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Abstract

In the present study, we applied a regularized inversion method to extract the particle size, magnetic
moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering
(SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements
the particles were colloidally dispersed in water. At first approximation the particles could be assumed
to be spherically shaped and homogeneously magnetized single-domain particles. As model functions
for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM)
and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be
distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis
of these peaks enabled, in combination with a prior characterization of the particle ensemble by
electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization
of the particles. Additionally, all three extracted distributions featured peaks, which indicated
deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one
expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations
could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins
(DCM) and/ or intra-well relaxation processes (ACS). The main advantage of the numerical inversion
method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions
are required, which enabled the detection of these contributions. We highlighted this by comparing
the results with the results obtained by standard model fits, where the functional form of the
distributions was a priori assumed to be log-normal shaped.

1. Introduction

As evident from recent review articles [ 1-4], biomedical application of magnetic iron oxide nanoparticles
(IONPs) is presently an intensely investigated, multi-disciplinary field of research. However, to this day there
exists no standardized way of characterizing IONPs. In this sense, regulatory work is necessary prior to clinical
application to guarantee a safe and effective implementation of IONPs [5, 6]. To disclose unambiguously the
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interrelations between structural and magnetic properties of ensembles of IONPs usually a combination of
several techniques is applied, such as transmission electron microscopy (TEM), dynamic light scattering (DLS),
small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. The
standardization process then should include a precise control of the measurement procedures itself as well as of
the data analysis.

The theoretical framework defining the interrelations between particle structure and magnetic properties is
well established in the ideal case of homogeneously magnetized, single-domain and non-interacting particles
[7-9]. The same applies to the relaxation dynamics of colloidally dispersed magnetic nanoparticles. These
relations are commonly used to extract for example the intrinsic core or hydrodynamic size distributions from
DCM [10-12] or ACS measurements [13, 14]. As model functions for DCM and ACS measurements, the
Langevin function [15] (DCM) and Debye model [16] (ACS) are used, respectively. The classical approach to
extract the characteristic distributions is to fit the experimental data with the respective model function under
assumptions regarding the line shape. Usually alog-normal shape is a priori assumed for the intrinsic
distributions [10—14]. But several factors can result in deviations of the macroscopically determined, apparent
distribution functions from the intrinsic ones. In particular dipolar interactions can lead to particle
agglomeration [17-20], which can significantly modify the macroscopically detected magnetization behavior of
the particle ensemble. To infer the intrinsic moment or relaxation time distribution from data fits, several mean
field approaches exist to analytically model the influence of dipolar interactions on isothermal [21-23] or
dynamic magnetization measurements [24, 25], respectively.

However, an alternative approach to analytical model fits can be found in the literature. In [26-29] for
example, the discrete, apparent moment distributions of IONP ensembles were extracted from M(H) data
numerically, using simply the Langevin equation as a model function. In these cases no a priori assumptions
regarding the line shape of the extracted distribution have to be made and data analysis is ultimately performed
by interpreting the obtained apparent distributions. Similar numerical approaches are also commonly used to
infer the hydrodynamic size distribution of nanoparticles from DLS measurements [30, 31] or to analyze the
small-angle scattering data of nanoparticle ensembles [32-36].

In the current work we use the same numerical approach as applied in [36] for the analysis of magnetic
multi-core nanoparticles to systematically evaluate SAXS, DCM and ACS data of a dilute, colloidal dispersion of
single-domain IONPs. Initially, we extracted the discrete particle size distribution from the SAXS data, the
moment distribution from the DCM data and the relaxation time distribution from the ACS data. Afterwards,
we further analyzed the distributions to disclose the relations between the structural and the magnetic properties
of the nanoparticles. This approach, in combination with classical TEM and DLS analysis, as well as
magnetization measurements of the immobilized particles, enabled us to perform a very detailed
characterization of the IONP ensemble. Additionally, we highlight the influence of particle agglomeration and/
or uncorrelated surface spins on the measurement signals by comparing the extracted distributions to the results
of standard model fits, where a log-normal shape of the distributions was a priori assumed.

2. Experimental procedure

The synthesis of the IONPs was carried out by thermal decomposition of an iron oleate complex mixed with
oleicacid in 1-octadecene [37]. In a round-bottomed flask equipped with a mechanical stirrer and a reflux
condenser under a nitrogen flow, the iron(III) oleate (4.5 g, 5 mmol, 7% iron) was mixed with oleic acid (0.7 g)
in 1-octadecene (50 ml). The mixture was stirred and heated up until reflux (320 °C) at 3 °Cmin~! witha
heating mantle. Stirring and nitrogen flow were stopped once the temperature reached 100 °C. The resulting
suspension was washed with ethanol, centrifuged at 3944 g and redispersed by agitation (ten times). The
precipitated particles were finally dried under a nitrogen flow, redispersed in toluene and transferred to water by
ligand exchange with dimercaptosuccinic acid (DMSA) [38]. The pH value of the final water-based colloidal
dispersion of the nanoparticles was adjusted to 7. This colloidal dispersion was directly measured by SAXS,
DCM and ACS without any sample modification, although for ACS the sample was diluted ten-fold with
distilled water.

