
49

Advanced Ada Support for Real-Time
Programming ∗

Mario Aldea Rivas
Universidad de Cantabria, 39005 Santander, Spain; email: aldeam@unican.es

Abstract

This paper is an extended summary of the tutorial given
at Ada-Europe 2012.

In the 2005 and 2012 revisions of the Ada standard, real-
time programming has experienced a large improvement
but most of the new services introduced are unknown
or underused due to the lack of free software implemen-
tations. The tutorial presented an overview of these
new services trying to focus on their utility for real-time
systems and their typical use patterns.

Keywords: Ada 2005, Ada 2012, real-time systems, pro-
gramming languages.

1 Introduction

The support of Ada for real-time programming has experi-
enced a large improvement in the last years positioning the
language one step ahead of other real-time languages and op-
erating system interfaces. Functionalities such as hierarchical
scheduling based on priority ranges, new dispatching policies,
execution time clocks and timers, timing events, etc. are in
the standard from the 2005 revision [1] [2] but they have not
gotten the relevance that they deserve due to the lack of free
software implementations.

Most of these relatively new services are starting to be avail-
able in some platforms. In particular, in this tutorial we used
the MaRTE OS/GNAT [3] platform. This platform supports
most of these new services [4] [5]:

- Timing events.

- Execution time clocks and timers.

- Task group execution time budgets.

- Dynamic ceiling priorities for protected objects.

- Additional scheduling policies: Round robin, EDF,
Mixed (priority-specific policies).

- Immediate priority changes.

- Execution Time for Interrupt Handlers.

∗This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HI-PARTES).

The first objective of this tutorial was to provide an overview
of the real-time “classic” model established in Ada 95, and
to show how this classic model has been reinforced with
extensions defined in Ada 2005 and Ada 2012 [6] [7].

The second objective was to perform an intensive review
of the new real-time services added in Ada 2005 and Ada
2012 trying to describe the utility of each service along with
examples and use patterns1.

1.1 Evolution of the real-time Ada

Table 1 shows the evolution of the real-time services included
in the Ada language. The core of the “classic” real-time
concurrency model based in preemptive fixed priorities was
established in Ada 95, having the tasks and the protected
objects as its most relevant elements.

A very important group of real-time facilities was added to
the standard in the revision of the year 2005. The most rel-
evant additions were related to time management (timing
events, execution time clocks and timers and group budgets),
to dispatching (new dispatching policies and priority specific
dispatching) and the Ravenscar profile.

The number and the importance of the new real-time services
added in Ada 2012 is not as impressive as in Ada 2005 but it
is also quite important. Among all the new services added in
this revision of the standard it deserves a special mention the
support for multiprocessor architectures.

2 Classic Ada real-time model
In the Ada 95 real-time model the task is the concurrency
unit and the synchronization and mutual exclusion among
tasks is accomplished by the use of protected objects or ren-
dezvous. Analysable scheduling is achieved with the use
of the FIFO_Within_Priorities dispatching policy and the
locking policy Ceiling_Locking.

Time management, and in particular the periodic activation
of tasks, is performed with the monotonic clock provided by
package Ada.Real_Time and the delay until state-
ment. Other services related to real-time in Ada 95 are the
dynamic priorities for tasks and the interrupt handling facili-
ties among others.

The classic model allowed to dynamically change the prior-
ity of the tasks, but there was not a similar functionality to

1Most of the examples used in the tutorial are not included in this sum-
mary due to the lack of space.

Ada User Jour na l Vo lume 34, Number 1, March 2013

50 Advanced Ada Suppor t for Real -T ime Programming

Ada 95 Ada 2005 additions Ada 2012 additions
Tasks Ravenscar profile Multiprocessor and Dispatching domains
FIFO_Within_Priorities Timing events Group budgets and multiprocessors
Dynamic priorities Execution time clocks and timers Barriers
Protected objects Group budgets Suspension objects
Ceiling_Locking Non-preemtive dispatching “Synchronization” aspect
Monotonic clock EDF dispatching Yield_To_Higher
delay until Round robin dispatching Execution time of interrupt handlers

