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ABSTRACT  

Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber 
Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature 
discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its 
optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the 
thermal drift in a real application keeping a simple manufacture process. 
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1. INTRODUCTION  
Optical fiber sensors have been proved as a very reliable technology to measure many different parameters of advanced 
structures. Particularly, Fiber Bragg Gratings (FBGs) have been widely employed to obtain strain and temperature 
measurements in different scenarios [1].  Due to the cross sensitivity to temperature, strain sensitivity can also introduce 
certain errors when just this parameter has to be considered. In the literature, several works for simultaneous 
measurement of  strain and temperature were explored such as: different types of FBGs [2], superstructure gratings [3], 
reversed index gratings [4] or even FBG printed in special optical fibers like Bowtie [5] or microstructured [6]. 

Since the emergence of the composite materials, FBGs have been proved as a highly compatible technology applicable 
to measure the mechanical response of a hosting structure [7]. Several attempts stand out in this field to monitor the 
manufacturing process and even to obtain usable data while the structure is under operation. However, when working 
with FBGs, the temperature compensation step is always required to achieve high precision and resolution. There are 
several works that obtain the strain and the temperature parameters using highly compatible technologies such as 
embedding a pair of FBGs in composites with different number of layers [8] or varying the kind of composite material 
[9]. These solutions create different responses when strain and/or temperature are applied. However, the proposed 
solutions rely on different thickness or materials during the manufacture of the sensor head which can be a problem 
during the sensor installation (i.e. embodiment or reinforcement). 

In this work, some designs are proposed to obtain different strain responses within a carbon fiber composite plate with 
the same thickness. These plates are instrumented with pairs of FBGs that respond differently to strain and keep the 
same thermal sensitivity in the same host material and thickness. The different strain slope between the FBGs allows 
discriminating both contributions of each perturbation. Three alternative designs have been simulated both mechanically 
and optically taking into account their complexity to be manufactured.  
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