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para acceder al
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Rodrigo Garćıa Manzanas

Septiembre 2021



Resumen

En la primera parte de este trabajo describimos un procedimiento de aprendizaje

automático no supervisado basado en la técnica de Gaussian Mixtures con el

objetivo de determinar la estación de fuegos a escala global a partir de datos de

satélite de área quemada a una resolución espacial de 0.5◦. Nuestro método

permite la identificación de ciclos anuales de tipo unimodal y multimodal, aśı como

la determinación del inicio, fin y momento de máxima actividad de incendios, con

la ventaja adicional de proporcionar un procedimiento totalmente automatizado

que puede ser utilizado a múltiples escalas espacio-temporales. La caracterización

de la estación de fuegos aqúı presentada desvela un patrón ineqúıvoco y

espacialmente coherente, que es consistente con estudios previos sobre la

estacionalidad de incendios. Nuestro método puede ser fácilmente adaptado por el

usuario mediante el ajuste de unos pocos parámetros sencillos para adecuarlo a

bases de datos de incendios de distinta naturaleza, extensión geográfica y

resolución espacio-temporal.

A continuación, se parte de la zonificación proporcionada por las Gaussian

mixtures para el desarrollo de modelos predictivos de área quemada —durante la

estación de fuegos principal— a nivel de clúster, tomando como única información

predictora una serie de ı́ndices que representan los patrones de teleconexión

climática más relevantes a escala global. Para ello se consideran modelos lineales,

random forest y k -vecinos cercanos, en cuyo ajuste se aplican técnicas de validación

cruzada. Nuestros resultados muestran que, cuando se consideran como predictores

aquellos ı́ndices que están más fuertemente correlacionados con el área quemada,

incluso los modelos lineales más simples son capaces de proporcionar predicciones

de área quemada fiables en determinadas zonas del planeta. Este trabajo abre la

puerta para el futuro desarrollo e implementación de un sistema operativo de

alerta temprana de incendios en base a modelos climáticos de predicción estacional.

Todos los análisis realizados son totalmente reproducibles a través de los datos

post-procesados, scripts y notebooks que están disponibles en un repositorio

público.

Palabras clave: área quemada, estación de incendios, clustering, patrones de

teleconexión, modelos climáticos emṕıricos de incendios, mineŕıa de datos



Abstract

In the first part of this project, we describe an unsupervised machine learning

procedure based on Gaussian mixtures in order to determine the fire season at a

global scale, using remotely sensed data of burned area at a 0.5◦ spatial resolution.

Our results allow the identification of unimodal and multimodal annual cycles as

well as the start, end and timing of bulk fire activity, with the added advantage of

providing a fully automated procedure that can be used at multiple temporal and

spatial scales. The fire season characterization presented unveils an unambiguous,

spatially coherent pattern, consistent with previous studies on fire seasonality. Our

method can be easily tuned by the user through the manipulation of a few simple

parameters in order to accommodate fire databases of varying nature, geographical

extent and spatial and temporal resolutions.

Next, using the fire season definition given by the Gaussian mixtures, predictive

models of burned area are developed at a global scale using a set of the most

relevant climate teleconection indices as predictors. We consider linear models,

random forests and k -nearest neighbours, fitted following a cross-validation setup.

Our results show that, when only the most correlated indices with the fire intensity

are considered as predictors, even the simplest linear models are able to give

accurate predictions in certain parts of the world. This study paves the way for

the implementation of an operational early-warning wildfire system based on

seasonal forecasting climate models.

All the analyses undertaken are fully reproducible through the post-processed

data, scripts and notebooks available through a dedicated open repository.

Keywords: burned area, fire season, clustering, teleconnection patterns, empirical

fire-climate models, data mining
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CHAPTER 1

Introduction

1.1 Fire Seasonality

Fire is a global-scale phenomenon directly affecting different components of the

Earth System such as the structure and distribution of vegetation, the composition

of the atmosphere, hydrosphere and soils, the global biogeochemical cycles and the

climate system (Bond et al., 2004). As such, it is a complex Earth System Process

(Bowman et al., 2009) with an heterogeneous spatio-temporal distribution across

the globe (Chuvieco et al., 2008) driven by a variety of spatial and environmental

gradients (Krawchuk and Moritz, 2010; Pausas and Ribeiro, 2013), including anthro-

pogenic factors acting either indirectly (Bowman et al., 2011) or directly through

ignition as part of land management practices (see e.g.: Magi et al., 2012; Pereira

et al., 2015).

As a result, global land areas are affected by their own particular fire regimes,

characterized by the frequency, intensity, seasonality, extent and type of fires at

different spatial and temporal scales (Archibald et al., 2013). Describing fire season-

ality is therefore crucial for a better understanding of fire regimes across different

world regions (Le Page et al., 2010), serving as a tool for the characterization of

inter-annual cycles and fire activity peaks (Boschetti and Roy, 2008), and as a base-

line for undertaking interannual fire analyses requiring some form of seasonal ag-

gregated statistics (for instance in climate change impact studies, e.g.: Bedia et al.,

2015; Jolly et al., 2015), as well as a reference for the assessment of fire models’

1



2 1. INTRODUCTION

ability to reproduce seasonal patterns of burned area (Kelley et al., 2013; Hantson

et al., 2020).

With the recent availability of remotely sensed global fire data products of an

adequate quality and temporal coverage (Giglio et al., 2013), some previous efforts to

characterize the fire season shape globally have been undertaken. Their aim is mostly

focused on detecting multimodalities in the annual fire cycle building on parametric

statistical tests (Ameijeiras-Alonso et al., 2019), signaled as a sign of the “human

footprint” in fire regimes (Le Page et al., 2010; Benali et al., 2017). In this work,

a novel method based on Gaussian mixtures is presented in order to automatically

compute the fire season at the pixel-scale. The main underlying assumption is that

the annual fire cycle can be reproduced through a mixture of Gaussian distributions

and the method can therefore accommodate unimodal and multimodal responses

without supervision, given a sample of sufficient size and quality as the 20-year

monthly time series database used here (Sec. 2.1).

1.2 Empirical Fire-climate Models

In the framework of wildfire prevention, even marginal improvements in suppres-

sion efficiency have the potential to prevent significant damages and economic costs

derived from wildfires (Preisler and Westerling, 2007). Therefore, seasonal predic-

tions have a great potential to aid decision-making (see e.g. Bedia et al., 2018; Turco

et al., 2018), helping fire agencies to improve the efficiency of wildfire suppression

efforts during severe fire seasons and optimize the available economic, technical and

human resources through the provision of actionable information. Some of these

models rely on specific fire danger indices or lagged meteorological variables used as

predictors for burned area (see e.g. Bedia et al., 2014; Marcos et al., 2015).

