
����������
�������

Citation: Jeddou, S.; Fernández, F.;

Diez, L.; Baina, A.; Abdallah, N.;

Agüero, R. Delay and Energy

Consumption of MQTT over QUIC:

An Empirical Characterization Using

Commercial-Off-The-Shelf Devices.

Sensors 2022, 22, 3694. https://

doi.org/10.3390/s22103694

Academic Editor: Francesco Longo

Received: 5 April 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Delay and Energy Consumption of MQTT over QUIC:
An Empirical Characterization Using
Commercial-Off-The-Shelf Devices

Sidna Jeddou 1,*, Fátima Fernández 2, Luis Diez 3 , Amine Baina 1, Najid Abdallah 1 and Ramón Agüero 3

1 Department of Communication Systems, National Institute of Posts and Telecommunications,
Rabat 10112, Morocco; baina@inpt.ac.ma (A.B.); najid@inpt.ac.ma (N.A.)

2 Ikerlan Technology Research Centre, Basque Research Technology Alliance (BRTA),
20500 Arrasate/Mondragón, Spain; ffernandez@ikerlan.es

3 Department of Communication Engineering, Universidad de Cantabria, 39005 Santander, Spain;
ldiez@tlmat.unican.es (L.D.); ramon@tlmat.unican.es (R.A.)

* Correspondence: jeddou.sidna@inpt.ac.ma

Abstract: The QUIC protocol, which was originally proposed by Google, has recently gained a
remarkable presence. Although it has been shown to outperform TCP over a wide range of scenarios,
there exist some doubts on whether it might be an appropriate transport protocol for IoT. In this
paper, we specifically tackle this question, by means of an evaluation carried out over a real platform.
In particular, we conduct a thorough characterization of the performance of the MQTT protocol,
when used over TCP and QUIC. We deploy a real testbed, using commercial off-the-shelf devices,
and we analyze two of the most important key performance indicators for IoT: delay and energy
consumption. The results evince that QUIC does not only yield a notable decrease in the delay and
its variability, over various wireless technologies and channel conditions, but it does not hinder the
energy consumption.

Keywords: Internet of Things (IoT); Quic UDP Internet Connections (QUIC); Transmission Control
Protocol (TCP); Message Queuing Telemetry Transport (MQTT); Quality of Service (QoS);
energy consumption

1. Introduction

In the last few years, we have witnessed a strong increase in Internet of Things (IoT)-
based services, having varying characteristics and so posing different requirements to
communication protocols. In particular, low latency and energy efficiency are some of
the most common challenges of IoT services. Within the IoT field, Industrial IoT (IIoT) is
becoming one of the most frequently discussed topics. In fact, it has a notable impact on
the economy, since it has the potential to increase industrial productivity by 30% [1]. In
2011, the German government introduced the term Industry 4.0, referring to the fourth
industrial revolution [2]. This idea is based on four concepts: interconnection, information
transparency, decentralized decisions, and technical assistance [3].

IIoT technologies are some of the pillars of the fourth industrial revolution, and
they span several fields, including manufacturing, energy, mining, and transportation.
In this regard, IIoT can be defined as the combination of smart computing and network
technologies applied to industrial processes. This combination seeks the automation of such
processes and functionalities within the industry [4]. In this sense, IIoT is indeed improving
the productivity, efficiency, safety, and intelligence of industrial factories [5]. Furthermore, it
ensures efficient and sustainable production, as a key solution to comprehend the industrial
and manufacturing processes.

Services based on IoT, in general, and IIoT, in particular, require the deployment of a
large number of devices. On the one hand, these devices need to ensure information and

Sensors 2022, 22, 3694. https://doi.org/10.3390/s22103694 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103694
https://doi.org/10.3390/s22103694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5817-3308
https://orcid.org/0000-0002-9620-3990
https://doi.org/10.3390/s22103694
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103694?type=check_update&version=1

Sensors 2022, 22, 3694 2 of 20

communication reliability. On the other hand, the cost of devices needs to be reduced to
afford massive deployments, while access to a power supply cannot be always guaranteed
but, in contrast, IIoT devices are frequently battery-driven. Altogether, the need to inter-
connect a large number of devices with limited hardware capabilities and power resources
poses new challenges in terms of energy efficiency, reliability, and security/privacy [6].

In one potential architecture, communication and computation tasks are mostly carried
out by devices at the edge of the network, which have constrained resources, including
limited battery lifetime. Energy management thus becomes a crucial problem in IIoT [7].
In order to tackle it, some low-power application protocols are used for communication
and data transfer in IIoT. Among them, Message Queueing Telemetry Transport (MQTT)
has been receiving increased attention from the research and development communities,
due to its ease of use, lightweight design, Quality of Service (QoS) capabilities, and easy
integration [8–10]. MQTT is built on top of the widely used Transmission Control Protocol
(TCP), which provides end-to-end reliability, flow control, and congestion management.
However, TCP, initially designed for wired networks, exhibits performance issues when
used over fast capacity-varying channels such as wireless links [11].

Recently, the Quick UDP Internet Connections (QUIC) protocol has been developed to
overcome some of TCP’s limitations and inefficiencies. This protocol is implemented on
top of User Datagram Protocol (UDP) and, among other functionalities, it provides flow
and congestion control, reliable communications, in-order delivery to upper layers, and
multi-stream management. QUIC was introduced by Google [12] and standardized by the
Internet Engineering Task Force (IETF) [13]. QUIC is being adopted by many companies
due to its good performance: reduced latency, lightweight connection establishment, stream
multiplexing, and capability to overcome head-of-line blocking [14].

All in all, the interplay of IoT protocols, such as MQTT, and QUIC will potentially
improve the communication performance of IIoT scenarios. In this sense, this paper
introduces a methodology to analyze the performance of MQTT when used over QUIC
and TCP over a real platform, using commercial off-the-shelf devices. For this, we design
and develop a testbed over which we carry out an evaluation of relevant key performance
indicators: delay and energy consumption. This assessment does not only shed light on
the suitability of QUIC as a transport protocol for IoT traffic, but it also serves to assess the
validity of the proposed methodology.

The aforementioned goal is tackled by means of the following phases, which lead to
the main contributions of this paper:

• Design and implementation of a real testbed based on Raspberry Pi devices. The
code developed in the framework is publicly available at https://github.com/tlmat-
unican/MQTT-QUIC-for-RaspberryPi (accessed on 1 April 2022). The implementa-
tion includes:

– Integration of MQTT over QUIC and TCP in Raspberry Pi devices;
– Synchronized setup using Network Time Protocol (NTP) for reliable measurements;
– Automation of procedures (sending, logging, etc.) for trace generation and

result gathering;
– Emulation of different channel conditions and technologies, using the traffic control

Linux utility; it embraces varying end-to-end delay, bandwidth, and different
loss probabilities.

• Execution of a measurement campaign over such a platform to understand the perfor-
mance of MQTT over QUIC, and to assess its suitability for IoT services, comparing it
with the traditional TCP/Transport Layer Security (TLS) configuration.

The rest of the paper is organized as follows. Section 2 describes the related work,
highlighting how this research stands out from existing papers. Then, Section 3 discusses
the main features of MQTT, QUIC, and TCP protocols. Afterwards, in Section 4, we
describe the testbed that we designed and implemented, and we depict the configurations

https://github.com/tlmat-unican/MQTT-QUIC-for-RaspberryPi
https://github.com/tlmat-unican/MQTT-QUIC-for-RaspberryPi

Sensors 2022, 22, 3694 3 of 20

that were used to run the experiments, whose results are discussed in Section 5. The paper
concludes in Section 6, where we provide an outlook of our future work.

2. Related Work

Since it was initially proposed by Google, the behavior of QUIC has been analyzed
under different conditions, but only a few works have focused on studying its performance
for IoT services. On the other hand, there do not exist many evaluations of latency and
energy consumption when IoT devices use QUIC.

A first group of works focuses on establishing the main features of IIoT. In this
sense, Mumtaz et al. [15] analyzed the progress, standardization efforts, and challenges
of connectivity for the IIoT realm. They identified some of the main connectivity tech-
niques and requirements, and the potential of IIoT to foster the next industrial revolution.
Ferrari et al. [16] included the IIoT paradigm in the Industry 4.0 concept, to manage the
information generated by sensing devices, which is then processed, exploiting cloud-based
solutions. They described and assessed the estimation of the round-trip latency of data
transfer between IIoT devices and the cloud, considering different scenarios. Likewise,
Kenitar et al. [17] estimated the latency, over different gateways, when transferring data
from the edge to the cloud. In this case, the authors adopt MQTT as a data delivery solution.
The scope of these works is broader, while our paper particularly focuses on comparing
the performance of different transport protocols that are used to support IoT data delivery
with MQTT.

A second group of studies compare the behavior of different application layer pro-
tocols, to foster their adoption in IIoT scenarios. Mishra and Kertesz conduct in [18] a
survey on how MQTT could be exploited for IoT scenarios. Interestingly, their paper does
not consider the use of alternative transport protocols, such as QUIC, for MQTT traffic.
Akasiadis et al. [19] introduce a platform that leverages the interoperability of various ap-
plication layer protocols (including MQTT and Constrained Application Protocol (CoAP)).
The authors use a real testbed to assess the feasibility of their proposed solution, over which
they evaluate the end-to-end delay. However, they do not consider different underlying
connectivity conditions, nor alternative transport layer solutions. Pohl et al. [20] analyzed
the performance of different IoT protocols, including Advanced Message Queuing Pro-
tocol (AMQP), MQTT, and Extensible Messaging and Presence Protocol (XMPP), over a
three-tier testbed, by measuring key indicators, such as latency, throughput, bandwidth,
and reliability. The results obtained in the study show that, in the considered scenarios,
MQTT outperforms AMQP and XMPP in all categories. In the same way, Silva et al. pro-
vided in [21] a comparison and evaluation of IoT communication protocols, such as MQTT,
CoAP [22], and Open Platform Communications Unified Architecture (OPC-UA) [23].
Seoane et al. compare in [24] the performance of CoAP and MQTT. They also use a real
testbed, as well as emulation techniques to consider different channel conditions. In par-
ticular, they use the NetEm application to modify the loss rate. However, they focus on
security aspects, and they only use traditional transport protocols. Another interesting
paper is the one by Viel et al., who propose in [25] an interface to integrate IoT devices with
smart grids, based on the CoAP application protocol.

