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Abstract This article presents a set of linear regression models to predict the
impact of task migration on different objectives, like performance and energy
consumption. It allows to establish if at a given moment the migration of a task
is profitable in terms of performance or energy consumption. Also, it can be
used to determine the best node to migrate a task depending on the objective.
The model uses a small set of parameters that are easily measurable. It has
been validated against a small heterogeneous cluster using the Slurm resource
manager. The model captures the tendencies observed in the results of the
experiments, with average relative errors below 3.5% in execution time and
2.5% in energy consumption.

Keywords Task Migration · Performance estimation · Energy consumption ·
Heterogeneous Clusters

1 Introduction

Task migration is not a novel idea and it has been pursued many times over
the last decades [1, 2]. The process of migration consists on interrupting the
execution of a task that is running in a compute node, capturing a snapshot of
its current state and transferring it to another node. This node can then restart
the task and resume its execution from where it was interrupted, without losing
any of the work done [3].
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In recent years, developments in HPC clusters make it appropriate to
revisit this concept, because these are becoming increasingly heterogeneous
[4, 5, 6, 7, 8, 9]. Currently, HPC clusters are composed of computation nodes
with great differences in terms of the number and architecture of the pro-
cessors, memory technologies and interconnection networks. Furthermore, op-
erating these clusters is guided by new objectives, like energy consumption
and efficiency. Correctly managing the heterogeneity through scheduling and
load balancing techniques is essential to optimise the performance and energy
[10, 11, 12, 13]. Another important challenge these clusters face is maintenance
and resilience. The number of computer nodes is constantly growing, and there
are already machines with millions of cores. For future exascale systems, it is
the considered critical to develop strategies that make software resilient against
failures. Finally, the fact that the completion times of scientific and big-data
applications currently executed in HPC data-centres are well in the range of
hours, or even days, makes the overhead of migration less relevant [14, 15].

This paper proposes a set of linear regression models to evaluate the impact
of task migration in heterogeneous clusters. It is composed of several mathe-
matical equations that predict the performance and energy consumption of a
task that is migrated from one node to another. These equations can be used
to determine if a migration is profitable or not, or to select the most adequate
receiver from a set of available nodes. The model can be the basis for the
implementation of preemptive scheduling and load balancing strategies, the
improvement of fault resilience and more efficient system administration.

The model has been validated through experimentation in a small het-
erogeneous cluster with the well known resource manager Slurm [16]. This
validation consist on performing a number of migrations of different bench-
marks in various scenarios, where the execution time and energy consumption
were measured. These values were compared to those predicted by the model,
obtaining an average relative error below 3.5% in the performance estimation
and 2.5% in the energy consumption.

The remainder of this article is structured as follows. Section 2 explains
the migration concept in detail and presents the proposed models. Section 3
outlines the methodology employed and the experimental results, while Section
4 offers an empirical evaluation of the results. Section 5 deals with related
work found in the literature. Finally, Section 6 summarises some concluding
thoughts and future lines of work.

2 Task Migration Models

2.1 Migration Process

Migration heavily relies on task checkpointing tools. These implement two
operations, checkpoint and restart. The first is capable of suspending the ex-
ecution of a given task, storing its state in a checkpoint file. Conversely they
are also able to read this file, recreating the state of the task and allowing
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it to resume execution. With these tools, task migration is implemented by
checkpointing in one node, transferring the checkpoint file to another node
and resuming there the execution.

These steps have a given time duration that depends on the size of the
memory footprint of the task, which add an overhead to the execution time of
the task [17]. For a migration to be beneficial, the overhead must be compen-
sated by the performance gain of the receiving node. Also, since the overhead
is constant for each application, longer executions will make it less relevant.
And since current HPC applications have execution times well in the range
of hours, or even days, then task migration techniques are well suited for this
environment.

In addition to reducing execution time of tasks, nowadays there is a great
concern about energy consumption and efficiency in large HPC centres. In this
regard, task migration can be used to relocate tasks to energy efficient nodes,
thus improving the efficiency of the centre as a whole.

2.2 Performance Model

The construction of this model is based on computing the time a task spends
in the three phases that it undergoes when it is migrated. These are, the time
executed in the sender node Ts, followed by the time overhead of the migration
process Tm, and finally the time of the execution performed in the receiver node
Tr. Then the execution time of a migrated task T can be modelled as follows:

(1)

T = Ts + Tm + Tr

= Tbα+ Tm + Tb
1 − α

S

= Tb

(
α+

1 − α

S

)
+ Tm

Where the parameters of the model are the following:

– The base time Tb is the execution time of the task in the sender node
without migration. It is common practice in resource managers where the
users provide an expected execution time of the tasks they submit. For
instance, one of the most popular scheduling algorithms, backfill, relies on
this value.