At a global scale, large-scale sea-surface temperature (SST) patterns have been

identified as drivers of fire activity over vast land areas (Chen et al., 2016). In

this regard, the so called “climate teleconnections” are prominent modes of vari-

ability, often linked to SST and/or sea level pressure (SLP) variability in certain

regions that exert an influence on weather conditions in distant parts of the world

(Barnston and Livezey, 1987). These teleconnections are unveiled by significant sta-

tistical links of specific climate indices with meteorological variables (precipitation,

temperature, . . .) in the region of interest (see Sec. 2.3 for further detail). For this

reason, teleconnection indices can be used to establish empirical links with weather-

dependent phenomena such as fire activity, providing in this case a potential tool

for anticipating fire activity using lagged statistical models (Rodrigues et al., 2021).
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Despite the potential of teleconnection patterns for fire activity forecasting on

seasonal time scales, to date we are not aware of any previous studies addressing the

predictability of fire activity relying solely on climate teleconnection indices globally

(however, see Rodrigues et al., 2021, for an application on the Iberian Peninsula).

One major limitation for this task is the characterization of a local fire season, in

order to focus the analyses on the period of the year of relevance for each location

of the world. In this work, we develop such empirical models exploiting the results

from the first part of the study that provide, for each global land area pixel, a precise

definition of the fire season.

1.3 Objectives

Based on the previous considerations, this work poses two fundamental objec-

tives:

• Identify homogeneous regions in terms of their fire regimes across the world

using an automated clustering approach, providing a precise fire season defi-

nition at the pixel scale.

• Develop a global predictive system for the severity of the oncoming fire season

based on climate teleconnection indices.

1.4 Structure

Chapter 2 describes the data used for the elaboration of this work. The clus-

tering procedure and the techniques considered for the development of predictive

models for fire activity are described in Chapter 3. The results obtained are shown

and discussed throughout Chapter 4. Finally, the main conclusions are outlined

in Chapter 5, together with some future research lines and research reproducibility

information.



4 1. INTRODUCTION



CHAPTER 2

Data

2.1 Global Fire Database

We have used monthly data of Burned Area (BA) at 0.5◦ resolution from the

Fire burned area from 2001 to present derived from satellite observations database

(DOI: 10.24381/cds.f333cf85) which is publicly available through the Copernicus Cli-

mate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/home) as part

of Copernicus, the European Union’s Earth Observation Programme managed by

the European Commission (https://www.copernicus.eu/en).

The BA data used are derived through the analysis of reflectance changes from

the medium resolution sensors Terra MODIS and Sentinel-3 OLCI, helped by the

use of MODIS thermal information. The algorithms used are adapted to the native

data from these sensors to produce an homogeneous gridded dataset of global cov-

erage containing monthly data of BA at the pixel scale, extending the database to

the present. A more detailed data description is provided in the database landing

page at the Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#

!/dataset/satellite-fire-burned-area?tab=overview).

We have worked with the total monthly BA in hectares, as depicted in Fig.

2.1. The data encompasses the period January 2001 to April 2020. In addition, we

downloaded the variable “Fraction of Burnable Area” (fba), that was used to mask

global land areas with very low fuel cover to be discarded from the analyses. In

particular, we masked out all pixels with less than 10% fba.

5
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6 2. DATA

Fire data processing has entailed the download from the Climate Data Store

and further post-processing including NetCDF file extraction (a compressed binary

data format, see https://www.unidata.ucar.edu/software/netcdf/) and con-

version to a standard R data structure (a data frame), data collocation (geo-location

and date handling), conversion from m2 to hectares, data visualization (Fig. 2.1)

and masking, prior to data analysis. These tasks have been undertaken with the

climate4R framework for climate and geoscientific data analysis and visualization

(Fŕıas et al., 2018; Iturbide et al., 2019).

Figure 2.1: Total annual BA (in log10-transformed hectares), averaged for the period
of study 2001-2020.

2.2 Biomes

Biomes constitute a large-scale global land surface classification based on the

similarity of environmental conditions, including vegetation and bioclimatic charac-

teristics. Therefore, they conform suitable aggregation units for clustering as they

implicitly bring into consideration the fuel types and the main fuel-climate relation-

ships. Consequently, some degree of similarity regarding seasonal fire cycles can be

expected between areas of the same biome. As such, in order to improve clustering

performance, we have divided the global land pixels according to the biomes they

belong to, based on the Global Terrestrial Ecoregions delineated by Olson et al.

(2001). In particular, after excluding a few regions with low interest for fire activity

(ice caps of Antarctic region and Greenland, mangroves etc.), we have retained the

13 global biomes listed in Table 2.2, whose spatial distribution is shown in Fig. 2.2),

https://www.unidata.ucar.edu/software/netcdf/
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Figure 2.2: Global land biomes (see Table 2.2 for full names and extension). Blank
areas correspond to the pixels that were masked out, according to the 10% fraction
of burnable area criterion (Sec. 2.1), mostly corresponding to bare rocks, continental
water bodies, ice caps and deserts (tropical coastal mangroves are also masked).

2.3 Climate Indices

During the last decades of the past century, the scientific community identified

a number synoptic patterns which can promote the development of travelling at-

mospheric waves which can have important effects in the climate of remote regions

with a time-difference of weeks-to-months (these mechanisms are known as climate

teleconnections). Many of these patterns have an associated “teleconnection index”

which describes their evolution across time. Typically, these teleconnections indices

(or simply climate indices) are derived from SLP and SST. For instance, the most

popular teleconnection index, El Niño, is based on the SST of the central and eastern

tropical Pacific ocean and represents the state of the El Niño-Southern Oscillation

(ENSO), the dominant mode of climate variability at seasonal time-scales over the

globe (Manzanas et al., 2014).

Building on the potential of these teleconnections to trigger responses in mete-

orological variables of interest for fire activity —such as temperature, precipitation

and winds— throughout the world, this work aims to assess the suitability of a se-

lection of climate indices as explanatory variables for the construction of predictive

models for the amount of BA during the fire season, globally (see Sec. 4.2).

