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MODELIZACIÓN COMPUTACIONAL

Autor: Inés Sánchez de Movellán Sáiz
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Abstract

The current interest in layered systems is encouraged by the discovery of a broad range
of new properties and effects, such as superconducting states, 2D magnetism or insulator-
metal transitions. High-temperature superconductors are characterized by two main fea-
tures, namely, layered structure and antiferromagnetic coupling. Along this line, it has
been proposed that a possible superconducting state could be observed in silver difluoride
AgF2 as a result of its apparent layered structure and strong intraplanar antiferromag-
netism. Nevertheless, the buckling of the layers seems to prevent this transition to the
superconducting state. On the other hand, the two mentioned properties of superconduc-
tors can be found in La2CuO4, that belongs to the Ruddlesden-Popper phase of layered
perovskites, in which Heisenberg ferromagnets K2CuF4 and Cs2AgF4 are also included.

As a common aspect, in the four systems there is a strong dependence on the magnetic
order with their structural distortions, which are induced by the electron-phonon cou-
pling (the so-called vibronic coupling in the literature). However, the low symmetry of
these compounds suggests that the usual interpretation within Jahn-Teller effect models
requires further analysis. Therefore, we have studied them from a different perspective,
focusing on the symmetry of the parent phases and their distortions to the experimentally
measured structures. In addition, magnetic order has been considered in both parent and
experimental phases as well as throughout the distortion.

To this end, first-principles periodic simulations have been carried out using Crystal soft-
ware, which allows performing calculations of electronic structure on solids. In order
to provide insight on the band structure of layered perovskites, a first-principles-based
(second-principles) model has been used. Additionally, we have perform cluster calcu-
lations with Amsterdam density functional code, employed to simulate transition-metal
complexes. Based on the results of these calculations, we have observed that the magnetic
order of AgF2 depends on the cooperative distortion of AgF4−

6 complexes and lattice pa-
rameters, whereas the calculations in layered perovskites K2CuF4 and Cs2AgF4 indicate
that the covalent contribution, coming from the vibronic coupling with excited states,
seems to be the main cause of the change in the magnetism. As a salient feature, we have
observed that the three fluoride systems present ferroelasticity, a property strongly related
with magnetism in these systems.

Keywords: vibronic coupling, magnetism, symmetry, first-principles simulations, layered
perovkistes, ferroelasticity.





Resumen

El interés actual en los sistemas en capas viene motivado por el descubrimiento de un
amplio abanico de nuevas propiedades y efectos, como transiciones a estados supercon-
ductores, magnetismo en 2D o transiciones metal-aislante. Los superconductores de alta
temperatura tienen dos caracteŕısticas principales: estructura en capas y acoplamiento
antiferromagnético en la capa. En esta ĺınea, se ha propuesto que un estado superconduc-
tor podŕıa ser observado en el difuoruro de plata AgF2, como resultado de su aparente
estructura en capas y fuerte antiferromagnetismo dentro de la capa. Sin embargo, la de-
formación de las capas parece impedir la transición a la fase superconductora. Por otra
parte, las dos propiedades mencionadas están presentes en La2CuO4, que pertenece a
la fase Ruddlesden-Popper dentro de las perovskitas en capas, entre las que se incluyen
también los ferromagnéticos de Heisenberg K2CuF4 y Cs2AgF4.

Una caracteŕıstica común a los cuatro sistemas es la fuerte dependencia entre el orden
magnético y las distorsiones estructurales inducidas por el acoplamiento entre electrones y
núcleos (el llamado acoplamiento vibrónico en la literatura). Sin embargo, la baja simetŕıa
de estos compuestos sugiere que la interpretación habitual dentro de los modelos de efecto
Jahn-Teller requiere un análisis más detallado. Por tanto, en este trabajo hemos tomado
una perspectiva diferente, centrándonos en la simetŕıa de la fases madre y en sus distor-
siones hasta las estructuras observadas experimentalmente. Además, se ha considerado el
orden magnético tanto en las fases madre y experimental como a lo largo de la distorsión.

Con este objetivo, se han realizado simulaciones de primeros principios en sistemas pe-
riódicos mediante el programa Crystal, que permite hacer cálculos de estructura electrónica
en sólidos. Para interpretar la estructura de bandas de las perovskitas en capas se ha usado
un modelo basado en primeros principios (segundos principios). Complementariamente,
se han llevado a cabo cálculos en agrupaciones de átomos con el código Amsterdan density
functional, usado para simular complejos de metales de transición. A partir de los resulta-
dos obtenidos, se ha observado que el orden mágnetico del AgF2 depende de la distorsión
cooperativa de los complejos AgF4−

6 y de los parámetros de red, mientras que los cálculos
en K2CuF4 y Cs2AgF4 apuntan a que la contribución debida a la covalencia que proviene
del acoplamiento vibrónico con estados excitados es la principal causa de los cambios en
el magnetismo. Un rasgo destacado en estos sistemas es que presentan ferroelasticidad,
una propiedad fuertemente relacionada con el magnetismo en estos casos.

Palabras clave: acoplamiento vibrónico, magnetismo, simetŕıa, simulaciones de primeros
principios, perovskitas en capas, ferroelasticidad.
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Introduction 1

1. Introduction

Since the discovery of superconductor oxocuprates in 1986 [1], a great deal of interest
has been paid to layered superconductors, due to the emergence of non-BCS and high-
temperature (high-TC) superconductivity. During the last three decades, new types of
superconductors with unusual mechanisms and properties have been studied. Intense
research efforts have been focused on developing new transition-metal based high-TC su-
perconductors. Among other examples, in 2008 the discovery of the iron-based layered
superconductor La[O1−xFx]FeAs was reported. This system experiences a superconduct-
ing transition when doped with F− ions occupying O2− atomic sites [2].

Currently, the field of layered superconductors is still developing. Despite improvements
in the understanding of the nature of superconducting state in layered systems in re-
cent years, unresolved issues remain, partly due to the strong electron correlation and
competition between various effects, leading to different phases fairly close in energy [3].
Furthermore, in layered materials, which are highly two-dimensional systems, the strong
intralayer coupling and weak interlayer interaction originate new electronic and magnetic
states. Their quantum states along with the ability to change their properties by mod-
ifying composition or size have turned layered materials a relevant topic in solid state
physics.

In the search for new high-TC superconductors, it has been proposed that superconductiv-
ity could be observed in doped Ag2+ flourides [4], due to their apparent similarities with
layered cuprate La2CuO4, such as the strong antiferromagnetic (AFM) coupling in the
layer and the electronic configuration, since both compounds contain d9 transition-metal
ions. Seemingly, this possible superconducting state is frustrated by the buckling of the
atomic layers (see Figure 1.1).

Understanding the properties of layered solids is a crucial point in order to achieve their
full potential. Then, the first step is to analyse their crystalline structure at normal
conditions. However, unraveling the microscopic origin of each structure is complicated
due to the large number of interactions and instabilities that give rise to different structures
whose energies can be very close.

Bearing all these facts in mind, in this work four layered systems have been studied, namely,
the layered perovskites K2CuF4, Cs2AgF4 and La2CuO4 and the silver difluoride AgF2.
They contain the transition-metal complexes CuF4−

6 , AgF4−
6 and CuO8−

6 , where the central
cation M (M = Cu2+, Ag2+) is sixfold coordinated by the anions (F−, O2−), henceforth
called ligands. The electronic configuration of the central cation is d9 (3d9 in Cu2+,
4d9 in Ag2+). This open shell configuration involves a non-symmetric electron density
in the transition-metal ion which causes a net force over ligands, that induces structural
distortions which have been largely associated with Jahn-Teller (JT) effect [4] - [9], where
the initial local symmetry of the complexes is octahedral. This usual interpretation has
lead to misleading conclusions about distortions and magnetism. In this work we have
followed a different path, focusing mainly on the symmetry of the systems, instead of using
rough JT models.

As we will see in Section 3, the JT effect is a particular case of electron-phonon (vi-
bronic) coupling, in which tight conditions of symmetry and electronic degeneration must
be fulfilled. However, the low-symmetry (orthorhombic) of these compounds indicates
that further analysis is required. Vibronic interactions present in these systems are ac-



Introduction 2

compained by a spontaneous symmetry breaking, one of the most active topics in current
research in the field of physics. One of the key elements in vibronic coupling problems is
the concept of parent phase from which the experimental phase comes, and whose analysis
has been a crucial point in this work. From first-principles simulations, we are able to
calculate the ground state of this parent phase and, therefore, the structural distortion to
the experimentally observed structure can be studied.

In this project we are especially focused on the relation between crystalline structure
and magnetism. Specifically, we have analysed how the distortion due to vibronic cou-
pling affects the magnetic order of the ground state, with the ultimate goal of controlling
magnetic order by changing the structure of the system. It can be remarked the impor-
tance of parent phase analysis carried out in this work, in terms of both crystalline and
magnetic structures, and their underlying relation. This analysis has been performed by
means of first-principles simulations in the framework of spin-unrestricted Kohn-Sham
density functional theory (KS-DFT). First-principles calculations are a powerful tool for
understanding experimental results, analysing properties and phenomena that cannot be
studied experimentally, such as non-equilibrium phases or metastable states, as well as in
the design of new materials. In addition, a simple model of second-principles simulations
have been used in order to obtain a first approximation of the band structure of layered
perovskites, and its relation with magnetism.

1.1. Objectives and structure of this work

As mentioned above, the main purpose of this work is to inquire the consequences of
vibronic coupling over crystalline and magnetic structures of four systems containing MX6

complexes (M = Ag2+, Cu2+, X = F−, O2−): fluoroargentate AgF2 and layered perovskites
K2CuF4, Cs2AgF4 and La2CuO4. Accordingly, this work is divided in two parts. The first
is dedicated to AgF2 while the second concerns the three layered systems, as explained
below:

• First, we have studied the structure of AgF2 as well as the ground state of AgF4−
6

complexes by means of DFT simulations. It is worth noting the importance of the
analysis of the parent phase and the distortion, conducted by cooperative JT effect,
from the parent high-symmetry phase to the experimental one. Furthermore, we
have explored the apparent layered structure and the relation between magnetism
and cooperative JT effect in this material, where we have found that the magnetic
order is a direct consequence of vibronic coupling.

• Then, we have explored the geometry and magnetism of actual layered structures,
K2CuF4, Cs2AgF4 and La2CuO4. In the first two materials we have found a change
in the magnetic order from AFM in the high-symmetry parent phase to ferromag-
netic (FM) in the low-symmetry phase, when the systems are distorted following
an orthorhombic distortion caused by pseudo Jahn-Teller (PJT) effect. By contrast
La2CuO4 is stable under the same deformation.

This work is organized as follows: in the next two parts (Sections 1.2 and 1.3) fluoroar-
gentate and layered perovskites are introduced. Then, in Section 2, the computational
methods employed and their fundamentals are described, as well as the details of our cal-
culations. Section 3 is dedicated to vibronic coupling and its associated effects (JT and
PJT effects), including its relation with magnetic order. The next two parts, Section 4
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and Section 5 cover the results and analysis of the computational study of AgF2 and lay-
ered perovskites respectively, as well as the comparation between them. Finally, Section
6 collects the main conclusions of this work and future research in this area.

1.2. AgF2

Among high-TC superconducting materials, cuprate superconductors are a family of sys-
tems composed by layers of copper oxides CuO2 alternating with layers of other metal
oxides. Superconductivity comes from the strongly interacting d9 electrons in the men-
tioned CuO2 slabs. In these materials, the ground state of the so-called parent phase is
found to be an antiferromagnetically ordered Mott insulator [10], in which the different
chemical structure of the layers helps localizing the electrons in the layer and preventing
the electron hopping between them.

Although the mechanism by which high-TC superconductivity in cuprates occurs is still
under debate, there are some shared properties present in this effect, such as the previously
mentioned layered structure and AFM ground state. In addition, it can be noted the
presence of elongated CuO6 complexes, usually related to the JT effect.

During the last years, the search of d9 superconductors has also turned to compounds
containing 4d9 Ag2+ cations. As previously mentioned, it has been proposed that high-
TC superconductivity may be observed in doped Ag2+ flourides [4] [11], due to its apparent
layered crystal structure and a charge transfer insulating ground state with strong AFM
interaction within the layers [12]. Among Ag2+ fluorides we have been focused on the
fluoroargentate AgF2, whose structure is represented in Figure 1.1.

Figure 1.1: Left: orthorhombic Pbca structure of AgF2. The complex AgF4−
6 and Ag2+-F−

distances (in Å) are also represented. Right: layered structure of buckled AgF2 sheets, including
the non-collinear arrangement of spins (blue and orange arrows).

In this system, flourine opens the electronic d10 shell of silver. In contrast to Ag+, for
which there are more than 16000 known compounds, there are only about 100 systems
containing Ag2+ cations [4]. The scarcity arises in the stability of Ag2+, which tends to
separate in Ag+ and Ag3+. Therefore, AgF2 was not synthesised until 1971 by Fisher and
coworkers [13]. For Ag2+ compounds, the presence of a more contracted 4d shell leads to
an increase in covalency of the chemical bonding [4].

Regarding the formation of AgF2 in the ionic picture, there is a transfer of hole from
p-type orbitals of F to d-type orbitals of Ag and thus, AgF2 is a charge transfer insulator,
where electrons in 4d shell are strongly correlated.
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As mentioned above, it has been proposed that electronic structure of AgF2 is rather
similar to insulating cuprates. However, it is more electronegative which complicates the
doping. On the other hand, the buckling of AgF2 planes, prevents the superexchange
constant J from reaching values found for oxocuprates and enhaces self-trapping lattice
effects (polarons) [12]. As shown in Figure 1.1, AFM order in ab plane of AgF2 is charac-
terized by a non-collinear arrangement of spins, which are tilted due to spin-orbit coupling
(Dzyaloshinsky-Moriya interaction) [13]. Weak FM interaction is found in bc plane.

Recent studies based on first-principles calculations proposed that van der Waals forces are
responsible of interlayer interaction, as occurs in graphite and thus, layers in AgF2 should
be easily exfoliable [14]. However, this conclusion seems contradictory with the apparently
3D structure of AgF2 and the strong covalency of the Ag2+-F− bonds. Following these
lines, in Section 4 we will discuss the origin of crystal structure of AgF2 and its influence
in the magnetism.

To this end, the analysis is divided in four main steps: (1) Exploration of the parent phase
of AgF2 and determination of its ground state (Section 4.1). (2) Analysis of the trigonal
distortion from this reference phase (Section 4.2). (3) Study of cooperative effects and
their connection with magnetism (Section 4.3). (4) Examination of the apparent layered
structure of this compound as well as the presence of ferroelasticity (Section 4.4).

1.3. K2CuF4, Cs2AgF4 and La2CuO4

Over the last decades, a great deal of attention is focused on materials with perovskite-
type structure. This family of structures comprise a wide range of systems with a huge
amount of worthwhile properties at both fundamental and applied level. Among these
properties, it can be noted the giant magnetorresistance in some manganites of AMnO3

type, superconductivity in cuprates which stem from ACuO3, Mott insulator-metal tran-
sitions and so on [15]. On the other hand, perovskites have played an important role in
applications of different fields, such as spintronics and optoelectronics and recently, also
in renewable energies sector, where new solar cells are based on hybrid inorganic-organic
perovskites [16].

