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A B S T R A C T   

Attributing a physical meaning to the calibration of a conceptual hydrological model is a risk due to equifinality, 
i.e., the existence of multiple optimal parameterizations that might or might not represent the actual behavior of 
a catchment; a risk that propagates to posterior studies that use the outputs of the hydrological model as an input. 
This study proposes and analyses sequential procedures for calibrating conceptual hydrological models aimed at 
reducing equifinality. These procedures force the model to reproduce a flow separation of the observed 
streamflow into quick flow and base flow, which we assumed representative of the run-off generating processes 
in the catchment. The sequential calibration of the model parameters that control quick flow and base flow forces 
the model to reproduce the flow separation, and introduces additional constraints in the calibration process that 
reduce equifinality and improve the overall calibration procedure. We applied this procedure to two mesoscale 
catchments in the “Picos de Europa” National Park (northern Spain). We compared the performance of the 
different calibration procedures both in the real scenario and in hypothetical scenarios of land use and soil 
permeability, to provide a sounder assessment of the ability of the procedures under diverse conditions. Results 
show that a calibration method applying hydrograph separation ensures models with a better discharge partition, 
whereas methods that do not apply separation failed in a considerable number of cases. In terms of performance 
(NSE and bias), the method applying hydrograph separation outperformed the reference method (without sep-
aration) for the real scenario, even for total streamflow; in the hypothetical scenarios though, the improvement 
in process representativeness came at the expense of a slight loss in performance. The sequential methods here 
developed were more computationally efficient; since they explore the parameter space in subsets, the number of 
iterations until convergence was a third of that needed with the reference method. In summary, we have 
developed a simple calibration procedure that ensures a better model behavior (more in line with the underlying 
conceptualization) with a similar, and even better, performance and a shorter calibration time than the reference 
method.   

1. Introduction 

Reproducing the real functioning of a catchment by calibration of a 
conceptual hydrological model is an extremely complicated task due to 
the multidimensionality of the optimisation problem (Shokri et al., 
2018). The equifinality of a model is the impossibility to select a single 
best model parameterization from the set of parameterizations with 
optimal performance (Beven and Freer, 2001). These multiple optimal 
parameterizations might represent models that behave in distinct ways, 
i.e., in which the processes generating discharge (overland flow, inter-
flow and base flow) are differently partitioned (Beven and Binely, 1992). 
The usual calibration procedure, either using manual or automatic 

calibration, would choose the model parameterization that maximizes a 
specific performance metric. However, the parameter set with the 
highest performance might not reproduce the actual catchment func-
tioning; instead, sub-optimal parameterizations might be more realistic 
(Kavetski, 2018). 

Equifinality is partly caused by the large number of parameters 
present in conceptual hydrological models (even though physical 
processes-based models may contain even more parameters) and the 
lack of observations against which to compare the model outputs (Shokri 
et al., 2018), which in a regular case in hydrology is the observed 
discharge in one (or several) gauging station. It may even be exacerbated 
-in conceptual models- due to the limited physical base of some of the 
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processes considered (for instance the separation between overland 
flow, interflow and baseflow). The uncertainty in the representativeness 
of the optimized model prevents granting it a physical meaning, and 
thus its application as a starting point for further studies, such as erosion, 
vegetation dynamics or nutrient transport, is compromised (Acero Tri-
ana et al., 2019; Cain et al., 2019). 

A way to tackle equifinality is to increase the number of target var-
iables during calibration, forcing the model to properly reproduce spe-
cific additional processes in the water cycle (Beven and Binely, 1992). 
Several authors have applied satellite products linked to vegetation 
(Pasquato et al., 2015; Ruiz Pérez, 2016), such as NDVI (normalized 
difference vegetation index) (Rouse et al., 1974) or LAI (leaf area index), 
evapotranspiration (Koch et al., 2015; Demirel et al., 2017; Mendiguren 
et al., 2017; Koch et al., 2018; Stisen et al., 2018; Wambura et al., 2018; 
Rajib et al., 2018; Jiang et al., 2020), snow (Yassin et al., 2017; Bai et al., 
2018; Tuo et al., 2018; Nemri and Kinnard, 2020) or soil moisture (Li 
et al., 2018), to calibrate spatially distributed hydrological models in 
order to reduce the uncertainty in the optimization by forcing surface 
hydrology. 

Subsurface hydrology is one of the sources of uncertainty in rainfall- 
runoff models. Conceptual models often represent subsurface hydrology 
as a series of linear reservoirs corresponding to soil layers (topsoil, un-
saturated and saturated zone, for example). Each reservoir generates a 
horizontal flow (overland flow, interflow and baseflow, following the 
previous example) that aggregates in the stream network. parameter-
izing this set of linear reservoirs is a complicated task mainly for two 
reasons: the general scarcity of data about soil properties, and the fact 
that the variable usually targeted in calibration is the total streamflow, i. 
e., an aggregated value of the outflow from the linear reservoirs. The 
result is a marked equifinality, in the sense that totally different allo-
cations to each of the horizontal flows may result in a similar stream-
flow, without any certainty that any of these allocations reproduces the 
actual partition between surface and subsurface runoff in the catchment. 
As an example of this, Zhang et al. (2020) compared the base flow 
simulated by two hydrological models against the base flow obtained 
from the average of four common hydrograph separation methods, to 
find out that, even though the models performed properly in terms of 
total streamflow, the simulated base flow suffered from a strong bias. 

Total streamflow can be decomposed into several types of flow 
representing different sources and delays, which in the most common 
case are two: quick flow and base flow (Stoelzle et al., 2020). Quick flow 
(also referred to as direct or storm flow) represents the component 
directly caused by precipitation events, both by surface runoff or by 
preferential paths in the soil (Cain et al., 2019). Base flow is the 
component coming from delayed sources such as groundwater (Hall, 
1968; Tallaksen, 1995) and representing the longest and slowest 
decaying flows (Duncan, 2019); this type of flow is responsible for 
maintaining streamflow under prolonged dry weather (Stoelzle et al., 
2020). Decomposing total streamflow allows us to better understand the 
catchment processes (Zhang et al., 2017), a knowledge that can be used 
for several purposes such as improving water resources management in 
both drought and flood events, characterize aquifers, analyze long-term 
changes in the water balance (Zhang and Schilling, 2006) and introduce 
new information in the calibration of hydrological models (Tallaksen, 
1995; Zhang et al., 2017; Zhang et al., 2020). 