Among the works devoted to IoT, a number of them focused on the MQTT operation,
and in particular on the broker node. For instance, Oliveira et al. [26] analyze the perfor-
mance of different MQTT broker implementations. They use a real platform featuring
Raspberry Pi, but they do not compare the performance of different transport protocols.
Similarly, Gammes et al. [27] study the behavior of one of the most widely used MQTT
broker implementations (Mosquitto) under normal conditions and considering DoS attacks.
Although the paper also includes transport layer attacks (i.e., TCP SYN flooding), it does
not compare the performance of MQTT over different transport protocols. From a more
general perspective, Gheorghe-Pop et al. describe in [28] a benchmark carried out for
various MQTT broker solutions. They do not focus on the same performance indicators
as the ones we consider in this paper, such as energy consumption or the interplay with

Sensors 2022, 22, 3694 4 of 20

transport layer protocols. Mishra et al. also carry out a study in [29], where they assess the
performance of different MQTT brokers, under stress circumstances. They conclude that
the Mosquitto implementation outperforms the other alternative solutions for most of the
parameters. Moreover, Koziolek et al. compare in [30] the performance of three distributed
MQTT broker implementations, but the approach was more focused on their usability, CPU
performance, reliability, etc.

Other works also focus on the MQTT behavior besides the broker node. For instance,
Ebleme et al. [31] assessed the behavior of MQTT in terms of delay, throughput, and energy
consumption using Arduino-based nodes as IoT devices. In addition, Katsikeas et al. [32]
concluded that MQTT, as a lightweight protocol, is suitable for industrial scenarios. In
their evaluation, they paid special attention to data security, introducing a full assessment
of potential security issues, and they studied networking features, using a wind park as a
real IIoT scenario. Kodali and Valdas proposed in [33] a solution for fire detection, which
used MQTT as a communication protocol in a network comprising NodeMCU temperature
sensors and Raspberry Pi devices. Michaelides et al. focus on security aspects of MQTT
in [34]. They do not assess the delay, but they also use Raspberry Pi in their testbed, as well
as an approach similar to ours to characterize energy consumption.

As can be seen, all these works study the performance of application layer protocols
for IoT and IIoT. In particular, MQTT stands out as the most widely adopted and analyzed
solution. Nevertheless, these IoT studies do not compare the performance of the application
layer protocols over different transport solutions, as we do in this work.

On the other hand, we can also highlight some works that have analyzed the per-
formance of the QUIC transport protocol. For instance, the authors of [35] discussed the
main features of various solutions, including Stream Control Transmission Protocol (SCTP),
Datagram Congestion Control Protocol (DCCP), TCP, and QUIC. Nepomuceno et al. [36]
compared QUIC and TCP in terms of the download time, for web traffic, using various
websites. Jung and An proposed in [37] an improvement for video streaming and web data
services exploiting QUIC, which yielded an increase in the Quality of Experience (QoE).
The proposed solution brings a delay reduction, based on an estimation of the average
congestion window whenever a new connection is established.

The authors of [38] evaluated the performance of QUIC in terms of packet loss, delay,
and jitter. Similarly, Yu et al. [39] studied the behavior of QUIC, focusing on the packet
pacing and the congestion control mechanisms. The results evince the benefits of the
multi-stream multiplexing QUIC feature.

In addition, different methodologies have been exploited to study the performance of
QUIC, including simulation and emulation environments. De Biasio et al. described in [40]
a QUIC implementation in the ns-3 [41] simulator, which included its most important
features. Furthermore, Kakhki et al. studied the performance of QUIC over an emulated
environment [42]. The main distinctive aspect between these works and the one discussed
in this paper is that none of them consider the use of QUIC as a transport solution for
IoT-based services.

Only a few works have tackled the evaluation of QUIC as a replacement for TCP in
IoT or IIoT scenarios. In [43], Herrero analyzed QUIC as an alternative to both TCP and
UDP for IoT services based on CoAP. This work first develops analytical models of CoAP
performance over UDP, TCP, and QUIC. Then, an experimental analysis is conducted
using the Visual Protocol Stack emulator (VPS+). Differently to this paper, we design and
implement a testbed that uses real devices, which is afterwards exploited to conduct the
evaluation, which considers MQTT, and not CoAP.

Liri et al. [44] explored and analyzed the performance of QUIC over IoT scenarios,
comparing it with widespread solutions, such as CoAP, MQTT, and MQTT-SN. The analysis
is carried out using a combination of real devices and an emulated environment. In
particular, the authors used virtual machines and WiFi connections, to assess the validity
of the obtained results. In all cases, delay and losses were emulated. This work has
some similarities with ours, since the platform that we introduce herein also emulates the

Sensors 2022, 22, 3694 5 of 20

underlying channel conditions. However, Liri et al. do not exploit QUIC as a transport
alternative over which application-level protocols are instantiated. Opposed to this, QUIC
sockets are directly used to send IoT traffic, so that QUIC is analyzed as a replacement
for CoAP, MQTT, and MQTT-SN (which would use TCP underneath), rather than as a
replacement of TCP. Hence, the authors did not assess whether the QUIC operation is
suitable for the communication paradigms brought by upper protocols in IoT services (i.e.,
publish–subscribe). In addition, their evaluation does not include energy consumption.

Two of the closest works to ours are those by Fernández et al. [45,46], where the
authors assessed the performance of MQTT over QUIC. However, their methodology was
different from ours, and they did not foster an evaluation over a real platform. In this sense,
all MQTT entities (publisher, subscriber, and broker) do not run over real and independent
devices, but they are virtualized and executed in Linux containers. In addition, different
wireless technologies and channel characteristics are emulated with the ns-3 network
simulator, which is connected to the Linux containers by means of virtual devices (virtual
interfaces, virtual bridges, and TAP devices), so that the whole protocol stack of the host is
not used. The methodology introduced in this work is based on a platform that uses real
devices, while underlying channels are emulated at the host itself, instead of exploiting a
simulation framework.

Table 1 summarizes the overlap of existing works with ours, in terms of the main
contributions of our paper. In the first column, we account for the works that look at
IoT application layer protocols, such as MQTT or CoAP, including those that evaluate
their performance under different underlying connectivity situations. Then, in the second
column, we identify the works that study QUIC as a transport protocol alternative, either
analyzing its performance or comparing it with other solutions, such as TCP. The third
column highlights works that use hardware devices for the performance analysis, and the
last one identifies works that focus on energy consumption. As can be observed, papers
that cover IoT do not usually pay much attention to the transport layer solution, completely
leaving aside QUIC. On the other hand, works studying the performance of QUIC focus
on traditional Internet scenarios, and not on IoT services. In any case, the table clearly
identifies the gaps that this work fills.

All in all, the work presented herein complements and broadens the available state-
of-the-art, by targeting the evaluation of QUIC as a transport alternative to support IoT
protocols, using a real testbed.

Table 1. Features covered by the related works.

IoT Application Protocols QUIC as Transport Solution Over Hardware Devices Energy Consumption

[18] 3 7 7 7

[19] 3 7 3 7

[20] 3 7 3 7

[21] 3 7 3 7

[24] 3 7 3 7

[26] 3 7 3 7

[31] 3 7 3 3

[34] 3 7 3 3

[35] 7 3 7 7

[36] 7 3 7 7

[37] 7 3 7 7

[38] 7 3 7 7

[39] 7 3 7 7

[42] 7 3 7 7

[43] 3 3 7 7

[44] 7 3 3 7

[45,46] 3 3 7 7

Sensors 2022, 22, 3694 6 of 20

3. IIoT Protocols

In this section, we describe the main features of the protocols involved in the evaluation
that we discuss later. The aim is to provide a general understanding of their operation, to
better tackle the analysis of the performance results in Section 5.

As was already mentioned, MQTT has been widely adopted in the IoT field, in gen-
eral, and in IIoT, in particular. This protocol usually relies on TCP, which might show
shortcomings when used over wireless environments, as well as on TLS, to enable secured
end-to-end communications. On the other hand, QUIC, recently standardized by the
IETF [13], may be used as an alternative to the aforementioned scheme, to improve the
performance of IIoT services. The following sections describe the three involved protocols,
paying special attention to the differences between TCP and QUIC.

3.1. Message Queuing Telemetry Transport—MQTT

MQTT is a popular application-level protocol based on the publish–subscribe paradigm [47],
which usually runs on top of TCP. It has gained relevant popularity for IoT, due to its ease
of implementation, small code footprint, bandwidth efficiency, and client decoupling.

The protocol defines three entities: publisher, subscriber, and broker. Connections are
established between publisher and broker, and between subscriber and broker. In all cases,
brokers play the server role in traditional client/server architectures, while both publishers
and subscribers take the client functionality in their connections.

Publishers generate information, whose type is specified by the so-called topic, and
send it to the broker. On the other hand, subscribers register at the broker topics they are
interested in. Upon receiving messages from publishers, the broker filters them, according
to their topic, and forwards them to the interested subscribers. Since MQTT is an application
protocol, two independent transport layer connections are established between each pair
of entities.

Another key element that makes MQTT an appropriate application protocol for IIoT
services is the support of different QoS levels. There are three supported QoS modes [48]:

• QoS 0 (at most once): the message is sent only once, with no retries. Since there is
not any acknowledgment at the MQTT level, there is no delivery guarantee per se.
Nevertheless, reliable communication can be enforced by lower layers, such as TCP.

• QoS 1 (at least once): in this case, the message can be retransmitted until the sender
receives an acknowledgment. Upon receiving duplicate messages, a flag is set in the
corresponding acknowledgment.

• QoS 2 (exactly once): the message is delivered exactly once. This is ensured with a
four-way handshake to ensure that both the original message and its acknowledgment
have been correctly received by receiver and sender, respectively. This QoS mode is
the slowest one, and it needs, at least, 2 Round Trip Times (RTTs).

As can be seen, the adopted QoS mode might have a direct impact on the energy
consumption, and thus the battery lifetime, of IoT devices [49]. In addition, it provides
adaptability to unreliable environments, according to the particular requirements of the
IoT service [50].

3.2. TCP and QUIC

The Transmission Control Protocol (TCP) is the most widespread transport protocol,
supporting most of the current Internet services, including those used in IoT environments.
It is a connection-oriented solution, offering a reliable service, ensuring in-order delivery,
and providing congestion and flow control. In spite of its generalized use, TCP exhibits
notable limitations that may affect relevant QoS parameters for IoT. In particular, the
congestion control mechanisms usually employed by TCP do not show appropriate per-
formance over wireless links, and they may cause transmission window depletion, thus
reducing the transmission rate. Furthermore, TCP single-stream operation could cause
Head of Line (HOL) blocking, which may lead to longer delays.

