞(Q)‖uε − ū‖L1(Q)

≤ C ′‖φε‖L∞(�)‖uε − ū‖L1(Q).

��
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5 A Problemwith at Least Two Local Minimizers

5.1 The Problem

Although semilinear parabolic control problems were considered since decades, it
was an open question if problems with semilinear parabolic equation and standard
quadratic tracking type objective functional may have more than one solution. Due to
thequadratic structure of the objective functional, one could thinkof a hidden convexity
of the problem. In general, the answer is no. Indeed, in [24] a semilinear elliptic optimal
boundary control problem with quadratic objective functional was constructed that
has two different optimal controls. The author also proved a remarkable result for
functionals of the form

J : U −→ R, J (u) = ‖G(u) − z‖2H + κ‖u‖2U

in real Hilbert spaces H and U , where a mapping G : U → H and z ∈ H are given.
He proved the following: The functional J is convex for all z ∈ H if and only if G is
affine. This result was extended in [16] to quite general tracking type functionals and
applied to control-to-state mappings G associated with a nonsmooth elliptic equation,
a Signorini type variational inequality, and an evolutionary obstacle problem.

In our class of optimal control problems,G stands for the nonlinear control-to-state
mapping and z = yQ . The result of [24] shows that there exists a desired state function
yQ such that J is nonconvex. This does not yet imply the existence of multiple local
minima, but it is an indication that they might exist for a suitable yQ .

Indeed, in this section we present a semilinear parabolic optimal control problem
with at least two different local solutions, one of them being globally optimal. We also
constructed a problem with two different global solutions. However, it has a slightly
different and more academic structure and will be discussed elsewhere.

We consider the problem

(E) min J (u) := 1

2

∫
Q

|yu − yQ |2 dxdt + κ

2

∫
Q
u2 dxdt

subject to

{
∂ y

∂t
− �y + f (y) = u in Q

∂ν y = 0 on �, y(0) = 0 in �,

and to the pointwise control constraints α ≤ u(x, t) ≤ β a.e. in Q. The desired state
yQ is defined by

yQ(x, t) =
{

1, 0 ≤ t ≤ ts,
−1, ts < t ≤ T
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and the nonlinearity f is f (y) = y(y − 1)(y + 1) = y3 − y. Therefore, the PDE is a
particular case of the so-called Schlögl model of theoretical chemistry.

For the spatial domain � ⊂ R
n , we assume |�| = 1, for instance, � = (0, 1)n .

The other data are taken as: T = 4, α = 0, β = 10, κ ∈ [0, 0.3].

5.2 A First Locally Optimal Control

As in the previous sections, we denote by yu the state associated with the control u.
For u = 0, we obtain yu = 0 as associated state, because zero is one of the so-called
fixed points of f , i.e. we have f (0) = 0.

The idea for the example is as follows: We shall show that ū = 0 is a strict local
minimizer. Next, we construct another control that has a smaller objective value than
ū. Because the problem has a (global) solution, there must be a global solution distinct
from the zero control. Therefore, at least two different local solutions must exist. To
proceed in this way, we consider the adjoint equation for ū = 0. It is

{
−∂ϕ

∂t
− �ϕ + f ′(ȳ)ϕ = ȳ − yQ in Q

∂νϕ = 0 on �, ϕ(T ) = 0 in �,

where ȳ = yū = 0. Hence, we have f ′(ȳ) = 3ȳ2 − 1 = −1. The reader can easily
check that

ϕ̄(x, t) =
{
eT−t − 1, t ∈ [ts, T ],
1 + (eT − 2ets )e−t , t ∈ [0, ts). (5.1)

It is easy to verify that ϕ̄(x, t) ≥ 0 in Q if and only if 0 ≤ ts ≤ t̂ = ln( 12 (e
4 + 1));

notice that ϕ̄(x, 0) = 0 iff ts = t̂ .

Theorem 5.1 If 0 ≤ ts ≤ t̂ , then ū ≡ 0 is an L p(Q)-strict local minimum of (E) for
every p ∈ [1,∞].
Proof First of all, we observe that ū is an admissible control for (E). Moreover, ū
satisfies the first order optimality conditions (2.13)–(2.15). Indeed, the inequality

∫
Q
(ϕ̄ + κ ū)(u − ū) dx dt ≥ 0 ∀u ∈ Uad

obviously holds because ϕ̄ ≥ 0, ū = 0, and every control u ∈ Uad is nonnegative. In
addition, according to (2.11), the second-order derivative of J is

J ′′(ū)v2=
∫
Q
{[1 − ϕ̄ f ′′(ȳ)]z2v + κv2} dx dt=‖zv‖2L2(Q)

+ κ‖v‖2L2(Q)
∀v ∈ L2(Q).