Hydrograph separation methods are techniques that decompose the 
total streamflow in its components; we will focus in two-component 
(quick and base flow) separation techniques, even though some au-
thors have explored multi-component separation methods (Stoelzle 
et al., 2020). Separation methods can be classified in two groups 
depending on whether they use tracers or not (Stoelzle et al., 2020; 
Zhang et al., 2020; Zhang et al., 2017). Tracer-based methods use the 
physico-chemical signature (chloride, electric conductivity, tempera-
ture, etc.) of the streamflow to estimate the age of the water and to 
separate quick flow from base flow. They are the most physically- 
grounded separation methods but require data which is often not 

available and whose generation requires time and resources (Tallaksen, 
1995; Stoelzle et al., 2020). 

Hydrograph-based separation methods only require gauged stream-
flow (in some cases also precipitation records (Mei et al., apr 2015)). 
They resort to graphical tools, digital filters and recession curves based 
on the Boussinesq exponential decay equation (Boussinesq, 1877; 
Boussinesq, 1904) (Eq. 1, where B0 represents the baseflow at time 0, Bt 
represents the baseflow t periods later, and k describes the rate at which 
baseflow decreases between storm events ((Duncan, 2019))). Graphical 
methods include the widely used local minimum method (Sloto and 
Crouse, 1996) developed by the USGS, the United Kingdom Institute of 
Hydrology (UKIH) method (Gustard et al., 1992), and modifications of it 
(Piggott et al., Oct 2005). These methods identify turning points in the 
hydrograph and assume that base flow is the linear interpolation be-
tween those points; therefore, their main advantage is their simplicity 
and absence of parameters to be calibrated, whereas the main drawback 
is the lack of physical grounds since the recession decay is not applied. 
Filter methods include the Lyne-Hollick method (Lyne and Hollick, 
1979), the Chapman-Maxwell method (Chapman, apr 1999), the Eck-
hardt method (Eckhardt, 2005) and the Duncan method (Duncan, 
2019). They filter the high-frequency variability of total streamflow to 
generate either a quick flow (Lyne-Hollick method) or a base flow 
(Chapman-Maxwell, Eckhardt and Duncan methods) time series. These 
are parametric methods, requiring at least the fitting of k (which is 
defined as the relation between baseflow at any given time and one 
period earlier; it is always smaller than 1), the recession constant in the 
Boussinesq equation (Eq. 1), and in some cases, such as the Eckhardt 
method, a second parameter named the maximum base flow index (BFI). 

Bt = B0⋅kt (1) 

The objective of this study is to use the additional information about 
the runoff generating processes that we can extract from hydrograph 
separation methods to reduce the equifinality in the calibration of a 
conceptual hydrological model. The idea is to decompose the stream-
flow records in quick flow and base flow and to sequentially calibrate 
the horizontal flows in the conceptual hydrological model against these 
decomposed flows. We hypothesize that such a calibration procedure 
will constrain the model to mimic the real flow decomposition, hence 
reducing equifinality by constraining the spectrum of optimal parame-
terizations. This hypothesis is built upon the idea that introducing in-
ternal state values (even though approximated) will help distinguishing 
among equifinal parameterizations (Beven and Binely, 1992). For the 
sake of simplicity and to enhance the applicability of our results, we use 
simple and widely spread methods; in the case of hydrograph separa-
tion, we use the local minimum method (Sloto and Crouse, 1996), 
whereas for the optimization of model parameters we apply the Shuffled 
Complex Evolution – University of Arizona method (Duan et al., 1992; 
Duan et al., 1993; Duan et al., 1994). The final goal is to constrain the 
equifinality of the calibration process and ensure obtaining plausible 
models without the need for any additional data apart from the observed 
streamflow. 

2. Study area and data 

The study area are two mesoscale basins, with an approximate area 
of 480 km2 each, in the “Picos de Europa” National Park (northern 
Spain): the upper Sella and the Cares river basins. Both are middle-high 
mountain catchments (Fig. 1) with a large elevation range, roughly from 
50 to 2600 m.a.s.l., that causes a sharp climate gradient. The climate in 
this area goes from temperate oceanic (Cfb in Köppen-Geiger’s classifi-
cation) in the valleys and close to the sea, to subarctic/sub-alpine (Dfc) 
in the mountain tops (Barceló and Nunes, 2009); mean annual precipi-
tation in the area is around 1600 mm and the mean annual temperature 
is 10.6 ◦C. Anthropogenic intervention is limited in both catchments; 
land cover is dominated by shrubland and deciduous forest in lower 
areas that turns into grassland and rock outcrops in higher altitudes. 
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The hydrometeorologic data required for the study are daily climatic 
time series as input for the hydrological model and daily streamflow 
records as the target variable for performance assessment. The Spanish 
Meteorological Agency (AEMET) provided the climatic data from the 
stations in the National Park and surrounding area (Fig. 1). From this 
data, we generated daily maps of precipitation, mean air temperature 
and diurnal temperature variation by spatial interpolation. We per-
formed a leave-one-out (LOO) cross validation to identify the best spatial 
interpolation method. 

In a LOO procedure, the interpolation model is iteratively fitted 
excluding data from one station at a time, the variable is interpolated to 
the excluded location and the correspondence between observed and 
interpolated values is evaluated; once this has been done for all the 
stations, an aggregated performance metric (in our case the root mean 
square error) is computed to compare several spatial interpolation 
methods. The LOO crossed validation proved that universal kriging, 
assuming linearity between mean monthly precipitation and elevation, 
was the highest-performing method to interpolate precipitation. Uni-
versal kriging (a.k.a. kriging with an external drift) is a spatial inter-
polation method that fits a trend to the original data and applies kriging 
to the residues of that trend (Goovaerts, 2000); in our case, we looked 
for linear trends with three geographic variables that we deemed rele-
vant: elevation, aspect, and distance to the coast. In the case of tem-
perature (both daily mean temperature and diurnal variation), the best 
interpolation method was inverse distance weighted over the residuals 
of the linear regression between monthly mean temperature and 
elevation. Daily potential evapotranspiration maps were derived by the 
Hargreaves-Samani method (Hargreaves and Samani, 1985) from the 
mean air temperature and diurnal temperature variation maps. The 
Official Gauging Station Network of Spain (ROEA) (CEDEX, 2016) 
provided the observed streamflow in the gauging stations at the outlet of 
both catchments (Fig. 1). Since both data sets had a daily temporal 
resolution, that is the resolution chosen for the hydrological modeling. 