Priority specific dispatching Suspend_Until_True_And_Set_Deadline
Dynamic priorities for POs
Synchronized interfaces
Task termination
Partition elaboration policy

Table 1: Evolution of the real-time Ada

Listing 1: Use of the Priority attribute

protected body PO is
procedure Change_Ceiling (Prio: in System.Priority) is
begin

... −− PO’Priority has old value here
PO’Priority := Prio;
... −− PO’Priority has new value here

end Change_Ceiling; −− ceiling is changed here
...

end PO;

change the ceiling of the protected objects. This was a serious
limitation in many applications, specially in those that require
“mode changes”. This problem was solved in Ada 2005 with
the definition of the attribute Priority for the protected
objects (see Ada 2012 Reference Manual2 D.5.2). An exam-
ple of use of this attribute is shown in Listing 1. Note the
unusual syntax: it is the only attribute in the language that is
possible to assign a value to.

Other addition to the classic model is the introduction in Ada
2005 of the Detect_Blocking pragma (RM H.5). Its use
in a partition forces to detect potentially blocking operations
within any protected action.

The introduction of the “aspects” in Ada 2012 has had an im-
portant impact everywhere in the language. In relation to the
real-time concurrency model the most important effect is the
change in the assignment of the priority to tasks and protected
objects. Now aspects should be used for this purpose instead
of the old pragmas (that are declared obsolescent):

task Controller with Priority => 12;

protected PO with Priority => 20 is
...

end PO;

Other very relevant addition in Ada 2005 was the Ravenscar
Profile (RM D.13). A profile is a collection of restrictions
and other pragmas that describes a subset of the language
intended for a particular purpose. The Ravenscar Profile is a
subset of the Ada tasking model targeted to critical real-time
applications. The main objectives of this profile are:

2From now on shortened as “RM”.

• Produce a deterministic concurrent execution model that
can be analysable.

• Allow an efficient and small implementation of the run-
time library.

Most of the restrictions of the profile have the objective of
produce static applications where all the tasks and protected
objects are defined at library level and tasks never terminate.
The profile also avoids constructs that can be very complex or
difficult to analyse like the abort, select or requeue statements.

3 Advanced time management
In Ada 95 the real-time management was based on the mono-
tonic clock defined in the Ada.Real_Time package and
on the delay and delay until statements. Nowadays
Ada provides a much larger diversity of services for time
management with the definition of new clocks and timers:

• Execution time clocks for tasks (Ada 2005).

• Execution time clocks for interrupt handlers (Ada 2012).

• Timing events (Ada 2005).

• Execution time timers for tasks (Ada 2005).

• Execution time timers for groups of tasks (Ada 2005).

3.1 Timing events
Package Ada.Real_Time.Timing_Events (RM D.15)
allows user-defined handlers to be executed at a specific time.
The handler is a protected procedure that is executed at in-
terrupt priority directly by the system timer interrupt service
routine without the need of using an auxiliary task or a delay
statement.

They are intended for applications that require to execute a
short action at a very precise time. A typical example would
be a control system where the output to the actuators must
be updated at a very precise rate. They are also useful to
implement scheduling algorithms that requires programming
scheduling actions to be done at a future point in time.

As a simple example, Listing 2 shows the body of a protected
object used to generate a periodic pulse based on the use of a
timing event.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 51

Listing 2: Periodic pulse generator based on a timing event

−− Timing event declaration
Pulse : Timing_Event;

...

protected body Pulser is
procedure Start is
begin

Output_High;
Next_Time := Clock + Pulse_Interval;

−− Program first timing event expiration
Set_Handler (Pulse, Next_Time, Handler’Access);

end Start;

procedure Stop is
Cancelled : Boolean;

begin
Cancel_Handler(Pulse, Cancelled);
if not Cancelled then

raise Handler_Not_Set;
end if ;

end Stop;

−− This is the handler of the timing event
procedure Handler (T : in out Timing_Event) is
begin

Output_Swap;
Next_Time := Next_Time + Pulse_Interval;

−− Program next timing event expiration
Set_Handler (Pulse, Next_Time, Handler’Access);

end Handler;
end Pulser;

3.2 Execution time clocks

Each task has an associated execution time clock (package
Ada.Execution_Time, RM D.14) which measures its
execution time, that is, the time spent by the system execut-
ing that task. Having such clocks eases the measurement
of the worst-case execution times (WCET) of the tasks, a
key parameter in the schedulability analysis of the real-time
applications.