The basic perovskite structure is cubic with chemical formula ABX3 [17], where A is
usually a large cation (alkaline or rare earth elements), B a small cation (generally a
transition-metal 3d, 4d or 5d) and X an anion (O2−, F−, Cl−...). The tridimensional
lattice is composed of BX6 octahedrons that share corners, as shown in Figure 1.2 (b)

(a) (b)

Figure 1.2: (a) ABX3 perovskite unit cell and (b) periodic structure
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The chemical composition and structure of these systems together with the presence of
d orbitals partially occupied, which usually involves strong electronic correlation and lo-
calization, lead to structural distortions (rotations and deformation of octahedrons, polar
displacements) as well as the coexistence of different interactions [15].

Cubic perovskite is the basic structure for more complex systems, as the well-known
layered perovskites, which are formed by 2D slabs of BX6 units separated by some motif.
Among the different types of layered perovskites, we have been focused on Ruddlesden-
Popper phases A2BX4, where the slabs of sixfold coordinated complexes are alternated
with layers of rock salt structure AX. In particular, our study is centred on K2CuF4,
Cs2AgF4 and La2CuO4, whose conventional cells are represented in Figure 1.3.

Figure 1.3: Layered perovskites K2CuF4 (left), Cs2AgF4 (center) and La2CuO4 (right) in the low
symmetry (experimental) Cmca phase, including CuF4−

6 , AgF4−
6 and CuO8−

6 complexes.

In layered perovskites, small variations in the chemical composition may change signif-
icantly the geometry, symmetry, bonding and band structure, leading to a wide range
of new 2D properties [15]. As in cubic perovskites, in these layered systems there are
cooperative distortions and many physical interactions, which produce complex states.
Consequently, understanding and modelling this sort of compounds is quite complicated
and requires physical insight of its structure and properties.

Among these systems, K2CuF4 and Cs2AgF4 are Heisenberg ferromagnets, i.e., they show
FM order in the plane orthogonal to c axis. The FM phenomena of transition-metal pairs
in crystals and molecules have been an extensively interesting problem for physicists,
chemists and biochemists. In order to describe the FM properties, several physical models
have been proposed [18].

The three compounds comes from the parent structure K2NiF4, which belongs to the
tetragonal space group I4/mmm (see Figure 5.1). These systems undergo a distortion
from the high-symmetry phase to the low-symmetry orthorhombic phase Cmca, which
has significant implications in the magnetic order displayed by them. It is worth noting
the key role of orbital degree of freedom in order to understand both crystalline and
magnetic structure of these systems [19].

Despite the three layered perovskites comes from the same parent structure and their
electronic configuration is quite similar (d9) they show different behaviour. K2CuF4 and
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Cs2AgF4 present antiferrodistortive (AFD) orbital order and are FM in ab plane [19].
By contrast, La2CuO4 shows strong AFM coupling, and the orbital ordering is ferrodis-
tortive (FD). The terminology of FD and AFD follows the classification proposed by
Kanamori [20]. In insulating solids with open shell ions involving degenerate electronic
states, vibronic coupling, which leads to JT distortions between adyacent atoms (see Sec-
tion 3), produces long-range structural order [19]. Kanamori classified these distortions in
FD when all sites in the lattice are aligned and AFD where the distortions are opposite
in neighboring sites (see Figure 1.4).

Following these lines, Kugel and Khomskii (KK) made a fundamental contribution to this
field, showing that superexchange interaction in orbitally degenerate ions leads to cooper-
ative orbital ordering. The cooperative distortion is a direct consequence of these orbital
orderings [21]. In this model Kugel and Khomskii proposed that the exchange interac-
tion, which is crucial to understand the magnetic order, may also affects the structure,
contributing to crystal distortions.

Despite the success of KK model in predicting the AFD distortion and AFM order in cubic
perovskites as KCuF3, KCrF3 or LaMnO3, it fails when is applied to the high-symmetry
parent phase of K2CuF4 and Cs2AgF4, where the correct ground state and orbital ordering
is reached after considering the charge-transfer in the insulating state [22]. On the other
hand, KK model does not explain why La2CuO4 shows different orbital and magnetic
orderings.

In contrast to this short-range model, the strong difference in the orbital ordering of these
compounds lies in the long-range electric field created by the lattice over the transition-
metal complexes [19]. Althoug the high-symmetry parent phase is the same in all cases, in
K2CuF4 the electrostatic potential stabilizes the equatorial component of CuF4

6 units and,
therefore, the electron is localized in x2 − y2, and the compound displays FD(3z2 − r2)
ordering. On the other hand, in La2CuO4 the axial component is lower in energy, favoring
the electron localization in 3z2 − r2 and FD(x2 − y2) orbital ordering. The energy gap
between 3z2−r2 and x2−y2 when the electrostatic potential is taken into account (∼ 0.3−
0.4 eV) is larger than the typical values of energies involved in JT effect or superexchange
(typically lower than 0.1 eV) [19].

Figure 1.4: Four types of orbital orderings in CuF2 and CuO2 planes. In the case of AFD orderings
the symbol ∼ means that these orbitals do not have a pure character since the wave functions are
modified by the orthorhombic distortion.
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The FD(3z2 − r2) phase in K2CuF4 is unstable due to PJT effect, where the instability
is driven by changes in the electron density, and thus, in bond covalence. This effect
leads to orthorhombic distortions of the complexes and the consequent change in the
orbital ordering from FD to AFD(∼ 3x2 − z2/∼ 3y2 − z2) [19]. The symmetry of the
system is reduced from tetragonal I4/mmm to orthorhombic Cmca, which is followed by a
change in the magnetic order of this system, from AFM in the parent phase to FM in the
orthorhombic experimental phase. The situation is analogue in Cs2AgF4. By contrast, in
La2CuO4, the orbital ordering remains FD(x2 − y2) after the distortion to Cmca phase
(tilting of CuO8−

6 complexes) as well as the AFM order.

As shown by Garćıa-Fernández et al. in [19], in noncubic insulating crystals containing
d9 transition-metal ions without orbital degeneration, understanding orbital ordering and
distortions requieres to go beyond the concept of superexchange and KK model. For both
K2CuF4 and La2CuO4, it was found that the orbital ordering is determinated by the
electrostatic potential created by the rest of lattice ions over the MX6 complexes. Taking
these facts into account, one of our objectives is to extend these results by including the
magnetic order in both parent and experimental phases.

In order to analyse these facts we perform first- and second-principles simulations in both
FM and AFM states of high- and low-symmetry phases. The procedure is as follows: (1)
Examination of structure and magnetism of both parent and experimental phases (Section
5.1). (2) Calculation of the distortion from parent to experimental phase (Section 5.2).
(3) Analysis of the band structure from first- and second-principles (Section 5.3). (4) To
study the emergence of ferroelasticity under distortion-induced strain (Section 5.4)
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2. First- and second-principles calculations

One of the main problems in condensed matter physics is understanding and predicting the
properties of materials. The fundamental basis of a wide range of phenomena in materials
can be understood by their electronic structure [23]. Over the last decades, computational
simulations have proven to be succesful in determining the electronic structure of a large
amount of materials and, therefore, in predicting the behaviour of these systems.

In this work we have employed first-principles simulations to analyse crystalline and mag-
netic structures of different solids, with the main purpose of uncovering the underlying
mechanism that leads to experimental observations. It is worth noting the importance
of first-principles simulations in order to obtain the parent phase of systems affected by
vibronic coupling (Section 3), although this phase is not stable and cannot be observed
experimentally.

This section gives a general overview of first-principles calculations, as well as the fun-
damentals of density functional theory (DFT), one of the most widely used theoretical
framework in solids simulations today (Section 2.2). The description of the software used
and details of the calculations performed are included in Section 2.3. In first-principles
simulations the stationary Schrödinger equation is solved for fixed nuclei, which enables
predicting materials properties using just fundamental constants. These calculations pro-
vide accurate energies and equilibrium geometries but are limited to hundreds of atoms
due to the computational scaling. Furthermore, first-principles are constrained to T = 0
K, so cannot provide insight into the effects of temperature. In order to solve these issues,
a first-principles-based (second-principles) scheme can be used, which allows simulating
large-scale materials. Second-principles methods draw from the fact that material response
to perturbations usually involves a set of electrons and holes. These active electrons or
holes are separated from the others and treated as the basic object of the calculations,
by contrast to first-principles, where the basic units are all individual atoms. In Section
2.4, a brief description of second-principles methods is included. In this work, a model
of second principles, which provides similar results to those obtained from first-principles
calculations, have been employed in order to interpret the band structure of layered per-
ovskites.

Regarding notation, nuclei position vectors are written with upper case letters {~R} while
electrons position vectors with lower case {~r}, where the braces indicate a multielectronic
system. All equations are expressed in atomic units, i.e., e = h̄ = m = 1.

2.1. First principles methods

In non-relativistic regime, which can be assumed for most material properties [24], the
wave function associated with the electron distribution of the system is governed by the
time-independent Schrödinger equation.

Hψ({~R}, {~r}) = Eψ({~R}, {~r}) (2.1)

Equation 2.1 is an eigenvalue problem and should be solved to determine the eigenfunction
ψ, from which the properties of the system could be obtained. The wave function ψ
depends of both nuclei {~R} = {~R1, ~R2, ...} and electrons {~r} = {~r1, ~r2, ...} position vectors,
E is the total energy of the stationary state ψ and H is the Hamiltonian operator, which
can be written as the sum of potential and kinetic energies of electrons and nuclei.
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H = −1

2

∑
i

~∇2
~ri
−
∑
I

1

2MI

~∇2
~RI

+
1

2

∑
i,j

1

~ri − ~rj
+

1

2

∑
I,J

ZIZJ
~RI − ~RJ

− 1

2

∑
i,I

ZI
~RI − ~ri

(2.2)

where electrons and nuclei are indicated by lower case and upper case subscripts respec-
tively. The presence of many body terms in Equation 2.2 prevents the analytical resolution
of Equation 2.1. Furthermore, even in small molecules, numerical resolution is extremely
costly and, therefore, further approximations are required.

The first step to solve numerically Equation 2.1 is through the Born-Oppenheimer adi-
abatic approximation, which decouples the motion of electrons and nuclei, taking into
account that the mass of the latter is much higher than that of the former. Therefore,
electrons and nuclei are considered as independent so the wave function can be written
as the product of electronic and nuclear contributions, ψ({~R}, {~r}) = ψi({~r})ψn({~R}).
Then, the Hamiltonian can be redefined as the sum of kinetic energy of nuclei and the
electronic Hamiltonian He.

H = −
∑
I

1

2MI

~∇2
~RI

+He (2.3)

where the electronic Hamiltonian can be written as follows

He = −1

2

∑
i

~∇2
~ri

+
1

2

∑
i,j

1

~ri − ~rj
+

1

2

∑
I,J

ZIZJ
~RI − ~RJ

− 1

2

∑
i,I

ZI
~RI − ~ri

(2.4)

In these conditions, we can determined electronic and nuclear wave functions in two steps:

1. Electronic dynamics with fixed nuclei: the electronic equation that describe the
movement of electrons when nuclei are frozen is solved

Heψi({~r}) = Ei({~R})ψi({~r}) (2.5)

Equation 2.5 is a differential equation where the eigenvalue Ei depends parametri-
cally of nuclear coordinates [24]. This equation is solved for different fixed nuclear
coordinates obtaining the corresponding energies, which define the adiabatic poten-
tial energy surface (APES).

All systems have infinite electronic states and, in general, electronic equation con-
tains terms that couple them. These terms are important for systems with electronic
surfaces that are close in energy. In the framework of adiabatic approximation these
coupling terms are neglected, so the total wave function is restricted to one electronic
surface [24].

2. Nuclear dynamics under electronic potential: once the electronic wave function has
been determined, nuclear dynamics under electronic potential are calculated. The
wave function of nuclei is obtained by solving the nuclear equation[

−
∑
i

1

2MI

~∇2
~RI

+ Ei({~R})

]
ψn({~R}) = E({~R})ψn({~R}) (2.6)



First- and second-principles calculations 10

Within the adiabatic approximation, nuclear wave function is obtained solving Equa-
tion 2.6 under the potential of a single APES, Ei({~R}). This implies the approxi-
mation of independent APES and therefore, adiabatic approximation is not valid for
systems whose APES have similar energies.

The total energy E({~R}) of the state is then the sum of the energy of the vibrational
state Eν({~R}) and the energy of the electronic state Ei({~R}).

Nevertheless, the resolution of Equation 2.5 implies the determination of the many-electron
wave function ψi({~r}), that can be obtained analytically just for one electron systems due
to the cross terms of the electronic Hamiltonian and, additionally, numerical calculation
is extraordinarily costly. In order to fix this issue, another approach is introduced. We
will assume that electrons are independent particles except for the fact that they fulfilled
Pauli exclusion principle. The Hartree-Fock method, which is the basis of all electronic
structure techniques, provides the ground state energy for a single configuration, through
the variational principle. The procedure consists of varying a set of trial electronic wave
functions ψt until the minimum energy is reached.

In HF method the total wave function is the antisymmetrized product of single-electron
wave functions, which are usually the atomic orbitals φi(~rj), so electron correlation is
neglected. The total wave function can be written in terms of a Slater determinant

ψi({~r}) =

∣∣∣∣∣∣∣∣∣
φ1(~r1) φ2(~r1) ... φn(~r1)
φ1(~r2) φ2(~r2) ... φn(~r2)

...
...

. . .
...

φ1(~rn) φ2(~rn) ... φn(~rn)

∣∣∣∣∣∣∣∣∣ (2.7)

In general, current non-interacting electron approximations incorporate an effective po-
tential to the non-interacting Hamiltonian that includes somehow the effect of electron
correlation. This can be done following two different paths: perturbation theory or vari-
ational methods. In perturbation theory based methods, the correlation associated to
electron-electron interaction is included as a perturbation of electronic wave function.
Among variational models there are two main techniques: coupled-cluster, in which the
many-electron wave function is built with the exponential cluster operator and configura-
tion interaction, where a linear combination of Slater determinants introduce the excited
states of the system.

Indeed, electron correlation constitutes one of the greatest challenges in material simu-
lations. One of its main consequences is the well-known exchange interaction, which is
the underlying cause of magnetism. Metal-insulator transitions, high-temperature super-
conductivity and other relevant effects also emerge from correlations. The major problem
comes from systems in which the strong electron correlation requires accurate descriptions
that must go beyond the effective non-interacting electrons scheme. This sort of materials
are often in the boundary between localized and delocalized, involving 3d and 4d transi-
tion metals as well as 4f and 5f rare earths [23]. Despite this fact, independent-electron
approaches are usually accurate enough to describe correlation effects. Unfortunately,
post-HF methods, as the described in the previous paragraph, are extremely computa-
tionally expensive. In this cases, density functional theory plays a key role in simulating
materials where the correlation is weak or relatively moderate. In Section 2.2 the funda-
mental basis and theorems of DFT are explained.
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2.2. Density functional theory

Currently, DFT is the most used technique in first-principles calculations of molecules and
especially in solids due to the limitations of post-HF methods. Post-HF methods are based
on the many-electron wave function ψ({~r}) which is a complex object, it is not a physical
observable and it depends on the vector position of each electron (3N dimensional, where
N is the number of electrons). By contrast, the main idea of DFT is considering the
electron density n(~r) instead of the wave function [25].

n(~r) =

∫
d3~r2...

∫
d3~rN |ψ({~r1, ~r2, ...~rN})|2 (2.8)

The electron density is a positive function, an observable and involves just the position
vector of the point considered ~r = (x, y, z). Furthermore, it contains all the information
of the state of the system, such as the wave function.