The subset of climate indices considered to do so was selected based on the ca-

pacity of their corresponding teleconnection patterns to modulate the inter-seasonal

and inter-annual variability of climate across many regions of the world. Moreover,

monthly anomaly values for all of these indices are publicly available for our pe-
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Name Label Number of pixels
Tropical and Subtropical Moist Broadleaf Forests TrMoistBrFor 26429
Tropical and Subtropical Dry Broadleaf Forests TrDryBrFor 4084

Tropical Conifer Forests TrConFor 981
Temperate Broadleaf and Mixed Forests TemBrFor 23411

Temperate Conifer Forests TemConFor 7550
Boreal Forests/Taiga Taiga 39775

Tropical and Subtropical Grasslands, Savannas and Shrublands TrGrass 26344
Temperate Grasslands, Savannas and Shrublands TemGrass 18459

Flooded Grasslands and Savannas FlGrass 1540
Montane Grasslands and Shrublands MnGrass 7714

Tundra Tundra 28442
Meditarranean Forests, Woodlands and Scrub Med 5009

Desert and Xeric Shrublands Desert 21780

Table 2.1: Name, abbreviations and number of non-masked points of the global
biomes considered in this study after Olson et al. (2001). Their spatial distribution
is depicted in Fig. 2.2.

riod of study (2001-2020) from the Climate Prediction Center (CPC) (https://

www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml) and the National

Oceanic and Atmospheric Administration (NOAA) (https://psl.noaa.gov/data/

climateindices/list/) websites. Note that, working with anomalies instead of ab-

solute values prevents from the appearance of undesired artifacts due to the distinct

ranges covered by the different indices. We provide next a brief description of the

underlying teleconnection patterns corresponding to the climate indices analyzed in

this work, whose monthly time-series along 2001-2020 are shown in Fig. 2.4:

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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Figure 2.4: Monthly anomalies for all the climate indices considered in this work
for the period of study 2001-2020. Note that ONI and Niño 3.4 time-series are
smoother as they are based on temperature over the sea-surface, whose thermal
inertia is larger than that of land and/or air.

• Niño 3.4: This index is defined as the average SST along the East Central

Tropical Pacific (5◦N-5◦S, 120◦-170◦W), which represents the state of ENSO, a

complex climate pattern which brings anomalously warm/cool SSTs over the

tropical Pacific recursively every three to seven years. This quasi-periodical
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cycle of oscillating SSTs have a strong influence on the distribution of rainfall

and temperature not only in the tropics, but in many regions across the globe

due to its ability to change the global atmospheric circulation (Taschetto et al.,

2020). The warm (cool) phase of ENSO is known as El Niño (La Niña).

El Niño (La Niña) conditions usually lead to a slight increase (decrease) in

global mean temperature. In addition, during El Niño phase, anomalously dry

(wet) conditions are generally found over Australia, northern South America,

southern Asia and southern Africa (southwestern North America and eastern

Africa). La Niña effects are roughly of opposite sign.

• Oceanic Niño Index (ONI): Together with El Niño 3.4, this is the most

commonly used index to monitor El Niño and La Niña phases of ENSO. ONI

is defined as the three-month running mean of SST anomalies in El Niño 3.4

region (5◦N-5◦S, 120◦-170◦W), based on changing base periods which consist of

multiple centered 30-year base periods. The main interest of ONI over the El

Niño 3.4 index is that the former is the operational definition used by NOAA,

which declares an active El Niño (La Niña) episode when the anomalies exceed

0.5◦ (-0.5◦) for at least five consecutive months.

• Southern Oscillation Index (SOI): This index is computed as the differ-

ence between mean SLP anomalies in Tahiti and Darwin, in Australia (Tren-

berth, 1984). Together with El Niño 3.4 index or ONI, which account for

SSTs in the tropical Pacific, the SOI is used to provide a full description of

the ENSO phenomenon. Indeed, previous works have demonstrated that both

El Niño 3.4 and SOI present a similar quasi-periodicity, with extended peri-

ods of negative (positive) SOI corresponding broadly to strong El Nino (La

Niña) conditions (Manzanas and Gutiérrez, 2019). Still, the SOI is widely

used nowadays to monitor the evolution of ENSO due to its simplicity.

• North Atlantic Oscillation (NAO): This pattern consists of a north-south

dipole of SLP anomalies with one center located over Greenland and the other

over the North Atlantic (Barnston and Livezey, 1987). The NAO can mod-

ulate the intensity and location of the North Atlantic jet stream and storm

track (Hurrell, 1995), which in turn results in changes in temperature and pre-

cipitation often extending from eastern North America to western and central

Europe (Van Loon and Rogers, 1978; Rogers, 1997). In particular, the positive

phase of the NAO tends to be associated with above average temperatures in

the eastern US and across northern Europe and below average temperatures
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in Greenland and oftentimes across southern Europe and the Middle East. It

is also related to increased precipitation over northern Europe and Scandi-

navia in winter and dry conditions over southern and central Europe (Brands

et al., 2012). Responses of opposite sign are typically found during its negative

phase.

• Polar/Eurasia (POLEUR): This pattern was first described by Esbensen

(1984) and formally defined later by Barnston and Livezey (1987). As the

NAO, it is also linked to changes in the polar vortex intensity. In particular,

its positive (negative) phase consists of negative (positive) SLP anomalies over

the polar region (northern China and Mongolia). The POLEUR pattern is

associated with above (below) average temperatures in eastern Siberia (eastern

China) and enhanced precipitation in the polar region north of Scandinavia.

• East Atlantic Pattern (EA): This pattern was originally defined by Wallace

and Gutzler (1981) and later reformulated by Barnston and Livezey (1987). It

consists of a north-south dipole of SLP anomalies which is structurally similar

to the NAO but shifted to the southeast. The positive phase of EA is associated

with above (below) average temperatures in Europe (parts of the US). It is

also associated with enhanced (weakened) precipitation over northern Europe

and Scandinavia (southern Europe).

• East Atlantic/ Western Russia (EA/WR): As defined by Barnston and

Livezey (1987), this pattern consists of four main SLP anomaly centers. Its

positive phase —characterized by enhanced SLP over Europe and northern

China— is associated with above (below) average temperature over eastern

Asia (large portions of western Russia and northeastern Africa). It also tends

to produce above (below) average precipitation in eastern China (central Eu-

rope). The effects during its negative phase —characterized by weakened SLP

in central North Atlantic and north of the Caspian Sea— are in general less

pronounced (Kim et al., 2013; Krichak et al., 2014).