To determine the amount of iron within the colloidal dispersion and hence estimate the particle
concentration, inductively coupled plasma optical emission spectrometry (ICP-OES) was carried with an
apparatus from Perkin Elmer, model OPTIME 2100DV. The wavelengths used for iron determination were
238.204 and 239.562 nm. For an appropriate determination it is necessary to digest the nanoparticle dispersion
prior to analysis. An aliquot of sample (50 p]1) was mixed with 2 ml of HCl until complete digestion was
obtained.

The main structural properties of the sample were determined by TEM, DLS and finally SAXS.
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To obtain the core-size distribution, images of the particles were taken using a 200 keV JEOL-2000 FXII
TEM and the largest dimension of 500 particles was measured.

The hydrodynamic size of the particles dispersed in water was measured with a ZETASIZER NANO-ZS
device (Malvern Instruments) using the DLS mode. The measurements of the 100-fold diluted dispersion were
done at 25 °C with an equilibration time of 60 s. A measurement consisted of 24 runs, with acquisition times of
10 s. The hydrodynamic diameter, or z-average, as well as the polydispersity index PDI, was derived from the
cumulant analysis, wherein a single particle size was assumed and a single exponential fit was applied to the
autocorrelation function.

The SAXS measurement of the colloidal dispersion of IONPs was carried out on a Kratky system with slit
focus, SAXSess by Anton Paar, Graz, Austria. The measurement was performed as an absolute intensity
measurement by also measuring the scattering curves of the empty capillary and water. These were subtracted
from the measured scattering curve of the sample during the data reduction procedure using the implemented
SAXSquant software. The resultant curve was deconvoluted with the beam profile curve to correct for the slit
focus smearing.

The magnetic properties of the particles were determined by measuring the isothermal magnetization curve
of both the immobilized as well as colloidally dispersed particles.

To immobilize the particles and hence suppress a rotation of the particles in the field direction, a droplet of
5 pl of the colloidal dispersion was put on cotton wool. The isothermal magnetization measurement was
recorded with a Quantum design SQUID VSM 7T with Quick Switch and Evercool at 300 K in a field range
of pyoH = £7T.

The isothermal DCM measurement of the colloidal dispersion of IONPs was performed at 300 K in a magnetic
property measurement system (MPMS XL, Quantum Design, USA). The magnetic field was varied in the field
range /1, H = 0 £ 4.9 T and the size of the consecutive field step was changed logarithmically to ensure a
sufficient number of measurements at low fields. The time between each field step was about 3 min, providing
quasi-static measurement conditions. A volume of 30 l of the suspension was measured a total of five times with
the same measurement conditions and the data points were averaged. From the data the diamagnetic contributions
of the empty sample holder and the water were subtracted. The corrected magnetic moment in A m” was
normalized to the mass of iron determined by ICP-OES to obtain the magnetization in A m” kgz. .

To investigate the relaxation dynamics of the particles dispersed in water the colloidal dispersion was
measured using ACS. The measurement was performed at 300 K utilizing two custom-built susceptometers
[13]. The frequency was swept from 10 Hz to 10 kHz and from 200 Hz to 1 MHz in logarithmical steps. The
amplitudes of the excitation field amounted to 567 pT and 90 1T, respectively, to ensure that the magnetization
response was in the linear regime. To suppress hydrodynamic interactions between the particles, the dispersion
was diluted ten-fold. A total volume of 150 pL of the resulting colloid was measured. To convert the measured
signal to volume susceptibility (w), both systems were calibrated with Dy,O5; powder samples with known

susceptibility. Since the measurement was performed only once, for each data point a noise of 0.01 X:nax was
artificially added.

3. Theoretical framework

In this section we present the theoretical background regarding the magnetic properties of colloidally dispersed
IONPs. On this basis, the approaches to analyze the experimental data of the SAXS, DCM and ACS
measurements of the colloidal dispersion are introduced.

3.1.Background
Within this work we assume that the IONPs are spherically shaped with a core diameter d,. (figure 1) and are
single-domain particles. Experimental studies and simulations [39-44] indicate that the atomic spins at the
surface of magnetic nanoparticles are usually disordered due to lack of coordination, vacancies and/or surface
anisotropy. This can be depicted by a core—shell structure of the particle with dy,, < d., where d,,, is the diameter
of the homogeneously magnetized core (single-domain, figure 1). Therefore, in the following we will
differentiate between the total core volume V, = (1,/6)md? and the magnetic core volume V;, = (1/6)7dz,in
which the atomic spins are parallel aligned. In this case the total particle moment i can be represented by a
macrospin with magnitude |fi| = Ms Vi, where M is the material specific saturation magnetization. The bulk
values for the two iron oxides magnetite Fe;0, and maghemite v — Fe,O;at T = 300 K are listed in table 1, as
well as other intrinsic properties relevant for the current study [7, 9].

