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Abstract— This work investigates an injection-locked power
oscillator inductively coupled to an external resonator for wireless
power transfer. The system allows a high transfer efficiency, while
ensuring a constant oscillation frequency versus the coupling
factor, unlike free-running implementations. An analytical for-
mulation provides insight into the impact of the coupling factor
on the locked-operation ranges. Two types of qualitative behavior,
delimited by a codimension-two bifurcation, are distinguished.
The investigation is extended to a Class-E oscillator at 13.56 MHz,
analyzed with a new harmonic balance (HB) method that pro-
vides the family of locked-solution curves in a single simulation.
Very good agreement is obtained with the measurement results.

Index Terms— Bifurcation, inductive coupling, injection
locking, oscillator.

I. INTRODUCTION

NEAR-FIELD wireless power transfer is used for the
short-distance recharge of sensor networks, electrical

car batteries, implantable devices, and other systems [1]–[3].
A high-power oscillator [4]–[6] inductively coupled to an
external resonator enables a high transmission efficiency with
no need for a driving source. However, the frequency is self-
generated so it will change with the operation conditions [7]
and, thus, with the coupling factor k, which depends on the coil
distance and misalignment [8]–[10]. Even if the standalone
oscillator is suitably designed to comply with regulations,
the coupling effects can make the circuit operate outside the
allowed frequency band.

In this work, the undesired frequency variation will be
prevented through the injection locking of the inductively
coupled oscillator, investigated here for the first time to our
knowledge. The oscillation frequency agrees with that of the
injection source while still providing high output power from
the circuit oscillation and, as a result, a very high gain [11].
Moreover, the locking can prevent the oscillation extinction
under strong coupling effects, observed in free-running oper-
ation [5]. The low phase noise enabled by the locking to
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Fig. 1. Simple oscillator used in the analytical study: C1 = C2 = 53 pF;
L1 = L2 = 2.6 μH; R2 = 50 �; and i(v) = av + bv3 (a = −0.01 A/V and
b = 0.01 A/V3).

a source of higher spectral purity would be beneficial for
data transmission, which can be carried out through phase
modulation. The investigation will depart from an analytical
study of the global oscillator behavior versus the coupling
factor k and input signal amplitude. As will be shown,
a codimension (CD)-two bifurcation [12] gives rise to two
different kinds of qualitative response versus k when varying
the input amplitude. The possibility of enlarging the locking
range through a suitable variation of the external resonator
values will also be demonstrated. The investigation will be
extended to a Class-E oscillator at 13.56 MHz, analyzed with
a new harmonic balance (HB) method that provides the family
of locked-solution curves in a single simulation. Its locking
range will be enlarged with the aid of the new criteria. The
analysis results will be validated with measurements.

II. ANALYTICAL STUDY

The analytical study will be based on the simple cubic
nonlinearity oscillator shown in Fig. 1. We will assume an
oscillation locked to the injection current source of amplitude
Ig at the frequency ω. Performing the analysis at the funda-
mental frequency, one obtains[

GT (V ) + jC1ω +
(

j L1ω + jk2L1 L2C2ω
3

1 − L2C2ω2 + j R2C2ω

)−1
]

V = Ige jφ (1)

where V is the voltage amplitude, GT (V ) = a + βV 2 is the
describing function of the active device having a < 0 and
β > 0, φ is the opposite of the phase shift between the node
voltage and the input current, k is the coupling factor, and the
other various elements are described in the caption of Fig. 1.

A case of particular interest is the injection locking at
the central frequency ωo of the allowed operation band.
To maximize the power transfer, we will also impose
ωo = 2π fo = 1/(L1C1)

1/2 = 1/(L2C2)
1/2 under the usual

condition L1 = L2 = L, so C1 = C2 = C . Thus, ωo agrees
with the free-running frequency. Particularizing (1) to this
case and splitting the equation into real and imaginary parts,
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Fig. 2. Solution curves in terms of V versus k with the turning point loci
(in red) superimposed. (a) Ig = 2.8 mA. (b) Curve family when varying Ig .

one obtains

HT,r(V ) = Hr(V ) − Ig cos φ = 0 (2a)
HT,i(V ) = Hi(V ) − Ig sin φ = 0 (2b)

where

Hr(V ) = aV + βV 3 + k2V
[
R2 + k4 L/(C R2)

]−1
(3a)

Hi(V ) = CωoV − V
[
Lωo + k4 L2ωo/(C R2

2)
]−1

. (3b)

To obtain the curve providing V at ωo versus k at a given
Ig , we will square and add the terms in (3a) and (3b)