• Pacific North American (PNA): This pattern constitutes the most promi-

nent mode of low-frequency variability in the Northern Hemisphere extratrop-

ics, affecting particularly the North American continent (Wallace and Gutzler,

1981). It is associated with strong fluctuations in the strength and location

of the East Asian jet stream, as well as with variations in the ENSO phe-

nomenon. The PNA pattern consists of a east-west dipole of SLP anomalies

located over US. During its positive phase, the cold air residing in Canada is
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plunged southeastward, which results in below (above) normal temperatures

over the eastern (western) US. The effects on precipitation include the appear-

ance of wetter than normal conditions in the Gulf of Alaska and northwestern

US and below average rainfalls across mid and eastern US.

• Scandinavia (SCAND): This pattern consists of a primary circulation cen-

ter over Scandinavia, with weaker centers of opposite sign over western Europe

and eastern Russia/western Mongolia (Barnston and Livezey, 1987; Bueh and

Nakamura, 2007). In its positive phase —characterized by increased SLP over

Scandinavia and western Russia— anticyclonic activity is suppressed, and be-

low average temperatures are found across central Russia and western Europe.

Also, above (below) average precipitation tends to occur across central and

southern Europe (Scandinavia) (Zveryaev, 2009).

• West Pacific (WP): This pattern is a primary mode of low-frequency vari-

ability over the North Pacific (Barnston and Livezey, 1987; Wallace and Gut-

zler, 1981). During winter and spring, it consists of a north-south dipole of

SLP anomalies with one center located over the Kamchatka Peninsula and

the other covering portions of southeastern Asia and the western subtropical

North Pacific. In addition, a third anomaly center is present over the east-

ern North Pacific and southwestern US throughout the year. Similarly to the

PNA, the WP pattern modulates the location and intensity of the East Asian

jet stream, which in turn can induce important changes in the temperature

and precipitation regimes of the North Pacific region. In particular, during its

positive phase, increased temperatures are usually found over the lower lati-

tudes of the western North Pacific in winter and spring, and cool conditions

affect Siberia in all seasons. With regards to precipitation, wetter (drier) than

normal conditions are found over the northern (central) North Pacific.
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Figure 2.3: Monthly burned area (BA) distribution (ha, in log10 scale) in TemBrFor,
TrGrass and Med biomes (Table 2.2), representative of three distinct types of fire
regimes. TemBrFor exhibits a bimodal annual cycle with two marked BA peaks in
spring and fall. TrGrass has an unimodal-type fire season (peaking in fall), but large
fires can occur at any time throughout the year when the global biome is considered
as a whole. Finally, the Mediterranean region (Med), characterized by a unimodal
annual cycle with a strong peak in boreal summer and more rare fire events outside
this season.
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CHAPTER 3

Methods

3.1 Clustering Methods

Clustering techniques are unsupervised learning algorithms that group the data

in different clusters trying to put together similar data. As a result, these algorithms

assign one (and only one) group to each data point. The number of clusters to form

is a non-trivial decision that the user must make taking into account some validation

metrics. In this work, Gaussian Mixtures is the main clustering method used.

3.1.1 Gaussian Mixtures

Gaussian Mixtures are based on the fact that the data points belong to a probability

distribution which is a weighted sum of K multivariate Gaussians (Murphy, 2012).

This clustering technique is implemented in the mclust package (Scrucca et al.,

2016). Gaussian Mixtures adopt the following form:

p(xi|θ) =
K∑
k=1

πkN(xi|µk,Σk),

where xi is one observation, θ represents the parameters of the models (πk, µk,

Σk), πk is the mixing weight verifying πk ≥ 0,
∑K

k=1 πk = 1 and µk and Σk are the

mean vector and the covariance matrix of each of the Gaussians for 1 ≤ k ≤ K.

The model produces K clusters, each of them associated to one different Gaussian

distribution —we have chosen this clustering model because fire seasons tend to

have more or less the shape of a Gaussian or the sum of two of them.—

15
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The model tries to find the value of the parameters θ = (πk, µk,Σk) that maxi-

mize the negative log likelihood of the observed data

l(θ) = log(p(xi|θ)).

In other words, it tries to obtain the parameters that make the observations more

likely to belong to the distribution. As it could be very difficult to find the maximum

of l, Gaussian Mixtures use the Expectation Maximization (EM) algorithm because

it increases monotonically l. EM is an iterative method which has the following

steps:

• E step: For each point xi, calculate the probability of belonging to the clus-

ter/distribution k using the expression

rik =
πkp(xi|θ(t−1)k )∑
j πjp(xi|θ

(t−1)
j )

,

where θ
(t−1)
k = (πk, µk,Σk) for 1 ≤ k ≤ K in the t − 1 realization of the EM

algorithm and 1 ≤ j ≤ K.

• M step: Recalculate the value of the parameters, where N is the number of

observational points:

1. πk =
1

N

∑
i rik

2. µk =
1

rk

∑
i rikxi

3. Σk =
1

rk

∑
i rik(xi − µk)(xi − µk)T .

3.2 Predictive Techniques

We have considered for this work three type of data mining techniques to develop

predictive models of BA. First, we have used linear models as a benchmark because

of their simplicity (and their reasonably good performance regression-like problems).

Besides, we have also considered random forests and k-nearest neighbours.

3.2.1 Linear Models

An advisable way to start dealing with a problem like ours is to begin with the

easiest method and, if needed, move to more complicated ones. For this reason, we

have first considered as benchmark a simple linear regression.
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This technique just tries to find the straight line that best fits our data. Its

objective is to find the coefficients αi which produce the minimum value of the

mean square error (MSE) between observed and predicted data. Hopefully, the

problem has an analytic solution that is given by the expression

α = (XTX)−1XTy,

where α = (α1, α2, . . . , αm), y = (y(1), y(2), . . . , y(n)) is the observed data and

X =


1 x

(1)
1 x

(1)
2 . . . x

(1)
m

1 x
(2)
1 x

(2)
2 . . . x

(2)
m

...
...

...
. . .

...

1 x
(n)
1 x

(n)
2 . . . x

(n)
m


is the characteristics matrix whose rows are observations and whose columns are the

variables that we will use for the prediction.

