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ABSTRACT

Conventional imaging systems used today in surgical settings rely on contrast enhancement based on color and
intensity and they are not sensitive to morphology changes at the microscopic level. Elastic light scattering
spectroscopy has been shown to distinguish ultra-structural changes in tissue. Therefore, it could provide this
intrinsic contrast being enormously useful in guiding complex surgical interventions.

Scatter parameters associated with epithelial proliferation, necrosis and fibrosis in pancreatic tumors were
previously estimated in a quantitative manner. Subtle variations were encountered across the distinct diagnostic
categories. This work proposes an automated methodology to correlate these variations with their corresponding
tumor morphologies. A new approach based on the aggregation of the predictions of K-nearest neighbors
(kNN) algorithm and Artificial Neural Networks (ANNs) has been developed. The major benefit obtained
from the combination of the distinct classifiers is a significant increase in the number of pixel localizations whose
corresponding tissue type is reliably assured. Pseudo-color diagnosis images are provided showing a strong
correlation with sample segmentations performed by a veterinary pathologist.

Keywords: automatic classification, tumor, necrosis, confocal reflectance imaging, scatter, feature extraction,
k-nearest neighbors (kNN), Artificial neural networks (ANN)

1. INTRODUCTION

The quantification of scatter origin features in tissue has been successfully accomplished by angle resolved
or coherence based reflectance methods.1,2 The measurement can be robust and changes in scatter spectra
are related to pathologic structures which occur in the tissue. Therefore, scatter evaluation could provide an
additional diagnosis tool for the delineation of tissue morphology at the microscopic level and helping the guidance
of surgical resection.

In a previous study,3 scattering changes associated with epithelial proliferation, necrosis and fibrosis in
tumors were estimated in a quantitative manner using highly localized measurements of reflectance. Automated
methodologies based on k-nearest neighbors (kNN) algorithm4 and Artificial Neural Networks (ANNs)5 to
establish a correlation between the subtle changes encountered and the tissue morphology have been already
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reported.6,7 Both approaches consisted of two distinct steps: statistical pre-processing of the scattering parameters
images to create additional data features6 and an automated identification procedure using separately either
the kNN or the ANN classifier algorithm. As a result, pseudo-color diagnosis images were provided showing
a strong correlation between the segmentation performed by a veterinary pathologist and the automated one
within some predefined regions of interest. A veterinary pathologist analyzed the H&E stained sections of the
measured samples3 and identified several regions of interest corresponding to the observed tissue types. These
tissue types were classified under three major groups: epithelium, fibrosis and necrosis with some constituent
subgroups. According to the exhibited nucleus to cytoplasm ratio, epithelial cells were classified in high and low
proliferation index tumor cells, while three different fibrosis subgroups (early, intermediate and mature) were
also distinguished. In this work, an ensemble method, which consists in the aggregation of the predictions of the
kNN- and the ANN-based segmentations, is proposed. The major benefit obtained from the combination of the
distinct classifiers is a significant increase in the number of pixel localizations whose corresponding tissue type
is reliably assured.

2. EXPERIMENTAL ISSUES

2.1 Scatter imaging system and parameter fitting

The scatter scanning system consisted of a confocal spectroscopic system having illumination and detection spot
sizes smaller than one scattering length (typically 100 μm for tissue8), and a raster-scanning platform built using
linear translation stages. This spot size was specifically chosen as it provides a scatter signal which does not have
significant multiple scatter, making it essentially linearly dependent upon the scatter coefficient. A schematic
and a detailed description of the system can be found in this previous paper.3

The acquired spectral reflectance is fitted by the empirical relationship, which accounts for scatter versus
wavelength, and then exponential attenuation to absorption.