Besides their usefulness for measuring the WCET, the execu-
tion time clocks are also very important in real-time systems
because they are the base clocks of the execution time timers,
as it will be described in Section 3.3.

3.3 Execution time timers

The execution time timers (package
Ada.Execution_Time.Timers, RM D.14.1) al-
low user-defined handlers to be executed when the execution
time clock of a task has reached the desired value. From the
user’s interface point of view, they look very much like the
timing events, both have an expiration time and a protected
handler procedure.

The main application of these timers is to take corrective
actions on WCET overrun situations. This situations are
relatively common in modern architectures since pipelines,
branch prediction, cache effects, and so on, makes it very
complex to measure the actual WCET of a task. Using the

execution time timers, the corrective action (lower the task
priority, enter in a safe operation mode, etc.) can be done by
the timer handler at the very moment the task overruns its
WCET.

3.4 Group execution time budgets
The package Ada.Execution_Time.Group_Budgets
(RM D.14.1) allows to assign execution time budgets to
a group of tasks (with the restriction that a task can only
belongs to one group). The execution of any task member
of the group results in the budget counting down. When
the budget becomes exhausted, the user-defined handler (a
protected procedure) is executed.

The main application of the group budgets is the implementa-
tion of “aperiodic servers” [8] to achieve temporal isolation
among different parts of a complex application where each
part, maybe an independent application, is made up of a num-
ber of tasks.

With the multiprocessor support provided in Ada 2012, the
group budget definition has been tuned and now a group
budget is attached to a particular processor. Only execution
of the tasks in this particular processor reduces the remaining
budget of the group.

3.5 Execution time of interrupt handlers
A common assumption is that the effect of the interrupt han-
dlers on the execution time clocks of the tasks is negligible
because handlers are usually very short pieces of code. Under
that assumption systems charge the time consumed by the
interrupt handlers to the task executing when the interrupt is
generated.

This assumption may not be realistic in real-time systems that
undertake an intensive use of interrupts or uses timing events
with relatively long handlers. In these systems, it would be
desirable to have a separate account of the interrupt handlers
execution time.

The Ada language, in the pack-
ages Ada.Execution_Time and
Ada.Execution_Time.Interrupts (RM D.14.3)
provides support for the separate accounting of the execution
time of interrupt handlers. This time includes the time
consumed by the timing event handlers since they are
executed directly by the system timer ISR.

The RM allows to the implementations to provide three sup-
port levels:

1. No support at all: “it is implementation defined which
task, if any, is charged the execution time that is con-
sumed by interrupt handlers” (RM D.13,11/3).

2. Execution time of interrupt handlers not charged to tasks
and accounted by one global clock.

3. Execution time of interrupt handlers not charged to tasks
and accounted by one different clock for each interrupt.

The support level is defined by the value of the
boolean constants Interrupt_Clocks_Supported
and Separate_Interrupt_Clocks_Supported de-
fined in the package Ada.Execution_Time.

Ada User Jour na l Vo lume 34, Number 1, March 2013

52 Advanced Ada Suppor t for Real -T ime Programming

4 Advanced dispatching

In Ada 95 there was only one predefined dispatching policy
called FIFO_Within_Priorities. It defines a fixed
priority scheduling with FIFO order for tasks with the same
priority.

In Ada 2005 three new dispatching policies where defined:

• Non_Preemptive_FIFO_Within_Priorities
(RM D.2.4): fixed priority without preemption when a
higher priority task is runnable.

• Round_Robin_Within_Priorities (RM
D.2.5): fixed priority with cyclic scheduling between
tasks with the same priority.

• EDF_Across_Priorities (RM D.2.6): “Earliest
Deadline First” scheduling policy.