3.2.2 Random Forest

Bagging is a learning paradigm which is based on the idea that combining many

weak models can produce a strong one which yields improved stability and predictive

power. Random forests are a particular type of bagging technique which combine

many individual regression trees. A regression tree is a simple model that is used

to predict a continuous target variable. It is made up of nodes, branches and leaves

where each node represents a test on an attribute, each branch corresponds to an

attribute value and each leaf (terminal node) represents a final class. Tree building

algorithms evaluate an attribute according to its power of separation which is given

by the Residual Sum of Squares (RSS) (Eq. 3.1):

J∑
j=1

∑
i: xi∈Rj

(yi − ŷRj
)2, (3.1)

where R1, R2, . . . , RJ are the regions in which the characteristics space is divided,

yi are the points of each region and ŷRj
is the average of all the points of the region.

In other words, the new division in the tree, which will result in two new nodes, is

the one that reduces more the value of the RSS. However, trying all the possible

combinations is computationally expensive, so we use recursive binary separation.

In a first step, we consider the whole region of the characteristics space and we

try to divide it in two parts finding the predictor j and the separation threshold s

that minimize Eq. 3.1 for J = 2:
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∑
i: xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i: xi∈R2(j,s)

(yi − ŷR2)
2,

where R1(j, s) and R2(j, s) are the following sets:

R1(j, s) = {X | Xj ≤ s},
R2(j, s) = {X | Xj > s}.

Then, we apply the same idea to the new regions R1 and R2 and so on until

one stopping criteria is achieved (typically one of the following: error reduction too

small versus tree complexity, maximum depth achieved or too small sub-samples in

some region).

Trees often suffer from overfitting. In order to avoid it and obtain a better and

robust model, random forests combine many different regression trees. The idea is

to select m subsamples of the training data of the same size using bootstrapping

and to grow one regression tree for each subsample. Hence, we will end up with m

different trees and the final prediction will be a combination of the m predictions

given by each single tree, typically the average of all of them for regression problems.

However, if we use the same predictors for all the trees, we will get very similar

models, reducing the generalization ability of the random forest. Consequently, for

each regression tree we will only use mtry number of predictors that are randomly

selected.

In this project, we have used the random forest implementation which is available

in the caret and randomForest packages. Based on a proper cross-validation scheme

(Sec. 3.3.1) we have optimized the number of predictors (mtry), the number of trees

(ntree) and the maximum number of terminal nodes (maxnodes) for our random

forests based on the correlations attained.

3.2.3 k-NN

k-Nearest Neighbours (k-NN) is a supervised learning technique. Given the value

of k and a point xi, the algorithm chooses the k points x1, x2, . . . , xk that are more

similar (in the sense of the some distance, for example the Euclidean one) to xi. The

final prediction for xi will be a combination (typically the average) of y1, y2, . . . , yk,

i.e., the value of the target variable in each point x1, x2, . . . , xk.
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3.3 Validation Framework

In order to measure the capability of generalization of our predictive techniques

and to reduce the probability of overfitting, a suitable validation framework must

be defined.

3.3.1 Cross-validation

First, as we want to develop models with a good ability to generalise, cross-validation

should be considered. Otherwise, our models may suffer from overfitting, i.e., they

might be very accurate with train data but they will be unable to make correctly

extrapolate to unseen test data.

The easiest approach for cross-validation is hold out, which splits the full data

available up in two separated groups. The first one, which includes the majority of

the data points (typically 75% or 80% of the whole data), is used for training the

model whereas the other part is used to test the model quality. However, deciding

how the data separation must be performed is a non-trivial issue because different

partitions might lead to different results. In this project we have used a random

partition containing the 70% of the total dataset for training, which allows to op-

timize the parameters of both the random forests (mtry, ntree and maxnodes) and

the k -NN technique (k).

More sophisticated approaches for cross-validation consist of dividing the whole

dataset in more than two groups. This is called k -fold cross-validation, where k is

the number of partitions. For each 1 ≤ i ≤ k we build a model using the j-th group

(fold), j ∈ {1, . . . , k} \ {i}, and then, we make a prediction for the i-th group.

In this work, we have used leave-one-out cross-validation, which is a k-fold with

k = n, where n is the number of points we have. That is to say, for each 1 ≤ i ≤ n we

train with all the data except the i-th point and we make a prediction for this point.

This method is only used when there are few points as it is our case. Otherwise, it

is computationally expensive. We used it to train all the predictive models.

3.3.2 Validation Metrics

To assess the quality of our predictive models in a comprehensive way, we have

considered several metrics which allow to evaluate different forecast aspects. These

metrics are described next, using the o (p) letter to represent the observations

(predictions).



20 3. METHODS

• Bias: It represents the difference between the average of predicted and ob-

served values, so the best value we could get is 0 (unbiased model). For direct

comparison across different clusters, we express it as a percentage —with re-

spect to the standard deviation of the observations, σo,— where oi (pi) is the

average of the observations (predictions):

bias = 100

(
pi − oi
σo

)
.

• Ratio of variances: It provides a simple representation of the fraction of ob-

served variance explained by the predictions, being 1 the best possible achieved

value:

RV =
var(p)

var(o)
.

• Correlation: It measures how well the predicted time-series follow the cor-

responding observations in a range between -1 and 1, where the latter is the

desired score. We use the Pearson’s coefficient, being n the number of obser-

vations:

r =

∑n
i=1(oi − oi)(pi − pi)√∑n

i=1(oi − oi)2
√∑n

i=1(pi − pi)2

• Lower/middle/upper tertile accuracy: It gives a measure of the number

the times the lower/middle/upper observed tertile is correctly forecast, being

1 the best possible score:

Accuracy =
Number of correct predictions

Number of predictions

• Tertile accuracy: It gives a measure of the number of times the observed

tertile is correctly forecast.

Note that, in the last two metrics the tertiles are independently computed for

the actual and the predicted time-series, which makes them bias-insensitive.
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Results and Discussion

4.1 Clustering

Clustering was a crucial step in this project. As Gaussian Mixtures may be a

non-deterministic model when we are working with many points, several attempts

were made for each biome. The final choice (Fig. 4.1) was done according to the

best obtained Bayesian Information Criteria (BIC), as suggested in Fraley (1998),

after several preliminary exploratory data analyses. For instance, the influence of

outliers was first analysed. Large BA pixels unduly influence the clustering results

and tend to accumulate most of the clusters despite the shortage of these pixels.

As a result, BA data was log-transformed prior to clustering in order to reduce

the large BA magnitude differences between close pixels, leading to a more robust

grouping of pixels attending to their similarity in annual cycle shapes, and to a more

homogeneous spatial distribution of types (see Fig. 2.1).