Sensors 2022, 22, 3694 7 of 20

Moreover, TCP was not originally designed to appropriately handle different traffic
types—for instance, IoT and IIoT services—usually characterized by a bursty nature, lead-
ing to short connections [51]. TCP requires the establishment of an end-to-end connection
for all different bursts, thus increasing the application delay, due to the inherent latency of
the establishment procedure (three-way handshake). The connection delay can be mitigated
using extensions such as TCP Fast Open (TFO), which was proposed to avoid the delay
induced by the three-way handshake during reconnections, quite frequent in web services.
However, the initial connection still requires the complete three-way handshake, and an
additional RTT would be needed to establish the TLS connection.

Due to the aforementioned TCP limitations (among others), many updates or alterna-
tives have emerged, with QUIC [13] being one of the more relevant. The main objectives of
its design are to improve communication security and reduce transport layer-induced de-
lays, especially in the connection establishment. It has already been thoroughly tested over
the years (Google deployed QUIC on many of its servers to support YouTube clients [12])
and up to 34 drafts were published until the recent release of the first IETF specification [13].
Figure 1 depicts the QUIC stack, comparing it with the traditional TCP one, when HTTP/2
traffic is considered at the application layer.

IP

TCP

Congestion control
Loss recovery

TLS

HTTP/2

Multi-streaming

UDP

QUIC

TLS 1.3

Multi-streaming

Congestion control
Loss recovery

HTTP/2 over QUIC

Figure 1. HTTP/2 over TCP and QUIC.

QUIC is built on top of UDP, and it includes the TLS 1.3 protocol to guarantee a secure
connection. The embedding of TLS within QUIC allows application data to be sent at the
first RTT, provided that the endpoints had been previously connected (0-RTT). Opposed to
this, and due to the TCP and regular TLS handshake, the start of data transfer in traditional
TCP connections can only take place after 2 RTTs, as was mentioned earlier.

QUIC information is organized in streams, and it integrates multiplexing techniques
to avoid the delay caused by Head-of-Line blocking. This way, when a packet is lost in one
stream, only the traffic belonging to this stream is affected. On the other hand, packets in
other streams are not hindered, because the orderly reception of streams is not required [39],
thus reducing the overall delay in lossy environments.

In addition, QUIC brings additional latency reduction, due to its loss detection mecha-
nisms, which include “Early Retransmits” and tail loss probes [52]. These mechanisms use
acknowledgment-based detection with a probe timeout to guarantee that acknowledgments
are successfully received. There are clear differences between the operation of loss detection
solutions used by TCP and QUIC. Among them, we can highlight that QUIC uses packet
sequence numbers to avoid the eventual ambiguity that might occur with TCP, where
transmission and delivery order might not necessarily coincide.

Furthermore, QUIC features a better upgrading and migration strategy, due to its
user-level implementation. Unlike TCP, QUIC is transparent to middleboxes, because
it is encapsulated inside the UDP payload. On the other hand, the deployment of TCP
enhancements strongly depends on the possibility of updating these middleboxes. While
upgrading QUIC might not cause too much trouble, not all devices would be able to
simultaneously switch to a newer version. To enable the coexistence of different versions,

Sensors 2022, 22, 3694 8 of 20

QUIC includes a version negotiation mechanism, which allows endpoints to decide on the
version that they will use for the connection, before it is actually established. This feature
allows customization of the protocol with additional features [13].

Figure 2 depicts the protocol stack that is used during our experiments. We use MQTT
over the two transport protocols (TLS/TCP and QUIC) and, compared to Figure 1, we do
not include the multi-streaming feature, since we do not evaluate its behavior in the work
described herewith.

Version May 8, 2022 submitted to Sensors 8 of 21

IP

UDP

QUIC

Congestion control
Loss recovery

TLS

MQTT over QUICMQTT over TCP

TLS

IP

TCP

Congestion control
Loss recovery

Figure 2. MQTT over TCP and QUIC

packets in other streams are not hindered, because the orderly reception of streams is311

not required [40], thus reducing the overall delay in lossy environments.312

In addition, QUIC brings additional latency reduction, due to its loss detection313

mechanisms, which include “Early Retransmits” and tail loss probes [54]. These mech-314

anisms use acknowledgment-based detection with a probe timeout to guarantee that315

acknowledgments are successfully received. There are clear differences between the316

operation of loss detection solutions used by TCP and QUIC. Among them, we can317

highlight that QUIC uses packet sequence numbers to avoid the eventual ambiguity that318

might occur with TCP, where transmission and delivery order might not necessarily319

coincide.320

Furthermore, QUIC features a better upgrading and migration strategy, due to its321

user-level implementation. Unlike TCP, QUIC is transparent to middleboxes, because322

it is encapsulated inside UDP payload. On the other hand, the deployment of TCP323

enhancements strongly depends on the possibility of updating these middleboxes. While324

upgrading QUIC might not cause too much trouble, not all devices would be able to325

simultaneously switch to a newer version. To enable the coexistence of different versions,326

QUIC includes a version negotiation mechanism, which allows endpoints to decide the327

version they will use for the connection, before it is actually established. This feature328

allows customizing the protocol with additional features [14].329

Figure 2 depicts the protocol stack that will be used during our experiments. We use330

MQTT over the two transport protocols (TLS/TCP and QUIC) and, compared to Figure331

1, we do not include the multi-streaming feature, since we do not evaluate its behavior in332

the work described herewith.333

4. Evaluation testbed334

As has been already mentioned, MQTT is one of the most relevant application335

protocols for IoT and IIoT services. As was said in Section 1, the main goal of this paper336

is the design and implementation of a methodology that exploits a real platform to study337

the performance of MQTT over QUIC and TCP, in IIoT environments. In particular, we338

will focus on two of the most relevant performance parameters in IIoT services: delay339

and energy consumption.340

Figure 3 shows the testbed architecture, which mimics a layered IIoT system. At the341

bottom layer there is a set of IIoT devices (for instance, sensors) that generate data, and342

send it to a broker, thus taking the MQTT publisher role. Then, the broker forwards the343

received information to MQTT subscribers, which are used by cloud services to gather344

IIoT data. All devices are implemented using Raspberry Pi (model 3B), equipped with a345

Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit system, 1.4GHz, 1GB LPDDR2346

Figure 2. MQTT over TCP and QUIC.

4. Evaluation Testbed

As has been already mentioned, MQTT is one of the most relevant application pro-
tocols for IoT and IIoT services. As was stated in Section 1, the main goal of this paper is
the design and implementation of a methodology that exploits a real platform to study
the performance of MQTT over QUIC and TCP, in IIoT environments. In particular, we
focus on two of the most relevant performance parameters in IIoT services: delay and
energy consumption.

Figure 3 shows the testbed architecture, which mimics a layered IIoT system. At the
bottom layer, there is a set of IIoT devices (for instance, sensors) that generate data, and
send them to a broker, thus taking the MQTT publisher role. Then, the broker forwards
the received information to MQTT subscribers, which are used by cloud services to gather
IIoT data. All devices are implemented using Raspberry Pi (model 3B), equipped with a
Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit system, 1.4 GHz, 1 GB LPDDR2
SDRAM, RJ-45, Ethernet 10/100 and WiFi interfaces. As for the operating system, we use
the default choice in Raspberry Pi (i.e., Raspbian), so that we can exploit Linux utilities.

The IIoT device embeds an MQTT publisher, and it also logs information about
traffic generation and energy consumption. The former is obtained using a high-precision
multimeter (Keysight 64465A), able to record the amperage required by the device. The
Raspberry Pi devices that implement the publisher and broker roles are connected with
a 100 Mbps Ethernet link. Furthermore, Linux utilities are used over such interfaces
to emulate different channel conditions, which mimic the ones that would have been
observed over wireless links. In particular, we use Traffic Control (TC) https://tldp.
org/HOWTO/html_single/Traffic-Control-HOWTO/ (accessed on 1 April 2022) utilities
on the Ethernet interface of the IIoT device. This Linux command allows us to change the
interface capacity (bandwidth), to add additional delays, and to establish packet error rates.

Although real wireless links (for instance, WiFi) could be easily used, TC utilities
over Ethernet connections leverage a tighter control over channel features, allowing us
to conduct systematic and repetitive experiments, over the very same conditions. This
approach to emulating underlying technologies does not precisely mimic low-level details
of the considered wireless technologies, but our interest is to compare the performance of
two transport protocols, under the same connectivity conditions, and so the use of TC to
change capacity, delay, and packet losses is sensible. Other works have exploited similar
procedures, such as [44], where the authors also use TC, or [24], where NetEm allows the

https://tldp.org/HOWTO/html_single/Traffic-Control-HOWTO/
https://tldp.org/HOWTO/html_single/Traffic-Control-HOWTO/

Sensors 2022, 22, 3694 9 of 20

authors to emulate different channel conditions. In [45,46,53], the ns-3 simulator is used,
but the channel is modeled with a point-to-point link, whose configuration parameters
are the ones that we have considered in this paper: capacity, delay, and error rate. It is
worth mentioning the Pantheon framework [54], which adopts the Mahimahi [55] link
emulator. It also mimics the characteristics of the underlying connectivity, to analyze the
performance of different congestion control solutions. In addition, the approach we have
followed allows the emulation of wireless technologies that could not be easily used, such
as satellite links.

Then, the Raspberry Pi devices that implement the broker and subscriber roles are
also connected by means of an Ethernet cable. In this case, we do not add any particular
characteristic to the link between broker and subscribers in the cloud, since it mimics a
wired connection, with a lower impact on the communication. Nevertheless, it is worth
noting that additional features could be easily added to this link as well, such as delays
over the transport network.

Wireless IIoT devices/
MQTT publishers

Wireless
technologies

MQTT broker
with wired and

wireless connectivity

Cloud services/
MQTT subscribers

IIoT system model

Transmission and
energy log files

Dual TCP/QUIC
MQTT publisher

Dual TCP/QUIC
MQTT broker

Dual TCP/QUIC
MQTT subscriber

Reception
log files

Wireless emulation
(TC Command)

Python based
offline processing

Evaluation testbed

Et
he

rn
et

Ethernet

High precission
multimeter

Figure 3. Setup diagram: Raspberry Pi devices taking MQTT roles.

As can be seen in Figure 3, all entities use a dual TCP/QUIC implementation of MQTT.
For this, we use a QUIC implementation in the golang programming language (quic-go
version 0.15.1 https://github.com/lucas-clemente/quic-go (accessed on 1 April 2022)).

In addition, we use, for the publisher and subscriber, an MQTT client based on
Eclipse-Paho, which can be configured to run over both TCP and the aforementioned QUIC
implementation https://github.com/pgOrtiz90/paho.mqtt.golang (accessed on 1 April
2022). As for the broker, we use the Volant MQ https://github.com/VolantMQ/volantmq
(accessed on 1 April 2022) implementation (version v0.4.0-rc6). The regular version
provides an MQTT (version 3.1) broker over TCP, while QUIC support has been added in
a separate branch https://github.com/fatimafp95/volantmq_2 (accessed on 1 April 2022).