IR(λ) = Aλ−be−kc{d[HbO2(λ)+(1−d)Hb(λ)]} (1)

where A is the scattered amplitude, b the scattering power, c is proportional to the concentration of whole blood
and d is the oxygen saturation fraction. This relationship is valid in the presence of significant local absorption,
for very small source-detector separation and when the scattering and absorption coefficients are within the
typical range found in tissue.9 The extinction spectra of oxygenated and de-oxygenated hemoglobin, HbO2(λ)
and Hb(λ), were obtained from a medical data base. Absorption from other chromophores were assumed to
be negligible in the wavelength range of interest, from 510 to 785 nm, and the path length k is assumed to
be a wavelength independent constant. Along with the scattered amplitude and the scattering power, a third
scattering parameter of interest for tissue discrimination purposes was the average scattered irradiance, Iavg,
which was obtained by integrating IR over all wavelengths beyond 610 nm to avoid the strong hemoglobin
absorption peaks.

2.2 Pancreatic tumors

Data from AsPC-1 pancreatic tumor samples from the previous study3 was used. In this regard, human pancreatic
tumor cells AsPC-1 were grown and injected subcutaneously in the flank region of male mice. Tumors were
harvested seven weeks after injection when they measured 6 - 7 mm in diameter and 5 - 6 mm in thickness.
Then, they were dissected into 4 - 5 mm thick sections and imaged. In total, six tumor tissue sections harvested
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Figure 1. Scattered amplitude (A), scattering power (b) and average scattered irradiance (Iavg) images of a pancreas

tumor sample where five regions-of-interest have been identified.

from four mice were imaged. After the measurement, the sample was routinely processed for subsequent histology
evaluation by the veterinary pathologist. Figure 1 depicts one of the analyzed pancreas tumor samples, where
five regions-of-interest are shown overlaid on the scattering parameter images (scattered amplitude A, scattering
power b and average scattered irradiance Iavg whose color scale bars are shown on the right of each corresponding
image). Tumor cells found in Region 1 have less cellular density (LPI) than the HPI tumor cells found in Region
2. Region 3 exhibits necrosis and Regions 4 and 5 early and intermediate fibrosis, respectively. Pixels in black
correspond to locations where the scatter data could not be reliably measured and they are tagged from now on
as masked pixels.

3. TUMOR REGION SEGMENTATION METHODS

3.1 K-nearest neighbors

For classification purposes, every pixel inside the pre-defined regions of interest is considered as a vector in a
3-dimensional space, the so-called feature space. The three measured scatter parameters A, b and Iavg, are each
considered a coordinate axis, and the distance between points in this Cartesian space defines how similar or
different they are. Since kNN is based on the idea that similar data should belong to the same class, the k pixels
with the most similar scattering parameters to an unclassified pixel are initially determined, and this similarity
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is measured in terms of the Euclidean distance, D, expressed as:

D(p1, p2) =
√

(A1 − A2)2 + (b1 − b2)2 + (Iavg1 − Iavg2)2 (2)

where p1 and p2 are the two compared tissue pixel localizations. The unclassified pixel is assigned to the most
numerous tissue sub-type (high or low proliferation index epithelium, necrosis, and early, intermediate or mature
fibrosis) among the closest k neighbors.

3.2 Additional statistical feature extraction

The segmentation capacity of the kNN methodology as described above was weak, since six different tissue
morphologies had to be discriminated from a data set that lay in a 3-dimensional space. The dimensionality
of the data feature space was increased by the addition of a high-order statistical calculation. The first four
statistical moments: mean (p̄), standard deviation (σp), skewness (Sp) and kurtosis (Kp), of each scattering
parameter (A, b, Iavg) were calculated over a square spatial vicinity region centered in each pixel localization.
Skewness is a measure of the asymmetry of the data around the class mean, while kurtosis is a measure of
how outlier-prone a class distribution is.10 Then, the statistical moments were concatenated with the three
fitted scattering parameters to form a 15-dimensional feature space. Consequently, Equation 2 becomes in this
15-dimensional space:

D(p1, p2) =

√√√√ 15∑
i=1

(p1i − p2i)2 (3)