Therefore, (3.3) and (4.4) hold for κ > 0 and κ = 0, respectively. Then, Theorems 3.1
and 4.1 along with Remark 4.2 imply that ū ≡ 0 is an L p(Q)-strict local minimum of
(E) for every p ∈ [1,∞]. ��

123



Applied Mathematics & Optimization            (2022) 86:16 Page 27 of 31    16 

Finally, we mention that the objective value for ū = 0 is

J (ū) = 1

2

∫ 4

0

∫
�

y2Q dx dt = 1

2

∫ 4

0

∫
�

12 dx dt = 2;

we recall that |�| = 1 and ȳ = 0. This value is independent on κ , because theTikhonov
regularization term vanishes for ū = 0.

5.3 Existence of Another (Globally) Optimal Control

Once and for all, we select ts = 3.3. Notice that ts < t̂ = 3.325003.... We recall that ts
defines the location of the switching point of yQ . We define the following bang-bang
control with switching point τ = 0.02 :

uτ (x, t) =
{

β, t ≤ τ, x ∈ �,

0, τ < t ≤ T , x ∈ �.
(5.2)

Let us compute an upper bound for J (uτ ). We denote by yτ the state associated with
uτ . Since uτ does not depend on x and y0 = 0, we get that yτ is independent of x . With
a slight abuse of notation we write yτ (t) = yτ (x, t). Then yτ satisfies the ordinary
differential equation

y′
τ (t) + y3τ (t) − yτ (t) = uτ in [0, T ] and yτ (0) = 0. (5.3)

In the interval [0, τ ], we have y′
τ (t) = 10+ yτ (t)− y3τ (t). Using that 0 ≤ s−s3 ≤ 2

3
√
3

for every s ∈ [0, 1] and taking the functions

{
η′
1(t) = 10 in [0, T ],

η1(0) = 0,
and

{
η′
2(t) = 10 + 2

3
√
3
in [0, T ],

η2(0) = 0,

we infer that η1(t) = 10t ≤ yτ (t) ≤ η2(t) = (10+ 2
3
√
3
)t for every t ∈ [0, τ ]. Let us

set vi = ηi (τ ), i = 1, 2. Thenwe have that v1 = 0.2 ≤ vτ = yτ (τ ) ≤ v2 = 0.2+ 0.04
3
√
3
.

By separation of variables, we can solve the differential equation (5.3) in [τ, T ], where
the control uτ is zero and get

yτ (t) = 1√
1 + cτ e−2(t−τ)

∀t ∈ [τ, T ] with cτ = 1

v2τ
− 1.

Setting ci = 1
v2i

− 1 and yi (t) = 1√
1+ci e−2(t−τ )

, i = 1, 2, we deduce that c2 ≈
22.18117 ≤ cτ ≤ c1 = 24 and, consequently, y1(t) ≤ yτ (t) ≤ y2(t) for all t ∈ [τ, T ].
Then, recalling that |�| = 1, we have
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J (uτ ) = 1

2

{∫ 0.02

0
(yτ − 1)2 dt +

∫ 3.3

0.02
(yτ − 1)2 dt +

∫ 4

3.3
(yτ + 1)2 dt

}

+ κ

2

∫ 0.02

0
β2 dt

= 1

2

{∫ 0.02

0
(yτ − 1)2 dt +

∫ 4

0.02
y2τ dt−2

∫ 3.3

0.02
yτ dt+2

∫ 4

3.3
yτ dt+3.98

}
+κ

≤ 1

2

{∫ 0.02

0
(η1 − 1)2 dt+

∫ 4

0.02
y22 dt−2

∫ 3.3

0.02
y1 dt+2

∫ 4

3.3
y2 dt+3.98

}
+κ

≤ 1.6899 + κ.

Above we have used

∫
1

1 + ce−2(t−τ)
dt = 1

2
ln

(
1 + 1

c
e2t

) + const,

∫
1√

1 + ce−2t
dt = 1

2
ln

(√
1 + ce−2t + 1√
1 + ce−2t − 1

)
+ const

for c = ci , i = 1, 2. Hence, we know that J (uτ ) < J (ū) = 2 if 0 ≤ κ ≤ 0.3.
Actually, the numerical computation of yτ as well as J (uτ ) delivers the value J (uτ ) ≈
1.6864 + κ < J (ū). As a consequence, we deduce that a global minimizer of (E)
distinct from ū must exist. For comparison, the parabolic optimal control problem has
been solved numerically. The computed optimal objective value is 1.6140 for κ = 0.3.
All these numerical computations were performed by Mariano Mateos (University of
Oviedo). We very much acknowledge his support.