We guarantee the synchronization of devices using NTP, taking the broker internal
clock as a reference. It is worth noting that synchronization is performed out-band, and
it does not thus affect data traffic. Both the NTP server and client are integrated within
the broker and publisher/subscriber devices, respectively. Thanks to this synchronization,
we are able to precisely establish the transmission delay between receiver and sender, in
order to obtain meaningful statistics, such as the average delay or its coefficient of variation,
when using TCP and QUIC.

The experimentation has been automated by means of Python scripts. In each experi-
ment, these scripts set the TC configuration to mimic different wireless technologies: WiFi,
cellular, and satellite links. In addition, both the QoS used by MQTT, as well as the number
of transmitted packets and its sending rate, are also established.

https://github.com/lucas-clemente/quic-go
https://github.com/pgOrtiz90/paho.mqtt.golang
https://github.com/VolantMQ/volantmq
https://github.com/fatimafp95/volantmq_2

Sensors 2022, 22, 3694 10 of 20

As a result, two log files are generated at the publisher and subscriber, comprising time
instants of sending and reception events of each packet, as well as the energy consumption
in the Raspberry Pi that mimics the IIoT device (publisher). In addition, on the publisher
side, pcap files are also generated to better study the actual number of packets that are
injected into the interface. In this sense, it is worth mentioning that the MQTT QoS setup,
the particular features of TCP and QUIC (including the congestion control algorithm),
and the interplay between application and transport protocols may strongly increase the
number of packets that are actually sent in an experiment.

5. Performance Evaluation

This section discusses the performance characterization that was carried out over the
testbed previously described. We analyze the behavior of MQTT, over both TCP and QUIC,
in terms of traffic delay and energy consumption. In all cases, TCP is used together with
TLS, so that all the analyzed configurations provide the same functionalities and can be
thus fairly compared.

As mentioned before, we use the TC utility to mimic the characteristics of different
wireless technologies. Table 2 enumerates the link delay and capacity of the three considered
technologies, as well as the different packet loss rates that were used. As can be seen, we
consider different channel qualities, from error-free situations to loss rates of 5%, which
would reflect a sensible bad channel situation. Previous QUIC simulation-based analysis
(not covering MQTT) used similar loss rates—for instance, [45,56,57]. In addition, Table 3
shows the particular configurations that were used for the various experiments whose
results are discussed below. In all cases, application data are randomly generated, since
we are not interested in sending any particular information, but only in characterizing the
time required, for each packet, to reach the destination.

Table 2. Network parameters for different technologies.

WiFi Cellular Satellite

Delay (ms) 25 100 600

Capacity (Mbps) 20 10 1.5

Loss rate (%) [0, 5] [0, 5] [0, 5]

Table 3. Testbed configurations.

Figures Packet Packet # of MQTT
Length (B) Interval (ms) Packets QoS

MQTT traffic delay

Figures 4–7 100 1000 1000 0

Figures 8 and 9 100 1000 1000 0, 1, 2

Energy consumption

Figure 10 50, 100, 500 1, 10, 20 1000 0

Figure 11 100 1000 1000 0

5.1. MQTT Traffic Delay

We first measure the delay suffered by the MQTT traffic. We configure MQTT to use
the QoS 0 level, to keep the communication as simple as possible. For each configuration,
we send 1000 packets with a 1 s interval between two consecutive packets. This low rate
ensures that we do not congest the channel, and any delay variation is thus caused by
the transport protocol behavior. Although analyzing the delay in higher load conditions
might also be interesting, other mechanisms may come into play, making the analysis more
complex. In particular, under such conditions, the congestion control mechanisms used in

Sensors 2022, 22, 3694 11 of 20

TCP and QUIC would modulate the response of the transport protocol. This evaluation is
left for our future work.

First, in Figure 4 we depict the average one-way traffic delay when using TCP and
QUIC over the three considered wireless technologies, and for different error probabilities.
It is worth noting that the link delay of each wireless technology is different. In order
to fairly compare the results, the minimum value of the y-axis in each plot corresponds
to the link delay of the corresponding technology: 25, 100, and 600 ms for WiFi, cellular,
and satellite links, respectively. In general, we can observe that the delay experienced
with QUIC is lower than with TCP. In addition, the results evince that QUIC exhibits a
rather stable behavior as we increase the loss probability. On the other hand, the delay
experienced with TCP increases more abruptly as the loss probability grows.

Version May 8, 2022 submitted to Sensors 11 of 21

Table 2: Network parameters for different technologies.

WiFi Cellular Satellite
Delay (ms) 25 100 600
Capacity (Mbps) 20 10 1.5
Loss rate (%) [0, 5] [0, 5] [0, 5]

Table 3: Testbed configurations.

Figures Packet Packet # of MQTT
length (B) interval (ms) packets QoS

MQTT traffic delay

4, 5, 6, 7 100 1000 1000 0

8, 9 100 1000 1000 0, 1, 2

Energy consumption

10 50, 100, 500 1, 10, 20 1000 0

11 100 1000 1000 0

We first measure the delay sufferedhe MQTT traffic. We configure MQTT to use the427

QoS 0 level, to keep the communication as simple as possible. For each configuration,428

we send 1000 packets with a 1 second interval between two consecutive packets. This429

low rate ensures that we do not congest the channel, and any delay variation is thus430

caused by the transport protocol behavior. Although analyzing the delay in higher load431

conditions might be as well interesting, other mechanisms may come into play, making432

the analysis more complex. In particular, under such conditions, the congestion control433

mechanisms used in TCP and QUIC would modulate the response of the transport434

protocol. This evaluation is left for our future work.435

0 1 2 3 4 5

30

40

50

Ploss%

A
vg

.D
el

ay
(m
s

) QUIC
TCP

(a) WiFi

0 1 2 3 4 5
100

105

110

115

120

Ploss%

A
vg

.D
el

ay
(m
s

) QUIC
TCP

(b) Cellular

0 1 2 3 4 5
600

620

640

660

680

700

Ploss%

A
vg

.D
el

ay
(m
s

) QUIC
TCP

(c) Satellite

Figure 4. Average delay observed for QUIC and TCP, and different loss probabilities.

First, in Figure 4 we depict the average one-way traffic delay when using TCP and436

QUIC over the three considered wireless technologies, and for different error proba-437

bilities. It is worth noting that the link delay of each wireless technology is different.438

In order to fairly compare the results, the minimum value of the y-axis in each plot439

corresponds to the link delay of the corresponding technology: 25, 100 and 600 ms for440

WiFi, cellular and satellite links, respectively. In general, we can observe that the delay441

experienced with QUIC is lower than with TCP. In addition, the results evince that442

QUIC exhibits a rather stable behavior as we increase the loss probability. On the other443

hand, the delay experienced with TCP increases more abruptly as the loss probability444

grows.445

Figure 4. Average delay observed for QUIC and TCP, and different loss probabilities.

In this sense, the delay when using TCP over WiFi grows up to >40 ms with a loss
probability of 5%, almost doubling the link delay of this technology (25 ms). In the case of
the cellular technology, we again observe an additional delay of around 20 ms, reaching
≈120 ms for the highest loss probability. Eventually, for the technology with the largest
link delay (satellite with 600 ms), TCP yields an additional delay of above 60 ms when the
channel suffers the highest loss probability.

In the case of QUIC, the results are rather different. When using WiFi, QUIC hardly
adds 12 ms of delay for the worst channel conditions, and a similar increase is observed for
the cellular technology. As for the satellite link, the delay increase observed for QUIC is
≈35 ms, compared to the 60+ ms obtained with TCP.

Then, in Figure 5, we use a boxplot representation to show the statistical distribution
of the delay. The figure only shows the results obtained for the WiFi channel, although
similar behaviors could be observed with the cellular and satellite setups. Each boxplot
represents the 25th and 75th percentiles (upper and lower box limits), as well as the 5th
and 95th percentiles with the lower and upper whiskers, respectively. The corresponding
median values (50th percentiles) are shown with a bullet. In order to also depict the
delay dispersion and understand the average values that were shown before, we include
outlier values, which are outside the aforementioned percentiles. It is worth noting that the
ordinate axis is split, to better illustrate the range of outlier values, while still appropriately
showing the boxplot range.

As can be observed in Figure 5, most delay samples are within a rather stable range,
regardless of the transport protocol (TCP or QUIC) and the loss probability. In this sense,
the variation in the average delay observed in Figure 4 is explained by the outliers. For
both TCP and QUIC, the variability grows with the loss probability, as was also seen for
the average value (cf. Figure 4). Moreover, we can observe that the values reached by the
delay outliers using TCP are more than twice those observed for QUIC, as was also seen in
Figure 4.

Sensors 2022, 22, 3694 12 of 20

100

200

300
400

D
e
la
y
(m
s
)

0 1 2 3 4 5
26

28

30

32

• •
• • • •

Ploss%

300

500

700
900

1100

D
e
la
y
(m
s
)

0 1 2 3 4 5
26

27

28

29

30

•
•

• •
•

•

Ploss%

Figure 5. Boxplot of the delay experienced with QUIC and TCP over the WiFi channel. Ordinate axis
is split to show the range of outliers, which are shown using a logarithmic scale. (a) QUIC (b) TCP.

The results in Figure 4 evince that QUIC yields a lower delay than TCP for higher loss
rates, and it does not jeopardize the performance when the conditions of the underlying
connectivity are better. There is, however, a particular case (ideal cellular link) where
the results show a delay for QUIC that is slightly higher than the one seen for TCP. In
order to thoroughly analyze this particular case, Figure 6 shows the corresponding delay
distributions for the two transport protocols. As can be seen, there were a number of
experiments whose delay was greater than the 95th percentile (more than the outliers
observed for TCP). These outliers cause an increase in the average value, becoming higher
than the one for TCP. In any case, this is a very punctual behavior, which was not observed
for any other configuration.

150
160

D
el
a
y
(m
s
)

QUIC TCP
100

110

120

• •

Figure 6. Boxplot of the delay experienced with QUIC and TCP over the cellular channel with ideal
conditions (Ploss = 0). Ordinate axis is split to show the range of outliers, which are shown using a
logarithmic scale).