Density functional theory is based in two theorems for systems with non-degenerate ground
states proven by Hohenberg and Kohn and generalised by Levy and Lieb [23], [25]. These
theorems can be applied to any system of interacting particles in an external potential
Vext(~r), for which the Hamiltonian can be written as follows

H = −1

2

∑
i

~∇2
~ri

+
1

2

∑
i,j

1

|~ri − ~rj |
+
∑
i

Vext(~ri) (2.9)

Theorem I. For any system of interacting electrons in an external potential Vext(~r),
the external potential is uniquely determined by the ground state density, except for an
additive constant.

Corollary I. All properties of the system are determined given the ground state density
n0(~r), since the Hamiltonian and the many-electron wave function for all states are fully
determined.

Theorem II. A universal functional for the energy in terms of the electron density E[n]
can be defined and it is valid for any external potential. For any particular Vext(~r) the
exact energy of the ground state is the global minimum of this functional and the density
that minimizes the energy functional is the ground state density n0(~r).

Corollary II. The functional E[n] is enough to determine the exact ground state density
and energy.

As mentioned above, Hohenberg and Kohn theorems were originally applied to non-
degenerate ground states. Currently, it has been proved that DFT is also valid for degen-
erate states and for the lowest energy excited states.

2.2.1. Kohn-Sham approach

Hohenberg and Kohn theorems make important statements about electron density and its
functional, but they are not helpful in finding it. Regarding the resolution of practical
problems, Kohn and Sham proposed a model to obtain the energy of the ground state
within the one-electron approach, as well as to estimate the electron correlation in order
to minimize errors [24].

Kohn-Sham (KS) model considers a fictitious system S of non-interacting electrons which
feel the external potential vext(~r). This system has the same density as the real system.
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Therefore, the total energy of the real system can be written as follows

E[n] = TS [n] + JS [n] + EXC [n] +

∫
n(~ri)vext(~r)d

3~r (2.10)

where TS [n] is the kinetic energy of non-interacting electrons, JS [n] is the Coulomb energy
term of system S and EXC [n] is the exchange-correlation energy, which represents the
difference between the independent-electron system S and the real system. It is given by

EXC [n] = T [n]− TS [n] + Eee[n]− JS [n] (2.11)

where T [n] − TS [n] is the correlation due to kinetic energy and Eee[n] − JS [n] represents
the exchange, electron-electron correlation and autointeraction correction.

If EXC [n] of Equation 2.11 was known the exact ground state density and energy of the
many-electron system could be found by solving the system of KS equations [23].[

−1

2
∇2 + VKS(~r)

]
φi(~r) = εiφi(~r) (2.12)

where the eigenvalues εi and eigenvectors φi are the one-electron energies and wave func-

tions respectively. The effective potential VKS(~r) = Vext(~r) +
∫ n(~ri)

′

|~r−~r′|d~r
′+VXC(~r) involves

the electron-nucleus interaction, electron-electron repulsion and the exchange-correlation
term. This term is given by the derivative of EXC [n] (Equation 2.11) with the density
n(~r).

In Equation 2.12, the only approximation is the exchange-correlation potential, which is,
in general, a small correction to the functional, since most of kinetic energy is included
in TS [n] and most of electronic repulsions are accounted by JS [n] (Equation 2.11). In
practical problems the exchange-correlation functional is approximated in such a way that
calculations are relatively fast but keeping the suitable accuracy so that effects where
energy differences are around 10-100 meV (for example magnetism) can be reproduced.

2.2.2. Spin-unrestricted KS DFT

Since we are dealing with open shell ions, DFT should be extended in order to reproduce
the magnetic order of the systems studied. Then, the KS wave functions are replaced by
the two component Pauli wave functions ψσi [25] so the electron density is redefined as
follows

n(~r) =
∑
σ

n(~r, σ) =
∑
σ

Nσ∑
i

|ψσi ({~r})|2 (2.13)

For a system of N = N↑ + N↓ independent electrons. This could be extended to non-
collinear magnetic structures considering the density matrix instead of electron density
[25], which is beyond the scope of this work.

2.2.3. Exchange-correlation functionals

In KS method we can differentiate the independent electron kinetic energy and the long-
range Coulomb terms. Therefore, the remaining exchange-correlation functional can be
estimated as a local or nearly local functional of electron density [23].
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The first approximation of exchange-correlation functional was proposed by Kohn and
Sham. They considered a homogeneous electron gas with the same electron density as the
solid, so the exchange-correlation energy is given by the following integral

EXC [n↑, n↓] =

∫
n(~r)εXC [n↑(~r), n↓(~r)]d~r (2.14)

where the exchange-correlation energy εXC at each point is the same as in the homogeneous
electron gas. This is the well-known local spin density approximation (LSDA), wherein
the other approaches are based on.

Local density approximation can be extended by including the gradient of the electron
density, that incorporates the inhomogeneities. This is precisely the generalized gradient
approximation (GGA).

There are further approximations such as LSDA+U , where U is a parameter that accounts
the electronic repulsion, meta- and hiper-GGA or hybrid functionals which include some
exact exchange that comes from HF theory and have been widely used in this work.

2.3. Molecular and solid simulations

The development of approximate practical methods which apply quantum theory to com-
plex systems as molecules and solids has provided insight into important properties of
these systems, as well as enables the prediction of new features and phenomena. Despite
the succes of computational simulations, there are remaining limitations in terms of the
balance between fulfilled the goals of accuracy and computational feasibility.

Currently, we can outline two schemes in computational simulation of materials. First,
the study of materials can be done via cluster methods with appropiate embbeding. In
this case, high-quality post-HF methods (coupled-cluster, configurations interaction and
so on) are applied to a cluster of atoms involving the electrons that are relevant in the
phenomenom studied. This cluster is embedded in a potential that accounts the crystal
environment, which can be simulated by classical or quantum approaches. These methods
are typically used to study reactions in surfaces, absoption/emission spectroscopy, chemical
processes in solution and proteins.

On the other hand, to simulate bulk crystals, periodic calculations are the most widely
used scheme. In this case, the real system is treated as infinite since the majority of
bulk properties are not affected by border effects. A simulation cell is repeted in the
space using Born-von Karman boundary conditions. One of the main problems of these
simulations arises when larger size cells are required. For example, in DFT codes, the
computational cost scales with N3 and thus, doubling the size of the simulation cell will
make the calculation 8 times slower.

2.3.1. Software

Crystal code

Periodic simulations on AgF2 and layered systems K2CuF4, Cs2AgF4 and La2CuO4 were
carried out using Crystal17 package which performs ab initio calculations where HF and
KS Hamiltonians can be employed. The fundamental approximation of this code is the
expansion of single-electron wave function as linear combination of Bloch functions de-
scribed in terms of local functions. These local functions are, in turn, linear combinations
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of Gaussian type functions (GTF), whose shape is defined in the basis set section of the
input. The program enables the use of sp shells which might improve the speed of the
calculations [26].

Crystal17 is able to handle the symmetry of the space group of the materials in all steps of
the calculations, which implies an advantage over other codes in saving CPU time, espe-
cially for high-symmetry solids. Furthermore, the full use of symmetry allow us to fix the
space group and, consequently, we can determine the parent phase of a distorted struc-
ture. On the other hand, the high efficiency in the implementation of hybrid functionals
contributes to speed up calculations.

All ions have been described using high quality triple-ζ polarized basis sets taken di-
rectly from Crystal website [27] together with the hybrid exchange-correlation functional
PW1PW, a mixing of a GGA functional involving with 20% of HF exchange. This combi-
nation has been widely shown to provide accurate results in predicting crystal structures
and properties for a broad range of materials.

Since we are dealing with open shell Ag2+ and Cu2+ ions all calculations have been per-
formed under the framework of spin unrestricted Kohn-Sham DFT. Tight convergence
criteria for energy changes (10−8-10−9 a.u.) and RMS for both gradient and atomic dis-
placements (0.0001-0.0002 a.u.) have been imposed in geometry optimizations. Further-
more, both FM and AFM states were studied within a model of collinear spins.

The first step in the simulation of all systems was the geometry optimization of the ex-
perimental structures, i.e., orthorhombic Pbca in the case of AgF2 and Cmca in layered
perovskites. The calculated values agree with the experimental ones within 2% of error
in all cases. The magnetic order of the lowest energy state on each system coincides with
the experimental one.

The next step was the optimization of the parent phases. In AgF2 the reference phase
was obtained by replacing all open shell ions Ag2+ by closed shell Cd2+ ions. Then, the
system undergoes a transition to the cubic Pa3̄ phase, where AgF4−

6 complexes exhibit
trigonal symmetry. In order to study the distortion from this parent phase, we introduce
a single impurity of Ag2+ occupying a Cd2+ lattice site and optimize the atomic positions
keeping the cell parameter of cubic phase fixed, obtaining an AgF4−

6 distorted complex.
Calculations on primitive (12 ions) and 2x2x2 conventional supercell (96 ions) have been
performed, obtaining similar metal-ligand distances.

Regarding the layered systems K2CuF4, Cs2AgF4 and La2CuO4 we have optimized both
the low-symmetry (experimental) Cmca phase and the high-symmetry I4/mmm phase for
both FM and AFM orders. Energy calculations starting from tetragonal I4/mmm phase
and distorting by an orthorhombic deformation has been carried out for FM and AFM
states. The calculation on I4/mmm space group were carried out using the conventional
cell expanded to

√
2×
√

2× 1 supercell in order to set FM and AFM states. In addition,
we have calculated the band structure and projected density of states (PDOS) in the high-
symmetry phase in order to analysed in-plane and out-of-plane dispersion as well as the
ground state of the system.

Amsterdam density functional code

Appart from periodic simulations, cluster calculations on AgF2 have been carried out in
order to analysed the ground state of AgF4−

6 units in the parent high-symmetry phase of
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this system. For this goal, Amsterdan density functional (ADF) code has been employed.
It is a computational chemistry program particularly used to predict strutures, reactivity
and spectra of molecules and complexes, that works exclusively with DFT methods [28].
Among the advantages of ADF, the high-quality basis, the accurate numerical integration
and the full use of the symmetry of the point groups of the molecules or complexes can be
highlighted. The main problem of cluster calculations is the embedding, which can hinder
the convergence.

The calculations over AgF4−
6 transition-metal complex have been performed both in vacuo

(isolated complex) and considering the electrostatic potential of the rest of the lattice.
The electrostatic potential has been obtained using Ewald program, which calculates the
interaction energy between one electron located at thousands of points in the complex and
the rest of lattice ions, which are represented as point charges. The calculation follows
a self-consistent Ewald-Evjen summation, where the interaction is divided in short range
and long range contributions. Then, the calculated interaction energy is fitted to a set of
about 200-300 point charges around AgF4−

6 units.

In these calculations triple-ζ polarized basis set combined with the widely used B3LYP
hybrid functional have been employed. B3LYP is a three parameters hybrid functional,
which combine LDA and GGA approximations to include the electron correlation and also
these two with HF to account the exchange.

2.4. Second-principles DFT

In order to perform large-scale simulations on materials considering both atomic and
electronic degrees of freedom, the second-principles methodology developed by Garćıa-
Fernández and coworkers [29] has been employed. This technique relies on quantum-
mechanical theory (DFT) and can be systematically improved with moderate compu-
tational effort. There are other efficient schemes to simulate large-scale systems, such
as quantum-mechanics molecular-mechanics (QM/MM), semiempirical methods as tight-
binding DFT (DFTB) or effective Hamiltonians, based on coarse-grained treatment of the
material. These methods are powerful tools for dealing with large systems. However, they
are not enough accurate when the energy differences involved in the interactions are small
(∼ meV) or for systems that require a full atomistic description.

In such cases, a method based on first-principles can be used, enabling arbitrarily high
accuracy calculations at modest computational cost. It is based on the combination of
an accurate model potential which describes the dynamics of the lattice and the repre-
sentation of involved electronic degrees of freedom within a tight-binding-like approach.
The problems of bond breaking and formation are not well described within this approach
since it assumes a fixed topology, which improves computational performance [29].

In this approach, the total electron density is divided into two contributions [29]

n(~r) = n0(~r) + δn(~r) (2.15)

where n0(~r) is the reference density, which corresponds to the ground state density in
non-magnetic systems, and δn(~r) is the deformation density, considered as a small pertur-
bation to n0(~r). In order to clarify the concepts of reference and deformation densities, the
example of a electron-doped semiconductor taken from [29] is represented in Figure 2.1.
The undoped phase (Figure 2.1 (e)), which corresponds to the reference atomic geometry
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(RAG) and the reference electron density n0(~r), is characterized by an electronic configu-
ration in which the valence band is fully occupied and the conduction band is empty. If
this system is doped, the electron cloud will tend to compensate the extra charge. The
doping electron will be excited to the conduction band, as indicated in Figure 2.1 (f).
The variations in the charge distribution associated with the changes in the electronic
configuration are represented through deformation density δn(~r) (Figure 2.1 (c)).

Figure 2.1: Sketch that represents the division of electron density used in second-principles sim-
ulations for an electron-doped semiconductor. Top panels (a)-(c) represents the atomic geometry
(blue and red balls) and electron density (green clouds) for (a) total electron density n(~r), (b)
reference density n0(~r) and (c) deformation density δn(~r). Bottom panels (d)-(f) illustrate the
one-electron levels for each atomic geometry and electron density. Reprinted from [29].

The division of electron density is used to expand the full DFT energy up to second order

EDFT ≈ E(0) + E(1) + E(2) (2.16)

where E(0) is the full DFT energy for the reference density, which is the dominant con-
tribution and is valid for any geometry of the lattice [29]. The first order term E(1)

involves the electron-lattice term (including JT) and the second order term E(2) accounts
the electron-electron interactions. Both terms are related with the deformation density
δn(~r).

The electron density can be written in terms of Wannier functions χa(~r) and χb(~r) [29]

n(~r) =
∑
ab

dabχa(~r)χb(~r) (2.17)

where dab is the reduced density matrix, henceforth the occupation matrix. The reference
density n0(~r) and the deformation density δn(~r) can be also expressed in the basis of
Wannier functions

n0(~r) =
∑
ab

d
(0)
ab χa(~r)χb(~r) (2.18)

δn(~r) =
∑
ab

Dabχa(~r)χb(~r) (2.19)
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where the deformation occupation matrix is Dab = dab − d
(0)
ab . Using these definitions, the

total energy for magnetic systems can be expressed as follows

E ≈ E(0) +
∑
ab

(D↑ab +D↓ab)γab+
1

2

∑
ab

∑
a′b′

[(D↑ab +D↓ab)(D
↑
a′b′ +D↓a′b′)Uaba′b′

− (D↑ab −D
↓
ab)(D

↑
a′b′ −D

↓
a′b′)Iaba′b′ ]

(2.20)

It should be highlighted that Equation 2.20 is formally equivalent to the HF expression of
the energy [24] written in terms of density matrices. The second term of this equation is
the electron-lattice contribution E(1) and the double summation is the electron-electron
contribution E(2). The parameter γab can be obtained from the one-electron operator

γab = 〈χa|ĥ0|χb〉 (2.21)

while Hubbard-like Uaba′b′ and Stoner-like Iaba′b′ parameter comes from the two-electron
integrals of Equations 2.22 and 2.23 [29]

Uaba′b′ = 〈χaχa′ |ĝU |χbχb′〉 (2.22)

Iaba′b′ = 〈χaχa′ |ĝI |χbχb′〉 (2.23)

gU (~r, ~r′) =
1

|~r − ~r′|
+

1

2

[
δ2Exc

δn(~r, ↑)δn(~r′, ↓)

∣∣∣∣
n0

+
δ2Exc

δn(~r, ↑)δn(~r′, ↑)

∣∣∣∣
n0

]
(2.24)

gI(~r, ~r′) =
1

2

[
δ2Exc

δn(~r, ↑)δn(~r′, ↓)

∣∣∣∣
n0

− δ2Exc

δn(~r, ↑)δn(~r′, ↑)

∣∣∣∣
n0

]
(2.25)

The one-particle Hamiltonian associated with spin channel σ, separating γab and Uaba′b′

in short (sr) and long (lr) range terms is given by

hσab = hlrab + γsrab
∑
a′b′

[(Dσ
a′b′ +D−σa′b′)U

sr
aba′b′ − (Dσ

a′b′ −D−σa′b′)Iaba′b′ ] (2.26)

where the long range terms have been included in a term that comes from the expansion
of a far-field electrostatic interaction [29]. Therefore, given a model for the material, its
state is defined by the density matrix.