Despite log-transformation, a non-optimal classification was found due to the

large differences of total BA across regions of the world —pixels with low values

of BA were grouped together in spite of their differing annual cycles.— In order to

obtain more robust results, we undertook a stratified clustering based on a global

biome classification (Olson et al., 2001, see Sec. 2.2). This provides a suitable

basis for separately analysing the data attending to similar biophysical features (fuel

types, climate . . . ), with the double advantage of providing a better discrimination

of fire season types within each region and dramatically improving the computing

times of the Gaussian Mixture algorithm, due to the reduction of within-biome BA

21
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variability on the one hand (see e.g. Fig. 2.3), and total sample size on the other.

In order to avoid too many clusters, an additional stopping criterion to BIC was

imposed, consisting in setting a minimum cluster size of 5% of the available points

within the biome.

Figure 4.1: Fire season types resulting after the biome-based clustering. Each color
corresponds to a different biome. Within each biome, the different clusters are
indicated by different color saturation levels.

Finally, we obtained between 2 and 7 clusters per biome, making a total of 55

clusters which exhibit a spatially coherent distribution across the globe (Fig. 4.1).

The requirement of having a minimum of 5% of the pixels contained in the biome to

form a cluster avoided the appearance of too many, meaningless clusters per biome

—the BIC criterion alone was not enough in this respect.— This ensured a good

compromise between diversity and an adequate grouping of similar fire season types

(i.e., same start/end and timing of the BA peak). As an example, using only the

BIC criterion the Tundra biome yielded around 40 different fire season types of

very low frequency, while the 5% criterion differentiates just two distinct, spatially

coherent types that reflect a latitudinal gradient within the Arctic region (see Fig.

4.1). Further details for each biome are provided in the dedicated notebook of the

supplementary material1 (Sec. 5.3).

1https://github.com/MarcosVM98/TFM/blob/master/notebooks/Definitive_

Clustering_v2.ipynb

https://github.com/MarcosVM98/TFM/blob/master/notebooks/Definitive_Clustering_v2.ipynb
https://github.com/MarcosVM98/TFM/blob/master/notebooks/Definitive_Clustering_v2.ipynb
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4.1.1 Fire Season

The fire season is typically defined by the months of the year encompassing the bulk

of BA. In particular, in this work we have defined the fire season as the months of

the year summing, in average, more than 80% of the total annual BA in each cluster,

following the European Forest Fire Information System (EFFIS, https://effis.

jrc.ec.europa.eu/) criterion (Jesús San Miguel Ayanz, pers. comm.). Note that

the average period used here is determined by the fire data availability at the moment

of the analysis (Jan 2001-Apr 2020, Sec. 2.1). When the months encompassing this

period are not consecutive (i.e., two differentiated BA peaks exist throughout the

year) a “main” fire season and a “secondary” fire season are distinguished, yielding

a bimodal fire seasonal cycle that is often signaled as a human-induced feature (see

e.g. Benali et al., 2017) Therefore, in order to characterize the annual cycle for each

pixel, for each month of the year we pick the 75th percentile of BA along the full

time series, yielding one BA value for each month, from January to December, that

we refer to as the “annual cycle” of BA (see e.g. Fig. 4.2). Then, we pick the first

j months that sum more than the 80% of the total burned area of the vector and

we take the period(s) of consecutive months. The analysis of this annual cycle for

each pixel allows for the differentiation between unimodal and bimodal cycles, that

are afterwards treated separately in subsequent analyses (see Fig. 4.3).

For better adaptability of our approach, both parameters, BA fraction and refer-

ence percentile (80% and 75th respectively in this study) can be arbitrarily modified

by the user, as indicated in the reproducibility notebooks (Sec. 5.3). Note that we

tested several different percentile thresholds before opting by the 75th (notably the

median and also higher percentiles). The final choice was partly guided by our own

“expert” knowledge, yielding very consistent results for well known regions like the

Mediterranean (Fig. 4.2), where wildfires are a key natural hazard. In this region,

the median produced inaccurate fire season results. Likewise, the mean proved to

be too sensitive to outlying observations (i.e. exceptional BA records attained in

some years).

https://effis.jrc.ec.europa.eu/
https://effis.jrc.ec.europa.eu/
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Figure 4.2: Burned area distribution in 3 illustrative clusters. Green, red and blue
lines represent the 25th percentile, the median and the 75th percentile, respectively.
The blue ones (75th percentile) are used to obtain the fire seasons.

Our analysis across the globe reveals that sizeable areas of Central and Northern

Europe, East Coast of North America and the Amazon Basin exhibit very low BA

records (the sum of the log BA of all the pixels within the clusters during the fire

season is less than 0.2) and that in the East of Europe and Asia there are regions

with bimodal fire seasons —two separated periods of fire activity during the year,—

as shown in the third panel of Fig. 4.2. Finally, unimodal fire seasons —one single

main period of fire activity during the year— like the first and the second of Fig. 4.2

are distributed all over the world: the Sahel, prairies of central North America, East

and South of South America or the South of Europe (EU-Med region). Overall, our

results are consistent with previous studies analysing the fire season globally (Benali
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et al., 2017) relying on a different statistical parametric approach operating point-

wise. This finding highlights the advantage of the automated clustering method

presented here, that can be easily applied to multiple spatial and temporal scales

with minor parameter modifications. Furthermore, the approach can be successfully

used to automatically differentiate unimodal and multimodal fire season cycles, as

revealed by the comparison of our results with other regional studies like Ameijeiras-

Alonso et al. (2019) over eastern Europe dry grasslands.

Figure 4.3: Type of fire season (unimodal or bimodal) as automatically calculated
from the BA annual cycles at the pixel scale. Blanked areas correspond to masked
pixels following the 10% fraction of burnable area criterion (Sec. 2.1).

Therefore, our results depict an unambiguous pattern of fire seasonality consis-

tent with previous studies, able to characterize the timing of BA peaks as well as

the duration and shape of the pixel-scale fire season relying on a fully automated

procedure that can be tuned by the user through the manipulation of a few simple

parameters in order to accommodate fire datasets of varying nature, spatial extent

and spatial and temporal resolution.

4.2 Predictive Models

Taking into account the biome classification and the fire season calculation de-

scribed in Sec. 4.1.1, we developed empirical predictive models using as the only

predictors the climate teleconnection indices introduced in Sec. 2.3.
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Figure 4.4: Start month, duration of the fire season and maximum burned area
of the peak month (in log10 scale) of the unimodal fire seasons of the TemBrFor,
TrGrass and Med biomes.

4.2.1 Correlation Analysis

Before building our predictive models we performed an exploratory correlation anal-

ysis to assess the existing degree of association between different climate indices.