The policies can be applied to the whole partition using the
configuration pragma:

pragma Task_Dispatching_Policy (dispatching_policy);

They can also be applied to a particular priority range us-
ing pragma Priority_Specific_Dispatching. The
priority specific dispatching will be described in Section 4.4.

4.1 Non-Preemptive dispatching

The policy identifier Non_Preemptive_
FIFO_Within_Priorities defines a policy iden-
tical to FIFO_Within_Priorities but without
preemption when a higher priority task is runnable. When
this policy is in use, a task will run until completion or until
it is blocked or executes a delay statement (More technically:
the only dispatching points are blocking or termination of a
task, a delay, or a call to a “yield” procedure).

This policy is intended to be used in high-integrity appli-
cations since it is much more deterministic than preemptive
policies and it is a intermediate step between cyclic executives
and preemptive multitasking.

Since non-preemption reduces schedulability, it is usual when
using a non-preemptive dispatching that tasks volunteer to be
preempted at some points of its execution. Traditionally Ada
tasks yields the CPU using a delay 0.0 statement.

In Ada 2012 new yield procedures has been
added to packages Ada.Dispatching and
Ada.Dispatching.Non_Preemptive (RM D.2.4).
The most interesting of this new yield procedures is
Yield_To_Higher, this procedure only yields the CPU to
tasks with higher priority than the calling task. An interesting
point about this procedure is that it can be used from inside a
protected action, since if the Ceiling_Locking policy
is in use the possible preemption cannot put in danger the
mutual exclusion achieved by the protected object.

4.2 Round Robin dispatching
The policy Round_Robin_Within_Priorities al-
lows a set of tasks with the same priority to make progress at
a similar rate:

1. Each task can execute at most during an interval of time
called “quantum”.

2. When the quantum is exhausted, and the task is not
executing a protected operation, it is moved to the tail of
its priority queue.

3. The task at the head of the priority queue gets the CPU.

This policy is usually applied to mixed dispatching applica-
tions, where the tasks with real-time constrains are dispatched
under FIFO or EDF policies at the highest priority levels, and
the non real-time tasks are executed at the lowest priority
under the Round Robin policy, in order to share the spare
time.

The package Ada.Dispatching.Round_Robin allows
to get and set the quantum assigned to each priority level
where the Round robin policy is applied. Note that the RM
allows to the implementations to restrict the available quan-
tum values and, in consequence, the quantum assigned by
the programmer (using procedure Set_Quantum) could be
different from the one that is actually been used by the imple-
mentation (returned by Actual_Quantum).

4.3 Earliest Deadline First dispatching
The EDF policy (EDF_Across_Priorities) is the most
popular dynamic priority policy. It is based on the concept
of “deadline”, that is, the time when an activation of a task
should have finished its job.

The policy requires a new scheduling attribute to be defined
for the tasks: the “relative deadline”. For each activation a
task has a different “absolute deadline” that is equal to its
activation time plus its relative deadline. Tasks at the same
priority level are ordered according to their absolute deadlines
(the task with the earliest absolute deadline is executed first).

Scheduling theory proves that dynamic priority policies al-
low a better resource usage in some cases. EDF is the most
popular dynamic priority policy for several reasons:

• Its implementation is relatively simple compared to other
dynamic priority policies.

• It is optimal in monoprocessors: if a set of tasks is
schedulable by any dispatching policy then it will also
be schedulable by EDF.

• It can guarantee all the tasks’ deadlines at higher proces-
sor load (up to 100%) than fixed priorities.

Of course, EDF has disadvantages compared to fixed priority
policies:

• It requires a more complex implementation than the
fixed priority policies what implies a higher scheduler
overhead.

• Under an overload situation the set of tasks that will miss
their deadlines is unpredictable.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 53

4.3.1 Managing EDF tasks

The initial relative deadline of a task can be spec-
ified with the Relative_Deadline aspect (pragma
Relative_Deadline is declared obsolescent):

task EDF_Task with Relative_Deadline => Time;

The Time value is an expression of type
Real_Time.Time_Span. The first absolute dead-
line of the task will be its activation time plus the relative
deadline assigned with this aspect. If the aspect is not
specified, then the initial absolute deadline of a task is
Ada.Real_Time.Time_Last.