– The migration point α specifies the portion of the execution of the task
that runs in the sender node. This can be computed as the fraction of the
current execution time divided by the base time, yielding values between 0
and 1. Values close to 0 indicate that the task is migrated at the beginning
of the execution and higher values tell that the migration occurs later in
the execution. When α = 1, it means that the whole task runs in the sender
node and a migration does not take place.
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– The speedup S is an estimation of the performance improvement of the
receiver node relative to the sender one. Values of speedup greater than
1 mean better performance of the receiver node, that will bring an im-
provement of the execution time. Conversely, the receiver node can also be
slower than the sender, then giving values of S lower than 1.

– The migration time Tm is the time overhead introduced by the migration
process, including the checkpoint, transfer and restart operations.

With the above expression, a necessary condition can be extracted to de-
termine if the migration of a task between two nodes is advantageous at a
given point in its execution.

α+
(1 − α)

S
+
Tm
Tb

< 1 (2)

2.3 Energy Model

Traditionally, migration has been carried out to reduce the execution time
of a task, thus targeting nodes with more computational capacity but higher
energy consumption. Nowadays there is a growing concern about the energy
consumption of HPC clusters, therefore a model is provided to predict the
total energy consumed by a task undergoing migration. It can be used to
decide where to migrate task in order to achieve an energy saving objective.

This model is based on the same three phases described in the previous
section, considering the energy as the product of time and power consumption.
Thus, the total energy consumed by a migrated task can be modelled as:

(3)

E = Es + Em + Er

= αTbPs + Em +
1 − α

S
TbPr

= Tb

(
αPs +

1 − α

S
Pr

)
+ Em

In addition to the parameters used in the performance model, this one
includes the following:

– The power of the sender Ps and receiver Pr nodes.
– The migration energy Em is the energy attributed to the three steps of the

migration process.

Similar to the performance model it is also possible to obtain a necessary
condition to determine if a migration is advantageous in terms of energy con-
sumption. (

αPs +
1 − α

S
Pr

)
+
Em

Tb
< 1 (4)
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Table 1 Summary of experiment details.

Experiment Benchmark Parameters Tb Memory

MD Molecular Dynamics Part=2500 Cycles=10 100s 7MB
MDL Molecular Dynamics Part=2500 Cycles=40 375s 7MB
NN Mandelbrot Depth=20000 Side=2000 100s 68MB
MNB Mandelbrot Depth=500 Side=12000 105s 2.15GB

It is worth pointing out that reducing the energy consumption can be
achieved in two ways, by shortening the execution time or by consuming less
power. It can happen that the receiver node is much faster than the sender
and does not consume significantly more power, and due to the execution time
reduction it provides an energy saving. Or on the contrary, the receiver node
might not be much faster, so the execution time does not change significantly,
but it is far more energy efficient, meaning that in the same time it consumes
less energy than the sender.

3 Evaluation

The empirical evaluation of the models proposed in this article has been car-
ried out in a cluster with 20 computational nodes. Each one has Kaby Lake
Intel Core i5-7500 CPU with 4 cores and 8GB of DDR4 memory. This pro-
cessor is operated in a range of clock frequencies between 1.7 GHz and 3.4
GHz. Therefore, the heterogeneity of the system is achieved by assigning dif-
ferent frequencies to different nodes, in such a way that they provide different
computational power.

The Slurm Workload Manager [16] is used to manage the tasks in the
cluster and the Distributed MultiThreaded CheckPointing (DMTCP) [18] has
been selected as the migration tool. The DMTCP Slurm plug-in described in
[19] has been used, with some implementation adjustments.

A set of benchmarks were used to represent the behaviour of common HPC
workloads. These are Matrix Multiplication, N-Body, Molecular Dynamics,
Mandelbrot, LU and Heated Plate. Although the conclusions of this article
are based on the results of all these benchmarks, due to space restrictions the
graphs shown are restricted to two of them that were deemed representative
of the set: Mandelbrot and Molecular Dynamics.

For each of the two benchmarks two sets of execution parameters were
used, as shown in Table 1. The Molecular Dynamics experiments have the
same footprint and different execution time, to evaluate the impact of task
duration in the model predictions. Similarly the Mandelbrot experiments have
practically the same execution time but different footprint, to observe how the
model behaves with the memory size of the task.

The metrics used to validate the models are the execution time and the
energy consumption. The latter was obtained through the Slurm accounting



6 Esteban Stafford, José Luis Bosque

plugin, that uses RALP to give the addition of the package and DRAM ener-
gies.