Figure 2 presents the distribution images of the statistical moments of the scattering parameters, that correspond
to the same tumor sample that the one showed in Fig. 1. Figure 2 suggests that the most discriminant parameter
is the mean of the scattering power followed by the mean of the averaged intensity. In order to mathematically
prove the validity of this assumption, a further study on the capability of both the scattering parameters and
their extracted statistics (mean, standard deviation, skewness and kurtosis) to discriminate the different tumor
regions was also performed. In this study, the sequential floating forward selection (SFFS) algorithm11 was
used. SFFS is widely applied to reduce the dimensionality (i.e. the number of features) of spectral data prior
to interpretation.12,13 When processing spectral data, feature refers to each spectral band and the aim of
SFFS in this case is to select the M spectral bands that best discriminate among the subject classes, out of
the total number N initial bands, so M < N . The discrimination among the classes, or class separability,
can be calculated performing different statistical computations.12 The same fundamental is employed to sort
the scattering parameters and their statistical values according to their subtype discrimination capability. In
this way, the first feature selected by the algorithm will be the one with the greatest changes according to the
pathology. These changes have been measured in terms of the Bhattacharya statistical distance.12 Therefore,
the difference in a scattering parameter p, with p = 1, 2, ..., 15, between two tissue subtypes, i and j, is given by:

Jp
ij =

1
4
(μj − μi)

T [Σi + Σj ]
−1(μj − μi) +

1
2

ln
|Σi + Σj |

2(|Σi||Σj |)1/2
(4)

where μi and Σi are the mean and the variance matrix of p for tissue subtype i. Because there are six different
tissue subtypes, the global class separability measurement, J , requires one to calculate the difference between
every two subtypes

J =
6∑

i=1

6∑
j=1

PiPjJij (5)
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Figure 2. Images of the first four statistical moments: mean (p̄), standard deviation (σp), skewness (Sp) and kurtosis (Kp)

of each scattering parameter p.

where Pi is each subtype probability and Jij is the distance between subtypes i and j, as stated in Eq. 4.

Table 1 summarizes tissue subtype separability measurements through the SFFS algorithm as a function of
the size of the vicinity region. For small window sizes, which means that included pixel localizations are mostly
within the same tissue subtype, the mean scattering power is always selected as the most discriminant feature.
This confirms the feeling derived from Fig. 2 and agrees with the remarkable improvement in methodology
segmentation capabilities achieved by the addition of statistical data.6

3.3 Artificial neural networks (ANNs)

Although ANNs offer a flexible way to model nonlinear functions,14 insufficient performance was achieved for
tumor discrimination based on an ANN with (A, b, Iavg) data. Due to the improvement obtained with the kNN
classifier once the high-order statistical parameters were included, the application of an ANN classifier with this
new data set was also conducted. The validity of a Backpropagation ANN for the segmentation of the distinct
tumor regions was shown.7 It consists of a 4-layered structure where two hidden layers (50 nodes each) were
required between the input and the output layer (6 nodes as the number of tumor subtypes) to achieve similar
correlations between the automated and pathologist-based classifications than the ones obtained by kNN.

3.4 Assembly of the predictions of the kNN and ANN classifiers

If classifiers lack stability, data modeling could be improved by the employment of ensemble methods.14 These
are based on the idea of aggregation, a process that consists in the combination of the predictions of a number of
different classifiers into a new prediction. The stability of the kNN and ANN methodologies previously developed
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Table 1. Sorting of the scattering parameters and their statistics as a function of their tissue subtype discrimination

capability.