This was done to avoid working with redundant predictor variables, which might

have a deleterious effect on our models, especially on linear regression ones. Al-

ternative approaches such as the use of principal components would serve to the

same purpose (see, e.g., Rodrigues et al., 2021), but at the cost of hindering model

interpretability, so it was discarded.

A correlation matrix for all climate indices is shown in Fig. 4.6. It can be seen

that ONI, SOI and El Niño 3.4 indices are highly correlated. Consequently, ONI and

SOI were discarded hereafter. This choice was done based on a potential extension

of the work presented here in which seasonal forecasting models could be used to

implement an operational early warning system for fire activity. In this regard, the

state-of-the-art seasonal climate models provide very accurate predictions of El Niño

3.4 index with a few months of anticipation (see, e.g. Manzanas et al., 2014).
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Figure 4.5: Start month, duration and maximum burned area (in log10 scale) of the
global bimodal fire seasons, considering the “main” fire season (left) and the “sec-
ondary” fire season (right). See Sec. 4.1.1 for the definition of main and secondary
fire seasons.

Figure 4.6: Pearson correlation coefficient between all climate indices considered.
Red (blue) colors shows positive (negative) values.
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Considering the final subset of uncorrelated teleconnection indices, we then com-

puted the correlations of each index mean with total BA during the fire season,

considering in this case only the unimodal fire season pixels.

The influence of the climate indices might not be immediate and their effects on

BA might not be seen until some time had passed (see e.g. Rodrigues et al., 2021).

Therefore, we have considered in our study time-lagged climate indices by 1, 2 and 3

months. For instance, if the fire season includes June, July and August, lag 1 refers

to the climate index values of May, June and July.

Furthermore, as the possibility of autocorrelation due to trends in the data is a

potential problem when comparing two time series, we use a common approach in

crop research (Lobell et al., 2007) based on calculating the first-order time differences

of predictor and predictand (we will refer this to as deltas hereafter); this is, we

consider the year-to-year difference of the variable instead of the original variable

values. As a result, in the delta approach the correlation is calculated between the

year-to-year differences (between two consecutive fire seasons) of the total sum of

the log of the BA and the averaged climate index. Furthermore, this approach is

also used in order to enhance the climatic signal and to separate this from other

confounding factors affecting fire (see e.g. Turco et al., 2014; Urbieta et al., 2015;

Bedia et al., 2015, in the context of fire research).

To assess the effect of building or not on the delta approach, the correlation

analysis was undertaken both for the year-to-year differences in BA and for the

original BA values. The difference in the results using both approaches is illustrated

in Figs. 4.7 and 4.8, which show the correlation per cluster between total BA (in log

scale) and two illustrative climate indices (PNA and SCAND) within the fire season

for different time lags. These results exhibit a reinforced signal when the delta

approach is used, highlighting its adequacy to model the fire-climate relationship.

Our results show that the PNA index obtains stronger correlations in the centre

of South America, Indonesia and the south of Africa for lags 1, 2 and 3 than for

lag 0. In addition, the use of deltas tends to strengthen the correlation, as seen in

southern Africa for the PNA or around the Mediterranean basin for the SCAND.

In general, the PNA index exhibits correlations over 0.6 in parts of South America,

Africa and Indonesia and SCAND presents significant negative correlation in the

Iberian Peninsula, where Rodrigues et al. (2021) also obtained similar results but

using the Fire Weather Index as predictand. The remaining climate indices also

obtain significant correlations in different parts of the world. Further details for
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each index are provided in the dedicated notebook of the supplementary material2

(Sec. 5.3).

Figure 4.7: Panels 1 to 4 (starting from the left-upper corner, and from left to right):
Pearson correlation between the mean PNA index and the sum of the log of BA in
the fire season, for different time lags. Panels 5 to 8: As panels 1 to 4, but using the
delta approach. In 95% of the cases, correlation coefficients outside the [−0.46, 0.46]
range are statistically significant at a 95% confidence level. White areas are either
masked or do not have a fire season.

4.2.2 Predictive Models

With the idea of finding the best predictive model for BA, we have considered three

different data mining techniques in this work: linear models (only with certain pre-

2https://github.com/MarcosVM98/TFM/blob/master/notebooks/Correlation_Per75_

with_deltas_v2.ipynb

https://github.com/MarcosVM98/TFM/blob/master/notebooks/Correlation_Per75_with_deltas_v2.ipynb
https://github.com/MarcosVM98/TFM/blob/master/notebooks/Correlation_Per75_with_deltas_v2.ipynb
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Figure 4.8: As Fig. 4.7 but for the SCAND index.

dictors), random forests and k-NN (the last two use all the available predictors).

Furthermore, for each technique we have built six different models considering dif-

ferent time lags of the climate indices used as predictors. We have one model per

each lag between 0 and 3, then another that considers predictors with lags 1 to 3

(combined) and finally one more which uses all possible lags (i.e., 0, 1, 2 and 3).

The target variable is the delta between the total of the log of the burned area in

the cluster during two consecutive fire seasons as described in Sec. 4.2.1, and the

predictors are the deltas of the averaged climate indices.

The exploratory correlation analysis described in Sec. 4.2.1 served to the purpose

of finding adequate predictors for the linear models. That is, only those climate

indices exhibiting a significant correlation with BA were used as predictors in this

type of models. However, all the available climate indices (excluding ONI and SOI)
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were considered as potential predictors for the case of random forest and k-NN

models. As a result, there are several clusters which do not have a linear model for

certain lags and there are also linear models which use one single predictor, as shown

in Figs. 4.9 and 4.10 (the missing linear models are indicated by the 0 number of

predictors category).

Figure 4.9: Number of predictors considered in the linear models using predictor
information which combine different time-lags, at the cluster-level.
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Figure 4.10: Number of predictors considered in the linear models using predictor
information at specific time-lags, at the cluster-level.

The main parameters for the random forests and the k-NN techniques (number

of trees and number of neighbours, respectively) were optimized for each cluster

and lag according to the value of the correlation attained under the cross-validation

scheme described in Sec. 3.3.1. Figs. 4.11 and 4.12 represent the optimum value

obtained for the ntree and k parameters (number of trees and number of neighbours,

respectively) for each cluster and time lag.
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Figure 4.11: Optimum number of trees for the random forest technique at time
lags 0 to 3 (rf 0123 ) for each cluster, according to the correlation attained in cross-
validation mode. Clusters that do not have a linear model are not represented.