Performance model evaluation The model requires the definition of two pa-
rameters, the migration time and the speedup of the second node. The former
was estimated by measuring the time difference between executions of the
benchmark with and without migration. It includes the checkpoint, wait and
restart time. Checkpoint and restart times are fairly deterministic and depend
on the memory footprint of the benchmark, [17]. However the most part of
the migration time is the wait time introduced by the periodic nature of the
scheduling algorithm of Slurm. On average the migration time is 6.15 seconds,
with standard deviation of 2.3. The second parameter is the relative speedup
between the nodes involved in the migration. Since all the nodes in the clus-
ter have the same architecture, the speedup can be estimated by dividing the
clock frequencies of the CPUs: S = F1

F2
.
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Fig. 1 Comparison of performance model with experiments.

Figure 1 shows the execution times of the benchmarks in different scenarios
as described in Table 1. The horizontal axis represents the point in the exe-
cution when the migration takes place (α). Points on the left side mean early
migrations, and advancing on the axis means delaying the migration. The last
point (α = 1) means no migration at whatsoever. All the executions start in a
node running at 2.5 GHz, the different lines in the graphs show the frequency
of the node that the benchmark is migrated to. In addition Figure 2 shows the
relative error between the model and the measured execution times.
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Fig. 3 Error of energy model.

Energy model evaluation The energy model requires some parameters in ad-
dition to those of the performance model. These are the power consumption of
the sender and receiver nodes. This power is heavily dependant on the nodes
and the benchmarks. Even with nodes with the same hardware and perfor-
mance, there are small differences in the power, that over long periods of time
can amount to large differences in the total energy consumption. These small
differences can be seen in Figure 4, that shows the power consumption of
several benchmarks in two different nodes.
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Fig. 4 Power consumption of two nodes with different benchmarks.

Similar to the performance experiments, Figure 5 shows the energy con-
sumed by each execution varying the frequency of the receiving node and the
point (α) at which migration takes place. Finally, Figure 3 shows the average
relative error commited by the energy model.

4 Discussion

In light of the experimental results described in the previous section it is
possible to discuss the validity of the models presented in this article.
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Fig. 5 Comparison of energy model with experiments.

At first glance, the empirical data matches the general spirit predicted of
the models. In terms of performance, regarding the situations in which mi-
gration is profitable, the experiments satisfying equation 2 lie below the black
horizontal line (Fig. 1). In more detail, comparing the Molecular Dynamics
experiments (MD and MDL), the error of the prediction is substantially de-
creased when the execution time grows (MDL). This is explained by consider-
ing the absolute error, that in these two experiments is very similar, meaning
that it does not depend on the length of the application (Fig. 2). These errors
will be negligible if real HPC applications are used, that have execution times
in the range of hours or even days. Also, longer executions make that the mi-
gration is profitable closer to the end of the execution, because the impact of
the migration time is comparably less relevant.

Regarding the Mandelbrot experiments (MN and MNB), the error in the
predictions of the model doubles when the memory footprint is increased up
to 2GB. This is a consequence of two facts, first the migration time of the
MNB experiment being slightly higher, due to the large size of the checkpoint
file. Second, MNB also has a higher memory access rate, which leads to lower
speedup than what the frequency ratio estimates.

Regarding the energy consumption, Figure 5 shows that in this instance,
there is no energy saving in task migration. The reason behind this is that the
power consumption of the second node is slightly higher than the first (Fig.
4). Note that if the blue line (2.5GHz) were horizontal, it would mean that
both nodes consume the same power. The model correctly predicts that, in
Molecular Dynamics (MD and MDL), migrating to a slower node reduces the
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power consumption but makes the execution time longer, having no impact
in the total energy consumption. On the other hand migrating to the fastest
node reduces the execution time but at a higher power consumption, which
can be seen that increases the consumed energy up to 35% with the earliest
migration. As for the precision of the model, Figure 3 presents the average
relative error in relation to the experiments. It can be seen that this error is
under 2.5% in all cases.

5 Related Work

Task migration is not a novel concept, and several proposals have been pre-
sented both, to improve the migration mechanism itself, as well as to be used
in scheduling, load balancing and resiliency. On the one hand, there are a
series of papers that focus on the development of Checkpoint/Restart (C/R)
techniques and tools, to migrate running tasks between compute nodes. In this
area [20] presents a simple and transparent method of task migration based on
coordinated checkpointing of MPI applications, although it introduces a not
negligible overhead because all the processes need to be checkpointed.