Window size 1 2 3 4 5

30 σA Ā KIavg b̄ Iavg

28 σA Ā KIavg
Iavg b̄

26 σA Ā KIavg
Iavg b̄

24 σA Ā KIavg Iavg b̄

22 Kb KIavg
Iavg σA Ā

20 Kb KIavg
Iavg b̄ Ā

18 b̄ Iavg Ā Kb σA

16 b̄ Iavg σIavg
Ā KIavg

14 b̄ Iavg σIavg Ā KIavg

12 b̄ Iavg Ā Iavg σA

10 b̄ Iavg Ā Iavg σA

8 b̄ Ā Iavg σA Iavg

6 b̄ Ā Iavg σA σIavg

4 b̄ Ā Iavg σA Iavg

2 b̄ Ā Iavg σA Iavg

was tested and high accuracies were achieved with independence of the training and test data sets.6,7 However,
this stability can only be measured within the regions-of-interest defined by the pathologist. It is reasonable
to think that discrimination performance outside them will be good too, but it is not possible to conclude it.
The latter is examined here by means of a combined method of kNN and ANN predictions. The procedure is
graphically described in Figure 3. Only tissue sub-type assignation is assured in these pixel localizations where
tumor sub-type assigned by both methodologies match. Pixels where each methodology concludes a different
tumor sub-type are assigned as masked pixels.

4. RESULTS AND DISCUSSION

Figure 4 presents the pseudo-color diagnosis images of the tumor sample depicted in Fig. 1 obtained by means
of the kNN-based (Fig. 4.a) and the ANN-based (Fig. 4.b) methodologies and the diagnosis image after the
application of the combination procedure (Fig. 4.c) described above. The latter is compared with the segmentation
of the sample performed by the veterinary pathologist (Fig. 4.d). The segmentation of other analyzed tumor
samples in their distinct tumor regions (by means of the ensemble method) is presented in Figure 5. As
expected, an accurate correlation is achieved within the regions-of-interest of all samples, as concluded in previous
works.6,7 However, the number of pixel localizations reliably assured (by means of two different and independent
methodologies) is much higher. Table 2 compares the prediction rates of the ensemble method with the number
of pixels per sample classified by the veterinary pathologist, which coincides with the number of pixels reliably
assured by the independent kNN and ANN segmentations. The global identification rate is more than five times
greater when both methodologies are combined with the additional fact of assurance in the identification provided
by this peer methodology.
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Figure 3. Schematic of the combination of the kNN and ANN predicted tumor subtypes.

Table 2. Sorting of the scattering parameters and their statistics as a function of their tissue subtype discrimination

capability.

Tumor sample Total no. Expert-based No. of pixels classified

no. of pixels classified pixels by the aggregated method

1 5476 9.8430% (539) 55.1315% (3019)

2 5893 17.5632% (1035) 64.6190% (3808)

3 8450 15.1124% (1277) 64.0237% (5410)

4 6900 2.5072% (173) 45.1449% (3115)

5 5966 10.6772% (637) 52.9165% (3157)

Mean values 11.1406% 56.3671%

5. CONCLUSIONS

An aggregated automated methodology into what scatter changes in tissue means relative to pathology was
developed. It consists of the combination of two different approaches based on kNN and ANN classifiers,
respectively, whose validities for tumor subtype discrimination have been previously demonstrated. However,
calculations of the statistical moments of the scattering parameters in a vicinity region of every pixel location
were required to achieve a reliable discrimination of the distinct tumor regions, both in kNN- and ANN-based
methodologies. In order to justify this requirement, the SFFS algorithm was used to determine which parameters
exhibited more consistent trends across the different tumor subtypes. For physically reasonable window sizes,
mean scattering parameters are more significant than the parameters themselves, which explains the increase in

tumor region determination accuracies.
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The major benefit of this peer methodology is that every tissue pixel localization is probed through two
distinct and independent methodologies, which enhances the reliability of the concluded tumor subtype. The
number of identified pixels is more than five times higher in the segmentations performed by the aggregated
method than in the one performed by the pathologist, which implies a significant improvement in the specificity
of the tool in tumor region delineation.

Unsupervised classification algorithms are traditionally employed in remote sensing to deal with the typically
few and costly labeled data. On account of this, they could also be employed to help with the problem that arises
from the fact that the estimation of the ability of the independent methodologies to correlate the scatter changes
with their corresponding tissue type is restricted to the number of tissue pixel localizations within the expert
predefined regions of interest, although the number of probed pixels in automated manner was much higher.
Consequently, future research lines should focus on this approach. Apart from that, the delineation capability
of the methodology has only been assessed up to now for pancreatic tumors. Accordingly, ongoing studies are
also investigating the viability for prostate and breast tumors.
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