Figure 5 evinces the relevant difference in the delay variability when using TCP and
QUIC. In order to provide a quantitative metric of such a parameter (jitter), Figure 7 shows
the delay Relative Standard Deviation (RSD) observed when using TCP and QUIC over
the different wireless links. The RSD is defined as the ratio between the standard deviation
and the mean value, and so provides a fair comparison of random variables, regardless
of their average value. As expected, Figure 7 shows, for all the wireless technologies and
transport protocols, that the variability increases with the loss probability. However, the
increase depends on the particular setup. In the case of the WiFi channel, the jitter observed
for TCP is much higher than the one observed when using QUIC, even over ideal channels.
In addition, we can see that the relationship between loss probability and delay variability
is more clear for QUIC, whose RSD steadily grows as we increase the packet loss rate. On

Sensors 2022, 22, 3694 13 of 20

the other hand, the delay RSD seen when TCP is used does not have a clear relationship
with the loss probability, although it is always higher than the one exhibited by QUIC.

Version May 8, 2022 submitted to Sensors 13 of 21

150
160

D
el
a
y
(m
s
)

QUIC TCP
100

110

120

• •

Figure 6. Boxplot of the delay experienced with QUIC and TCP over the cellular channel with
ideal conditions (Ploss = 0). Ordinate axis is split to show the range of outliers, which are shown
using a logarithmic scale)

higher than the one for TCP. In any case, this is a very punctual behavior, which was481

not observed for any other configuration.482

Figure 5 evinces the relevant difference on the delay variability when using TCP483

and QUIC. In order to provide a quantitative metric of such parameter (jitter), Figure484

7 shows the delay Relative Standard Deviation (RSD) observed when using TCP and485

QUIC over the different wireless links. The RSD is defined as the ratio between the486

standard deviation and the mean value, and so provides a fair comparison of random487

variables, regardless of their average value. As expected, Figure 7 shows, for all the488

wireless technologies and transport protocols, that the variability increases with the loss489

probability. However, the increase depends on the particular setup. In the case of the490

WiFi channel, the jitter observed for TCP is much higher than the one observed when491

using QUIC, even over ideal channels. In addition, we can see that the relationship492

between loss probability and delay variability is more clear for QUIC, whose RSD493

steadily grows as we increase the packet loss rate. On the other hand, the delay RSD494

seen when TCP is used does not have a clear relationship with the loss probability,495

although it is always higher than the one exhibited by QUIC.496

0 1 2 3 4 5
0

0.5

1

1.5

2

Ploss%

R
SD

of
de

la
y

QUIC
TCP

(a) WiFi

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Ploss%

R
SD

of
de

la
y

QUIC
TCP

(b) Cellular

0 1 2 3 4 5
0

0.2

0.4

Ploss%

R
SD

of
de

la
y

QUIC
TCP

(c) Satellite

Figure 7. Delay RSD observed with QUIC and TCP over the different wireless technologies.

Similar results are seen over the cellular link, Figure 7b. Again, the variability that497

is observed for QUIC is always below the one seen when TCP is used, and it exhibits a498

growing trend with the loss probability. On the other hand, the jitter experienced for499

TCP does not show a clear relationship with the packet loss rate. Differently, the jitter500

observed for both TCP and QUIC over satellite links shows a clear relationship with the501

packet loss probability. Indeed, Figure 7c shows that the RSD linearly grows with the502

error rate for TCP. In the case of QUIC, we can also observe a growing trend, but there503

Figure 7. Delay RSD observed with QUIC and TCP over the different wireless technologies.

Similar results are seen over the cellular link; see Figure 7b. Again, the variability that
is observed for QUIC is always below the one seen when TCP is used, and it exhibits a
growing trend with the loss probability. On the other hand, the jitter experienced for TCP
does not show a clear relationship with the packet loss rate. Differently, the jitter observed
for both TCP and QUIC over satellite links shows a clear relationship with the packet loss
probability. Indeed, Figure 7c shows that the RSD linearly grows with the error rate for
TCP. In the case of QUIC, we can also observe a growing trend, but there is a saturation
effect for loss probabilities greater than 3%, after which the variability stops growing.

All in all, the results evince that not only the delay exhibited by TCP is larger than that
observed for QUIC, but the variability of such delay is also remarkably lower when using
QUIC. In addition, the results show that QUIC’s jitter is more affected by the error rate.

We now analyze the impact that the MQTT QoS level has over the delay. In this
case, we only show the results obtained with QUIC, since the differences with TCP-based
communications are similar to the ones discussed so far. Figure 8 illustrates the average
delay exhibited by QUIC when using the different QoS levels and when varying the error
rate. In general, the results evince that the delay is quite similar for the different QoS
levels, especially when the error rate is low. For the highest loss probabilities, we observe
different trends, depending on the wireless technology. In the case of WiFi, whose initial
delay is the lowest one, 25 ms, a higher QoS level yields a lower delay as we increase the
error rate, being especially remarkable when the loss rate equals 5%. As for the cellular
technology, the trend is similar, although the delay reduction as we increase the QoS level
is less relevant. On the other hand, the results obtained over the satellite link, which has
the highest initial delay (600 ms), show a different trend. As can be observed, the higher
the QoS level, the longer the observed delay.

We complete the delay analysis with Figure 9, where we plot the RSD of the delay
observed when QUIC was used as a transport protocol, for the different QoS levels. First,
we can observe that, regardless of the adopted QoS level, the delay RSD is rather low,
hardly reaching 0.6 in the worst case, compared with the RSD observed when TCP was
used, which was above 1.5 in some setups. If we look at the different technologies, we
can see that the trend is similar to the average delay behavior (see Figure 8). In the case of
WiFi (lowest link delay, 25 ms), increasing the QoS level has a positive impact on the RSD,
particularly for higher error rates. This trend is less evident for the cellular technology,
whose initial delay is 100 ms. Finally, a rather different behavior was obtained over the
satellite link, with an initial delay of 600 ms. Indeed, Figure 9c evinces that high QoS levels
have a negative impact over the jitter, for the satellite link, when the error rate grows.

Sensors 2022, 22, 3694 14 of 20

Version May 8, 2022 submitted to Sensors 14 of 21

is a saturation effect for loss probabilities greater than 3%, after which the variability504

stops growing.505

All in all, the results evince that not only the delay exhibited by TCP is larger than506

that observed for QUIC, but the variability of such delay is also remarkably lower when507

using QUIC. In addition, the results show that QUIC’s jitter is more affected by the error508

rate.509

0 1 2 3 4 5

26

28

30

32

34

Ploss%

A
vg

.D
el

ay
(m
s

) QoS0

QoS1

QoS2

(a) WiFi

0 1 2 3 4 5
100

105

110

115

Ploss%

A
vg

.D
el

ay
(m
s

) QoS0

QoS1

QoS2

(b) Cellular

0 1 2 3 4 5
600

620

640

660

Ploss%

A
vg

.D
el

ay
(m
s

) QoS0

QoS1

QoS2

(c) Satellite

Figure 8. Delay experienced with QUIC for the various QoS configurations.

We now analyze the impact that the MQTT QoS level has over the delay. In this510

case, we only show the results obtained with QUIC, since the differences with TCP based511

communications are alike the ones discussed so far. Figure 8 illustrates the average delay512

exhibited by QUIC when using the different QoS levels and when varying the error513

rate. In general, the results evince that the delay is quite similar for the different QoS514

levels, especially when the error rate is low. For the highest loss probabilities, we observe515

different trends, depending on the wireless technology. In the case of WiFi, whose initial516

delay is the lowest one, 25 ms, a higher QoS level yields a lower delay as we increase the517

error rate, being specially remarkable when the loss rate equals 5%. As for the cellular518

technology, the trend is similar, although the delay reduction as we increase the QoS519

level is less relevant. On the other hand, the results obtained over the satellite link, which520

has the highest initial delay (600 ms), show a different trend. As can be observed, the521

higher the QoS level, the longer the observed delay.522

We complete the delay analysis with Figure 9, where we plot the RSD of the delay523

observed when QUIC was used as a transport protocol, for the different QoS levels. First,524

we can observe that regardless of the adopted QoS level, the delay RSD is rather low,525

hardly reaching 0.6 in the worst case, compared with the RSD observed when TCP was526

used, which was above 1.5 in some setups. If we look at the different technologies, we527

can see that the trend is similar to the average delay behavior (see Figure 8). In the case of528

WiFi (lowest link delay, 25 ms), increasing the QoS level has a positive impact on the RSD,529

in particular for higher error rates. This trend is less evident for the cellular technology,530

Figure 8. Delay experienced with QUIC for the various QoS configurations.

Version May 8, 2022 submitted to Sensors 15 of 21

0 1 2 3 4 5
0

0.2

0.4

0.6

Ploss%

R
SD

of
de

la
y

QoS0

QoS1

QoS2

(a) WiFi

0 1 2 3 4 5
0

0.1

0.2

0.3

Ploss%

R
SD

of
de

la
y

QoS0

QoS1

QoS2

(b) Cellular

0 1 2 3 4 5
0

0.1

0.2

0.3

Ploss%

R
SD

of
de

la
y

QoS0

QoS1

QoS2

(c) Satellite

Figure 9. RSD of MQTT traffic over QUIC and for the different MQTT QoS levels.

whose initial delay is 100 ms. Finally, a rather different behavior was obtained over the531

satellite link, with an initial delay of 600 ms. Indeed, Figure 9c evinces that high QoS532

levels have a negative impact over the jitter, for the satellite link, when the error rate533

grows.534

Altogether, the analysis shows that the use of higher MQTT QoS levels may have535

a positive impact when low latency technologies are used. On the other hand, for536

technologies with longer RTTs, such as satellite, higher QoS levels actually lead to worse537

performances as the error rate grows.538

5.2. Energy Consumption539

As was mentioned before, one of the most critical performance indicators to be540

considered in any evaluation within the context of IIoT is energy consumption. In order541

to characterize it, we discuss now the results that were obtained for MQTT over QUIC542

and TCP. We exploited a high precision digital multimeter (Keysight 64465A) in our543

experiment campaign. As in the previous section, we always send 1000 packets per544

experiment.545

We first study the impact of the packet length and Inter arrival Time (IaT), which546

is defined as the time elapsed between two consecutive packets at the sender. Using547

the multimeter we measure the total energy consumed, and we divide it by the time548

required to send all packets, to obtain comparable measurements of the average power,549

in Joules per second (J/s). Figure 10 depicts the average power obtained with both550

TCP and QUIC for 3 different packet lengths (50, 100 and 500 bytes) and IaT values551

of 1, 10 and 20 ms. In order to see the direct effect of TCP and QUIC over the energy552

consumption, the results shown in Figure 10 are obtained over an ideal channel, with553

no losses, delay nor capacity limit. It is worth recalling that TCP is used together with554

TLS, so that the impact that encryption processes may have on the energy consumption555

(as well as on the delay) would be similar for all cases. First, Figure 10 evinces that the556

Figure 9. RSD of MQTT traffic over QUIC and for the different MQTT QoS levels.