5.4 Example with Perturbed Initial Data

In the previous subsection, the considered controls depended on t only, i.e. they were
constant with respect to x . In this way, we were able to solve the state and adjoint
equation as ordinary differential equation. We do not know, if other local minimizers
exist for (E) that depend also on x . Nevertheless, the example had the flavour of an
example for ODEs. By our perturbation analysis, we are able to construct an exam-
ple that cannot be reduced to the discussion of ODEs. To this aim, we consider the
perturbed example

(Eε) min Jε(u) := 1

2

∫
Q

|yε
u − yQ |2 dxdt + κ

2

∫
Q
u2 dxdt

subject to

{
∂ yε

u

∂t
− �yε

u + f (yε
u) = u in Q,

∂ν yε
u = 0 on �, yε

u(0) = φε in �,
(5.4)
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and to the pointwise control constraints α ≤ u(x, t) ≤ β a.e. in Q, where

φε(x) = εφ(x) with φ ∈ L∞(�) and ε > 0. (5.5)

Theorem 5.2 For every ε > 0, problem (Eε) has a strict local minimizer uε in the
L p(Q)-sense, for every p ∈ [1,∞], with associated state yε such that

‖uε‖L1(Q) ≤ L1ε‖φ‖L∞(�), (5.6)

‖yε‖L2(Q) ≤ L1ε‖φ‖L∞(�), (5.7)

|Jε(uε) − J (ū)| ≤ L0 ε‖φ‖L∞(�) (5.8)

for all ε > 0 and for some constants Li > 0, i = 0, 1.

Proof We have already proved that ū ≡ 0 is a strict local minimizer of (E) in the
L p(Q)-sense for every p ∈ [1,∞]. Moreover, ū satisfies the second order optimality
condition (3.3) if κ > 0 or (4.4) if κ = 0. Let us prove that ϕ̄ satisfies (4.13) with
λ = 1. For this purpose, without loss of generality we assume ε ≤ 1 in (4.13). Looking
at the expression for ϕ̄ in (5.1) and recalling that ts = 3.3, we have that ϕ̄(x, t) > 1
∀(x, t) ∈ � × [0, ts]. Then, |ϕ̄(x, t)| ≤ ε if and only if eT−t − 1 ≤ ε or equivalently
t ≥ T − ln(1 + ε). Therefore, with |�| = 1 we have

|{(x, t) ∈ Q : |ϕ̄(x, t)| ≤ ε}| ≤ ln(1 + ε) ≤ ε.

Now, Theorems 3.3 and 4.3 with Remark 4.1, and estimates (3.10) and (4.28) imply
the existence of a family of strict local minimizers {uε}ε>0 in the L p(Q)-sense, for
every p ∈ [1,∞], such that (5.6) and (5.7) hold. To prove (5.8), we first note that the
boundedness of {uε}ε in L∞(Q) and equation (5.4) imply the boundedness of {yε}ε>0
in L∞(Q). Then, recalling that ȳ = 0, α = 0, β = 10, and using (5.6) and (5.7), we
get

|Jε(uε) − J (ū)| ≤
∣∣∣∣12

∫
Q

|yε − yQ |2 dx dt + κ

2
‖uε‖2L2(Q)

− 1

2

∫
Q

|yQ |2 dx dt
∣∣∣∣

≤ 1

2

∫
Q
(|yε|2 + 2|yQ ||yε|) dx dt + κ

2
‖uε‖2L2(Q)

≤ L1ε
2

2
‖φ‖2L∞(�) + ‖yQ‖L2(Q)L1ε‖φ‖L∞(�) + 5κL1ε‖φ‖L∞(�),

which implies (5.8). In the last estimate, we used uε ≤ β = 10. ��
Next, we prove that Jε(uτ ) < Jε(uε) is satisfied for all sufficiently small ε > 0.

Then, we conclude that (Eε) has at least two different local minimizers. Let us denote
by yε

τ the solution of (5.4) for u = uτ . Subtracting the equations satisfied by yε
τ and

yτ , we obtain

{
∂(yε

τ − yτ )

∂t
− �(yε

τ − yτ ) + f ′(yε
τ,θ )(y

ε
τ − yτ ) = 0 in Q,

∂ν(yε
τ − yτ ) = 0 on �, (yε

τ − yτ )(0) = φε in �,
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where yε
τ,θ = yτ + θ(yε

τ − yτ ) with 0 ≤ θ(x, t) ≤ 1. From (5.4) we get that {yε
τ }ε>0

is uniformly bounded in L∞(Q). Then, from the above equation we infer that

∃C < 0 such that ‖yε
τ − yτ‖L∞(Q) ≤ Cε‖φ‖L∞(�) ∀ε > 0.

This leads to

|Jε(uτ ) − J (uτ )| ≤ 1

2

∫
Q

|yε
τ − yτ ||yε

τ + yτ − 2yQ | dx dt ≤ C ′ε‖φ‖L∞(�).

Selecting ε > 0 such that max{C ′, L0}ε‖φ‖L∞(�) < 0.0001 and taking into
account that J (ū) = 2 and J (uτ ) ≤ 1.6899, we infer from (5.8) and the above
inequality that Jε(uε) > 1.9999 and Jε(uτ ) < 1.69+κ ≤ 1.99 because 0 ≤ κ ≤ 0.3.
Therefore, (Eε) has a global minimizer different from uε.
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