The package Ada.Dispatching.EDF pro-
vides operations to set and get the absolute dead-
line of a task. It also provides the procedure
Delay_Until_And_Set_Deadline mainly intended
to create periodic EDF tasks:

−− Periodic EDF task with deadline equal to period
task body Periodic_Task is

Interval : Time_Span := Milliseconds (10);
Next : Time;

begin
Next := Clock; −− Start time
loop
−− task’s body
...
Next := Next + Interval ;
Delay_Until_And_Set_Deadline (Next, Interval);

end loop;
end Periodic_Task;

The call to Delay_Until_And_Set_Deadline delays
the task until the time Next and, when the task becomes
runnable again, it will have an absolute deadline equal
to Next plus Interval. The use of this procedure
avoids unnecessary context switches that can happen if the
Set_Deadline procedure and the delay until state-
ment are used instead.

4.3.2 EDF and the priority ceiling protocol

The definition of the Ceiling_Locking policy suffers
some changes when applied to EDF tasks. In such situation,
the protocol defined by the Ada RM is know in the literature as
the “Preemption Level Control Protocol” (PLCP) (also known
as “Baker’s Protocol” or “SRP Protocol”) [9]. This protocol is
a generalization of the “Immediate Ceiling Priority Protocol”
(ICPP) the Ada interpretation of the Ceiling_Locking
policy for FIFO tasks.

The PLCP has the same good properties than the ICPP on
fixed priorities:

• Minimizes the priority inversion.

• In a uniprocessor, the protocol itself ensures the mutual
exclusion (no lock is required).

• A task can only be blocked at the very beginning of its
execution.

• A task can only suffer a single block.

• The protocol ensures that deadlocks cannot occur.

The PLCP requires a new parameter for tasks and protected
objects: the “preemption level”. In the definition of the PLCP,
the preemption level is a small integer number that should be
assigned to the tasks in deadline monotonic order, the shorter
the relative deadline of a task, the higher its preemption level.
The preemption level of a protected object is the maximum
preemption level of any task that uses it.

In the Ada definition of PLCP the priority of tasks and pro-
tected objects is used in the role of the preemption level. So,
the declaration of two EDF tasks could be:

task EDF_Task_With_Short_Deadline with
Relative_Deadline => Ada.Real_Time.Milliseconds (10),
Priority => 4;

task EDF_Task_With_Long_Deadline with
Relative_Deadline => Ada.Real_Time.Milliseconds (20),
Priority => 3;

The rules to integrate the PLCP in the Ada priority based
model are quite complex (see RM D.2.6, 23/2-26/3) but they
are only relevant for implementers. The programmer only
needs to care about setting the preemption level (priority) of
tasks and protected objects as explained above.

4.4 Mixed hierarchical dispatching

Ada goes a step further in dispatching flexibility by support-
ing mixed hierarchical scheduling configurations. A two-
levels dispatching model is defined with a base fixed priority
policy and several second-level dispatching policies in non-
overlapping priority ranges.

The configuration pragma
Priority_Specific_Dispatching is used for
this purpose:

pragma Priority_Specific_Dispatching (policy_identifier ,
first_priority , last_priority);

By using this pragma, tasks with active priority in the range
[first_priority, last_priority] are scheduled
under the policy specified by policy_identifier
(where policy_identifier can be any Ada dispatch-
ing policy but the Non-Preemptive which can only be used as
the global partition dispatching policy).

When several priority ranges are defined, high priority ranges
take precedence over low priority ranges according to the key
rule of the base fixed priority policy: the processor is assigned
to the first task of the highest occupied priority queue.

A task can “jump” from one priority range to an-
other when its base priority is changed (using package
Dynamic_Priorities) or while it is inheriting a prior-
ity. Special care has to be taken when, due to a base priority
change, a task “jumps” to an EDF range. In such situation,
and in the case the Relative_Deadline aspect was not
specified for the task, it will have the longest absolute dead-
line and, consequently, it will be the less prioritary task in the
range.