H 2
r (V ) + H 2

i (V ) = I 2
g . (4)

For each k, one has a bicubic equation in V 2. For small Ig ,
there will be three solutions up to a certain k. This is shown in
Fig. 2(a), where the solutions of (4) are traced versus k (dashed
curves) for Ig = 2.8 mA. The results are validated with HB.
The oscillation is excited only in the higher amplitude curve.
In the isolated open curve, the circuit responds to the injection
signal in a nonautonomous manner. To get some insight, one
can consider a low Ig and approach the two higher amplitude
solutions at k = 0 by linearizing (4) about the free-running
amplitude Vo, which provides V = Vo ± Ig /(a + 3βV 2

o ). For
low Ig , the oscillation curve [Fig. 2(a)] would depart from
two points symmetrically located above and below Vo, with a
larger amplitude difference for a higher Ig .

For a general analysis versus Ig , we will return to the
nonlinear system (2a). As seen in Fig. 2(a), the locked-
operation interval is delimited by a turning point in the high
amplitude curve. At turning points, the system Jacobian matrix
becomes singular [12], [13], which in (2a) (as easily derived)
leads to

det

[
∂ HT,r/∂V ∂ HT,r/∂φ
∂ HT,i/∂V ∂ HT,i/∂φ

]
= ∂ H 2

r

∂V
+ ∂ H 2

i

∂V
= 0. (5)

This provides an explicit expression for V at the turning
points of the injection-locked coupled oscillator

V 2
T =

(
−2(a + A) ±

√
(a + A)2 − 3B2

)
/(3β) (6)

where

A = k2

(
k4 L

C R2
+ R2

)−1

B = Cωo − ω−1
o

(
L + L2

C R2
2

k4

)−1

. (7)

Applying (5)–(7) to the circuit shown in Fig. 1, one obtains
the loci traced by the solid red lines in Fig. 2(a). Note that

Fig. 3. Turning point loci in the plane defined by k and Ig . The locked-
operation region is shadowed. (a) R2 = 50 �. (b) R2 = 220 �.

Ig varies through the loci and the solution curves are for
Ig = 2.8 mA. The crossing with the upper turning point locus
(TP-1) provides maximum k up to which the system remains
locked. The family of locked curves when varying Ig is shown
in Fig. 2(b). Again, the turning point loci are traced in solid
red lines. One obtains two kinds of qualitative behavior. For
low Ig , there is a locked-solution curve with a turning point
and a low-amplitude open curve. Then, there is a CD-two
bifurcation [12] at which the two curves merge. For larger Ig ,
the higher amplitude becomes open and exhibits two turning
points (TP1 and TP2). In turn, the lower amplitude exhibits
a turning point (TP3), and so it does not exist for all k. The
turning points TP2 and TP3 are a result of the system continuity
and originate from the curve splitting after CD. When further
increasing Ig , the lower amplitude curve shrinks and eventually
vanishes, and the higher amplitude curve does not exhibit any
turning points. In view of the impact of Ig on the k interval
in locked conditions, it will be useful to trace the tuning-point
loci in the plane defined by k and Ig . This is done by sweeping
k and, at each k step, obtaining VT from (6) and replacing the
resulting VT values in (4), which is compactly written as[

a + A + βV 2
T

]2
V 2

T + B2V 2
T = I 2

g . (8)

Fig. 3 shows the two loci in the plane k, Ig , indicated as
TP-1 and TP-2, respectively; locked solutions are obtained in
the shadowed regions. As expected, the loci start from the
same values at k = 0, when the circuit is isolated from the res-
onator. The lower turning point locus (TP-1) provides the
maximum k in locked conditions. The higher turning point
locus (TP-2), denoted by a dashed line, exhibits a minimum at
CD. The section of TP-2 on the left of CD provides the turning
point in the low-amplitude curve generated after the merging.
The section on the right of CD provides, together with TP-1,
a multivalued section in the open solution curve. Besides (6)
and (8), CD fulfills ∂ Ig /∂k = 0 since it is an extreme of TP-2
in the plane defined by k and Ig . To maximize the locking
range at a given Ig , one should limit the impact of k on (4).
This can be achieved by reducing both A and B through the
increase in R2. Fig. 3 shows a comparison of the loci obtained
for R2 = 50 � and R2 = 220 � is shown in Fig. 3(b).