Cartographic data consisted of a digital terrain model (DTM), and 
land cover and soil property maps. The Spanish National Center for 
Geographic Information (CNIG) provided a 20 m resolution DTM of the 
study area. The soil property maps were extracted from the database EU- 
SoilHydroGrids (Tóth et al., 2017), which contains 250 m resolution 
maps for saturated hydraulic conductivity and available water capacity. 
Lastly, we used a land cover map created by classification of Landsat 
images from 2005 (Álvarez-Martínez et al., 2018) with 30 m resolution. 
We chose a spatial resolution of 100 m as a trade-off between model 
resolution and computation time. To adapt the data to this resolution, 
we applied a bi-linear resampling algorithm to continuous variables and 
a nearest neighbor algorithm to categorical variables. 

3. Methods 

3.1. Hydrological model 

The hydrological model used in this study is TETIS (GIMHA, 2018), a 
conceptual and spatially distributed model. TETIS has been applied to a 
broad range of climates, including Mediterranean, alpine, temperate 
oceanic and tropical climates, specially in Spain (Vélez et al., 2009) but 
also in other countries such as France (Ruiz-Villanueva et al., Oct 2014), 
China (Li et al., sep 2017), UK (McGrane et al., feb 2017), Colombia 
(Peña et al., 2016) and Kenya (Ruiz-Pérez et al., 2017). Its tank-based 
structure is similar to that of other renowned conceptual models, but 
unlike most of those, its fully spatially-distributed characteristic grants it 
a particular interest for analyzing the impacts of land cover change. 

TETIS conceptualizes the water cycle as a series of seven reservoirs 
representing the storages in the water cycle: interception, snow pack, 
static, surface, gravitational, aquifer and streams (Fig. 2). This study 
focuses on the last four of these compartments, i.e., those directly 
affecting runoff generation. TETIS divides the soil column in three 
layers, each represented by a linear reservoir respectively named sur-
face, gravitational and aquifer storage. The surface and gravitational 
storage are responsible for the overland flow and interflow, respectively, 
which discharge into gullies (the lower order streams in the stream 
network), whereas the aquifer storage produces base flow, which is only 
discharged into rivers (higher order streams). Streamflow routing along 
the stream network (gullies and rivers) is simulated using a geomor-
phological kinematic wave approach. In total, modeling runoff genera-
tion requires 25 parameters: 7 corresponding to the three compartments 
representing soil layers, 9 to gullies and 9 to rivers. To simplify the 
calibration process, TETIS is able to fit all these parameters by just 
calibrating 8 dimensionless hyperparameters or correction factors (FC): 
2 linked to the surface storage, 3 to the gravitational storage, 2 to the 
aquifer, and 1 to the streamflow routing in gullies and rivers. The term 
hyperparameter is used in modeling to denote model parameters that 
modify other parameters of a lower level. In the case of TETIS, the pa-
rameters (in blue in Fig. 2) are maps inferred from physical properties of 
the soil, the land cover and the topography; they are fixed to keep their 
spatial structure. Instead of modifying the parameters directly, the 
hyperparameters (in red in Fig. 2) modify the parameter maps as a 
whole. These hyperparameters are the values tuned in the model 
calibration. 

As mentioned in Section 2, given the extent of the catchments, the 
objective of the analysis and the available data, we created models for 
both catchments with 100 m spatial resolution and daily temporal res-
olution. The calibration period spans hydrological years (starting the 1st 
of October) from 2008 to 2013 (both included), and the validation 
period from 2000 to 2007; in both runs we used the first year as spin-up 
time. 

Fig. 1. Elevation, land cover and saturated hydraulic conductivity maps of the study area: upper Sella and Cares river basin (northern Spain). Black triangles 
represent the gauging stations in the outlets of the basins. Red dots represent the location of the rain gauges. 
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3.2. Hydrograph separation 

The main hypothesis behind this study is that the separation of the 
observed streamflow in two time series (quick flow and base flow) can 
be attributed to the three horizontal flows in TETIS. We assume that the 
quick flow represents the aggregation of overland flow and interflow, 
whereas base flow corresponds to the outflow of the aquifer storage. 
This assumption is grounded in TETIS’ conceptualization (Fig. 2), in 
which both overland flow and interflow represent streamflow generated 
by storm events that is discharged into ephemeral streams (named 
gullies in TETIS), and is further supported by previous publications 
(Stoelzle et al., 2020; Soto, 2020; Cain et al., 2019; Duncan, 2019; Chow 
et al., 1988). With this approach, without any additional observation 
such as soil moisture, NDVI or ET, we have three time series (quick flow, 
base flow and total streamflow) to calibrate sequentially the horizontal 
flows generated by the different compartments. In a regular calibration, 
however, all the compartments are fitted simultaneously against the 
unique total streamflow. 

We adopted as separation method the local-minimum method, taken 
from the USGS software HYSEP (Sloto and Crouse, 1996). We chose this 
method based on its simplicity and widespread application (Chen and 
Teegavarapu, 2020; Soto, 2020; Killian et al., 2019; Eckhardt, apr 2008; 
Zhang and Schilling, 2006); since the purpose of this study is to develop 
a calibration procedure, we focused on that front, assuming that if the 
local-minimum method improves the performance of the calibrated 
model, more complex and site-specific separation methods will perform 
better. We analyzed more complex hydrograph separation methods that 
reproduce the base flow regime more realistically, i.e., complying with 
the five features of base flow enumerated by Duncan (2019). However, 
we adopted the local-minimum method for the sake of simplicity, since 
no separation method reproduces faithfully either the real or the simu-
lated base flow behavior (Tallaksen, 1995). With this approach, we 
expect to approximate the partition of total streamflow in quick and base 
flow, even though this method is unable to reproduce a physically- 

meaningful base flow hydrograph. To prove that, we conducted exper-
iments to check that this simple approach is able to improve the cali-
bration on an array of synthetic cases in TETIS (see the Supplementary 
Material of this paper). 