Protected objects can be used to share data between tasks
in different priority ranges. As it could be expected, the

Ada User Jour na l Vo lume 34, Number 1, March 2013

54 Advanced Ada Suppor t for Real -T ime Programming

Listing 3: Priority ranges configuration

pragma Priority_Specific_Dispatching
(FIFO_Within_Priorities, 10, 16);

pragma Priority_Specific_Dispatching
(EDF_Across_Priorities, 2, 9);

pragma Priority_Specific_Dispatching
(Round_Robin_Within_Priorities, 1, 1);

Ceiling_Locking rules are obeyed and the promoted
task competes with the other tasks in the range according to
the priority it has just inherited.

Mixed scheduling allows to combine in the same application
the good properties of the different policies. For example,
with the configuration described in Listing 3 an application
could take advantage of the predictability of the FIFO schedul-
ing for the critic tasks, the better resource usage provided by
EDF for the non-critic tasks and the fair distribution of re-
sources provided by the Round robin policy for the non-RT
tasks.

5 Multiprocessor support

Multiprocessor architectures are becoming popular in many
application areas including the embedded systems. Ada is
ready to face this important architectural change thanks to the
new services defined in Ada 2012. The core of the new Ada
multiprocessor support are the “Dispatching Domains”, other
services like the “Synchronous Barriers” are also targeted to
the multiprocessor architectures.

Ada multiprocessor support is intended for “Symmetric mul-
tiprocessing” (SMP). In a SMP architecture two or more
identical processors are connected to a single shared memory.

Package System.Multiprocessors (RM D.16) defines
the integer type to identify the processors and also provides a
function to know the number of processors in the system.

5.1 Dispatching domains

The package System.Multiprocessors.
Dispatching_Domains (RM D.16.1) allows to
group processors into “Dispatching domains”. Each domain
is a contiguous range containing one or more processors.
Each processor belongs to only one dispatching domain.

At the beginning of the execution all the processors belong
to the System_Dispatching_Domain and the environ-
ment task is allocated to it.

During the elaboration of the partition the programmer can
create new domains that will remain unchanged during the rest
of the execution of the application. As processors are added
to the new dispatching domains they are removed from the
System_Dispatching_Domain. Dispatching domains
are created using the Dispatching_Domains.Create
function:

Domain_1 : Dispatching_Domain := Create (15, 17);

Every task is allocated to a dispatching domain. Inside its do-
main, a task can execute in any processor unless it is explicitly
assigned to a particular processor. The processor affinity of
a task inside its domain can be changed at run-time as many
times as desired.

This flexibility allows Ada to support the most popular allo-
cation approaches:

1. Fully Partitioned: each task is allocated to a single pro-
cessor on which all its jobs must run.

2. Dynamically Partitioned: at run-time the application can
change the assignment of a task from one processor to
another.

3. Partially Partitioned: tasks are restricted to a subset of
the available CPUs, jobs may migrate during execution.

4. Global: all tasks/jobs can run on all processors, jobs may
migrate during execution.

By default all the tasks are allocated to the
System_Dispatching_Domain. A task can be
allocated to a user defined dispatching domain using the
Dispatching_Domain and CPU aspects:

−− Allocate task to Domain_1 (the task can execute in any
−− processor in the domain)
task T with Dispatching_Domain => Domain_1;

−− Allocate task to Domain_1 and assign it to the processor 16
task T with CPU => 16, Dispatching_Domain => Domain_1;

Alternatively, a task allocated to the
System_Dispatching_Domain can be al-
located to a user defined domain with the
Dispatching_Domains.Assign_Task procedure:

−− Allocate task to Domain_1 (the task can execute in any
−− processor in the domain)
Assign_Task (Domain_1, T’Identity);

−− Allocate task to Domain_1 and assign it to the processor 16
Assign_Task (Domain_1, 16, T’Identity);

Note that Assign_Task can only be used to move tasks
from the System_Dispatching_Domain. Once a task
has been allocated to a user defined domain it will remain in
that domain forever.