In this scheme, the dependence of the model parameters on the atomic configuration is
captured by the electron-lattice coupling terms. The relation between the short range
self-term γsrab and the atomic configuration is as follows

γsrab = γRAG,sr
ab +

∑
λυ

[
−~fTab,λυδ~rλυ +

∑
λ′υ′

δ~rTλυ
←→g ab,λυλ′υ′δ~rλ′υ′ + ...

]
(2.27)

where ~f and←→g are the first and second-rank tensors that characterize the electron-lattice
coupling, closely related to vibronic constants FI and FIJ (Section 3.1). In addition,
γRAG,sr
ab is the self term in the reference atomic geometry (RAG) and δ~rλυ quantifies the

atomic displacement of atoms λ and υ

δ~rλυ =←→η (~RΥ − ~RΛ + ~τυ − ~τλ) + ~uυ − ~uλ (2.28)



First- and second-principles calculations 18

where ←→n is the homogeneous strain tensor, ~RΥ and ~RΛ the lattice vector of cells Υ and
Λ, ~τυ and ~τλ the position of atoms υ and λ in the reference geometry and ~uυ and ~uλ
the absolute displacements of atoms υ and λ in their cells with respect to the strained
reference structure [29].

The last step in this section is to establish a link between the parameters of Equation 2.26
and the parameters implemented in our model. This model has been built considering
the minimum number of parameters which will be determined by means of symmetry
considerations. These parameters can be grouped in three sets: (1) self-terms γab, (2)
electron-lattice terms and (3) electron-electron terms.

Regarding (1) self-terms, it is important to note that in this simple model only 3z2−r2, x2−
y2 metal orbitals as well as p orbitals of equatorial ligands are included. Therefore, the one-
electron terms γab in the Slater-Koster tight-binding scheme, which assumes atomic-like
orbitals (χα, χβ) are γab = 〈φa|ĥ|φb〉 ≈ 〈χα(~r)Ym,l|ĥ|χβ(~r)Ym′,l′〉. This approach considers
fixed interatomic distance ~ra,b, which in our model is the metal-ligand distance in the
parent phase (RAG). It can be expressed in terms of direction cosines to the neighboring
atom

~ra,b = (rx, ry, rz) = d(l,m, n) (2.29)

Taking these considerations into account, the interatomic matrix elements involved in our
model are the self terms γ3z2−r2 , γx2−y2 , γp, since γab are expanded on atomic positions,
and the terms which describe the interaction between metal and ligand orbitals [30]

γ3z2−r2,px = l

(
n2 − l2 +m2

2

)
V RAG
pdσ −

√
3ln2V RAG

pdπ

γ3z2−r2,py = m

(
n2 − l2 +m2

2

)
V RAG
pdσ −

√
3mn2V RAG

pdπ

γ3z2−r2,pz = n

(
n2 − l2 +m2

2

)
V RAG
pdσ +

√
3n(l2 +m2)V RAG

pdπ

γx2−y2,px =

√
3

2
l(l2 −m2)V RAG

pdσ + l(1− l2 +m2)V RAG
pdπ

γx2−y2,py =

√
3

2
m(l2 −m2)V RAG

pdσ −m(1 + l2 −m2)V RAG
pdπ

γx2−y2,pz =

√
3

2
n(l2 −m2)V RAG

pdσ − n(l2 −m2)V RAG
pdπ

(2.30)

Taking into account the symmetry, the expressions in Equation 2.30 are reduced to

γ3z2−r2,px = −
V RAG
pdσ

2

γ3z2−r2,py = −
V RAG
pdσ

2

γ3z2−r2,pz = V RAG
pdσ

γx2−y2,px =

√
3

2
V RAG
pdσ

γx2−y2,py = −
√

3

2
V RAG
pdσ

γx2−y2,pz = 0

(2.31)
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Therefore, the one-electron terms of our model are γ3z2−r2 , γx2−y2 , γp and V RAG
pdσ , where

the last one corresponds to the reference geometry, i.e., the parent phase. However, metal-
ligand interaction changes with the interatomic distance, and its dependence is accounted
by (2) electron-lattice coupling term (Equation 2.27), included in the model as a fifth
parameter

Vpdσ = V RAG
pdσ − ~fδ~ra,b (2.32)

where we have assumed that the quadratic contribution is zero.

Finally, the next step is parametrizing the four-index integrals that accounts (3) electron-
electron interactions. This parametrization has been implemented following ligand-field
theory, which assumes spherical symmetry to calculate electron-electron interactions within
the d-shell, since in transition-metal complexes these orbitals are compact [30]. The ma-
trix elements within this assumption when d-orbitals are expressed in spherical harmonics
are as follows

〈χαχα′ |ĝ|χβχβ′〉 =
∑

k=0,2,4

ak(α, β, α
′, β′)F k (2.33)

where ĝ is the electron-electron interaction operator, which for magnetic systems is given
by

ĝ(~r, ~r′, σ, σ′) =
1

|~r − ~r′|
+

δ2EXC
δn(~r, σ)δn(~r′, σ′)

∣∣∣∣∣
n0

(2.34)

This approach reduces the number of parameters from 54 to 3, that are the so-called Racah
parameters (A,B,C) or Slater integrals (F 0, F 2, F 4) which can be approximated by the
LDA+U parameters U and J , implemented in our model

F 0 =A+
7

5
C = U

F 2 =49B + 7C ≈ 5390

637
J

F 4 =
441

35
C ≈ 3528

637
J

(2.35)

In Equation 2.35, U is the screened Coulomb parameter, that accounts the interaction
between the localized electrons in the system, for example the d electrons in transition-
metal complexes, considering the screening from other types of electrons (p or s) and J is
the screened exchange paramenter [31].
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3. Vibronic coupling and magnetism

There are many phenomena and properties of molecules and solids whose study requires
going beyond adiabatic approximation, considering the interaction between electrons and
atomic vibrations. This interaction is known as vibronic coupling or electron-phonon cou-
pling. The term vibronic comes from the contraction of vibrational and electronic. The
quantitative evaluation of vibronic coupling problems requires the description of more
than one electronic states, which implies the use of multi-reference calculation methods,
which are not computationally feasible except for small molecules. In Section 3.1, vibronic
coupling is simply described in the general framework of adiabatic approximation, intro-
ducing it as a perturbative correction to the adiabatic problem. Thus, this description
leads to approximate solutions.

Among the variety of vibronic coupling effects in condensed matter, we are focused on the
case of solids containing open shell transition-metal ions (M = Cu2+, Ag2+) coordinated
by anions (L = F−, O2−) as first neighbours. In this configuration the valence electrons are
localized (typically more than 95% of electron density) inside the complex. The common
feature among these systems is the existence of a parent phase (or reference phase), whose
analysis is fundamental to understand the subtleties of vibronic coupling and hence its
ground state and features.

Electron-phonon coupling is a mechanism of symmetry breaking, which is one of the most
active studies in physics. Under certain conditions, which will be explained below, vibronic
coupling can reduce the symmetry of the parent phase. This symmetry breaking gives rise
to the crystalline and magnetic structures observed in experiments and, therefore, is a key
element in the analysis carried out in this work.

3.1. Fundamentals of vibronic interactions

As mentioned above, a key element in electron-phonon coupling problems is the concept of
parent phase, which characterizes the state of the system before considering the vibronic
coupling. In terms of electron density, in the parent phase, the asymmetric density of open
shell M ions is replaced by a symmetric density of closed shell ions. In later sections we
well discuss how this can be done through first-principles calculations.

At the end of this section, we will see that the structural distortions produced when vi-
bronic coupling is considered can be divided into totally symmetric, which does not reduced
the symmetry of the parent phase, and purely vibronic, that can cause a spontaneous sym-
metry breaking. As usually done in electron-phonon problems, where the distortions are
characterized by vibrational modes, atomic positions are expressed in terms of the sym-
metrized coordinates Q of the normal modes, whose relation with cartesian coordinates ~R
depends on the symmetry of the system. Therefore, the parent phase is defined by Q = 0.

As seen in Section 2, the state of a system is governed by the time-independent Schrödinger
equation (Equation 2.1). In order to solve this eigenvalue problem, adiabatic approxima-
tion is applied. In the framework of this approach, the terms that couple different electronic
states are neglected, restricting the solution to one APES. If the resolution of the prob-
lem involves more than one electronic surface this approximation cannot, in principle, be
applied. In these conditions we should solve the system of coupled equations, which is ex-
tremely complex. Instead of this diabatic resolution, the most widely used method to deal
with electron-nuclear interaction is by introducing the vibronic coupling as a perturbation
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of the Hamiltonian [32]

H = Hr +HQ + V (~r,Q) (3.1)

where ~r in this section refers to electrons position vectors ~r = {~r} = {~r1, ~r2, ...}, Hr is the
electronic Hamiltonian, HQ the kinetic energy of the nuclei and V (~r,Q) represents the
electron-nuclear and nuclear-nuclear interactions, that can be expanded in Taylor series of
small displacements of the nuclei around point Q = 0, which is the nuclear configuration
in the high-symmetry phase

V (~r,Q) = V (~r, 0) +
∑
I

(
∂V

∂QI

)
Q=0

QI +
1

2

∑
I,J

(
∂2V

∂QI∂QJ

)
Q=0

QIQJ + ... (3.2)

In a first step, we introduce the term V (~r, 0), which represents the potential energy of
electrons in the field of frozen nuclei [32], in the electronic equation (Equation 2.5). Thus,
the energies Ei(0) and eigenfunctions ψi(~r) are obtained

[Hr + V (~r, 0)]ψi(~r) = Ei(0)ψi(~r) (3.3)

Equation 3.3 is equivalent to Equation 2.5 changing the nuclear coordinates from cartesian
~R to normal Q.

Once the electronic equation in the field of fixed nuclei is solved, we will see how these
solutions change with small displacements of the nuclei. For this goal, the vibronic coupling
operator W (~r,Q) is defined [32]

W (~r,Q) =V (~r,Q)− V (~r, 0)

=
∑
I

(
∂V

∂QI

)
Q=0

QI +
1

2

∑
I,J

(
∂2V

∂QI∂QJ

)
Q=0

QIQJ + ...
(3.4)

In order to obtain the vibronic corrections Eν(Q) to the total energy Ei(Q) = Ei(0) +
Eν(Q) the vibronic coupling matrix should be diagonalized in the basis of electronic func-
tions ψi(~r). It is important to noted that this resolution implies the approximation of
frozen electronic wavefunctions throughout the distortion Q. The matrix elements can be
expressed as follows

Wij = 〈ψi(~r)|W (~r,Q)|ψj(~r)〉 (3.5)

These matrix elements are the so-called vibronic constants that characterized the coupling
between the electronic states ψi and the nuclear displacements from the reference high-
symmetry configuration, i.e., the effect of nuclear vibrations in the electron distribution.
If we consider the first term of the vibronic coupling operator in Equation 3.4, the linear
vibronic constant is given by

W
(1)
ij =

〈
ψ

(0)
i

∣∣∣∣( ∂V

∂QI

)∣∣∣∣ψ(0)
j

〉
= FI (3.6)

The corresponding energy term, depends linearly of the symmetrized coordinates of nuclear
vibrations Q, E(1)(Q) = FIQI .

If we consider now the second term of Equation 3.4 we can obtain the quadratic vibronic
constants that are given by
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W
(2)
ij =

1

2

〈
ψ

(0)
i

∣∣∣∣( ∂2V

∂QI∂QJ

)∣∣∣∣ψ(0)
j

〉
= FIJ (3.7)

The second order correction to the energy E(2)(Q) depends on the product QIQJ .

Assuming that ψ
(0)
i ∈ Γi and ψ

(0)
j ∈ Γj , linear vibronic constants FI 6= 0 if QI ∈ Γi ⊗ Γj

while quadratic vibronic constants FIJ 6= 0 if QIQJ ∈ Γi ⊗ Γj . At this stage, vibronic
couplings can be classified into three main categories, taking into account symmetry and
degeneracy considerations of electronic states ψi and vibrational modes QI :

1. Totally symmetric combinations with vibrations QI belonging to irrep A1. The
distortion produced by nuclear displacements does not reduce the symmetry of the
parent phase. The main contributions comes from the first order correction to the
energy E(1)(Q). In this case, linear vibronic constants FI 6= 0 for both degenerate
and non-degenerate electronic states.

2. Vibronic combinations with modes QI where the electronic states ψi are degenerated
and the first order correction E(1)(Q) is the main responsible of the distortion of the
parent phase. The number of linear vibronic constants depends on the symmetry
of the system. In this case, the vibronic coupling is associated with the Jahn-Teller
(JT) effect, which is a first order effect.

3. Vibronic combinations with modes QI where the main coupling is between electronic
states separated by an energy gap so the second order correction to the energy
E(2)(Q) produces the most significant distortion. This is the so-called pseudo Jahn-
Teller (PJT) effect, a second order perturbation effect.

It is worth noting that the three types of vibronic couplings are not mutually exclusive.
Totally symmetric couplings (type 1) and PJT coupling (type 3) always appear whereas
JT coupling requires spatially degenerated electronic states and, in this last case, there is
a competition between PJT and JT effects, whose vibronic coupling intensities depend on
the vibronic constants (Equations 3.6 and 3.4) leading the two effects to different physical
consequences.

As explained in the following sections, JT and PJT effects can lead to distortions due to
the vibronic coupling with modes QI which reduce the symmetry of the system. These
distortions can be also understood in terms of the forces on ligand ions, which are associ-
ated with the difference between the real electron density and that coming from a closed
shell ion with the same number of electrons [33].

The force induced on ligand k by the electron density can be written as follows [33]

~F (k) =

∫
n(~r)(~Rk − ~r)
|~Rk − ~r|3

qLe
2 +

∑
k 6=k

~Rk − ~Rk′

|~Rk − ~Rk′ |3
q2
Le

2 −
~Rk − ~RM

|~Rk − ~RM |
qMqLe

2 (3.8)

where qLe is the ligand charge and qMe the metal charge. The first term is the repulsive
contribution due to electron density, the second is the repulsion with other ligands and
the last one is the attraction with the metal nucleus.

For closed shell ions, this force is ~F (k) = 0, since the associated electron density is totally
symmetric. When the closed shell ion is replaced by an open shell ion, there is a change
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in the electron density ∆n, which is now asymmetric. This change in the density is the
responsible of the net force exerted over the ligands and the following distortion. Hence,
the fundamental theorem of DFT (Section 2.2) implies that variations in the electron
density will lead to changes in the external potential and therefore in the geometry of the
system [33].