Fig. 3 shows an extract of the local-minimum method application to 
the streamflow records in the two gauging stations in the study. The 
local-minimum method is a graphical method consisting on two steps. 
The first step is the identification of local minima in the hydrograph 
(black markers); a local minimum is a day with the lowest streamflow in 
a centered time window of width 2N*(gray shadings). Eq. 2 defines the 
overland flow duration in days (N), where A is the area of the catchment 
in km2 and 2N* is the closest odd number to the value 2N. Once the dates 
of the local minima are identified, the base flow hydrograph is the linear 
interpolation of the observed flow in those dates (blue line); in case the 
linear interpolation exceeds the observed hydrograph, the base flow is 
equal to the total streamflow (mid January in Fig. 3). 

N = 0.8⋅A0.2 [days
]

(2)  

3.3. Model calibration 

TETIS includes the automatic optimization algorithm Shuffled 
Complex Evolution - University of Arizona (SCE-UA) (Duan et al., 1992; 
Duan et al., 1993; Duan et al., 1994) to calibrate the model. SCE-UA tries 
to replicate the natural evolution in the optimization process. The 
modeler defines a n-dimensional parameter space inside which the al-
gorithm will look for the global optimum (n is the number of parameters 
to be calibrated). The algorithm starts by randomly sampling across this 
parameter space a population of parameter sets (vectors of length n with 
a value for each parameter). From this point, it iterates a three-step 
process (division, evolution and shuffling) until a convergence crite-
rion is fulfilled, and the parameter set with highest performance is 
selected as the global optimum (Duan et al., 1992). 

In the division step, the population of parameter sets is randomly 

Fig. 2. Conceptualization of the hydrological model TETIS (adapted from (GIMHA, 2018)). The color of the font defines the input variables (green), the parameters 
(blue), the hyperparameters (red) used to calibrate the model, and the outputs (bold, black). The study focuses in the blue tanks, those affecting runoff generation. 
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divided into groups (a.k.a. complexes). During evolution, each complex 
evolves independently towards higher-performing members. The evo-
lution is based on the competitive complex evolution (CCE) algorithm 
(Duan et al., 1992). CCE selects a couple of members from the complex 
(parents) and creates a new parameter set (offspring); the offspring re-
places in the complex the worst-performing parent. CCE iterates 
allowing each member in the complex a chance to generate offspring, so 
there is no loss of information. As in natural evolution, the probability of 
a member being selected as parent is not equal, those members with 
higher performance are more likely to be selected. Also following nat-
ural evolution, offspring can be created by reflection (using information 
from the parents) or mutation (to avoid local minima and add new in-
formation). At some point, the evolution stops and complexes are 
shuffled to make up again a unique population; this step prevents the 
algorithm from finding local instead of global optima. 

To grade the performance in SCE-UA, we must define an objective 
criteria. In this study, we used two objective criteria: the bias (Eq. 3) and 
the Nash–Sutcliffe efficiency coefficient (NSE, Eq. 4) (Nash and Sutcliffe, 
1970). 

bias =

∑n

t=1

(

Qs,t − Qo,t

)

∑n

t=1
Qo,t

⋅100

⎡

⎢
⎢
⎣%

⎤

⎥
⎥
⎦ (3)  

NSE = 1 −

∑n

t=1

(
Qo,t − Qs,t

)2

∑n

t=1

(
Qo,t − Qo

)2

⎡

⎢
⎢
⎣ −

⎤

⎥
⎥
⎦ (4)  

Where Qo,t and Qs,t are respectively the observed and simulated 
streamflow for day t, and Qo is the mean observed streamflow. 

The first step in the calibration procedure is minimizing the bias, so 
that the model generates the correct amount of streamflow. In this step, 
we fit the hyperparameters of the three storage compartments in gray 
shading in Fig. 2 (interception, snowpack and static), i.e., those that 
control the losses of water in the system by evapotranspiration. Ac-
cording to TETIS’ conceptualization (see Fig. 2), water can only exit the 
interception and static storage compartments through evapotranspira-
tion; therefore, they only affect the water balance, i.e., the bias in the 
streamflow. The snowmelt exiting the snowpack storage can either feed 
the static storage (losses through evapotranspiration) or join precipita-
tion to produce streamflow. From the point of view of calibrating the 
runoff generation processes, it is either a loss or an input; therefore, we 
also calibrate it against bias. In particular, we adjust six parameters: 
three parameters of the degree-day snowmelt method (DDF1,DDF2,Tb), 
two parameters controlling soil water sorption (p1,FC1), and a factor of 
the potential evapotranspiration time series (FC2). Bias fitting is done 

independently for each catchment; the hyperparameters here fitted are 
fixed for the rest of the calibration steps, ensuring an unbiased total 
streamflow. 

Once the bias is fitted, the following steps in the calibration try to 
reproduce the flow regime in the observed streamflow. The objective 
criteria is the NSE and the calibration focuses on the 8 hyperparameters 
related to runoff generation. We compare 5 calibration methods (bottom 
left-hand panel in Fig. 4). 

Method 0 represents the reference calibration method in which we 
do not apply hydrograph separation and we use the full power of the 
automatic calibration algorithm. We fit simultaneously all the 8 
hyperparameters against the total streamflow, allowing the algorithm to 
explore the parameter space without constraints. The lack of constraint 
in this type of calibration may lead to non-realistic catchment models, 
even if the performance is high, which is the essence of equifinality and 
the reason for this study. 