At any time we can use the the Set_CPU procedure to change
the affinity of a task inside its domain:

−− Assign task to the processor 17
Set_CPU (17, T’Identity);

−− Allow task to execute in any processor in its domain
Set_CPU (Not_A_Specific_CPU, T’Identity);

During the revision process it was considered to include in
the Ada standard the possibility of specifying dispatching
policies on a per-dispatching domain basis.

Although this functionality was finally rejected for been con-
sidered too complex, there is a less elegant but efficient ap-
proach that can be used. This approach consist on including
in a dispatching domain tasks in a specific priority range and
use the Priority_Specific_Dispatching pragma
to apply the desired dispatching policy to that range and con-
sequently to the tasks in the dispatching domain.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 55

5.2 Synchronous Barriers

The synchronous barriers (package
Ada.Synchronous_Barriers, RM D.10.1) are a
synchronization primitive intended for massively parallel
machines. To take advantage of the parallelism provided for
such architectures, it is usual to use algorithms that can be
performed in parallel for a large number of tasks. After this
parallel part, it is very common that the algorithm has a final
sequential part to recombine the results.

Usually the parallel computations are very short. In that case
the use of a complex synchronization primitive would remove
any gains obtained from the use of the parallel algorithm. Syn-
chronous barriers have been designed to solve this problem
since they can be implemented very efficiently.

Synchronous barriers are used to synchronously release a
group of tasks after the number of blocked tasks reaches a
specified count value.

A barrier is created specifying is “release threshold” (the num-
ber of blocked tasks required for the barrier to be open). When
a task reaches the barrier (calls the Wait_For_Release
procedure) it is blocked in the barrier.

procedure Wait_For_Release (
The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);

If the number of blocked tasks reaches the release threshold
the barrier is open an all the tasks are released. Only one
of the released tasks will be notified with the Notified
parameter set to True. In the case that a final sequential
part of the algorithm is required, the programmer can use this
notifications to be sure that one, and only one, task will do
this final part of the computation.

References
[1] S. T. Taft, R. A. Duff, R. Brukardt, E. Plödereder, and

P. Leroy (2006), Ada 2005 Reference Manual. Language
and Standard Libraries - International Standard ISO/IEC
8652/1995 (E) with Technical Corrigendum 1 and Amend-
ment 1, ser. Lecture Notes in Computer Science, Springer,
vol. 4348.

[2] J. Barnes (2008), Ada 2005 Rationale: The Language,
The Standard Libraries, ser. Lecture Notes in Computer
Science, Springer, vol. 5020.

[3] MaRTE OS website. http://marte.unican.es/ Mar. 2013.

[4] M. Aldea Rivas and J. F. Ruiz (2007), Implementation
of New Ada 2005 Real-Time Services in MaRTE OS and
GNAT, Proceedings of the 12th International Conference
on Reliable Software Technologies, Springer-Verlag, pp.
29–40.

[5] M. Aldea Rivas, M. González Harbour, and J. F. Ruiz
(2009), Implementation of the Ada 2005 Task Dispatching
Model in MaRTE OS and GNAT, ser. Lecture Notes in
Computer Science, F. Kordon and Y. Kermarrec (Eds.),
vol. 5570, Springer, pp. 105–118.

[6] Ada Reference Manual (2013). Language and Standard
Libraries - International Standard ISO/IEC 8652/2012
(E) with Technical Corrigendum 1 and Amendment 1.

[7] Ada 2012 rationale. http://www.adacore.com/knowledge/
technical-papers/ada-2012-rationale/,” Feb. 2013. [On-
line].

[8] A. Burns and A. Wellings (2005), Programming
Execution-Time Servers in Ada 2005, Real-Time Systems
Symposium, 27th IEEE International, pp. 47 –56.

[9] T. P. Baker (1991), Stack-based Scheduling of Real-Time
Processes, Real-Time Systems, vol. 3, no. 1, pp. 67–99.

Ada User Jour na l Vo lume 34, Number 1, March 2013

	auj-34-1 47
	auj-34-1 48
	auj-34-1 49
	auj-34-1 50
	auj-34-1 51
	auj-34-1 52
	auj-34-1 53