3.2. E ⊗ e Jahn-Teller effect

The JT effect is a particular case of vibronic coupling, in which the predominant coupling
is between stricly degenerate electronic states through a vibrational mode that reduces the
symmetry of the parent phase.

The problem explained in this section is a simplification of the JT effect in AgF2, where
the ground state of AgF4−

6 units is characterized by two pairs of wavefunctions belonging
to irrep Eg (see Section 4.2). In this case, the complex belongs to irrep D3d, displaying
trigonal symmetry. However, the distortions observed in the complexes are similar to
those found in a triangular triatomic X3 molecule with a 3-fold axis, where there are
twofold degenerate E electronic states. In this system, the vibrational modes that provide
vibronic constants (Equation 3.6) different from zero are the totally symmetric mode Qa
and E-type modes Qx and Qy [32], represented in Figure 3.1

Figure 3.1: Symmetrized distortions in a triatomic triangular molecule X3. Left: totally symmetric
a1 displacement that does not produce a symmetry breaking Qa = 1√

12
(2y1+

√
3x2−y2−

√
3x3−y3).

Center-right: doubly degenerate e displacements Qy = 1√
12

(2y1 −
√

3x2 − y2 +
√

3x3 − y3) and

Qx = 1√
12

(2x1 − x2 +
√

3y2 − x3 −
√

3y3).

If we only take into account the linear vibronic coupling (Equation 3.6) and the quadratic
elastic term, i.e., the term associated with linear combinations of the totally symmetric
mode, the effective vibronic Hamiltonian is given by [34]

W (Qx, Qy) = E0 +
1

2
K(0)(Q2

x +Q2
y)σz + FI(Qxσz −Qyσx) (3.9)

where K(0) is the primary force constante and σz and σx are the Pauli matrices

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
(3.10)

the diagonalization of the effective vibronic Hamiltonian gives rise to an APES of Mexican-
hat-type (see Figure 3.2, left), whose energy in polar coordinates is given by [32]
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E(ρ) =
1

2
K(0)ρ2 + FIρ (3.11)

This APES is characterized by a conical intersection at QI = 0, which represents the
high-symmetry configuration, where the three ions form an equilateral triangle. Within
harmonic approximation and considering the linear vibronic constant, the points in the
APES with the same ρ have the same adiabatic energy. Therefore, at minimum energy
configuration we find a circumference of equivalent adiabatic minima with an energy that
is related with the linear vibronic constant by [32]

EJT = −
F 2
I

2K(0)
(3.12)

This is the JT stabilization energy, i.e., the energy gained after the distortion from the high-
symmetry phase to the flattened isosceles triangle. The distortion is produced through
the coupling between the doubly degenerate electronic state E with vibrational modes Qx
and Qy represented in Figure 3.1.

Figure 3.2: Adiabatic potential energy surface in JT effect. Left: Mexican hat potential. Center:
warping of the Mexican hat where higher order energy terms are included. Right: top view of the
warping, identifying three minima (circles) and saddle points (triangles). Reprinted from [35]

If higher order terms are include in the effective Hamiltonian, a warping of the Mexican
hat potential is produced (Figure 3.2, center). In general, the cubic anharmonicity is
the main contribution to the warping, while the coupling with higher energy states (PJT
mixing terms) and quadratic vibronic coupling are less significant [35].

The warping of the APES implies the emergence of three equivalent minima (Figure 3.2,
right) separated by three saddle points. In this conditions, there is an energy difference
between the minima and the transition state, called the barrier B, whose value usually
lies in the range 10-100 meV, one order of magnitude smaller than the JT stabilization
energy [36]

The three adiabatic minima in the APES of JT problems are, in principle, equivalent. How-
ever, random strains present in crystals slightly stabilize one of these minima. Therefore,
different centers can be distorted along different directions. At sufficiently low tempera-
tures, the system can be locked in one of the minima, which is known as static JT effect.
On the other hand, it could be observed a dynamic JT effect due to thermal fluctuations
(incoherent) as well as to tunneling (coherent) [35].

Systems with 3-fold symmetry axes and more than three atoms have the same E terms
as X3 molecules. Among these materials is AgF2, which has been studied in this work.
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In this sort of systems, the JT problem is also E⊗e, but the quantitative analysis is
complicated due to the presence of more e-type vibrations. This constitutes a multimode
JT problem [37], as we will see in Section 3.4.

3.3. Pseudo Jahn-Teller effect

If JT effect is the dominant contribution to vibronic coupling, PJT effect participates in
the warping of the Mexican hat potential. It is the responsible of vibronic mixing between
the ground state and higher energy excited states [35].

By contrast to JT effect, where the coupling is produced at first perturbation order, PJT
effect is a second order term. It couples two electronic states ψi and ψj , separated by
an energy gap Ei − Ej = 2∆, through a vibrational mode QI . In this case, there are no
constraints on the degeneracy of the electronic states.

In a simplified model, we assume only one vibrational mode QI that couples two electronic
states ψi and ψj , whose APES have the same curvature and thus the same primary force
constant K(0). The effective vibronic Hamiltonian can be written as follows

W (QI) =
1

2
K(0)Q2

II + FIQIU, U =

(
0 1
1 0

)
(3.13)

In order to obtain the energy of states ψi and ψj after the coupling through vibration QI ,
the vibronic Hamiltonian is diagonalized. The eigenvalues are the energies of the electronic
states [32]

E± =
1

2
K(0)Q2 ±∆

√
1 +

(
FIQ

∆

)2

(3.14)

where E+ is the energy of the excited state ψj and E− the energy of the ground state
ψi after considering the vibronic coupling. The second term of Equation 3.14 can be
expanded in Taylor series, considering that nuclear vibrations QI are small

E± =
1

2

(
K(0) ±

F 2
I

∆

)
Q2
I ±∆± ... (3.15)

Considering the Taylor expansion of Equation 3.15 the force constant of the electronic

states is K± = K(0) ± F 2
I

∆ = K(0) ±Kν , where K(0) is the same for both electronic states
within this simplified model

K(0) =

〈
ψ

(0)
i

∣∣∣∣∂2V

∂Q2
I

∣∣∣∣ψ(0)
i

〉
(3.16)

K(0) comes from the totally symmetric combinations of the quadratic vibronic constant
(Equation 3.7) and accounts the contributions to the total force constant K with frozen
electron density. On the other hand, the vibronic force constant Kν comes from the linear
vibronic coupling (Equation 3.6) and it includes contributions that depend on changes
in the electron density due to the mixing of states separated by an energy gap 2∆, as
indicated in Equation 3.17

Kν =
F 2
I

∆
=

1

∆

∣∣∣∣∣
〈
ψ

(0)
i

∣∣∣∣ ∂V∂QI
∣∣∣∣ψ(0)

j

〉∣∣∣∣∣
2

(3.17)
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The instability theorem stated by Bersuker [32] claims that the primary force constant
K(0) > 0. Then, in the excited state ψj , K > 0 and therefore it is stable. However,
it should be noted that the demonstration of this theorem involves the frozen orbitals
approach throughout the distortion.

On the other hand, in the ground state, there is an energy decrease coming from the
vibronic force constant Kν , which is a possible source of instability. Therefore, we should
analyse the value of the total force constant K. There are two possible situations:

1. K(0) > |Kν |, which implies K > 0 (weak PJT effect): the curvature of the APES is
decreased but the minimum remains at QI = 0. The symmetry of the system is not
reduced (see Figure 3.3, left).

2. K(0) < |Kν |, so K < 0 (strong PJT effect): the sign of the curvature becomes
negative so there is an instability at QI = 0. The system undergoes an spontaneous
symmetry breaking (see Figure 3.3, right). In general, in this case, the value of
energy gap 2∆ is small, but it is not an essential condition since the value of Kν

also depends of the intensity of the vibronic coupling, characterized by the linear
vibronic coupling FI .

Figure 3.3: Changes in electronic states ψi and ψj from the parent phase (dotted line) when
K < 0, (weak PJT effect, left) and K > 0 (strong PJT effect, right)

The coupling between the states ψi and ψj separated by an energy gap 2∆ through vi-
brational mode QI changes the wave functions of the electronic states and, therefore, the
covalence of the bonding. By contrast, JT effect is driven by the forces of frozen electron
density of degenerate states over ligand ions (Section 3.2). As mentioned at the beginning
of this section, in this case, the changes in electron density due to PJT effect contributes
to the warping of the Mexican hat [33].

3.4. Cooperative JT effect and magnetic order

In impurified systems where intercenter distances are small enough to observe interactions
among impurities, the number of JT active modes involved in the vibronic coupling is very
large. In these systems, the JT effect is a multimode problem. The limit case is found in
periodic solids where the number of JT centers occupying regular lattice sites is infinite.

The multimode problem is important in the study of polyatomic molecules and especially
in crystals where one cannot isolate one JT center from the rest of the lattice. These
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problems are complicated since the number of vibrational modes as well as the number
of vibronic constants increases with the size of the coordination sphere around the JT
center [32].

For this reason, multimode solutions are complex and usually require some knowledge
about the phonon spectrum of the crystal [32]. In these problems, analyses from first-
principles calculations allow us to study cooperative effects in solids, which is a key element
in this work.

Cooperative JT effects play an important role largely determining not only the structural
properties of systems, but also the magnetic properties. In these systems, in addition
to the ground state orbital degeneracy, there is also a Kramers (spin) degeneracy of the
magnetic ions in the parent phase [21].

Determining the microscopic origin of magnetism is complicated since there are several
mechanisms with similar energies, so the difference can be very slight. Magnetic inter-
actions are characterized by two main features: open shell ions with magnetic moments
different from zero and some covalent character in the bonding, so delocalization allows
the overlap between electron clouds. Indeed, electrostatic interactions between electrons
and nuclei are the main cause of magnetism [23]. Spin-orbit coupling and magnetic dipolar
interactions are also involved in magnetism, as second order contributions.

Despite the microscopic origin of magnetism is known, qualitative and quantitative analysis
of real systems is complicated due to the large number of interactions between electrons of
different atoms, with different degrees of localization and energies. Furthermore, electron
repulsions and spin orientations are correlated due to exchange interaction that comes from
Pauli exclusion principle. On the other hand, electron-electron repulsions are connected
with the rest of Coulomb interactions. Chemical bonding is under current study, especially
in systems with small bond energies. The analysis of magnetism is even more complicated
since it is driven by the bonding effect on spins orientations, which typically involves lower
energies.

The study of magnetism is beyond one-electron approaches and, therefore, electron-electron
interactions must be taken into account, particularly the exchange interaction. A thorough
analysis of electronic respulsion is usually required and, besides the effect of electrons, the
influence of nuclei should be included. In solids, this is very complex due to the large
amount of particles and cooperative effects.

In this work we are focused on insulator magnetic materials, in which open shell magnetic
ions (M = Cu2+, Ag2+) are separated by a non-magnetic ion (L = F−, O2−) as represented
in Figures 1.1 and 1.3. In such cases, direct interaction among magnetic ions is small and
the main mechanism of interaction is indirect and driven by the closed shell ion. This is the
so-called superexchange interaction, where d-shell electrons of the metal polarized p-shell
electrons of ligands, giving rise to magnetic coupling. Generally, in this type of systems,
AFM coupling stabilizes. However, the energy difference between FM and AFM states
is usually small (∼ meV). This can be understood in the framework of the Heisenberg
model of interacting spins, where the effective exchange Hamiltonian can be written as
follows [21]

HHeis =
2t2

U

∑
〈i,j〉

~Si~Sj (3.18)
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where i and j indicate a summation over the nearest neighbors and ~S represents the spin.
In Equation 3.18 there are two factors: the effective transition integral t which accounts
electron hopping between different lattice sites and the Coulomb repulsion at one center
U (on-site interaction). In non-degenerate states within a two electron approach, there is

an energy gain in AFM configuration ∆EAFM = −2t2

U with respect to FM configuration
∆EFM = 0, since the hopping is forbidden by Pauli principle and thus t = 0. Furthermore,
in magnetic insulators t << U , which explained the small energy difference between FM
and AFM states. In many electron systems this scheme is noticeably more complicated,
but the basic idea, in general, remains valid.

Between magnetic and non-magnetic insulator solids there are some differences that can
be highlighted. The structure of the former is usually distorted, they often show structural
phase transitions and the magnetic structure is quite complicated in most cases, displaying
magnetic anisotropy and magnetostriction. It is worth noting that in solids containing
these transition-metal ions, especially with Eg degeneracy, the relation between orbital
and magnetic ordering is complicated [21].

In magnetic insulators with high concentration of open shell ions, crystalline distortions are
not independent. Lattice deformation causes a symmetry breaking which is accompanied
by orbital ordering. These two effects produce a modification of space-charge distribution
[21].
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4. Results: silver difluoride AgF2

As explained in Section 1.2, the first material studied is AgF2. In this chapter we have
explored its structure and magnetism, starting from the parent phase and analysing how
it is distorted into the experimentally observed one. In this analysis we have found that,
despite the local symmetry of AgF4−

6 units involved in the parent phase is trigonal D3d,
there is a JT effect which causes a cooperative distortion, which leads to geometrical and
magnetic layering. Following this line, our results show that the magnetic order in AgF2

is determined by the vibronic contributions involved in JT effect.

4.1. Parent phase: structure and ground state

At ambient pressure and temperature, AgF2 is a low symmetry compound, which belongs
to the orthorhombic space group Pbca, as indicated in Figure 1.1. The local geometry of
AgF4−

6 complexes within AgF2 lattice is that of a distorted octahedron where the Ag2+-F−

distances along the local directions ~x, ~y and ~z are Rx = 2.074 Å, Ry = 2.067 Å and Rz
= 2.584 Å [13]. It should be noted that, even though the distances in xy plane are quite
close, the local symmetry is neither tetragonal D4h nor orthorhombic D2h since the angles
F̂AgF are different from 90o. The calculated distances in AgF4−

6 units and cell parameters
of AgF2 lattice are gathered in Table 4.1, as well as the corresponding experimental values.
There are slight variations from experiment to our simulations of less than 2%.

a (Å) b (Å) c (Å) Rx (Å) Ry (Å) Rz (Å)

Experimental 5.073 5.529 5.813 2.067 2.074 2.584
Calculated 5.178 5.622 5.766 2.094 2.096 2.618

Table 4.1: Experimental [13] and calculated values of cell parameters and Ag2+-F− bond lengths
in AgF2.

As explained in Section 1.1, the first step in our analysis is optimizing the reference
structure of this system. In order to explore the ground state of the parent phase, as
shown in Section 3.1, the asymmetric density produced by an open shell transition-metal
ion M (M = Ag2+) should be replaced by a symmetric density. This replacement allows
us to examinate the structure of the system before considering the vibronic coupling and
thus, in the absence of distortions.

By periodic simulations with Crystal code, all Ag2+ cations have been replaced by the
closed shell 4d10 Cd2+ ions, whose ionic radii are quite similar (in sixfold coordinated
complexes R(Ag2+) = 1.01 Å, R(Cd2+) = 1.09 Å) [38]. An advantage of Crystal over
other first-principles codes is that it enables optimizing the geometry of the system within
a determinated space group, which prevents a reduction of the symmetry.

After the substitution of Ag2+ by Cd2+ ions, both cell parameters and atomic positions
have been relaxed. As a consequence, the system undergoes a spontaneous transition to
the cubic phase Pa3̄, depicted in Figure 4.1, which is, indeed, the parent phase of AgF2.