Figure 4.12: As Fig. 4.11 but for the number of neighbours parameter of the
kNN 0123 models.
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According to Fig. 4.13, which shows violin plots3 that allow to summarize our

results in terms of the validation metrics explained in Sec. 3.3.2, providing a good

representation of the performance of all the models applied for each specific technique

and lag, linear models are the most competitive ones in most of the cases, specially

for the third tertile accuracy and for correlation, which are key with regards to

a potential use of this methodology in an operational forecast context. This has

major importance because it suggests that our climate indices and the BA are linked

through simple, mostly linear relationships. In contrast, k-NN models tend to be

biased and have low correlation while random forests are too conservative since they

have small ratio of variance and also they obtain poor results in the upper tertile

accuracy. In addition, even the worst linear models obtain better results in almost

every validation metric, except for the middle tertile accuracy, that is usually the

more difficult to predict for the linear models. As expected, linear models with more

predictors perform better; in particular, the best results are found when predictors

of lags 0 to 3 are included. However, this pattern, which also appears for the k-

NN models, is not clearly shown in random forests because the ones having more

predictors (rf 123 and rf 0123) get worse results in bias and ratio of variance, though

they improve their tertile accuracy and correlation. We ought to note that half of

the lm 0123 models get correlations and third tertile accuracy over 0.5. Fig. 4.14

shows a comparison between the observed time-series and predicted ones — obtained

with the lm 0123 linear model— for four illustrative clusters (note that the top row

correspond to the unimodal clusters shown in Fig. 4.2). Noticeably, correlations

above 0.5 are attained in all cases, reaching values of about 0.8 in the clusters

shown in the bottom row (which have been selected with illustrative purposes).

3Violin plots are similar to box-plots but they also include an estimation of the probability
density of the data.
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Figure 4.13: Summary of the results obtained (each color correspond to a differ-
ent predictive technique) in terms of different validation metrics. Correlation is in
absolute value and bias is expressed as a percentage with respect to the standard
deviation of the observed values. Models (random forests and k-NN) in clusters and
lags where there are not significant correlated indices are not considered. The point
of each violin represents the median across all considered clusters.
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Figure 4.14: Predicted and observed time-series for delta differences of the BA (in
log scale) in four illustrative clusters. Numbers above each panel show the Pearson
correlation between observations and predictions. Horizontal lines in green (red)
represent the tertiles of the observations (predictions).



CHAPTER 5

Main Conclusions and Future Work

5.1 Main Conclusions

Next, we briefly expose the key conclusions drawn from this work:

• We have introduced a new methodology based on Gaussian Mixtures which

has proved successful in grouping global land pixels according to their fire

season, properly distinguishing between unimodal and bimodal fire annual

cycles. Overall, our results agree with previous studies using parametric tests

for the same purpose. Our results depict an unambiguous pattern of fire

seasonality consistent with previous studies, that is able to characterize the

timing of BA peaks as well as the duration and shape of the pixel-scale fire

season. The main advantage of the method presented is that it is a fully

automated procedure that can be tuned by the user through the manipulation

of a few simple parameters in order to accommodate fire datasets of varying

nature, spatial extent and spatial and temporal resolutions.

• We have demonstrated that working with year-to-year differences (referred

to as deltas) instead of actual values allows to improve the predictability of

the burned area, strengthening the empirical links between this variable and

the global climate teleconnection indices used as predictors. Moreover, the

use of lagged climate indices unveils the existence of retarded links with fire

activity in various parts of the globe, which helps to increase the performance

of our predictive models, suggesting a promising potential of this approach for

37
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its application within an operational fire prediction context at seasonal time

scales.

• Even though we have considered more sophisticated data mining techniques

(random forests and k-NN) our results evidence that parsimonious linear mod-

els, specially those which consider current and lagged predictors (lags 0 to 3),

are the most appropriate for this task. This suggests that the relationships

that link global climate teleconnection indices and burned area in many parts

of the globe are simple and mostly linear.

• Despite our predictive models rely solely on climate teleconnection indices as

predictor information and the sample size available for training was limited,

we have reached high levels of skill to predict the BA for the upcoming fire

season in various parts of the world, in particular for the majority of clusters

included in sensitive world areas –either by their conservation value and/or

for being densely populated regions– such as the Tropical and Subtropical

Moist Broadleaf Forests, Tropical and Subtropical Dry Broadleaf Forests or

the Mediterranean biomes, among others.

5.2 Future Work

We outline next some future activities which constitute the natural continuation

of the current work:

• Apply the methodology proposed here to other types of meaningful land divi-

sions such as the ecoregions described in Olson et al. (2001) or so called py-

romes, either at global (Archibald et al., 2013) or regional (Trigo et al., 2016)

scales, in order to further analyse the multiscalar nature of our approach.

• Extend the current study to perform predictions of BA for bimodal clusters.

Although results for these regions have not been produced yet, the code re-

quired for that task is already in place.

• All the predictive models developed in this work use as predictors the set of

observed climate indices described in Sec. 2.3. We plan to extend this catalog,

not only by adding new climate teleconnection indices, but also by including

other meaningful predictors which are more specific to fire, e.g. variables

related to precipitation and soil moisture, as suggested in Archibald et al.

(2013).
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• In a next phase of the project, we will plan to assess the suitability of replacing

observed by simulated teleconnection climate indices, as given by a set of

state-of-the-art seasonal forecasting models, which can provide predictions of

different atmospheric and oceanic variables (including the SST and SLP) for

up to one year into the future. This would give us the chance to test the

feasibility of developing an operational early warning system for the detection

of high/low fire activity.

5.3 Reproducibility of Results

An additional effort has been undertaken in order to ensure the reproducibility of

all the results presented in this work, adopting as far as possible the FAIR principles

for scientific data management (Wilkinson et al., 2016). As a result, all the necessary

data and code to reproduce the results are available in an open GitHub repository,

including also several notebooks that serve as an aid in the full reproducibility of

the results and their scrutiny, and constitute an extensive supplementary material

to this study that is referred throughout the text.

All the resources needed to reproduce the results presented in this document are

publicly available in GitHub: https://github.com/MarcosVM98/TFM. In particu-

lar, we have created a series of Jupyter notebooks (in notebooks directory), which

build on the data and functions allocated in data and scripts directories respectively,

and allow to easily follow all the analysis performed. Moreover, the code used for

directly obtaining the figures that appear in this document (placed in Figures di-

rectory) is in Figures notebook. Finally, all the project was developed in the free R

language.
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