As opposed to this reference method, we analyze four sequential 
calibration methods. In these methods, we calibrate successive combi-
nations of the reservoirs controlling runoff generation, so that we can 
calibrate each of these combinations against the most adequate flow 
(quick, base or total). Method 1 represents the common practice of 
many hydrologists, who sequentially calibrate parameters led by expert 
knowledge and the visual inspection of the simulated streamflow. In this 
case, we calibrate sequentially the horizontal flows in the order that a 
raindrop would follow along the conceptualization of the model (Fig. 2): 
overland flow and interflow (T2 and T3), base flow (T4) and streamflow 
routing (T5). This method does not apply hydrograph separation, so the 
target time series in all the three steps is the total streamflow. Method 2 
replicates the three phases in method 1, but applies hydrograph sepa-
ration; the sum of overland flow and interflow is calibrated against quick 
flow, the outflow of the aquifer storage against the base flow, and 
streamflow routing against total streamflow. Method 3 also applies 
hydrograph separation, but it inverts the order of the phases in method 
2: we first calibrate base flow, secondly quick flow, and finally total 
streamflow. In order to calibrate tank 4 in the first phase of method 3, we 
must also fit the two hyperparameters affecting infiltration and perco-
lation (FC3 and FC5), which control the inflow to the tank. Method 4 is a 
simplification of method 2 in which we fuse the last two phases, i.e., we 
fit simultaneously base flow and routing against total streamflow. 

Tables 1 and 2 define more precisely the setup of the calibration 
methods. Table 1 defines the phases in each calibration method; for each 
phase, it indicates the target flow time series, the objective criteria and 
the parameters tuned. Table 2 defines the search range (minimum and 
maximum values) and the initial value applied in the calibration of the 8 
hyperparameters related to runoff generation processes. 

Fig. 3. Base flow separation using the local-minimum method for an extract of the streamflow series in the two gauging stations. The red line is the observed 
streamflow and the blue line the separated base flow; black markers represent the local minima based on a centered window of width 2N∗ (5 days for both 
catchments), shown in the figure by a gray shading. 
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3.4. Scenarios 

We applied the five calibration methods to three scenarios: the 
calibration of the real land use and soil scenario using the observed 
streamflow, and the calibration of synthetic streamflow using either the 
real land use and permeability maps or hypothetical maps. Fig. 4 sum-
marises the general workflow of the study. 

In the first experiment, we calibrated the two catchment models in 
the regular case, i.e., using the observed streamflow and observed land 
use and permeability maps. For the subsequent experiments a reference 
parameterization was required (CFref in Fig. 4). To make sure that this 
parameterization represented a feasible set, we used the results from the 
calibration by the reference method (method 0), selecting from the SCE- 

Fig. 4. Scheme of the study. The bottom left-hand panel introduces the 5 calibration methods applied to the three scenarios (hypothetical scenarios, and the real 
scenario targeting a synthetic or the observed streamflow), which are shown in the other three panels. CFref stands for the reference parameterization used to 
generate the synthetic streamflow in cases 2 and 3. 

Table 1 
Calibration process for each of the methods compared in this study. The first 
phase, water balance, is common for all the methods. OC stands for objective 
criteria.  

Method Phase Flow 
type 

OC Parameters 

All 
methods 

1. Water 
balance 

Total Bias DDF1,DDF2,Tb ,p1,FC1,FC2  

Method 0 2. T2-T5 Total NSE FC3,FC4,FC5,H3,max,FC6 ,FC7,

FC8,FC9  

Method 1 2. T2, T3 Total NSE FC3,FC4,FC5,H3,max,FC6  

3. T4 ” ” FC7,FC8  

4. T5 ” ” FC9  

Method 2 2. T2, T3 Quick NSE FC3,FC4,FC5,H3,max,FC6  

3. T4 Base ” FC7,FC8  

4. T5 Total ” FC9  

Method 3 2. T4 Base NSE FC3,FC5,FC7,FC8  

3. T2, T3 Quick ” FC4,H3,max,FC6  

4. T5 Total ” FC9  

Method 4 2. T2, T3 Quick NSE FC3,FC4,FC5,H3,max,FC6  

3. T4, T5 Total ” FC7,FC8,FC9  

Table 2 
Search range and initial value applied in the calibration of the parameters 
related to runoff-generating processes. All the FC parameters are dimensionless. 
H3,max is measured in mm.  

Parameter Description Minimun Initial Maximum 

FC3 Infiltration 0 0.2 1.5 
FC4 Overland flow 0.001 1 10 
FC5 Percolation 0 0.4 1.5 
FC6 Interflow 0.001 10 5,000 
H3,max Max. capacity of tank 3 (mm) 0 100,000 1,000,000 
FC7 Groundwater recharge 0 0.5 1 
FC8 base flow 0.001 200 50,000 
FC9 Streamflow routing 0 1 1.5  
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UA iterations those parameterizations we considered behavioral 
(|bias| ≤ 5% and NSE⩾0.58), and calculating for each parameter the 
median value among those behavioral parameterizations. Since the 
median of a set of behavioral parameterizations does not need to be 
behavioral, we checked that the median parameterization did satisfy this 
requirement. 

Experiments two and three are synthetic cases in which we created a 
fictitious streamflow by running the model with the reference parame-
terization and various land use and permeability maps. Calibrating 
synthetic cases has some advantages. Since the target streamflow is 
generated by the model itself, we are certain that it is possible to reach 
an ideal performance and we expect to find the original parameteriza-
tion; problems in reaching any of these two goals must be attributed to a 
poor calibration procedure or to equifinality. Furthermore, synthetic 
cases allow us to check if the hydrograph separation method represents 
the partition between quick flow and base flow in the hydrological 
model; we compare the synthetic base flow (not used in the calibration 
procedure) with the base flow obtained from the separation of the 
synthetic total streamflow. 

In experiment two, we simulated a synthetic streamflow using the 
reference parameterization and the observed land use and permeability 
maps. We proceeded by calibrating the model with the five methods 
against this synthetic streamflow. The whole procedure (simulation of a 
synthetic streamflow and calibration) was repeated for both catchments. 
In experiment three, with the objective of analysing the applicability of 
the methodology to diverse conditions without studying a large amount 
of catchments, we designed a series of hypothetical scenarios of land 
cover and soil permeability in the Cares basin. We generated synthetic 
streamflow for the nine hypothetical scenarios and calibrated each of 
them by the five methods. For the sake of brevity, the methodology of 
experiment three and the results of the second and third experiments are 
explained in the Supplementary Material. 