At normal conditions, the most stable phase of CdF2 is found for the flourite structure,
shown in Figure 4.2. In this phase the symmetry of the compound is higher since it belongs
to cubic space group Fm3̄m, where Cd2+ cations are eightfold coordinated by F− anions.
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Figure 4.1: Parent phase of AgF2, which belongs to the cubic Pa3̄ space group. It was obtained by

replacing the four Ag2+ ions in the unit cell by Cd2+ ions. Metal-ligand distances and one ̂FCdF
angle are indicated in a single CdF4−

6 complex. The optimized lattice vector is a = 5.497 Å.

Figure 4.2: Fluorite structure of CdF2 of cubic Fm3̄m space group (lowest energy configuration).
The distance between Cd2+ and F− is indicated on CdF6−

8 complex. The lattice vector is a =
5.393 Å.

If we compare flourite structure of CdF2 (Figure 4.2) with the optimized Pa3̄ displayed
in Figure 4.1, both structures are rather similar. However, the coordination of Cd2+

cations changes from eightfold to sixfold when the symmetry of the compound is reduced
from Fm3̄m to Pa3̄. Taking this fact into account, there are two Cd2+-F− bonds that were
broken, reinforcing the other six bonds. Hence, metal-ligand distances in fluorite structure
are greater (2.335 Å) than in Pa3̄ phase (2.247 Å). On the other hand, the distance from
Ag2+ ion to the next closest F− ion in Pa3̄ is 3.096 Å, reflecting the bond breaking.

At this point, we will focus on the ground state of a single AgF4−
6 complex in Pa3̄ phase

of AgF2. Although metal-ligand distances are identical in this structure, the angles are
not equal to 90o (Figure 4.1) and therefore the local symmetry is not octahedral Oh but
trigonal D3d. It is worth noting that the ground state of a single AgF4−

6 complex when one
Cd2+ ion is replaced by Ag2+, keeping cubic Pa3̄ structure, is orbitally twofold degenerate.
This result was obtained through cluster calculations on isolated AgF4−

6 complex as well
as embedded in CdF2 lattice, i.e., including the electrostatic potential VR.

In Table 4.2 the energies of each molecular orbital in the complex (ε) as well as its charge
distribution calculated by means of Mulliken population analysis are collected. In order to
simulate the complex in the parent phase we have used the initial electronic configuration
(3z2 − r2)1.5(x2 − y2)1.5. This unreal configuration enable us to reproduce the behaviour
of a closed shell ion, where the electron density is symmetric.
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In vacuo +VR
Occupation ε (eV) Mulliken population ε (eV) Mulliken population

1.5 12.788
50% x2 − y2 + 3% z2

-6.549
56% x2 − y2 + 3% xz

+ 3% xz + 2% yz + 2% z2 + 2% yz

1.5 12.787
54% z2 + 2% x2 − y2

-6.549
58% z2 + 2% x2 − y2

+ 1% xy + 1% yz + 1% yz

2.0 10.894
37% xz + 16% yz +

-8.446
41% xz + 19% yz +

5% x2 − y2 + 2% xy 6% x2 − y2 + 2% xy

2.0 10.894
29% xy + 26% yz

-8.446
33% xy + 28% yz

+ 6% xz + 7% xz

2.0 10.832
28% xy + 15% yz +

-8.508
36% xy + 19% yz +

14% xz + 2% z2 18% xz + 3% z2

Table 4.2: Orbital energies, ε, and Mulliken charge distributions in AgF4−
6 complex at the opti-

mized geometry of the parent phase of AgF2, that is the Pa3̄ CdF2 structure. Calculations have
been carried out for an isolated complex and also considering the embedding through the electro-
static potential VR due to the rest of ions of the crystal. The electronic configuration is such that
the electrons in the d-shell are uniformly distributed between x2 − y2 and 3z2 − r2 orbitals.

Considering the previous results, we have proved that the ground state of AgF4−
6 remains

twofold degenerate (Eg) when the local symmetry is reduced from octahedral Oh to trigonal
D3d. Therefore, the conditions of symmetry and orbital degeneracy in the parent phase
Pa3̄ are compatible with JT effect, which breaks the symmetry and lifts the degeneracy,
stabilizing the orthorhombic Pbca phase. In the next section we will discuss how the
cooperative trigonal distortion leads the system to the experimental structure of AgF2.

4.2. Trigonal distortion

Since the ground state of AgF2 remains doubly degenerate under the symmetry descent
from Oh to D3d the system can experience a JT effect under trigonal symmetry. Addi-
tionally, this effect in AgF2 is actually a multimode problem, involving atomic positions
(local distortion) as well as cell parameters (lattice distortion).

As indicated in Table 4.2, under D3d symmetry there are two pairs of wavefunctions of
4d9 orbitals of Ag2+ which belong to irrep Eg (x2− y2, xy) and (xz, yz), where {X, Y, Z}
are the basis in trigonal coordinates (Figure 4.3). Furthermore, in trigonal symmetry, the
three adiabatic minima characteristic of JT effect do not show tetragonal symmetry as it
occurs when the parent phase is octahedral.

Figure 4.3: Basis of trigonal coordinates {X, Y, Z} (red). In cartesian coordinates (black) the
vectors along X, Y and Z directions can be written as X(-1/

√
6, -1/

√
6, 2/

√
6), Y(1/

√
2, -1/

√
2,0)

and Z(1/
√

3, 1/
√

3, 1/
√

3).
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When one of Cd2+ ions in Pa3̄ structure of CdF2 is replaced by Ag2+, an unstable vi-
brational mode of frecuency ω = 138i distorts the system, as represented in Figure 4.4.
Metal-ligand distances obtained by the optimization of atomic positions in the lattice after
the Cd2+ → Ag2+ substitution are collected in Table 4.3.

Figure 4.4: Distortion of AgF4−
6 complex (red arrows) and lattice vectors (black arrows) in cubic

Pa3̄ phase of AgF2. Under this distortion the equilateral triangles defined by three F− ions are
flattened into acute triangles in orthorhombic Pbca phase. Lattice vectors are elongated in two
directions (b and c) and compressed in the third one (a).

System Rx (Å) Ry (Å) Rz (Å)

CdF2:Ag2+ (1) 2.128 2.134 2.445
CdF2:Ag2+ (3) 2.077 2.146 2.532

AgF2 2.067 2.074 2.584

Table 4.3: Ag2+-F− distances in CdF2 lattice with a single Ag2+ impurity per unit cell (first line),
three Ag2+ impurities per unit cell (second line) and pure AgF2. The local coordinates x, y and z
are the ones indicated in Figure 4.1.

The presence of Ag2+ impurities in CdF2 lattice induces the trigonal distortion displayed
in Figure 4.4, which flattened the trigonal complex, lifting the degeneracy of the ground
state in Pa3̄ structure (Table 4.2). As shown in Figure 4.4 this deformation is significantly
different from the usual tetragonal one. In contrast to what is found for an initial octahe-
dral complex, where the tetragonal distortion is produced along bond axes, in a trigonal
complex the distortion is such that elongates the initial equilateral triangles in Pa3̄ phase
into acute ones in orthorhombic Pbca structure.

As gathered in Table 4.3, there is a relation between the concentration of Ag2+ ions in
CdF2 lattice and the deformation of the structure. Metal-ligand distances in CdF2:Ag2+

get closer to those found in pure AgF2 as the silver content in CdF2 lattice increases.
In the next section we have calculated the potential energy surfaces associated with the
distortion produced by both atomic coordinates and lattice parameters, as well as the
effect of this deformation in the magnetic order of the system.

4.3. Jahn-Teller effect and magnetism

As shown in Section 4.1, in the high-symmetry phase Pa3̄ of AgF2 the ground state is
twofold degenerate and hence, the system is distorted into orthorhombic Pbca structure
due to the existence of cooperative Jahn-Teller effect. One of the main features of this
effect is the presence of two distortions whose energies are close but differ by a small energy
barrier, B, which is usually in the range of 10-100 meV [36].
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In order to determine the barrier B and the stabilization energy EJT we have analysed
the potential energy surface with the cooperative JT deformation. To obtain the poten-
tial energy surface we have built a linear transformation of both atomic coordinates and
lattice parameters that enables us to interpolate between the cubic phase Pa3̄ and the
orthorhombic phase Pbca.

The problem is different when the high-symmetry phase is octahedral, for example, in
d9 doped systems with rock salt structure (NaF:Ag2+, NaCl:Ag2+), where the impurity
occupies an atomic site with Oh symmetry. Then, the JT effect produces an elongated
tetragonal distortion until the system reaches one of the three adiabatic minima of the
potential energy surface. In this sort of systems, our periodic calculations allow us to
stabilize the saddle point (compressed octahedron) due to symmetry constraints. If the
symmetry of the transition state is D4h, the calculation is carried out within that symmetry
so the orthorhombic vibrational modes that could distort the system from compressed to
elongated octahedron (minimum energy configuration) are not accesible and therefore, we
can optimize the geometry of the system in the saddle point.

In these d9 doped systems we can described the tetragonal distortion using a single pa-
rameter, η, which can be written as follows

Rz = 〈R〉+ 2η

Rx = Ry = 〈R〉 − η
(4.1)

where 〈R〉 is the metal-ligand distance in octahedral symmetry. Although in AgF2 the dis-
tortion is driven by the change in both atomic coordinates and lattice vectors, regarding a
single AgF4−

6 complex we can describe the deformation in terms of a tetragonal distortion,
characterized by η, such as in octahedral JT effect.

In AgF2, the minimum and the transition state of the potential energy surface are cal-
culated within orthorhombic Pbca group. Under these conditions, there are forces that
change the geometry of AgF4−

6 complexes in the optimization of the saddle point, leading
the system to the lowest energy configuration. In this case, the shape of the triangular
faces defined by three fluorine ions turns from obtuse (Figure 4.5, η = −0.10) to acute
triangles (Figure 4.5, η = 0.16). On this basis, we have built a linear transformation of
both atomic positions and lattice parameters that allows us to interporlate between the
high-symmetry phase Pa3̄ (η = 0.0 in Figures 4.5, 4.6) and the minimum energy configura-
tion in orthorhombic Pbca phase (η = 0.16 in Figures 4.5, 4.6) as well as the saddle point
of the potential energy surface (η = −0.10 in Figures 4.5, 4.6). Then, the stabilization
energy EJT and the barrier B can be estimated.

Figure 4.5: AgF4−
6 trigonal complexes in AgF2 lattice at different points of potential energy

surface: transition state η = −0.10, high symmetry configuration η = 0.0 and minimum η = 0.16.
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Regarding the linear transformation of atomic coordinates, Ag2+ ions were keeping fixed
in the unit cell whereas F− ions were simultaneously displaced as shown in Figure 4.4,
in order to cooperatively distort the four AgF4−

6 complexes. The atomic coordinates of
fluorine atoms in AgF2 lattice are modified as follows

XF = 0.1748 + 0.0091363λ

YF = 0.1748 + 0.0194123λ

ZF = 0.3252 + 0.0482214λ

(4.2)

In Equation 4.2, parameter λ goes from -1.0 to 1.0 in steps of 0.1, where λ = 0 provides
the geometry in the parent phase Pa3̄.

Similarly, another linear transformation was used to calculate the modulus of unit cell
vectors ~a, ~b and ~c on each point of the potential energy surface. In this case, we have split
the interpolation in the two branches (η < 0 in Equation 4.3 and η > 0 in Equation 4.4)
since the relaxation of the lattice vectors is different on each case (see Figure 4.6, bottom).

aη<0 = aPa3̄ + 0.3633λ

bη<0 = aPa3̄ − 0.2950λ

cη<0 = aPa3̄ − 0.2083λ

(4.3)

aη>0 = aPa3̄ − 0.4488λ

bη>0 = aPa3̄ + 0.0588λ

cη>0 = aPa3̄ + 0.4375λ

(4.4)

In Equation 4.3, parameter λ goes from -1.0 to 0.0 while in Equation 4.4 goes from 0.0 to
1.0, in steps of 0.1, as mentioned above.

With these linear transformations of both atomic positions and cell parameter we can
compute the energy curves of AgF2, distorting from the parent Pa3̄ phase the four AgF4−

6

units involved simultaneously (Figure 4.6, top). Lattice paramenters are also relaxed,
(Equations 4.3 and 4.4) in order to reproduce the cooperative deformation of this system
(Figure 4.6, bottom).

The distortion of lattice vectors from cubic Pa3̄ phase at minimum energy configurations
for each branch is collected in Table 4.4. For a single AgF4−

6 complex, the barrier B, which
is the energy difference between the minima η = 0.16 and the transition state η = −0.10
and the stabilization energy EJT , i.e., the energy gained with the distortion from the
high-symmetry configuration (η = 0.0, see Figure 4.5) to the flattened trigonal complex
(η = 0.16) are also included.

η (Å) Energy (meV) a (Å) b (Å) c (Å)

0.16 0 5.138 5.544 5.847
-0.10 88 5.715 5.320 5.372
0.0 193 5.497 5.497 5.497

Table 4.4: Lattice parameters a, b and c at each critical point of the potential energy surface. The
results are given in terms of the local distortion η of a single AgF4−

6 complex.
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Figure 4.6: Top: energy of the unit cell when the four AgF4−
6 complexes involved in AgF2 lattice

are cooperatively distorted. Single point calculations with different arrangements of spins have
been carried out: FM order (blue line), AFM in bc plane (red line) and AFM in ba plane (green
line). Bottom: linear tranformation of lattice vectors a, b and c given in Equations 4.3 and 4.4.

The saddle point is found for the η < 0 branch at η = −0.10, 88 meV above the lowest
energy configuration. As mentioned above, this is precisely the value of the energy barrier
B in this system, which corresponds to one of the four AgF4−

6 complexes involved in the
distortion. The value lies in the typical range found for other d9 ions in cubic crystals [36].

As noted previously, in contrast to molecules or d9 centers in pure crystals, in AgF2, the
cooperative JT effect is a multimode problem, since it is determined by two degrees of
freedom, the deformation of AgF4−

6 units and the relaxation of lattice vectors. There is
another variable that we have considered to obtain the results shown in Figure 4.6: the
magnetic order. Regarding AFM configurations, we have calculated the energy curves for
two arrangements of spins, which are represented in Figure 4.7. As shown in Figure 4.6,
the magnetic state of the lowest energy configuration is different on each critical point
(high symmetry phase, saddle point and minimum). In the minimum of η > 0 branch, the
energy difference per formula unit between AFM magnetic configurations is 37 meV, less
than the energy barrier. For the η < 0 branch this difference is one order of magnitude
smaller. Therefore, it can be concluded that the magnetism of the ground state in AgF2

could be controlled through the variation of lattice parameters, as occurs in ferroelastic
materials. It can be noted that we are using an approximate model of magnetism, in which
the spins are collinear, whereas in the real system the AFM order presents a non-collinear
arrangement of spins.
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Figure 4.7: AFM orders in AgF2 lattice employed in the calculations. Left: AFM in bc plane,
which provides the lowest energy at η = −0.10. Right: AFM in ba plane, which corresponds to
the minimum energy configuration at η = 0.16.