Altogether, the analysis shows that the use of higher MQTT QoS levels may have a pos-
itive impact when low-latency technologies are used. On the other hand, for technologies
with longer RTTs, such as satellite, higher QoS levels actually lead to worse performance
as the error rate grows.

Sensors 2022, 22, 3694 15 of 20

5.2. Energy Consumption

As was mentioned before, one of the most critical performance indicators to be con-
sidered in any evaluation within the context of IIoT is energy consumption. In order to
characterize it, we discuss now the results that were obtained for MQTT over QUIC and
TCP. We exploited a high-precision digital multimeter (Keysight 64465A) in our experi-
mental campaign. As in the previous section, we always sent 1000 packets per experiment.

We first study the impact of the packet length and Inter-Arrival Time (IaT), which
is defined as the time elapsed between two consecutive packets at the sender. Using the
multimeter, we measure the total energy consumed, and we divide it by the time required
to send all packets, to obtain comparable measurements of the average power, in Joules
per second (J/s). Figure 10 depicts the average power obtained with both TCP and QUIC
for 3 different packet lengths (50, 100, and 500 bytes) and IaT values of 1, 10, and 20 ms. In
order to see the direct effect of TCP and QUIC over the energy consumption, the results
shown in Figure 10 were obtained over an ideal channel, with no losses, delay, or capacity
limit. It is worth recalling that TCP was used together with TLS, so that the impact that
encryption processes may have on the energy consumption (as well as on the delay) would
be similar for all cases. First, Figure 10 evinces that the packet length has not a remarkable
impact on the energy consumption. Similarly, the power values obtained when using
the different IaT configurations are rather stable, being slightly larger for the lowest one
(1 ms). This effect could be a consequence of the sampling process used by the multimeter,
although a deeper analysis of this effect will be tackled in our future work. If we compare
the results when using TCP and QUIC, we can observe that both protocols yield similar
performance in terms of energy consumption. In fact, the results show almost identical
power levels for packet lengths of 50 and 500 bytes. On the other hand, for 100 byte packets,
TCP yields a slight power reduction.

Version May 8, 2022 submitted to Sensors 16 of 21

packet length has not a remarkable impact on the energy consumption. Similarly, the557

power values obtained when using the different IaT configurations are rather stable,558

being slightly larger for the lowest one (1 ms). This effect could be a consequence of the559

sampling process used by the multimeter, although a deeper analysis of this effect will be560

tackled in our future work. If we compare the results when using TCP and QUIC, we can561

observe that both protocols yield similar performances in terms of energy consumption.562

In fact, the results show almost identical power levels for packet lengths of 50 and 500563

bytes. On the other hand, for 100 byte packets, TCP yields a slight power reduction.564

50 100 500
0

1

2

3

4

Packet length (bytes)

Po
w

er
(J
/
s

)

IaT 1 ms IaT 10 ms IaT 20 ms

Figure 10. Power consumption of QUIC (left dark bars) and TCP (right pale bars) for different
packet lengths and inter-arrival-times

Finally, we have broadened the energy consumption analysis by studying the565

number of actual transmissions when using MQTT over both TCP and QUIC, and for566

the different wireless technologies that were previously analyzed. In this case we use an567

IaT of 1 second, to prevent triggering congestion control mechanisms, as we did in the568

previous characterization. However, due to memory limitations of the multimeter, we569

cannot monitor the consumed energy during the whole experiment duration. Instead, we570

use the generated pcap files to count the overall number of packets sent at the physical571

layer. Although this approach does not allow us to know the actual energy consumed572

in each measurement, it enables a fair comparison between TCP and QUIC in terms of573

energy consumption, since it would be proportional to the number of transmissions.574

Figure 11 shows the number of packets transmitted per second when using TCP575

and QUIC for the different wireless technologies. The results evince again a clear impact576

of the underlying wireless link over the observed performance. In the case of the WiFi577

channel (lowest link latency) TCP requires a higher number of transmission events as578

we increase the error rate. On the other hand, the behavior of QUIC is more stable, and579

it stays around 4 packets per second, regardless of the error rate. Similar behavior is580

observed over the cellular link, where the number of transmissions for QUIC is again581

quite stable, while TCP causes more transmissions at the physical layer when the packet582

loss rate is higher. Surprisingly, the results observed over the satellite link, Figure583

11c, show that the number of transmission events that are required for both protocols584

decreases as the error rate gets higher. This effect is a consequence of the slow increase of585

the congestion window, due to the long RTT. This behavior, and the impact of different586

congestion control mechanisms over the energy consumption and the overall system587

performance will be addressed in our future work.588

The results show that there might be a small penalization when using QUIC in589

terms of energy consumption for some of the configurations we have evaluated (satellite).590

However, the same conclusion might not be valid for different scenarios, for instance591

considering other application protocols (i.e. CoAP). In this sense, it would be necessary592

to develop more generic energy models, for instance exploiting complexity-related593

approaches.594

Figure 10. Power consumption of QUIC (left dark bars) and TCP (right pale bars) for different packet
lengths and inter-arrival times.

Finally, we have broadened the energy consumption analysis by studying the number
of actual transmissions when using MQTT over both TCP and QUIC, and for the different
wireless technologies that were previously analyzed. In this case, we use an IaT of 1 s, to
avoid triggering congestion control mechanisms, as we did in the previous characterization.
However, due to the memory limitations of the multimeter, we could not monitor the
consumed energy during the whole experiment’s duration. Instead, we use the generated
pcap files to count the overall number of packets sent at the physical layer. Although this
approach does not allow us to know the actual energy consumed in each measurement, it
enables a fair comparison between TCP and QUIC in terms of energy consumption, since it
would be proportional to the number of transmissions.

Figure 11 shows the number of packets transmitted per second when using TCP
and QUIC for the different wireless technologies. The results evince again a clear impact
of the underlying wireless link over the observed performance. In the case of the WiFi

Sensors 2022, 22, 3694 16 of 20

channel (lowest link latency), TCP requires a higher number of transmission events as we
increase the error rate. On the other hand, the behavior of QUIC is more stable, and it stays
around 4 packets per second, regardless of the error rate. Similar behavior is observed
over the cellular link, where the number of transmissions for QUIC is again quite stable,
while TCP causes more transmissions at the physical layer when the packet loss rate is
higher. Surprisingly, the results observed over the satellite link, in Figure 11c, show that the
number of transmission events that are required for both protocols decreases as the error
rate becomes higher. This effect is a consequence of the slow increase in the congestion
window, due to the long RTT. This behavior, and the impact of different congestion control
mechanisms over the energy consumption and the overall system performance, will be
addressed in our future work.

Version May 8, 2022 submitted to Sensors 17 of 21

0 1 2 3 4 5
3.6

3.8

4

4.2

Ploss%

Pk
ts

.p
er

se
co

nd

QUIC TCP

(a) WiFi

0 1 2 3 4 5
3.6

3.8

4

4.2

Ploss%

Pk
ts

.p
er

se
co

nd

QUIC TCP

(b) Cellular

0 1 2 3 4 5
3.6

3.8

4

4.2

Ploss%

Pk
ts

.p
er

se
co

nd

QUIC TCP

(c) Satellite

Figure 11. Sending packet per second of MQTT over QUIC and TCP.

6. Conclusion and future work595

In this paper, we have analyzed the performance of one of the most widespread596

application protocols for IIoT, MQTT, and its interplay with different transport protocols:597

TCP and QUIC. In this sense, we have seen that, despite its growing relevance, there598

do not exist many works that have analyzed the performance of QUIC as a transport599

protocol alternative for IoT traffic. This work sheds light on whether it is a suitable600

alternative for MQTT-based applications.601

Furthermore, we introduce an evaluation methodology, which entails the design602

and development of an evaluation testbed, comprising Raspberry Pi devices, able to603

provide delay and energy related metrics. Over such framework, we have carried out604

an extensive measurement campaign to analyze the performance of MQTT/QUIC and605

MQTT/TLS/TCP stacks over a variety of channel conditions, which emulate different606

wireless technologies.607

The obtained results show that the adoption of QUIC as transport solution may608

bring relevant benefits in terms of delay over all the analyzed wireless technologies.609

In this sense, we observed a delay reduction of 25.5% over WiFi links when the loss610

rate was 5%. For cellular and satellite connections, characterized by longer RTTs, the611

reduction is less relevant, but QUIC still yields lower delays (4.5 and 5.1 %, respectively).612

More interestingly, the use of QUIC also leads to a sharp jitter (delay variation)613

mitigation, especially over error-prone links. We studied the RSD of the delay, and the614

reduction that was observed in our experiments was: 61%, 42%, and 41%, for the WiFi,615

cellular and satellite links, respectively, when the loss rate was 5%.616

If we focus on the interplay between MQTT and QUIC, we have observed that the617

use of MQTT QoS levels has a positive impact in terms of delay over some particular618

scenarios, especially those having shorter RTTs. On the other hand, the energy measure-619

ments obtained with a high-precision multimeter evince that QUIC does not significantly620

increase energy consumption. We have actually seen that both TCP and QUIC generate621

a comparable amount of traffic.622

Based on the results of the measurement campaign carried out over a platform623

featuring commercial-off-the-shelf devices, we can thus conclude that QUIC is indeed a624

suitable transport protocol alternative for typical IoT scenarios.625

In our future research, we will broaden the work presented here in different ways.626

First, we will extend the testbed to include other application protocols, such as ZeroMQ,627

CoAP or OMA LwM2M. In addition, we will add more complex channel emulators, such628

as NetEm or MahiMahi, to mimic different channel conditions. We will also analyze the629

impact of using other congestion control solutions, such as BBR, and their suitability for630

IIoT scenarios. Finally, we will exploit the proposed methodology and the implemented631

platform to develop more generic energy models, which could be applied to a wider632

range of configurations.633

Figure 11. Sending packet per second of MQTT over QUIC and TCP.

The results show that there might be a small penalization when using QUIC in terms of
energy consumption for some of the configurations that we have evaluated (satellite). How-
ever, the same conclusion might not be valid for different scenarios—for instance, consider-
ing other application protocols (i.e., CoAP). In this sense, it would be necessary to develop
more generic energy models—for instance, exploiting complexity-related approaches.

6. Conclusions and Future Work

In this paper, we have analyzed the performance of one of the most widespread
application protocols for IIoT, MQTT, and its interplay with different transport protocols:
TCP and QUIC. In this sense, we have seen that, despite its growing relevance, there do
not exist many works that have analyzed the performance of QUIC as a transport protocol
alternative for IoT traffic. This work sheds light on whether it is a suitable alternative for
MQTT-based applications.