3.4.1. Assessment of performance 
In all three experiments, the procedure is the same: separation of the 

target total streamflow and calibration by means of the 5 methods 
described in Section 3.3. We compared methods in three ways: perfor-
mance in both the total and separated flows, visual inspection of 
hydrographs, and values of the optimized parameterization. We must 
stress that, in the synthetic cases, the flow time series used for 

calibration and performance assessment are not the same. To calibrate, 
we feed the algorithm with the time series resulting from the hydrograph 
separation method, thereby reproducing a real case in which the base 
flow is unknown. However, we assess performance by comparison with 
the synthetic base flow, so that we evaluate how the calibrated model 
reproduces the original partition, instead of the approximation done by 
the hydrograph separation method. 

4. Results 

4.1. Observed streamflow in the real scenario 

Fig. 5 shows the performance in the calibration and validation pe-
riods for the experiment 1, i.e., the real scenario calibrated against the 
observed streamflow. Left-hand panels show the performance in terms 
of NSE, central panels for bias, and the top right-hand panel for the 
number of iterations required in each of the calibration phases. Results 
are organised by type of flow (quick, base or total) and calibration 
method (from 0 to 4). Vertical, gray lines indicate the distance to the 
target value of the objective function. 

Regarding the total flow, there are four methods (all but method 3) 
that performed good in both catchments; total flow bias is close to zero 
and the NSE can be classified as good (around 0.6, except method 0 with 
values slightly lower than 0.5). Method 3 has a strong negative bias in 
both catchments (close to − 50%) and a poor NSE (below 0.4). We ex-
pected that the reference method (method 0) would be the highest- 
performing in terms of total flow, since it uses the full power of the 
automatic algorithm. To our surprise, the reference method is the one 
with the lowest efficiency among those performing appropriately, 
whereas methods applying flow separation (methods 2 and 4) performed 
slightly better than the rest, even for the total flow. Total flow perfor-
mance in the validation period is basically similar; method 3 misbehaves 
while the other four methods are still unbiased, but show a certain loss in 
NSE. This loss is larger in the Sella basin, which causes that the efficiency 
in the Sella model is lower than that of the Cares model during the 
validation period, contrary to what happened for the calibration period. 

The four well-performing models in terms of total flow behave 
differently when looking at the partition in quick and base flow. The two 
methods without hydrograph separation (methods 0 and 1) show a 
strong bias, even larger than 100% (quick flow in method 0 for the Sella 

Fig. 5. Performance (NSE and bias) in the calibration and validation for the real scenario with the observed streamflow for the Cares and upper-Sella river basins. 
The top right-hand panel exhibits the number of iterations required for calibration. The vertical lines represent the spread between catchments. 
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basin). The NSE for these two methods is poor for both separated flows 
(close to − 1 for the base flow) and distinctly lower than the two 
methods that apply hydrograph separation (methods 2 and 4). These last 
two methods are the ones with the highest performance; the separated 
bias is close to null and the NSE is larger than the rest of methods (with 
the exception of base flow in the Sella model). The similar performance 
of these two methods comes from the fact that method 4 is a simplifi-
cation of method 2 with a common quick flow calibration phase. Method 
3, rejected in terms of total flow performance, also misbehaves in the 
separated flows; it shows negative bias in both quick and base flow 
(stronger in the former), whereas NSE is poor for the quick flow (0.15 in 
average), but acceptable for the base flow (0.35 in average), similar to 
methods 2 and 4. The performance of separated flows in the validation 
period renders a similar behavior, where methods 2 and 4 are those 
performing better. As well as in the total flow, the loss of efficiency in the 
validation is larger for the Sella model; this loss is more marked for the 
base than the quick flow, both in terms of bias and NSE. 

The null variability in the number of iterations among catchment 
models is remarkable. Regardless of the catchment, the number of it-
erations that SCE-UA requires to converge is controlled by the number of 
parameters to be optimized in a given phase. This fact favours sequential 
calibration methods (all but method 0), that instead of analysing an 
eight dimensional parameter space (as many as parameters involved in 
runoff generation), explore subsets of it. The result is that sequential 
methods require a third of the number of iterations needed by the 
reference method. This reduction in computation time is gained at the 
expense of a less exhaustive analysis of the parameter space and, thus, a 
lower probability of finding the global optimum. The difference between 
sequential methods applying flow separation (methods 2, 3 and 4) and 
the common practice (method 1) is that we use our knowledge about 
how the catchment may work to ensure optimized models with a proper 
flow partition. 

The scatter plots in Fig. 6 provide an insight into the previous per-
formance results. The plots compare the observed flow Qobs with the 
simulated flow Qsim (generated with the optimized parameterization), 
each dot represents the pair of values for a day. Colours depict types of 
flow in order to show how the calibrated model reproduces flow parti-
tion. In a perfect fit, all the dots would be placed along the 1:1 line, 
which means equal observed and simulated flow. We must stress that in 
this experiment the observed quick and base flows are not actually 

observed, but created with the hydrograph separation method. This 
means that the partition has no real meaning. Nevertheless, the results of 
the synthetic experiments (Supplementary Material) prove that the 
simplicity of the hydrograph separation method here employed was 
representative enough of the real behavior of the catchment. 

A visual analysis shows that 5 out of the 10 plots represent a correct 
model, namely, method 1 in the Sella basin and methods 2 and 4 in both 
basins. Method 0 optimized completely opposite models for the two 
basins; whereas in the Cares model base flow accounts for almost the 
entire total flow (therefore quick flow is basically non-existent), in the 
Sella model there is no base flow and the total flow is equal to the quick 
flow. Given the similar climate and geology in these two adjacent basins, 
it is extremely unlikely that the two basins function in such a different 
manner; most likely, the real catchments do not behave in any of these 
extreme ways. The Cares model optimized by method 1 also suffers from 
an incorrect flow partition; similarly to method 0, the model attributes 
almost the entire total flow to the base flow, so there is no quick flow. 
Method 3 fails to reproduce quick flow, probably due to a wrong 
parameterization of infiltration and percolation during the base flow 
fitting. 