4.4. Layered structure and ferroelasticity

As discussed in Section 4.1 the parent Pa3̄ phase of AgF2 is cubic, where the four AgF4−
6

complexes involved in the unit cell belong to D3d symmetry point group. Thus, in the
high-symmetry configuration, the Ag2+-F− bonds are equivalent. The results obtained by
cluster calculations with ADF for a single AgF4−

6 unit, which are gathered in Table 4.2,
indicate that the ground state of this system is twofold degenerate, in which four of the
five 4d9 orbitals of Ag2+ cation belong to irrep Eg. In this conditions, the potential energy
surface displays three minima. Since the high-symmetry situation is unstable due to orbital
degeneracy, the system undergoes a phase transition to orthorhombic Pbca group. On
all complexes, the local distortion is equivalent, the equilateral triangle formed by three
flourine atoms is elongated into an acute one, along the Z axis in trigonal coordinates
(Figures 4.3 and 4.4), resulting in a flattened trigonal complex (Figure 4.5 η = 0.16).

In contrast to molecules or d9 doped systems with rock salt structure, where the complex
deformation is local, in pure AgF2 this distortion is a cooperative effect, followed by a
lattice relaxation from cubic a = 5.497 Å in Pa3̄ to a = 5.073 Å, b = 5.529 Å and c
= 5.813 Å in Pbca. Hence, axis a is compressed while c is elongated, as represented in
Figures 4.4 and 4.6 (bottom) for η > 0 branch. This distortion has lead to the usual
interpretation of AgF2 as a layered system in c axis, since in this direction the Ag2+-F−

bonds are weaker than intra-layer bonds due to the JT distortion.

Our analysis of this structure is carried out from the point of view of symmetry, studying
the distortion of the parent Pa3̄ phase, which is cubic and therefore devoid of AgF2 layers.
From this perspective, we have seen that the potential energy surface has the properties
expected in a JT effect, where there are three adiabatic minima so the system may evolve to
any of them. In the light of these findings, we can conclude that, like other JT cooperative
systems [39], AgF2 is a ferroelastic material. The barrier per single AgF4−

6 complex is 88
meV so the other configurations could be reached by the application of mechanics efforts
(pressure) or growing the material in determinated substrates.

Bearing these facts in mind, AgF2 is fairly different from actual layered systems such as
K2CuF4, Cs2AgF4 or La2CuO4, also studied in this work. In these systems the complexes
MX6 (M = Cu2+, Ag2+, X = F−, O2−) are independent on each MX2 slab (see Figure
1.3), whereas in AgF2 there are intra-layer and inter-layers bonds, which can be hardly



Results: silver difluoride AgF2 37

considered as located in a single layer. Furthermore, the high-symmetry phase of these
layered perovskites is not cubic but tetragonal I4/mmm, devoids of orbital degeneracy and
thus of JT effect. These differences can be observed through the bands diagrams of both
type of systems. If we consider the dispersion along Γ → Z path, in layered perovskites
the bands are essentially flat (see the band diagram for K2CuF4 in Figure 5.7) indicating
that the interaction between two layers could be neglected. On the other hand, in AgF2

the dispersion is similar in all directions explored in the reciprocal space, as shown in the
band diagram displayed in Figure 4.8.
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Figure 4.8: Band diagram of AgF2 by spin channel calculated for both in plane (Γ→ X → Y → Γ)
and out of plane (Γ→ Z) directions.

In Figure 4.8 we have represented the bands of FM state (which maximize dispersion) of
pure AgF2 by spin channel. If we consider the bands in the perpendicular direction near
the Fermi energy, they are quite flat, while in the central zone there are dispersive bands
and non-dispersive bands, which also happens in other directions. By contrast, in layered
perovskites (Figure 5.7) even the more dispersive bands in Γ → Z direction are flatter
than in AgF2 in a smaller range of k space.

4.5. Magnetic order

Finally, some ideas about the magnetism in AgF2 could be emphasized. First, in the cubic
Pa3̄ phase, AFM order is geometrically frustrated [40]. In this configuration (η = 0), the
FM order is prefered instead of the AFM ones (Figure 4.6). Once the JT effect occurs and
produces the distortion shown in Figure 4.4, elongating one lattice axis and compressing
other, the frustration vanishes, giving rise to strong AFM coupling in ba plane and weak
FM coupling in bc plane, result also provided by experimental measurements [41], which is
consistent with the effect of superexchange interactions that usually lead to AFM coupling.
Therefore, cooperative JT effect is a key element in the stabilization of the AFM state in
AgF2 system.

On the other hand, the results represented in Figure 4.6 show a change in the AFM order
for the two branches. This variation is a consequence of the vibronic interactions existing
in JT effect. The trigonal distortion of AgF4−

6 complexes to acute (η > 0) or obtuse
(η < 0) triangles (Figure 4.5) as well as the switch of elongation axis of the AgF2 lattice
from c to a stabilizes two different AFM configurations.
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5. Results: layered perovskites K2CuF4, Cs2AgF4 and
La2CuO4

In Section 1 we have seen that cubic perovskite is the basis for other related structures such
as layered perovskites, which have been studied in this work. Specifically, we have been
focused on K2CuF4, Cs2AgF4 and La2CuO4, where MX6 complexes (M = Cu2+, Ag2+, X
= F−, O2−) are separated by slabs of rock salt structure AX (A = K2+, Cs2+, La3+) (see
Figure 1.3). As explained in Section 1.3, first- and second-principles calculations have been
performed to analyse the change in the magnetism of these systems, with the ultimate
goal of controlling the magnetic order of the ground state.

5.1. Low-symmetry and high-symmetry phases

The first step in the analysis carried out in this work was optimizing the geometry of the
three layered systems K2CuF4, Cs2AgF4 and La2CuO4 in both the high-symmetry parent
phase (tetragonal space group I4/mmm) and low-symmetry phase (orthorhombic Cmca).
In Table 5.1 experimental and calculated values of lattice parameters and metal-ligand
distances in MX6 units are collected. All calculated values show great accordance with
experimental findings, with slight variations within 2% error.

System Magn. Result a (Å) b (Å) c (Å) Rx (Å) Ry (Å) Rz (Å)

K2CuF4 FM
Exp. [42] 5.866 5.866 12.734 1.941 2.234 1.939

Calc. 5.864 5.865 12.760 1.910 2.237 1.950

Cs2AgF4 FM
Exp. [6] 6.439 6.434 14.149 2.112 2.441 2.111

Calc. 6.455 6.454 14.382 2.106 2.458 2.130

La2CuO4 AFM
Exp. [43] 5.402 5.361 13.155 1.905 1.905 2.413

Calc. 5.456 5.305 12.943 1.907 1.907 2.404

Table 5.1: Experimental and calculated values of cell parameters and metal-ligand distances in
the true low-symmetry phase Cmca of layered systems K2CuF4, Cs2AgF4 and La2CuO4. The
calculated results correspond to the lowest energy magnetic order.

In these lattices, the local symmetry of MX6 units is orthorhombic, with three different
metal-ligand distances and angles ̂XMX = 90o, so the symmetry point group is D2h. The
complexes are elongated along local direction ~y in ab plane (see Table 5.1 and Figure 1.3).

Experimental geometries have been optimized for both FM and AFM orderings. The low-
est energy magnetic state in these systems corresponds to the experimentally determined
magnetic order. The energy differences between FM and AFM states are gathered in Table
5.3.

Regarding the high-symmetry phase, the three compounds comes from the same parent
phase of K2NiF4-type structure, represented in Figure 5.1, where the main C4 axis lies
along cell vector ~c. When the symmetry of this phase is reduced to the orthorhombic one,
the two transition-metal ions in plane ab are not equivalent and the cell is doubled. In
order to explore the parent phase, we have optimized within I4/mmm space group the
three structures. Distances in the complexes and lattice parameters are gathered in Table
5.2.



Results: layered perovskites K2CuF4, Cs2AgF4 and La2CuO4 39

Figure 5.1: Left: K2NiF4 parent structure I4/mmm of K2CuF4, Cs2AgF4 and La2CuO4 lattices.
Right: conventional cell expanded to

√
2×
√

2× 1 supercell

As for low-symmetry phase, geometry optimizations of the parent phase have been per-
formed for both FM and AFM configurations. In order to accomodate both magnetic
orders, the supercell represented in Figure 5.1 (right) has been employed. The results of
these calculations show that the lowest energy is obtained for AFM state in all systems,
as indicated in Table 5.2

System Magn. a (Å) c (Å) Req (4X) (Å) Rax (2X) (Å)

K2CuF4 AFM 4.155 12.637 2.078 1.912
Cs2AgF4 AFM 4.585 14.236 2.293 2.081
La2CuO4 AFM 5.334 13.009 1.886 2.389

Table 5.2: Calculated values of lattice parameters and metal-ligand distances in high-symmetry
parent phase I4/mmm of layered perovskites K2CuF4, Cs2AgF4 and La2CuO4. The results corre-
spond to the magnetic order of lowest energy.

As shown in Table 5.2, in high-symmetry phase, the local symmetry of MX6 units is
tetragonal D4h. In K2CuF4 and Cs2AgF4 the complexes are compressed along ~z direction
and the electron is localized in x2− y2 orbital, whereas in La2CuO4 they are elongated in
this direction, and the electron is localized in 3z2 − r2 orbital.

If FM and AFM states for both phases are compared, the differences found in lattice
parameters as well as in metal-ligand distances, whose values are ∼ 0.01 Å, are negligible.
The energy differences between the two magnetic configurations are quite small in the case
of fluorine perovskites K2CuF4 and Cs2AgF4, but much larger for La2CuO4, as shown in
Table 5.3.

System ∆EHS (meV) ∆ELS (meV)

K2CuF4 4.6 5.1
Cs2AgF4 7.9 11.4
La2CuO4 203.7 181.9

Table 5.3: Energy difference per formula unit between FM and AFM states in high-symmetry
(HS) and low-symmetry (LS) phases of K2CuF4, Cs2AgF4 and La2CuO4 systems.
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5.2. Magnetic order and PJT distortion

In geometry optimizations, the forces over a given nucleus are calculated with the potential
energy gradient

~F = 〈ψ0|~∇RV |ψ0〉 (5.1)

When the minimum energy configuration is reached, the forces are zero over each atom. In
practical problems, if the force is below some threshold, it is assumed that the minimum
of the APES is reached. If not, atoms are displaced and the forces are recomputed.
In some first-principles software, as Crystal code, geometry optimizations incorporate
the symmetry of the space group, so the internal coordinates are expressed in terms of
the symmetry allowed deformations within the fixed space group [26]. Thus, nuclear
coordinates can be written in terms of the vibrational modes Q.

In minimum energy configuration of the high-symmetry phase (space group I4/mmm)
the forces are zero since the APES is quadratic close to R = 0. In order to relax the
lattice, a distortion following an orthorhombic vibrational mode is performed, displacing
simultaneously the equatorial ligands of the lattice as shown in Figure 5.2. This unstable
mode, whose associated frequencies are gathered in Table 5.4, belong to irrep B1g and it
is found in both K2CuF4 and Cs2AgF4 parent phases.

System Magn. ω (cm−1)

K2CuF4
FM 379.7i

AFM 327.5i

Cs2AgF4
FM 281.3i

AFM 242.8i

Table 5.4: Frequencies of orthorhombic vibrational mode Qb1g for both magnetic states.

As explained in Section 3.3 the force constant K becomes negative due to vibronic con-
tribution Kν (strong PJT effect) which leads to an spontaneous symmetry breaking. In
this case, the symmetry of K2CuF4 and Cs2AgF4 is reduced from tetragonal I4/mmm to
orthorhombic Cmca.

Figure 5.2: Orthorhombic distortion in ab plane produced by the displacement of equatorial
ligands L = F−, O2−. Axial ligands remain fixed in the lattice throughout the distortion.

In order to determine the magnetic order of the systems as a function of the distortion
coordinate, single point energy calculations for FM and AFM orders have been carried out.



Results: layered perovskites K2CuF4, Cs2AgF4 and La2CuO4 41

In these calculations we started from the high-symmetry parent phase, in which the atomic
position in the unit cell of equatorial ligand ions, that are those represented in Figure 5.2,
is ~RL = (0.25, 0.25, 0.0) in fractional units. The orthorhombic vibrational mode depicted
in Figure 5.2 has been simulated through the displacement of these equatorial ligands in
ab plane. The variation of atomic coordinates along the distortion, for the ligand at ~RL
is given by

XL = YL = 0.25 + λ

ZL = 0.0
(5.2)

where λ goes from 0 to 0.02 in steps of 0.001. The energy of both FM and AFM states has
been calculated for each step of the distortions, as represented in Figures 5.3 (K2CuF4),
5.4 (Cs2AgF4) and 5.5 (La2CuO4).
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Figure 5.3: Relative energy per formula unit of K2CuF4 when it is distorted from the high-
symmetry phase I4/mmm (0.25) to the low-symmetry orthorhombic phase. Energies of FM and
AFM states at each point have been calculated.
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Figure 5.4: Single point relative energy per formula unit of Cs2AgF4 at each point of the or-
thorhombic distortion for FM and AFM configurations.

In high-symmetry phase the ground state of both compounds is AFM, whereas in low-
symmetry phase it is FM. Therefore, there is a change in the magnetic order of the ground
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state with the orthorhombic distortion. From Figures 5.3 and 5.4 we can see that (1) the
energy difference between FM and AFM states, as reflected in Table 5.3 is slightly higher
in the low-symmetry phase for both systems, (2) these energy gaps are larger in Cs2AgF4

than in K2CuF4, (3) the curvature of both magnetic states is greater in K2CuF4, which
is related with the force constant K of metal-ligand bonds. The force constant is larger
for Cu2+-F− than Ag2+-F− bonds, which is also reflected in bond distances, which are
shorter in the former (see Tables 5.1 and 5.2) and (4) the minimun of Cs2AgF4 is ∼25
meV deeper than that of K2CuF4.

The crossover between FM and AFM states can be understood in terms of a general
model based on superexchange and PJT effect, proposed in [44]. This model shows how
FM states lead to structural distortions in terms of spin-lattice coupling, considering M-
X-M chain with the ligand orbital full and two unpaired electrons in metal orbitals, as
usual in Anderson superexchange model. Materials exhibit spin-phonon coupling display
a strong dependence of vibrational modes with their magnetic states [44]. As shown in
Table 5.4, AFM states lead to softer frequencies than FM, and thus, FM order induces
stronger stabilization. The covalent contributions of PJT effect lead to greater values
of vibronic contribution to the force constant Kν in FM sates, and thus, the total force
constant K = K(0) −Kν is smaller in FM states, as reflected in the curvature of Figures
5.3 and 5.4. On the other hand, the effect of covalence also appears when the composition
of the layered system changes from copper compound to silver compound. Indeed, in
Cs2AgF4, the energy minimum is deeper and the curvature is lower than in K2CuF4 as a
consequence of the increase in covalence and lattice size.

By contrast to AgF2, where the difference between the magnetic configurations is ∆E =
37 meV (Section 4.3), in K2CuF2 and Cs2AgF4 this difference is smaller, ∆E ∼ 5 − 10
meV. It is important to note that the magnetic interaction is not direct but driven by the
ligands, precisely, by the equatorial ligands. The distortion modifies the atomic position of
equatorial ligands, inducing the change in the magnetic order of the fluoride perovskites.
Lattice parameters are kept fixed, whereas in AgF2 we displaced simultaneously the six
ligands of the complexes as well as the cell parameters (see Figure 4.6). In this case, the
change in the magnetism is caused by the cooperative distortion of both atomic and cell
degrees of freedom.

The same orthorhombic distortion has been applied to La2CuO4. Unlike the fluorides,
we have found that this system is stable under orthorhombic deformations, with a strong
AFM coupling in the equatorial plane. It can be noted a decrease in the energy gap
between FM and AFM states as the distortion coordinate increase, which is ∼ 10% of ∆E
(see Table 5.3, Figure 5.5).