Furthermore, we introduce an evaluation methodology, which entails the design and
development of an evaluation testbed, comprising Raspberry Pi devices, able to provide
delay- and energy-related metrics. Over such a framework, we have carried out an extensive
measurement campaign to analyze the performance of MQTT/QUIC and MQTT/TLS/TCP
stacks over a variety of channel conditions, which emulate different wireless technologies.

The obtained results show that the adoption of QUIC as a transport solution may
bring relevant benefits in terms of delay over all the analyzed wireless technologies. In this
sense, we observed a delay reduction of 25.5% over WiFi links when the loss rate was 5%.
For cellular and satellite connections, characterized by longer RTTs, the reduction is less
relevant, but QUIC still yields lower delays (4.5 and 5.1 %, respectively).

More interestingly, the use of QUIC also leads to a sharp jitter (delay variation) mitiga-
tion, especially over error-prone links. We studied the RSD of the delay, and the reduction
that was observed in our experiments was 61%, 42%, and 41%, for the WiFi, cellular, and
satellite links, respectively, when the loss rate was 5%.

Focusing on the interplay between MQTT and QUIC, we have observed that the use of
MQTT QoS levels has a positive impact in terms of delay over some particular scenarios, es-
pecially those having shorter RTTs. On the other hand, the energy measurements obtained

Sensors 2022, 22, 3694 17 of 20

with a high-precision multimeter evince that QUIC does not significantly increase the en-
ergy consumption. We have actually seen that both TCP and QUIC generate a comparable
amount of traffic.

Based on the results of the measurement campaign carried out over a platform featur-
ing commercial off-the-shelf devices, we can thus conclude that QUIC is indeed a suitable
transport protocol alternative for typical IoT scenarios.

In our future research, we will broaden the work presented here in different ways.
First, we will extend the testbed to include other application protocols, such as ZeroMQ,
CoAP, or OMA LwM2M. In addition, we will add more complex channel emulators, such
as NetEm or MahiMahi, to mimic different channel conditions. We will also analyze the
impact of using other congestion control solutions, such as BBR, and their suitability for
IIoT scenarios. Finally, we will exploit the proposed methodology and the implemented
platform to develop more generic energy models, which could be applied to a wider range
of configurations.

Author Contributions: Conceptualization, R.A., L.D., A.B. and N.A.; methodology, S.J., F.F. and L.D.;
formal analysis, S.J. and F.F.; writing—original draft preparation, S.J., F.F. and L.D.; writing—review
and editing, L.D., R.A. and A.B.; funding acquisition, R.A. and N.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This project has received funding from the Spanish Government (Ministerio de Economía
y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) by means of the project
FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AMQP Advanced Message Queuing Protocol
CoAP Constrained Application Protocol
CV Coefficient of Variation
DCCP Datagram Congestion Control Protocol
HOL Head of Line
IaT Inter-Arrival Time
IETF Internet Engineering Task Force
IIoT Industrial IoT
IoT Internet of Things
ISO International Organization for Standardization
NTP Network Time Protocol
MQTT Message Queueing Telemetry Transport
MQTT-SN MQTT for Sensor Networks
OASIS Organization for the Advancement of Structured Information Standards
OPC-UA Open Platform Communications Unified Architecture
QoE Quality of Experience (QoE)
QoS Quality of Service
QUIC Quick UDP Internet Connections
RSD Relative Standard Deviation
RTT Round Trip Time
SCTP Stream Control Transmission Protocol
TC Traffic Control
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
XMPP Extensible Messaging and Presence Protocol

Sensors 2022, 22, 3694 18 of 20

References
1. Zeman, K.; Masek, P.; Krejci, J.; Ometov, A.; Hosek, J.; Andreev, S.; Kroepfl, F. Wireless M-BUS in Industrial IoT: Technology

Overview and Prototype Implementation. In Proceedings of the European Wireless 2017 23th European Wireless Conference,
Dresden, Germany, 17–19 May 2017; pp. 1–6.

2. Aceto, G.; Persico, V.; Pescapé, A. A Survey on Information and Communication Technologies for Industry 4.0: State-of-the-Art,
Taxonomies, Perspectives, and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3467–3501. [CrossRef]

3. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii
International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [CrossRef]

4. Karmakar, A.; Dey, N.; Baral, T.; Chowdhury, M.; Rehan, M. Industrial Internet of Things: A Review. In Proceedings of the
2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 18–20 March 2019; pp. 1–6.
[CrossRef]

5. Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE
Access 2018, 6, 78238–78259. [CrossRef] [PubMed]

6. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and
Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]

7. Mao, W.; Zhao, Z.; Chang, Z.; Min, G.; Gao, W. Energy-Efficient Industrial Internet of Things: Overview and Open Issues. IEEE
Trans. Ind. Inform. 2021, 17, 7225–7237. [CrossRef]

8. Soni, D.; Makwana, A. A survey on MQTT: A protocol of internet of things (IoT). In Proceedings of the International Conference
On Telecommunication, Power Analysis And Computing Techniques (ICTPACT-2017), Chennai, India, 6–8 April 2017; Volume 20.

9. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet 2019,
11, 66. [CrossRef]

10. Çorak, B.H.; Okay, F.Y.; Güzel, M.; Murt, C.; Ozdemir, S. Comparative Analysis of IoT Communication Protocols. In Proceedings
of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018;
pp. 1–6. [CrossRef]

11. Honda, M.; Nishida, Y.; Raiciu, C.; Greenhalgh, A.; Handley, M.; Tokuda, H. Is it still possible to extend TCP? In Proceedings of
the ACM SIGCOMM Internet Measurement Conference, IMC, Berlin, Germany, 2–4 November 2011; pp. 181–194. [CrossRef]

12. Langley, A.; Riddoch, A.; Wilk, A.; Vicente, A.; Krasic, C.; Zhang, D.; Yang, F.; Kouranov, F.; Swett, I.; Iyengar, J.; et al. The quic
transport protocol: Design and internet-scale deployment. In Proceedings of the SIGCOMM 2017—2017 Conference of the ACM
Special Interest Group on Data Communication, New York, NY, USA, 21–25 August 2017; pp. 183–196. [CrossRef]

13. Iyengar, J.; Thomson, M. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000. 2021. Available online:
https://www.rfc-editor.org/info/rfc9000 (accessed on 1 April 2022).

14. Gärdborn, P. Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? Master’s Thesis, KTH,
School of Electrical Engineering and Computer Science (EECS), Stockholm, Sweden, 2020.

15. Mumtaz, S.; Alsohaily, A.; Pang, Z.; Rayes, A.; Tsang, K.F.; Rodriguez, J. Massive Internet of Things for Industrial Applications:
Addressing Wireless IIoT Connectivity Challenges and Ecosystem Fragmentation. IEEE Ind. Electron. Mag. 2017, 11, 28–33.
[CrossRef]

16. Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of communication latency in industrial IoT applications. In Proceedings
of the 2017 IEEE International Workshop on Measurement and Networking (M N), Naples, Italy, 27–29 September 2017; pp. 1–6.
[CrossRef]

17. Kenitar, S.; Salhaoui, M.; Arioua, M.; Younes, A.; Guerrero Gonzalez, A. Evaluation of the MQTT protocol latency over different
gateways. In Proceedings of the ACM International Conference Proceeding Series, Tetouan, Morocco, 10–11 October 2018.
[CrossRef]

18. Mishra, B.; Kertesz, A. The Use of MQTT in M2M and IoT Systems: A Survey. IEEE Access 2020, 8, 201071–201086. [CrossRef]
19. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019,

19, 4217. [CrossRef] [PubMed]
20. Pohl, M.; Kubela, J.; Bosse, S.; Turowski, K. Performance Evaluation of Application Layer Protocols for the Internet-of-Things. In

Proceedings of the 2018 Sixth International Conference on Enterprise Systems (ES), Pyrgos, Cyprus, 1–2 October 2018; pp. 180–187.
[CrossRef]

21. Silva, D.; Carvalho, L.; Soares, J.; Sofia, R. A performance analysis of internet of things networking protocols: Evaluating MQTT,
CoAP, OPC UA. Appl. Sci. 2021, 11, 4879. [CrossRef]

22. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). RFC 7252. 2014. Available online:
https://www.rfc-editor.org/info/rfc7252 (accessed on 1 April 2022).

23. Mahnke, W.; Leitner, S.H.; Damm, M. OPC Unified Architecture; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]
24. Seoane, V.; Garcia-Rubio, C.; Almenares, F.; Campo, C. Performance evaluation of CoAP and MQTT with security support for IoT

environments. Comput. Netw. 2021, 197, 108338. [CrossRef]
25. Viel, F.; Augusto Silva, L.; Leithardt, V.R.Q.; De Paz Santana, J.F.; Celeste Ghizoni Teive, R.; Albenes Zeferino, C. An Efficient

Interface for the Integration of IoT Devices with Smart Grids. Sensors 2020, 20, 2849. [CrossRef] [PubMed]

http://doi.org/10.1109/COMST.2019.2938259
http://dx.doi.org/10.1109/HICSS.2016.488
http://dx.doi.org/10.1109/OPTRONIX.2019.8862436
http://dx.doi.org/10.1109/ACCESS.2018.2884906
http://www.ncbi.nlm.nih.gov/pubmed/35531371
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/TII.2021.3067026
http://dx.doi.org/10.3390/fi11030066
http://dx.doi.org/10.1109/ISNCC.2018.8530963
http://dx.doi.org/10.1145/2068816.2068834
http://dx.doi.org/10.1145/3098822.3098842
https://www.rfc-editor.org/info/rfc9000
http://dx.doi.org/10.1109/MIE.2016.2618724
http://dx.doi.org/10.1109/IWMN.2017.8078359
http://dx.doi.org/10.1145/3286606.3286864
http://dx.doi.org/10.1109/ACCESS.2020.3035849
http://dx.doi.org/10.3390/s19194217
http://www.ncbi.nlm.nih.gov/pubmed/31569338
http://dx.doi.org/10.1109/ES.2018.00035
http://dx.doi.org/10.3390/app11114879
https://www.rfc-editor.org/info/rfc7252
http://dx.doi.org/10.1007/978-3-540-68899-0
http://dx.doi.org/10.1016/j.comnet.2021.108338
http://dx.doi.org/10.3390/s20102849
http://www.ncbi.nlm.nih.gov/pubmed/32429513