A more modern migration mechanism for HPC environments is analysed
in [4]. The authors propose a protocol guaranteeing local consistency on a
per-connection basis. In contrast to classical C/R approaches, where all pro-
cesses of a job have to synchronize, this condition is sufficient resulting in a
reduced complexity. [9] provides an extensive analysis of the performance, en-
ergy and I/O costs associated with a wide array of checkpointing policies. [21]
presents a C/R scheme to balance the workload of computational nodes as
well as for fault-tolerance algorithms in HPC clusters. The rise of heteroge-
neous GPU-based systems has led several authors to propose C/R mechanisms
for theses systems. For instance, CudaCR [22] presents an optimized schedule
strategy for memory corruptions in the device. CLPKM is a framework that
provides an abstraction layer between OpenCL applications and the under-
lying OpenCL runtime to enable preemption of a kernel execution instance
based on a software checkpointing mechanism [23]. CRState inserts primitives
into OpenCL programs at compile time, so the checkpoint/restart can happen
at predetermined places and the major components of the computation state
will be extracted at runtime [24].

Distributed Multithreaded Checkpointing (DMTCP)1 [18] is the check-
pointing tool that was selected to evaluate the models proposed in this article.
It executes exclusively in userspace, meaning that it does not require modifying
the kernel or the configuration of the operating system. It was selected because
of its use in HPC environments and its support for MPI task checkpointing.

Other authors focus on using task migration for scheduling and load bal-
ancing in HPC systems [5].

In [25] a load balancing algorithm for clusters of multicore processors is pre-
sented and discussed. In this algorithm the Extremal Optimization approach

1 The code is available at https://github.com/dmtcp
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is used to periodically detect the best tasks as candidates for migration and for
a guided selection of the best computing nodes to receive the migrating tasks.
To decrease the complexity of selection for migration, the embedded EO algo-
rithm assumes a two-step stochastic selection during the solution improvement
based on two separate fitness functions.

Later, in [8] the same authors present a multi-objective load balancing
algorithm based on extremal optimization. It uses three objectives relevant to
load balancing: computational load balance of processors, the volume of inter-
processor communication and task migration metrics. Extremal optimization is
used to find task migrations which dynamically improve processor load balance
in a distributed system.

Other authors propose the Task Packing algorithm, a scheduler policy of
the MPI tasks, to re-allocate the tasks within each node based on oversub-
scription. That is, running an application with a number of OS level tasks
larger than the number of available cores [7]. The reallocation is computed us-
ing a packing strategy based on a particular case of the well-known Knapsack
algorithm.

In [26] an HPC scheduler is presented that applies co-scheduling and uti-
lizes virtual machine migration for a re-orchestration of applications at run-
time, based on their main memory bandwidth requirements. The migration
model in this case is strongly related with the total main memory bandwidth
utilization.

Related to energy consumption [27] presents H-ENERGYLB a heteroge-
neous energy-aware load balancer which reduces the average power demand
of systems with heterogeneous processors and saves energy when applied over
iterative applications with imbalanced loads. The decision of task migration is
based on a threshold on the load imbalance of the nodes, thus no performance
or energy considerations are taken.

Migration has also been used to improve resiliency. The authors of [28] pro-
mote process-level live migration combined with health monitoring for a proac-
tive fault tolerance (FT) approach that complements existing C/R schemes
with self-healing. This work differs from ours in that the models used here
focus on analysing the health of the computation node rather than its perfor-
mance or energy consumption.

All these articles show that the topic addressed is relevant and up-to-date.
However, none of them presents mathematical models capable of predicting
the improvement, both in performance and energy consumption, of task mi-
gration between two of nodes of a cluster. In addition, none of them has been
incorporated to such a widely used workload manager as SLURM, which would
allow many datacenters and HPC systems to benefit from it.

6 Conclusions

This article presents a set of models that predict the execution time and en-
ergy consumption of a task when it is migrated from one node to another. The
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models are adapted to the context of heterogeneous clusters where the per-
formance and power consumption of the nodes may differ from one another.
These models allow determining whether a migration is going to be advanta-
geous in terms of performance and/or energy consumption. Furthermore, the
models are based on linear regression and rely on a small set of parameters
that can be easily obtained.

The models have been evaluated empirically against the results of migrat-
ing several benchmarks in different scenarios with nodes of different perfor-
mance and power consumption. This has shown that the models predict the
experimental results with average relative error below 3.5% in performance
and 2.5% in energy consumption.

In the future, efforts can be made in order to better estimate the speedup
of the migrated application, thus improving the precision of the models. Also,
the models can be upgraded to consider more complex scenarios, like parallel
applications or hardware accelerators. The presented models can be the heart
of preemptive scheduling algorithms that are able to improve performance or
energy consumption of heterogeneous clusters.
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