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ABSTRACT 

An automated algorithm and methodology is presented to pathologically classify the scattering changes encountered in 
the raster scanning of normal and tumor pancreatic tissues using microsampling reflectance spectroscopy. A quasi-
confocal reflectance imaging system was used to directly measure the tissue scatter reflectance in situ, and the spectrum 
was used to identify the scattering power, amplitude and total wavelength-integrated intensity. Pancreatic tumor and 
normal samples were characterized using the instrument and subtle changes in the scatter signal were encountered within 
regions of each sample.  Discrimination between normal vs. tumor tissue was readily performed using an Artificial 
Neural Network (ANN) classifier algorithm. A similar approach has worked also for regions of tumor morphology when 
statistical pre-processing of the scattering parameters was included to create additional data features. This automated 
interpretation methodology can provide a tool for guiding surgical resection in areas where microscopy imaging do not 
reach enough contrast to assist the surgeon.  
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1. INTRODUCTION 
Scatter visualization of tissue ultra-structure in situ could provide a unique tool for guiding surgical resection. In a 
previous study [1], scattering changes associated with epithelial proliferation, necrosis and fibrosis in tumors were 
estimated in a quantitative manner using highly localized measurements of reflectance. Since encountered changes were 
subtle, an automated methodology is required to establish a correlation with tissue morphologies before proceeding to 
clinical studies. A great variety of methods are suitable to perform this interpretation into what the signal means relative 
to the pathology such as the k-nearest neighbors (kNN) algorithm [2] that provided a good classification accuracy inside 
some predefined regions of interests [3]. However, to assess how useful this algorithm is, a comparison with other types 
of data discriminators such as Principal Component Analysis (PCA) [4] or Linear Discriminant Analysis [5] has still to 
be presented.  Apart from the small changes in scattering, data is multi-parametric, and thus Artificial Neural Networks 
(ANNs) [6] could prove successful in tissue sub-type classification due to their ability to handle non-linearity. The 
validity of this assumption not only for tumor versus normal tissue discrimination, but also for tumor region 
segmentation, is demonstrated here.  

 

2. TISSUE SCATTER IMAGING 

 
2.1 Scatter imaging system and parameter fitting 

The scatter imaging system consisted of a weakly confocal spectroscopic system having illumination and detection spot 
sizes smaller than one mean scattering length (typically 100 µm for tissue [6]), and a raster-scanning platform built using 
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linear translation stages. The instrument operates in the 510 nm – 785 nm spectral waveband with a broadband fibre-
coupled tungsten-halogen light source. An optical-fibre coupled to a CCD-based spectrometer was used for confocal 
spectroscopic detection, with a spectral resolution of approximately 1 nm. All spectral measurements were referenced to 
a Spectralon based reflectance standard, which removes instrumental spectral response from the sample measurements 
and allows direct comparisons of the extracted scatter parameters across different samples. A schematic and a more 
detailed description of the system can be found in this previous paper [1]. 

The acquired spectral reflectance is fitted by a empirical relationship, which accounts for scatter versus wavelength, and 
then exponential attenuation due to absorption  

                                                                   
( ) ( ) ( )( )( )λλλ HbdHbOdckb

R eAI −+⋅⋅⋅−−= 12

              (1) 

where A is the scattered amplitude, b the scattering power, k is the path length, c is a constant proportional to the 
concentration of whole blood and d is the oxygen saturation fraction. Absorption contributions from other chromophores, 
other than hemoglobin, are assumed to be negligible in the waveband of interest (from 510 to 785 nm as mentioned 
before) and k is assumed to be wavelength independent constant. The extinction spectra of oxygenated and de-
oxygenated hemoglobin, ( )2HbO λ  and ( )Hb λ , were obtained from the Oregon Medical Laser Center database. 
Scattering parameters of interest for tissue morphology identification are A and b, along with the so-called average 
scattered irradiance, Iavg, which was calculated by integrating IR over wavelengths beyond 610 nm to avoid the 
hemoglobin absorption peaks.  