The optimized hyperparameter values obtained by each calibration 
method are shown in Fig. 7. Each plot contains the values for a catch-
ment; hyperparameters are grouped by the type of flow they directly 
affect. The dotted, gray line spans the extreme optimized values to show 
the variability among methods. Parameter values are normalized by 
their search range (Table 2) to be able to show parameters with different 
orders of magnitude. 

The four methods with an optimal total flow performance (methods 
0, 1, 2 and 4) optimized diverse parameterizations; an example of the 
equifinality problem. When comparing those methods that partition 
flow correctly (methods 2 and 4, and method 1 in the Sella basin), the 
variability in the parameterizations is notably reduced: FC3, FC5, FC6,

FC7, FC8 and FC9 adopt similar values in the Sella basin, and parame-
terizations in the Cares basin are almost identical for methods 2 and 4. 
This means that the parameter range that properly addresses flow 
partition is narrower than that which only reproduces correctly the total 
flow. Our approach attempts to guide the automatic calibration algo-
rithm towards this limited range, thus avoiding cases where a correct 
total flow calibration does not represent a realistic catchment func-
tioning. 

Fig. 6. Scatter plots of the observed vs simulated daily flows in the calibration of the real scenario with the observed streamflow for the Cares and upper-Sella river 
basins. Rows correspond to each of the catchments; columns correspond to the calibration methods. It includes the performance in terms of NSE and bias for the three 
types of flow, represented by colours. 
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In the majority of cases the extreme optimized values correspond to 
one of the methods that could not reproduce the flow partition (methods 
0 and 3, and method 1 in the Cares basin). Quick flow parameters show 
larger variability than the base and total flow parameters, with the 
exception of FC7 in the Sella model. The variability in the optimized 
values might be linked to the sensitivity of the parameter. Highly sen-
sitive parameters have a narrow range of values with optimum perfor-
mance (Pianosi et al., 2016), so the calibrated parameter value is similar 
regardless of the calibration method. Therefore, base and total flow 
parameters would be more sensitive than quick flow parameters. 

4.2. Synthetic streamflow in the real scenario 

The results of this experiment are thoroughly commented on the 
Supplementary Material. To summarize, this experiment proved that the 
proposed correspondence between the quick and base flow time series 
resulting from hydrograph separation and those simulated with TETIS is 
not perfect, but approximate enough. In terms of performance in the 
simulation of total flow, only methods 1 and 2 obtained a high NSE and a 
negligible bias in both catchments. When analysing separated flows, 
method 1, which does not apply flow separation, is clearly outperformed 
by method 2, which does apply flow separation. Regarding optimized 
hyperparameter values, none of the calibration methods was able to 
replicate the reference parameterization, proving that the calibration 
methods here applied do not remove equifinality even in a simplified 
scenario such as a synthetic case. However, methods that apply flow 
separation get values closer among them and closer to the reference 
value. 

These results prove that, even though method 2 does not remove 
equifinality, it can at least constrain it and force the calibration to get 
parameterizations closer to the reference and with a correct behavior in 
terms of runoff partition. 

4.3. Hypothetical scenarios 

The results of this experiment are thoroughly commented on the 
Supplementary Material. The eighteen calibrations carried out in this 
experiment are a perfect example of the problem of equifinality and the 
potential of the sequential methods here exposed. 

When analysing the total flow performance, all methods performed 
successfully both in terms of NSE and bias. As expected, the reference 
method (method 0) was the highest-performing one. The difference 
between methods appears when looking at the performance for the 
quick and base flow, where methods that apply flow separation stand 
out, specially method 2. In some scenarios, method 0 represents the 
perfect example of the risk of granting physical meaning to an optimised 
model without further tests: the simulation of total flow was utterly 

perfect, but the partition clearly wrong. Methods applying flow sepa-
ration, instead, reproduce adequately flow partition at the expense of a 
slight loss in total flow performance. 

The automatic optimization algorithm could not find the reference 
parameterization in any of the hypothetical scenarios. This is the case 
even for method 0, for which we allowed the algorithm to exhaustively 
explore the parameter space. However, methods using hydrograph 
separation (2, 3 and 4) reduce the variability in the optimized hyper-
parameter values among scenarios, hence constraining the equifinality 
problem. 

5. Discussion 

The multiple cases here presented dwell in the difficulty of coping 
with the equifinality problem and the need to constrain the calibration 
process in order to tackle it. We show how diverse parameterizations 
representing different catchment functioning are equivalent in terms of 
total flow performance. Our approach attempts to distinguish which of 
those parameterizations also reproduce the actual catchment processes, 
which we represent by the partition of the total flow. 

Results show that the reference calibration method, in which we 
apply no constraints in the parameter space to be evaluated, out-
performs the methods here designed in the hypothetical scenarios, but 
not in the real scenario, neither with a synthetic nor the observed 
streamflow as calibration target. Apart from that fact, the reference 
method has two disadvantages. In the first place, in a considerable 
number of cases the method optimizes catchment models physically 
unfeasible, i.e., in which the partition in quick and base flow is incorrect. 
From our results, this fact occurs in all the four real case scenarios and in 
three out of nine hypothetical scenarios. In the second place, this 
method is computationally less efficient than the sequential methods; 
since the algorithm must explore at once the eight-dimensional 
parameter space, the number of iterations it requires is approximately 
3 times larger than that needed in the sequential methods, which explore 
subsets of that parameter space. 

As a method in between the reference and the partition methods here 
developed, we included the common practice of many hydrologists, who 
calibrate models by sequentially fitting parameters always with the total 
streamflow as target. Results prove that this method outperforms the 
reference method in the real scenarios, but is the one with the lowest 
performance in the hypothetical scenarios. In both real and hypothetical 
scenarios it shows high performance in terms of total flow, but it fails to 
reproduce flow partition in one out of four real scenarios and all of the 
nine hypothetical scenarios. 