In the case of isothermal DCM measurements it can be estimated that for particles with KV, < 25kg T [7, 9]
thermal activation results in a fluctuation of the moment (superparamagnetism). Here K is the effective
anisotropy constant and kg the Boltzmann constant. Thus, theoretically, magnetite particles with diameters

3
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Figure 1. Schematic illustration of the characteristic sizes of a single-core particle with diameter d dispersed in water. The diameter d,,,
represents the size of the homogeneously magnetized core (single-domain; parallel aligned atomic spins), s is the thickness of the
surrounding polymer layer and dj, the hydrodynamic diameter.

Table 1. Intrinsic properties of Fe;O, and v — Fe;Osat T' = 300 K [7, 9]. Here pis the volumetric mass
density, wg. the weight percentage of iron, Mg the saturation magnetization, Kj the first order
magnetocrystalline anisotropy constantand p, the scattering length density. The scattering length

density of wateris p2° = 9.5 x 10~ nm~2.

14 WEe MS MS |I<l| Ps
kg m~! wt% MA m~! Am?kg,! kfm™3 nm 2
Fe;04 5195 0.72 0.48 128.3 13 40.6 x 104
v — Fe; O3 4860 0.70 0.40 117.6 5 38.1 x 1074

dn < dsp = 25 nm and maghemite particles with d,;, < dsp = 34 nm behave intrinsically
superparamagnetically. For these calculations it was assumed that the effective anisotropy constants K for
magnetite and maghemite are the magnitude of their first order magnetocrystalline anisotropy constants | K] |
(table 1). Consequently, an alignment of the moments of particles with d,,, < dsp in the direction of an
externally applied static field can occur by the Néel mechanism [45]. The moments of thermally blocked
particles with d,;, > dgp dispersed in a viscous matrix on the other hand, can only align in the field direction by a
rotation of the entire particle, the so-called Brownian rotation. In the case of DCM measurements, the
magnetization behavior of one macrospin dispersed in a purely viscous matrix is independent of the alignment
process and can be described by the Langevin function [15]:

H
M(H) /Ms = L(H, 1) = coth 220 _ kT (1)
kT g H

Here py = 47 x 1077 Vs A' m!is the vacuum permeability. In the case of time-modulated fields, however,
quantitatively the response critically depends on the relaxation mechanism.

In an ACS measurement, an alternating magnetic field H(w) = Hy exp(iwt) with amplitude H, and angular
frequency wis applied. The response is a periodic change in the magnetization M, following the driving field
with a frequency dependent time lag due to friction (M(w) = ¥(w) - H(w)). For small amplitudes (i.e.

&= —“’Z‘ "ITLI” < 1) the complex susceptibility Y(w) can be described by the Debye relaxation
B
XpW) = Xpw) — ixpw)with[16]
- Xo . ppgMs
w) = —=——, with: = —. 2
Yol =7 Xo= ST @

In equation (2) the time constant 7 is the effective relaxation time givenby 7 = 7, - 7, /(7;, + 7,), with 7, being
the Néel relaxation time

3
K’]Tdm) 3)

Th = Toexp(6k T
B
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and 7}, being the Brownian relaxation time:

d.’)
™ = AR

2T )

The time constant 7y in equation (3) is generally taken as 10~° s [13]. In equation (4), nis the viscosity of the
surrounding medium and d,, the hydrodynamic diameter of the particle (figure 1). The hydrodynamic diameter
is usually larger than the core diameter d. due to a surfactant shell and additional friction contributions, such as
surface charges [46]. The effective relaxation time 7 = 7, - 7, /(7 + 7,) is dominated by the faster process and
as a result the measurement signal of the ACS experiments are sensitive to the respective relaxation process [47].

As depicted above, the quasi-static and dynamic magnetic properties critically depend on the structural
properties of the particles. Within this work we determined the core size d. of the particles by TEM and SAXS,
the hydrodynamic size d}, by DLS, the magnetic moment p and magnetic core size d,, by DCM, and the
relaxation time 7 by ACS. The main objective was to correlate the various parameters. When characterizing
nanoparticle ensembles it has to be considered that the core and hydrodynamic sizes usually have a distribution
width, and thus also magnetic moments as well as relaxation times [48]. In the following we explain how the
various distributions were determined in this study.