By means of frequency calculation in the high-symmetry phase of La2CuO4 with Crystal
code, we have found two unstable vibrational modes of frequencies ω = 113i cm−1 and
ω = 38i cm−1 of symmetries Bg and Bu respectively. The first produces the tiltings
of CuO8−

6 complexes. The last one represents a displacement of the axial ligands O2−

and La3+ in their xy plane. It is a soft mode that is not observed since it leads to less
deep minimum. If open shell Cu2+ ions are replaced by closed shell Zn2+ in low-symmetry
phase, the tiltings remain, which suggest that this distortion is not associated with vibronic
coupling of an electronic Eg state.
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Figure 5.5: Relative energy per formula unit against orthorhombic distortion coordinate in
La2CuO4 for FM and AFM phases.

5.3. Band structure and density of states

Considering the results shown in Section 5.2, where we have seen that, due to PJT coupling,
there is an instability of the high-symmery phases, whose symmetries are reduced from
tetragonal to orthorhombic. The fluorides K2CuF4 and Cs2AgF4 are distorted following
a vibrational mode that displaces the equatorial ligands F−, leading the systems to an
adiabatic minimum. The displacement of fluorine ions is accompanied by a change in
the magnetic order from AFM in the parent phase to FM in the low-symmetry phase.
Therefore, our model has been built involving the transition-metal ion and the ligands.

This model assumes that the interaction between layers is negligible and thus, the dis-
persion of the bands should be also negligible along the axial direction. Then, from first-
principles simulations we have obtain the band diagram for path Γ→ X →M → Γ→ Z,
where we can see that the bands in Γ → Z path are essentially flat (see slight red bands
(FP) depicted in Figures 5.6 and 5.7).

In a first step, we have obtain the band structure from first- and second-principles for
K2CuF4 represented in Figures 5.6 (high-symmetry phase, HS) and 5.7 (low-symmetry
phase, LS). As indicated in these figures, the band diagrams for both FM and AFM states
have been calculated. It can be noted that this system has the least covalent character
among the three layered perovskites and its orbitals are most localized, so, in principle,
the model should better fit this compound. The modelization of Cs2AgF4 and La2CuO4

is now in progress, since their parametrizations require further analysis.

As explained in Section 2.4, the model has seven parameters, whose values for K2CuF4

system are gathered in Table 5.5. These parameters are the self-terms of each involved
orbital γab, the metal-ligand interaction V RAG

pd , its variation with the distance V ′pd = ~fδ~ra,b,
which controls the change from high-symmetry to low-symmetry, and the screened on-site
Coulomb term U and exchange interaction J .

γ3z2−r2 (eV) γx2−y2 (eV) γpσ (eV) V RAG
pd (eV) V ′pd (eV) U (eV) J (eV)

-1.489 -4.689 -2.889 -1.3 9.0 7.5 1.0

Table 5.5: Parameters used to calculate the bands of K2CuF4 from our second-principles model.
Their values have been obtained by fitting the bands from first-principles calculations.
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The parameters collected in Table 5.5 provide the second-principles bands represented in
Figures 5.6 and 5.7. As explained in Section 2.4, we have used a simple model, which is a
first approximation to the problem and whose parameters will be refined in future works.
Nevertheless, it is worth noting that, from this model, we have been able to reproduce
the magnetic order obtained from first-principles simulations for the ground state of both
high-symmetry and low-symmetry phases of K2CuF4. The energy differences between the
two magnetic configurations are as follows: ∆EHS = 8.3 meV and ∆ELS = 2.6 meV.
These results are rather similar to those obtained from first-principles calculations (see
Table 5.3).

G M X G Z

-8

-6

-4

-2

0

2

4

E
n

er
gy

(e
V

)

HS FM spin up

G M X G Z

-8

-6

-4

-2

0

2

4

HS AFM spin up

FP

3z2-r2

x2-y2

pσ

G M X G Z

-8

-6

-4

-2

0

2

4

E
n

er
gy

(e
V

)

HS FM spin down

G M X G Z

-8

-6

-4

-2

0

2

4

HS AFM spin down

Figure 5.6: Band diagram by spin channel of high-symmetry I4/mmm phase (HS) of K2CuF4.
The magnetic order (FM or AFM) and the spin channel (up or down) are indicated in the title
of each panel. The bands obtained from first-principles calculations (FP) are represented in slight
red, while the character of the bands calculated by our second-principles model (3z2− r2 in green,
x2 − y2 in blue and p orbitals of ligands in black) is indicated in the legend.

From first-principles band calculation we have observed a splitting between the spin up and
spin down bands of AFM state in the low-symmetry compound, which is vanished when the
symmetry is that of the parent phase. This splitting is due to the orthorhombic symmetry
of the complexes, which implies an asymmetric spin distribution in certain directions.
This effect, which has been observed in Cs2AgF4 too, is the basis of AFM spintronics.
Spintronics are usually based on FM materials, where the spin-polarization is induced
to strongly couple with the global magnetization. On the other hand, AFM requires a
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local non-equilibrium spin-polarization with alternated sign between lattice sites. This
is achieved combining broken spatial inversion symmetry and spin-orbit coupling, which
leads to a current-induced spin-polarization [45].
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Figure 5.7: Band diagram by spin channel of low-symmetry Cmca phase of K2CuF4. The magnetic
order (FM or AFM) and the spin (up or down) are indicated above each panel. Slight red bands
are the results of first-principles calculations (FP) and green, blue and black bands are the ones
obtained from second-principles, whose character is indicated in the legend.

In order to explore the character of the bands represented in Figure 5.6, we have calculated
the projected density of states of the high-symmetry phase for both FM and AFM states.
This PDOS is represented in Figure 5.8.

From the PDOS we have seen that, as expected from tetragonal symmetry, px and py
orbitals of the two equatorial ligands and xz and yz orbitals of the central metal cation
are degenerated. Furthermore, the hole is localized in 3z2 − r2 orbital. Therefore, we can
clearly identify the bands corresponding to this orbital in the band diagram, as indicated.

On the other hand, we have assumed that the bands associated with the p ligand orbitals
are those corresponding to the states closest to the Fermi level, which are quite dispersive,
and those corresponding to x2−y2 orbital are in the range from -6 to -4 eV, at the bottom
of the diagram. Therefore, from the PDOS, a first approximation of the values of γ3z2−r2 ,
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γx2−y2 and γpσ can be extracted. On the other hand, the spliting between 3z2−r2 bonding
and antibonding orbitals can be related with the screened Coulomb parameter. The value
provided by first-principles is ∼ 9.5 eV, which has been refined in order to obtain a better
fit of the bands. Both Coulomb U and exchange J parameters are similar to those found
by Liechtenstein et al. in KCuF3 (U = 7.5 eV, J = 0.9 eV) [46].

-8 -6 -4 -2 0 2

-5

0

5

D
O

S
(e

V
−

1
)

HS FM
px

py

xy

xz

yz

3z2-r2

x2-y2

-8 -6 -4 -2 0 2

E (eV)

-5

0

5

D
O

S
(e

V
−

1
)

HS AFM

Figure 5.8: Projected density of states of high-symmetry phase of K2CuF4 for both FM and AFM
orders. The density of states has been projected over the basis functions of d orbitals of Cu2+ and
px and py orbitals of two F− (two equatorial ligands).

Considering the high-symmetry band diagram and PDOS, one can see that the band
corresponding to 3z2 − r2 in FM state is more dispersive than for the AFM state, as
correspond to parallel spins. On the other hand, 3z2− r2 band are flatter than x2− y2 or
ligand bands, since the interaction in the ab plane is larger.

Finally, it should be mentioned that, since it is a very basic model, one can see discrepancies
between first- and second-principles bands. Regarding high-symmetry (HS) bands (Figure
5.6), for the FM state in spin up channel, the shape of the bands is quite similar to first-
principles and the large differences are found in point M and in X → Γ path. However,
in the spin down channel, for x2 − y2 and p bands the dispersion is greater than in first-
principles. In the AFM case, we can observe a shift in bonding 3z2 − r2 as well as in
x2 − y2 bands. Considering ligand bands, the largest difference is also found in point M
of reciprocal space.

As can be seen in Figure 5.7, the difference between first- and second-principles bands
increases when the symmetry is reduced from tetragonal I4/mmm to orthorhombic Cmca.
It can be observed that the shape of ligand bands is quite similar but there is a general
shift from first-principles bands. Since the distortion occurs in the equatorial plane, the
greatest differences are found in x2 − y2 band, whereas 3z2 − r2 is well represented. It
is worth noting that the low-symmetry bands are controlled by just one parameter, V ′pd,
which difficult the fit of the bands.
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5.4. Ferroelasticity

As explained in Section 1.3 and 5.2, lattice distortions play and important role on physical
properties such as magnetism or orbital ordering of layered perovskites. Along this line, in
the last part of this work we have been focused on controlling the magnetic order through
the variation of cell paramenters. The control of magnetism by means of distortion-induced
strains has significant consequences since, experimentally, the lattice response of a thin
film can be modified by the epitaxial growth on certain substrates [47].

If lattice parameters ~a and ~b (equatorial plane) are compressed, the ions get closer to each
other so the number of interactions increases. The overlap among electron clouds is higher
and, therefore, electronic repulsion is larger. On the other hand, the attractive forces also
increase so, in general, the bonds become stronger. Under these conditions, the primary
force constant K(0) should be greater and thus, the instability would be weakened and
the minimun would be less deep. Regarding the magnetic order, the splitting between
electronic states will be larger, favoring AFM configuration.

The energy against the orthorhombic distortion in K2CuF4 and Cs2AgF4 when lattice
parameters are compressed by 5% (left) and 7% (right) of their values is represented in
Figures 5.9 and 5.10.
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Figure 5.9: Relative energy per formula unit of K2CuF4 when it is distorted from high-symmetry
phase to low-symmetry phase for both FM and AFM orders. Energies have been obtained com-
pressing lattice parameters ~a and ~b by 5% (left) and 7% (right) and optimizing ~c.
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Figure 5.10: Energy gained with orthorhombic distortion in Cs2AgF4 for FM and AFM states.
Cell parameters ~a and ~b have been compressed by 5% (left) and 7% (right) and ~c was optimized.
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In Figures 5.9 and 5.10 we can see that a compression of 5% is not enough to stabilize
the AFM state in low-symmetry phase. By contrast, if lattice parameters ~a and ~b are
compressed by 7%, the AFM state is lower in energy than the FM state, with an energy
difference of ∼21 meV in both K2CuF4 and Cs2AgF4.

Contrary to expectations, in K2CuF4 and Cs2AgF4 we can observed that the energy gained
with the orthorhombic distortion is higher when lattice parameters are compressed by 5%,
if we compared these results with the ones represented in Figures 5.3 and 5.4, so the
instability is enhanced. This can be briefly discuss within a simplified PJT model.

In high-symmetry configuration, where the electron density of complexes is symmetric,
the overlap between metal and ligand orbitals is zero since their mixing is forbidden by
symmetry. When the open shell ion Cu2+ is introduced, forming a CuF4−

6 complex, there
is an orthorhombic vibrational mode Qb1g , belonging to irrep B1g, that couples states
separated by an energy gap, producing the orthorhombic distortion displayed in Figure
5.2. Within this model, metal and ligands orbitals are the ones represented in Figure 5.11

Figure 5.11: Metal and ligand orbitals in tetragonal D4h symmetry within a simple model of MX4

complex in ab plane. The irrep of each orbital is indicated in the sketch.

The vibrational mode Qb1g produces the mixing of metal and ligands electronic states and
thus, the overlap is not zero. Assuming that φ3z2−r2 and φx2−y2 are the wave functions
associated with the central cation and φL,B1g and φL,A1g the wave function associated with
the bonding and antibonding σ orbitals of the ligands, there are two contributions to the
vibronic constant Kν (Equation 3.17)

Kν
1 =

|〈φ3z2−r2 |Qb1g |φL,B1g〉|2

E(φ3z2−r2)− E(φL,B1g)
(5.3)

Kν
2 =

|〈φx2−y2 |Qb1g |φL,A1g〉|2

E(φx2−y2)− E(φL,A1g)
(5.4)

where the direct product B1g ⊗ B1g ∈ A1g, and thereforeKν
1 6= 0 andKν

2 6= 0. As explained
in Section 3.3, the vibronic constant depends on both the intensity of the vibronic coupling
and the energy difference between the electronic states. In this case, we have two couplings
which will be influenced by the strain when lattice parameters are compressed. It should be
noted that, although the main contribution comes from Kν

2 , the vibronic coupling between
φ3z2−r2 and φL,B1g is more affected by the strain, since the overlap between these orbitals
is lower than that between φx2−y2 and φL,A1g . Thus, the former will change significantly
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with the strain, which will be accompanied by a variation of the energy as well as of the
charge distribution of molecular orbitals.

On the other hand, in La2CuO4, the hole is localized in x2 − y2 orbital, whose overlap
with p orbitals of the ligands is greater than that of 3z2− r2. Hence, the impact of strains
induced by lattice distortions will be, in principle, less significant in this system.
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6. Final remarks

In this work we have shown, by means of computational simulations, that the crys-
talline and magnetic structures of silver difluoride AgF2 and layered perovskites K2CuF4,
Cs2AgF4 and La2CuO4 are correlated. In AgF2, the magnetic order is a direct conse-
quence of cooperative JT effect. By contrast to the three other systems, its parent phase
is cubic and thus, devoid of any layering. Furthermore, as reflected in the band structure,
the JT effect produced in this lattice cannot destroy the inter-layer band dispersion. In
the case of layered perovskites, the origin of their structure is found in the composition,
where MX2 planes are separated by rock salt AX planes, which almost prevents inter-layer
interaction.

On the other hand, it can be noted that the change in the magnetism of K2CuF4 and
Cs2AgF4 comes from the variations in the electron density due to PJT effect, which
affect the covalency of these systems and lead to stronger stabilization in FM states. The
stabilization is greater in the silver compound since covalency effects are more significant
and, additionally, lattice size is larger than in K2CuF4. These two systems, like AgF2,
display ferroelasticity, where the strains produced by distortions control the magnetic
coupling. The next step in K2CuF4 and Cs2AgF4 is quantifying the change in molecular
orbitals energy and charge distribution with the strains, which will be included in future
works.

However, as mentioned above, the origin of distortions in silver difluoride and layered
perovskites is different. As shown in previous sections, the ground state of the parent Pa3̄
phase of AgF2 belongs to the trigonal type of symmetry D3d, displaying a true Eg degen-
eracy, which gives rise to distortions whose origin lies in JT effect. On the other hand, the
parent phase of layered perovskites is tetragonal I4/mmm, devoid of degeneration, which
prevents the existence of JT effect. At this point, it should be stressed the importance
of symmetry in the analysis of vibronic coupling problems, since the microscopic origin of
structural instabilities can be understood in terms of the symmetry of the parent phases,
which is key to predict and study properties of materials.

The design of new systems requires thorough analysis of structure and properties of current
materials. Nevertheless, understanding the effects present in this sort of materials is com-
plicated since there are many distortions, interactions and defects (vacancies, impurities,
dislocations and so on) producing complex states, whose modelling can be problematic.
Along this line, first- and second-principles simulations as well as model hamiltonian meth-
ods will be combined to study the interaction and competition among structural, orbital
and spin orderings. In that direction, second-principles models for Cs2AgF4 and La2CuO4

are now in development.
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