 

2.2 Pancreatic tumors 

Human pancreatic tumor cells ASPC-1 were grown and injected subcutaneously in the flank region of male mice [1]. 
Seven weeks after, tumors were harvested and imaged using the raster-scanning reflectance imager described previously. 
After the measurement, the top full view slide from each sample was used for pathologic analysis and their H&E slides 
were examined by a veterinary pathologist who identified several regions-of-interest corresponding to the observed 
tissue types (normal or tumor) and tumor regions. These were classified under three major groups, namely epithelium, 
fibrosis and necrosis, with different constituent subgroups: two distinct types of epithelial cells according to the exhibited 
nucleus to cytoplasm ratio were considered (low and high proliferation index) and regions exhibiting fibrosis were 
classified into early, intermediate and mature fibrosis subgroups. Figure 1 depicts one of the analyzed pancreas tumor 
samples, where five regions-of-interest are shown overlaid on the scattering parameter images (scattered amplitude A, 
scattering power b and average scattered irradiance avgI  whose color scale bars are shown on the right of each 
corresponding image). Example histology images of each region have shown [1] how tumor cells found in Region 1 have 
less cellular density (LPI) than the HPI tumor cells found in Region 2. Region 3 exhibits necrosis and Regions 4 and 5 
early and intermediate fibrosis, respectively. Pixels in black correspond to locations where the scatter data could not be 
reliably measured and they are tagged from now on as masked pixels. 
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Fig. 1. Scattered amplitude (A), scattering power (b) and average scattered irradiance (Iavg) images of a pancreas tumor 
sample showing five pathology based regions-of-interest overlaid on it.  

A 
20 40 60 80 100 110 10 30 50 70 90 

20 

40 

60 

80 

100 

120 

2 
1 
4 

5

3

4 

3 

2 

0 

-1

1 

20 

40 

60 

80 

100 

120 

b 

2 
1 
4 

5

3

20 40 60 80 100 110 10 30 50 70 90 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Low 
Proliferation 
Index (LPI) 

1 

High 
Proliferation 
Index (HPI) 

2 

Necrosis 
3 

Early 
fibrosis 4 

Intermediate 
fibrosis 5 

Mature 
fibrosis 6 

20 

40 

60 

80 

30 

25 

20 

15 

10 

5 

0 

Iavg 

2 

1 
4 

5

3 

20 40 60 80 100 110 10 30 50 70 90 

100 

120 

H & E 
pathologist evaluation 

Scattering imaging 
system 

SPIE-OSA/ Vol. 7368  73681C-3



 

 

 

2.3 Classification methods 

An ANN was properly trained to be able to distinguish first normal tissue and tumor morphologies. The input data set 
consisted of the three mentioned scattering parameters (the scattered amplitude,A, the scattering power, b, and the 
average scattered irradiance, Iavg) of different pixel localizations within the predefined regions-of-interest of three normal 
and five tumor samples. The three scattering parameters of interest were fitted as explained above. A multilayer feed-
forward network and back-propagation learning algorithm were employed. The topology of the net consisted of an input 
layer with 10 neurons, and an output layer with only 1 neuron. Neurons in both layers have a log-sigmoid transfer 
function. The activation of the neuron in the output layer, which means that the output value is close to 1, indicates the 
presence of a tumor pixel localization.  

An alike attempt to segment the distinct tumor sub-types (low proliferation index epithelium, high proliferation index 
epithelium, necrosis, early fibrosis, intermediate fibrosis and mature fibrosis) was accomplished employing a data set 
that included the scattering parameters (A,b,Iavg)  of pixel localizations within all possible tumor regions. However, not 
enough discrimination performance was achieved and only necrotic regions were correctly identified. In [3] the 
specificity in tumor sub-type discrimination was remarkably improved by the inclusion of a pre-processing procedure to 
generate additional features. These were based upon statistical estimates (mean, standard deviation, skewness and 
kurtosis) [8] of the scattering parameters between neighboring pixels within a window of interest. The latter is a moving 
window, which was scanned around the image to generate statistical values for each pixel, and whose size was adjusted 
to assure that statistics are predominantly calculated for pixel localizations within the same tissue sub-type [3]. As the 
tumor segmentation capability of ANNs in the (A,b,Iavg) space was weak, statistics were also here concatenated with the 
fitted scattering parameters to form a 15-dimensional feature space. In addition, the complexity of the network topology 
was increased to achieve reliable classification results (two hidden layers, with 50 neurons each, were added and the 
output layer consisted of six neurons corresponding to each tumor sub-type to be discriminated). Figure 2 illustrates a 
comparison between the topologies of the networks employed for the discrimination between normal and tumor tissue 
and the segmentation of pathologically distinct tumor regions, respectively. As mentioned before only, the scattering 
parameters are input to the first normal-vs-tumor network. Input data of the second tumor-sub-type network includes the 
statistics, where p  and pσ  are the mean and variance of the scattering parameter p, and pS  and pK  stand for its 
skewness and kurtosis moments. The ANN results that match each tumor subtype and the transfer function of the 
neurons are also depicted in Figure 2. 
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Fig. 2. ANN topologies and outputs for tumor vs. normal tissue (on the left) and tumor sub-type (on the right) 

discrimination. Inset: Transfer function of the neurons.  