III. INJECTION-LOCKED FET-BASED OSCILLATOR

A. Oscillator Design
The Class-E oscillator is shown in Fig. 4(a) and the mea-

surement set-up is shown in Fig. 4(b). Initially, we design
a Class-E amplifier at fo = 13.56 MHz, excited with the
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Fig. 4. Class-E oscillator based on the transistor IRLML0040TRPbF
(FR-4 substrate). (a) Schematic. R1 = 1.5 k�, Lg = 70 nH, L S = 0.1 μH,
Ldc = 15 μH, L1 = L2 = 2.8 μH, C = 33 nF, C3 = 5.6 nF, CShunt = 20 pF,
CS = 75 pF, and C2 = 55 pF. (b) Experimental setup. Coils (AWG 18 copper
wire) mounted on support machines using acrylic plastic sheets.

Fig. 5. Analysis through the simultaneous simulation of two circuits.

amplitude Vg . It is terminated with a coupled resonator,
considering the intermediate factor k = 0.2. We set R2 = 50 �
and calculate L1, Cs , and C1 for a Class-E operation. To get
an oscillator [7], we introduce an ideal reactive feedback
� = 0.99e jθ in series at the source terminal and select the
θ value providing the largest negative conductance when
looking into the transistor gate. Here, it corresponds to a
capacitor (C3). Next, we connect an auxiliary generator (AG)
at ωo [8]–[10] at the gate terminal with the amplitude VAG =
Vg to obtain the admittance function YN (Vg, ωo). Then, we cal-
culate the input network to fulfill YT (Vg, ωo) = Yin(ωo) +
YN (Vg, ωo) = 0, which, in this case, corresponds to an inductor
in parallel with a resistor.

B. Oscillator Analysis

The HB analysis is carried out with a novel method based on
the simultaneous simulation of two circuits (Fig. 5). The first
circuit corresponds to the oscillator in the absence of the input
source. It is used to obtain a nonlinear admittance/impedance
function (calculated by means of an AG [14]) that describes the
complete oscillator circuit from the observation node/branch.
The second circuit is used to obtain the Norton/Thevenin
equivalent of the input network (up to the AG location [14]).
In the case of the driven oscillator shown in Fig. 4, a Thevenin
equivalent is considered, so a current AG is chosen. It is
connected in series at the device input branch and operates
at the frequency ωo with an ideal bandpass filter in parallel
(Fig. 5). One performs a double sweep in k and the AG
current amplitude IAG and uses the first circuit to calculate
ZT (k, IAG) = VAG/IAG, where VAG is the voltage drop
across the AG. The lower circuit (Fig. 5) is used to calculate

Fig. 6. Solution curves. Stable sections are traced as solid line. Measurements
are superimposed. (a) Efficiency for Eg = 0.95 V and RL = 50 �.
(b) Efficiency for Eg = 0.6 V and RL = 110 �. (c) Output power for
Eg = 0.6 V and RL = 110 �.

the Thevenin voltage VTh and should be terminated in an
open circuit (an ideally infinite resistor R∞ is introduced, for
generality). This circuit is excited with a dummy source of
value Eg = 1 V and the resulting open-circuit voltage is FTh,
which agrees with the linear voltage ratio FTh = VTh/Eg.
Combining VTh with ZT (k, IAG), the solution curves versus
k will correspond to the contour levels in |Eg| of the function

|ZT (k, IAG)|IAG/|FTh| = ∣∣Eg

∣∣. (9)

Note that commercial HB does not provide by default
any injection-locked solutions [15]. The efficiency and output
power are obtained by interpolating the dc power and load-
voltage amplitude VL through the curves (9). Fig. 6(a) shows
the efficiency for Eg = 0.95 V and RL = 50 �, just
after the CD-two bifurcation. Stable locked solutions (solid
line) are obtained for the whole k range. Measurements for
distances d = 0.5 cm to d = 20 cm are superimposed.
Discrepancies are attributed to inaccuracies in k estimation.
According to the analytical derivations, a higher RL should
reduce the input power required to keep the system locked at
all k. See the efficiency and output power for Eg = 0.6 V and
RL = 110 � in Fig. 6(b) and (c). The system operates just
before the CD-two bifurcation and the low amplitude curve
becomes stable through an inverse Hopf bifurcation (H ) [12].
The system transfers up to 24 dBm with Pin = −0.46 dBm.
As expected, the transferred power for Pin = −0.46 dBm
in a Class-E amplifier (based on the same device and output
network) is much lower.

IV. CONCLUSION

An investigation of an injection-locked oscillator coupled
to an external resonator has been presented. It demonstrates
two different qualitative behaviors versus the coupling factor,
depending on the input amplitude. A criterion to enlarge the
locked-operation intervals has also been derived. The methods
have been applied to a Class-E oscillator at 13.56 MHz.
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