Sensors 2022, 22, 3694 19 of 20

26. de Oliveira, D.L.; da S. Veloso, A.F.; Sobral, J.V.V.; Rabêlo, R.A.L.; Rodrigues, J.J.P.C.; Solic, P. Performance Evaluation of MQTT
Brokers in the Internet of Things for Smart Cities. In Proceedings of the 2019 4th International Conference on Smart and
Sustainable Technologies (SpliTech), Split, Croatia, 18–21 June 2019; pp. 1–6. [CrossRef]

27. Gamess, E.; Ford, T.N.; Trifas, M. Performance Evaluation of a Widely Used Implementation of the MQTT Protocol with Large
Payloads in Normal Operation and under a DoS Attack. In Proceedings of the 2021 ACM Southeast Conference, ACM SE’21,
Virtual, 15–17 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 154–162. [CrossRef]

28. Gheorghe-Pop, I.D.; Kaiser, A.; Rennoch, A.; Hackel, S. A Performance Benchmarking Methodology for MQTT Broker Implemen-
tations. In Proceedings of the 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion
(QRS-C), Macau, China, 11–14 December 2020; pp. 506–513. [CrossRef]

29. Mishra, B.; Mishra, B.; Kertesz, A. Stress-Testing MQTT Brokers: A Comparative Analysis of Performance Measurements. Energies
2021, 14, 5817. [CrossRef]

30. Koziolek, H.; Grüner, S.; Rückert, J. A Comparison of MQTT Brokers for Distributed IoT Edge Computing. In Software Architecture;
Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I., Zimmermann, O., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 352–368. [CrossRef]

31. Ebleme, M.A.; Bayilmis, C.; Cavusoglu, U. Examination and Performance Evaluation of MQTT. In Proceedings of the 3rd
International Conference on Computer Science and Engineering, Sarajevo, Bosnia and Herzegovina, 20–23 September 2018;
pp. 246–250.

32. Katsikeas, S.; Fysarakis, K.; Miaoudakis, A.; Van Bemten, A.; Askoxylakis, I.; Papaefstathiou, I.; Plemenos, A. Lightweight amp;
secure industrial IoT communications via the MQ telemetry transport protocol. In Proceedings of the 2017 IEEE Symposium on
Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 1193–1200. [CrossRef]

33. Kodali, R.K.; Valdas, A. MQTT Implementation of IoT based Fire Alarm Network. In Proceedings of the 2018 International
Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 15–17 February 2018; pp. 143–146.
[CrossRef]

34. Michaelides, M.; Sengul, C.; Patras, P. An Experimental Evaluation of MQTT Authentication and Authorization in IoT. In
Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation & Caracterization, WiNTECH’21,
New Orleans, LA, USA, 31 January–4 February 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 69–76.
[CrossRef]

35. Polese, M.; Chiariotti, F.; Bonetto, E.; Rigotto, F.; Zanella, A.; Zorzi, M. A Survey on Recent Advances in Transport Layer Protocols.
IEEE Commun. Surv. Tutor. 2019, 21, 3584–3608. [CrossRef]

36. Nepomuceno, K.; Oliveira, I.N.d.; Aschoff, R.R.; Bezerra, D.; Ito, M.S.; Melo, W.; Sadok, D.; Szabó, G. QUIC and TCP: A
Performance Evaluation. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil,
25–28 June 2018; pp. 00045–00051. [CrossRef]

37. Jung, J.; An, D. Access latency reduction in the QUIC protocol based on communication history. Electronics 2019, 8, 1204.
[CrossRef]

38. Bulgarella, F.; Cociglio, M.; Fioccola, G.; Marchetto, G.; Sisto, R. Performance measurements of QUIC communications. In
Proceedings of the ANRW 2019—2019 Applied Networking Research Workshop, Montreal, QC, Canada, 22 July 2019; pp. 8–14.
[CrossRef]

39. Yu, Y.; Xu, M.; Yang, Y. When QUIC meets TCP: An experimental study. In Proceedings of the 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), San Diego, CA, USA, 10–12 December 2017; pp. 1–8.
[CrossRef]

40. De Biasio, A.; Chiariotti, F.; Polese, M.; Zanella, A.; Zorzi, M. A QUIC implementation for ns-3. In Proceedings of the 2019
Workshop on ns-3, Florence, Italy, 19–20 June 2019; pp. 1–8. [CrossRef]

41. Riley, G.F.; Henderson, T.R. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation; Wehrle, K., Günes, M.,
Gross, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [CrossRef]

42. Kakhki, A.; Jero, S.; Choffnes, D.; Nita-Rotaru, C.; Mislove, A. Taking a long look at quic: An approach for rigorous evaluation of
rapidly evolving transport protocols. In Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, London,
UK, 1–3 November 2017; Volume Part F131937, pp. 290–303. [CrossRef]

43. Herrero, R. Analysis of the constrained application protocol over quick UDP internet connection transport. Internet Things 2020,
12, 100328. [CrossRef]

44. Liri, E.; Singh, P.; Rabiah, A.; Kar, K.; Makhijani, K.; Ramakrishnan, K. Robustness of IoT Application Protocols to Network
Impairments. In Proceedings of the IEEE Workshop on Local and Metropolitan Area Networks, Washington, DC, USA, 25–27
June 2018; pp. 97–103. [CrossRef]

45. Fernández, F.; Zverev, M.; Garrido, P.; Juárez, J.R.; Bilbao, J.; Agüero, R. And QUIC meets IoT: Performance assessment of MQTT
over QUIC. In Proceedings of the 2020 16th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Virtual, 12–14 October 2020; pp. 1–6. [CrossRef]

46. Fernández, F.; Zverev, M.; Garrido, P.; Juárez, J.R.; Bilbao, J.; Agüero, R. Even Lower Latency in IIoT: Evaluation of QUIC in
Industrial IoT Scenarios. Sensors 2021, 21, 5737. [CrossRef] [PubMed]

47. Hasan, H.; Mohammed, B. Evaluation of MQTT Protocol for IoT Based Industrial Automation. Int. J. Eng. Sci. Comput. 2018 8,
2132–2142. [CrossRef]

http://dx.doi.org/10.23919/SpliTech.2019.8783166
http://dx.doi.org/10.1145/3409334.3452067
http://dx.doi.org/10.1109/QRS-C51114.2020.00090
http://dx.doi.org/10.3390/en14185817
http://dx.doi.org/10.1007/978-3-030-58923-3_23
http://dx.doi.org/10.1109/ISCC.2017.8024687
http://dx.doi.org/10.1109/IC3IoT.2018. 8668158
http://dx.doi.org/10.1145/3477086.3480838
http://dx.doi.org/10.1109/COMST.2019.2932905
http://dx.doi.org/10.1109/ISCC.2018.8538687
http://dx.doi.org/10.3390/electronics8101204
http://dx.doi.org/10.1145/3340301.3341127
http://dx.doi.org/10.1109/PCCC.2017.8280429
http://dx.doi.org/10.1145/3321349.3321351
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1145/3131365.3131368
http://dx.doi.org/10.1016/j.iot.2020.100328
http://dx.doi.org/10.1109/LANMAN.2018.8475048
http://dx.doi.org/10.1109/WiMob50308.2020.9253384
http://dx.doi.org/10.3390/s21175737
http://www.ncbi.nlm.nih.gov/pubmed/34502627
http://dx.doi.org/10.1177/09544054211014488.

Sensors 2022, 22, 3694 20 of 20

48. Silva, D.R.C.; Oliveira, G.M.B.; Silva, I.; Ferrari, P.; Sisinni, E. Latency evaluation for MQTT and WebSocket Protocols: An Industry
4.0 perspective. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28
June 2018; pp. 01233–01238. [CrossRef]

49. Toldinas, J.; Lozinskis, B.; Baranauskas, E.; Dobrovolskis, A. MQTT Quality of Service versus Energy Consumption. In
Proceedings of the 2019 23rd International Conference Electronics, Palanga, Lithuania, 17–19 June 2019; pp. 1–4. [CrossRef]

50. Gan, S.; Li, K.; Wang, Y.; Cameron, C. IoT Based Energy Consumption Monitoring Platform for Industrial Processes. In
Proceedings of the 2018 UKACC 12th International Conference on Control (CONTROL), Sheffield, UK, 5–7 September 2018;
pp. 236–240. [CrossRef]

51. Kumar, P. QUIC (Quick UDP Internet Connections)—A Quick Study. 2020. Available online: https://arxiv.org/abs/2010.03059
(accessed on 1 April 2022).

52. Iyengar, J.; Swett, I. QUIC Loss Detection and Congestion Control. RFC 9002. 2021. Available online: https://www.rfc-editor.
org/info/rfc9002 (accessed on 1 April 2022).

53. Endres, S.; Deutschmann, J.; Hielscher, K.S.; German, R. Performance of QUIC Implementations over Geostationary Satellite
Links. 2022. Available online: https://arxiv.org/abs/2202.08228 (accessed on 1 April 2022).

54. Yan, F.Y.; Ma, J.; Hill, G.D.; Raghavan, D.; Wahby, R.S.; Levis, P.; Winstein, K. Pantheon: The training ground for Internet
congestion-control research. In Proceedings of the 2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA,
USA, 11–13 July 2018; USENIX Association: Boston, MA, USA, 2018; pp. 731–743. [CrossRef]

55. Netravali, R.; Sivaraman, A.; Das, S.; Goyal, A.; Winstein, K.; Mickens, J.; Balakrishnan, H. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of the 2015 USENIX Annual Technical Conference, USENIX ATC’15, Santa Clara, CA, USA,
8–10 July 2015; pp. 417–429. [CrossRef]

56. Michel, F.; De Coninck, Q.; Bonaventure, O. QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. In
Proceedings of the 2019 IFIP Networking Conference (IFIP Networking), Warsaw, Poland, 20–22 May 2019; pp. 1–9. [CrossRef]

57. Garrido, P.; Sanchez, I.; Ferlin, S.; Aguero, R.; Alay, O. rQUIC: Integrating FEC with QUIC for Robust Wireless Communications.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–7. [CrossRef]

http://dx.doi.org/10.1109/ISCC.2018.8538692
http://dx.doi.org/10.1109/ELECTRONICS.2019.8765692
http://dx.doi.org/10.1109/CONTROL.2018.8516828
https://arxiv.org/abs/2010.03059
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://arxiv.org/abs/2202.08228
http://dx.doi.org/10.5555/3277355.3277426
http://dx.doi.org/10.5555/2813767.2813798
http://dx.doi.org/10.23919/IFIPNetworking.2019. 8816838
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013401

	Introduction
	Related Work
	IIoT Protocols
	Message Queuing Telemetry Transport—MQTT
	TCP and QUIC

	Evaluation Testbed
	Performance Evaluation
	MQTT Traffic Delay
	Energy Consumption

	Conclusions and Future Work
	References