 

 

3. RESULTS 
 
3.1 Tissue morphology identification 

Figure 3 depicts the grouped scatter plot for normal and tumor tissue pixel localizations in the scattering parameter 
feature space ( A-b-Iavg space) showing that scattering parameters of normal pixels are well grouped, whereas there is a 
remarkable spreading of tumor pixels. A total of 16599 pixel localizations within the regions-of-interest of three normal 
samples and 3660 pixels within the regions-of-interest of five tumor samples were considered. This data set was divided 
into 3 non-overlapping sets containing 6653 data points each (5533 of normal tissue and 1120 of tumor). Two of these 
sets were employed as the training data set, i.e. it is input to the neural network which iteratively adjust its parameters 
(weights and biases) in order to produce an output that matches the desired result (‘0’ for normal tissue pixels and ‘1’ for 
tumor). The third set, the so-called validation set, is employed to measure the error of the network in tissue type 
identification. Only one pixel location out of 6653 test data points was misclassified. A specificity of the designed 
network for tissue type identification of 99,98% is therefore demonstrated. Finally, Figure 4 depicts the discrimination 
results for all pixel locations in normal (left column) and tumor (right column) samples. The pixels tagged as masked 
correspond to pixels where the scatter data could not be reliably measured. 
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Fig. 3. 3D map representing the training normal and tumor pixel localizations in the three input data parameters, A-b-Iavg, 

space. 
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Fig. 4. Pseudo-color diagnosis images using the three measured scatter parameters (normal samples on the left and tumor 

samples on the right). 
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3.2 Tumor sub-type delineation 

The 3D map representing tumor pixels in the A-b-Iavg space is presented in Figure 5. As shown, scattering parameters are 
rather grouped only in necrotic locations. Therefore, the training of the neural network only converged when 
discriminating necrosis against the rest tumor types. Thus, the segmentation of the tumor regions could be tackled by 
bridging of results from a combinatorial set of one-against-all classifiers [7]. To directly deal with the multiclass 
classification problem the statistics-based feature extraction procedure introduced in Classification Methods was 
implemented. A schematic and a more detailed description of the latter can be found in [3]. The larger the dimension of 
the vicinity region employed in statistics calculation, they are more accurate. However, this only happens when pixel 
localizations within the window are mostly pathologically identical, i.e. inside the same tissue sub-type. This was assured 
by computing the histogram of the width and length of the regions of interest identified by the pathologist. As shown in 
[3] it was not advisable to employ window sizes larger than 15 since they had low occurrence probabilities. A square 
vicinity region of 12 x 12 pixels was selected in the proposed approach. 

The identification of the regions-of-interest performed by the veterinary pathologist and the automated segmentation 
based upon ANNs for tumor samples presented in Figure 4 are depicted in Figure 6. As shown, a strong correlation is 
achieved with the expert-based classification within the predefined regions-of-interest. 
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Fig. 5. Grouped scatter plot for all tumor pixel localizations in the A-b-Iavg space. 
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Fig. 6. Qualitative comparison between expert- and automated-based segmentation of the tumor samples. 
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4. CONCLUSIONS 
An automated methodology based upon ANN classifiers to quantify morphology-associated scatter changes in tissue has 
been designed. At first, the capability for quantitative tissue type identification, i.e. tumor versus normal tissue 
discrimination, was demonstrated. Tumor sub-type segmentation based on ANN with the initial scattering parameters 
(scattering amplitude, scattering power and average scattered irradiance) showed a weak performance. The inclusion of 
the high-order statistical parameters of each fitted scattering parameter was required to achieve a good correlation 
between expert-based and automated region of interest identification and an adequate specificity in tumor delineation. 
Quantitative comparisons with the previously developed algorithm [3] are in progress. Additionally, it should be 
mentioned that, although the feasibility of the proposed technique has been demonstrated, further studies considering 
different tissue types are required before it could gain clinical adoption. Specifically, further studies regarding breast 
tissue are currently being conducted.   
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