Among the methods that apply flow separation, method 2 stands out 
as the highest-performing of all. In this method, we sequentially cali-
brate storages from top to bottom soil layers and lastly the streamflow 

Fig. 7. Optimized parameterization in the calibration of the real scenario with the observed streamflow for the Cares and Sella basins. Hyperparameter values are 
normalized by their search range. 
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routing. The main attribute of this method is that it ensures a correct 
flow partition in all cases. In the real scenario (both synthetic and 
observed streamflow) this method outperforms all of the others, even 
unexpectedly for the total flow; in the hypothetical scenarios, the 
improvement in flow partition is gained at the expense of a slight loss of 
total flow performance when compared with the reference method. 
Because this method explores subsets of the parameter space, it may not 
find the global optimum (what explains the loss of total flow perfor-
mance in the hypothetical scenarios), but it reduces the computational 
effort to a third. 

None of the methods is able to resolve the equifinality in the cali-
bration of the conceptual hydrological model. Proof of that fact are the 
diverse parameterizations that performed correctly in the synthetic 
cases, in which the calibration algorithm should have found similar 
parameter values to the reference parameterization. The fact that the 
automatic calibration algorithm, when applied with total freedom such 
as in method 0, has not been able to replicate neither the streamflow nor 
the parameterization in the synthetic cases of the real scenario, raises 
doubts about its efficiency in real scenarios. Although equifinality is not 
removed, the results show that constraining the global search in the 
parameter space, such as in method 2, guides the automatic algorithm 
towards a reduced region in the parameter space with better perfor-
mance and, more importantly, realistic catchment models. This study 
does not attempt to invalidate SCE-UA as a global optimization algo-
rithm, but we draw attention to the importance of constraining the 
calibration of conceptual hydrological models in order to prevent 
equifinality from generating unrealistic catchment models. This is of 
vital importance when the hydrological model is the starting point of a 
posterior analysis, for instance, erosion, nutrient transport or vegetation 
dynamics. 

We have employed the local-minimum method to separate the total 
streamflow into its quick and base flow components, which is a 
simplistic approach. To prove that the simplicity of this method does not 
affect the outcomes of the study, we evaluated its performance in syn-
thetic cases, both in the real and hypothetical scenarios. The negligible 
bias between separated and synthetic flows (see Figure S1) proves that 
the separation method properly represents the flow partition in TETIS. 
However, there is ground for improvement in this part; applying more 
realistic separation methods, such as those presented in Duncan (2019); 
Eckhardt, apr 2008; Chapman, apr 1999; Lyne and Hollick, 1979 or 
tracer methods if available, will enhance the capabilities of the 
sequential calibration procedures here developed, specifically in terms 
of base flow NSE. There is a limitation in this regard, which is the rep-
resentation of the aquifer’s outflow in the hydrological model; no matter 
how realistic the separation method is, the base flow performance is 
limited to the ability of the model to simulate base flow, which in the 
case of TETIS seems to be excessively reactive, giving support to the 
implementation of a cascade of linear reservoirs instead of a single one 
(Tallaksen, 1995). Future research might also deal with the idea of 
dividing streamflow in more than two components (Stoelzle et al., 
2020). If we could separate it in three components (surface runoff, 
interflow and base flow), we could calibrate individually each of the 
three soil storage reservoirs involved in runoff generation, boosting the 
advantages of the sequential calibration method here developed. This 
approach may also improve the observed lack of sensitivity of the quick 
flow parameters, by calibrating these 5 parameters in two instead of one 
single phase. 

In this study we have not addressed equifinality in crucial processes 
such as snow melt processes and notably evapotranspiration, repre-
sented in TETIS by three specific storage reservoirs (interception, 
snowpack and static). Current research in our group deals with this 
shortcoming; we are exploring how to incorporate remotely sensed 
products in the calibration of snow cover and evapotranspiration, 
exploiting also the spatially distributed property of TETIS (Koch et al., 
2015; Demirel et al., 2017; Mendiguren et al., 2017; Koch et al., 2018; 
Bai et al., 2018; Tuo et al., 2018; Nemri and Kinnard, 2020). 

The results here presented are specific to a type of climate and hy-
drological regime. We consider that the benefits of sequential calibra-
tion and flow partition can be extrapolated to other climates and 
hydrological regimes, though further analyses must be done to prove it; 
specially regarding the hydrograph separation method. 

6. Conclusions 

In this study, we have analyzed the equifinality in the calibration of a 
conceptual hydrological model and developed a sequential calibration 
method that limits its consequences. The idea is to calibrate indepen-
dently the outflows of the different runoff-generating reservoirs in the 
hydrological model against a time series representative of that process; 
to create these target time series, we apply hydrograph separation using 
the local-minimum method. The study focuses on two mesoscale 
catchments in the northern side of the “Picos de Europa” National Park 
(Spain); in these two catchments, we carried out three calibration ex-
periments: the real case scenario with both the observed and a synthetic 
streamflow as targets in the calibration, and hypothetical scenarios of 
land cover and soil permeability with synthetic streamflows. 

Results prove that a sequential calibration method using separated 
flows leads the automatic calibration algorithm towards model param-
eterizations that better reproduce the runoff-generating processes 
occurring in the catchment. In the real scenario, this procedure not only 
improves the performance for the separated flows, but also for total 
streamflow. Only when applied to hypothetical scenarios of soil 
permeability and land cover, the improved performance in the separated 
flows comes at the expense of a slight loss of total streamflow perfor-
mance. The constraints imposed in the sequential calibration procedures 
reduce the range in the parameter space of the behavioral models, hence 
they reduce equifinality. On top of the previous, sequential calibration 
methods are computationally more efficient since they explore the 
parameter space in subspaces; the setup of this study reduced the 
number of iterations in the optimization algorithm to a third. 

This study presents a first, promising attempt to use hydrograph 
separation to improve the calibration of conceptual hydrological 
models. Further research should implement more realistic separation 
methods that better reproduce the nature of base flow, or decompose 
streamflow in more than two components. We strongly suggest imposing 
constraints, such as separated flows, in the calibration of hydrological 
models to induce models that better reproduce catchment processes. 
This is of grand importance if the purpose of hydrological model is not 
focused strictly on streamflow, but to analyse catchment processes such 
as erosion, impacts of land cover change, groundwater recharge or 
nutrient cycling, for instance. 
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