3.2. Data analysis

With TEM the core-size distribution was directly obtained by measuring N = 500 particles and the DLS setup
provided the detected hydrodynamic size distribution. Both techniques were used for the pre-characterization
of the sample.

In the case of SAXS, DCM and ACS the relevant distribution p(z) of parameter z had to be extracted from the
data D(x). For SAXS D(x) is the scattering intensity I(q), with g being the scattering vector and p(z) = p(d.).In
the case of DCM D(x) = M (H) and p(z) = p(u)or p(z) = p(d), whereas for ACS D(x) = x/(w) and/or
X" (w)and p(z) = p(7). The distribution p(z) describes the continuous probability density function of the
paramater zand it can be written

D(x) = c fo Y P @f (%, 2)dz. )

Here cis a characteristic prefactor and f (x, z) the corresponding model function.

To determine p(z) from the experimental data we applied two approaches in this study. (1) By a standard
least square fit of the data under the assumption of a log-normal distribution p(z). (2) By numerical inversion
without a priori assumptions regarding the line shape.

3.2.1. Log-normal fit

With respect to magnetic nanoparticle ensembles it is often assumed that the particle size is logarithmically
distributed, resulting in log-normal distributions of the magnetic moments [10—12] and relaxation times [13].
The probability density of alog-normally distributed variable z is

—In(z/2)* ) ©)

1
p@ = 2moz exp( 202

0_2

where o is the standard deviation of the log of the distribution, Z the medianand (z) = z - exp ( > ) the mean

value. For comparison purposes between the different distributions, it is important to consider that they vary
with respect to their weighting, depending on the nature of the applied technique. In this work it has to be
differentiated between number-weighted distributions py and volume-weighted distributions py [49]. The
characteristic values of these distributions—such as broadness, median and arithmetic mean—are subscripted
in the following always with either N or V to indicate whether they correspond to the number or volume-
weighted distribution, respectively. For number and volume-weighted log-normal distributions the standard
deviations are in theory identical (oy = oy = o) but the medians Zy and Zy are shifted. In the case of
homogeneous spheres, e.g. Zy = Zy - exp (302) [49].

In this work we determined the number-weighted core-size distribution py, (d.) by fitting the SAXS
intensity D (x) = I(g) with [50]

I(q) = ¢,Ap? fomPN(dc)F(q, dJ)dd.
P [T (o Ve(do) dd,

bkg. )

Here ¢, is the volume fraction of particles, Ap, the scattering length density contrast between the particles and
the surrounding medium (table 1) and bkg the background level due to incoherent scattering. As a model
function we used the form factor F(q, d.) ofahomogeneous sphere [50]:
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. qdc qdc qd.
3[Sln (T) -3 Ccos (7)]
ad.\?
(*)
From the magnetization data M(H) the volume-weighted moment distribution p,, (1) can be extracted by fitting
with [11]

2

F(q,do) =] Ve ®)

M(H) = Ms [ pyGOLEH, wd ©)

To determine the number-weighted magnetic core diameter distribution py (d) we modeled the data in this
work with [11]:

I P ) d3, LCH, 1(d))

M(H) = M < 3 (10)
I pn(dm)diddy,
From the ACS measurements the relaxation time distribution can be extracted by fitting the ACS spectra with
- x [ 1
w) = T dr. 11
M@ =g [ an

In this case the prefactor X?; as well as the weighting of the relaxation time distribution p(7) critically depends on
the correlation between the particle moments o and 7[14]. For the simple case that they are not correlated

Xo = npyMs (V3 \) /(3ks T), with n being the particle concentration, (V,, ) is the number-weighted mean
magnetic core volume, and p(7) is number-weighted. Normally, however, a correlation between p and Thas to
be considered, as discussed for example in [14, 51, 52].

3.2.2. Numerical inversion
Ateach of the i = M data points D (x;) the integral equation (5) can be discretized:

N
D(x;) = CE pE)f (xi, zj) Az;. (12)
=1
Here j = Nis the number of bins of the reconstructed histogram p(z) with width Az, where p(z) represents the
probability density function of the variable z so that j(; >~ p(z) = 1.To extract the N-dimensional vector P(z)
with P(z;) = c - p(zj) Az; the functional

ﬁ IAP(2) — D@)|P (13)

has to be minimized, with ¢ = o (x) being the measurement uncertainty or standard deviation at each data
point. In equation (13) A is the M x N data transfer matrix with A;; = f (x;, z;).

For SAXS f (x;, zj)) = F(qg;, d.j) (equation (8)) and the number-weighted core-size distribution p (d.) was
extracted with (equation (12)):

N
1(q) = cs Y pn(dc)F(q, dej) Adj + bkg. (14)
=1
Comparison with equation (7) shows that cs = ¢, A p? / (Von), with (V) = Z?]: P (dej) Ve(de j) Ad, being
the number-weighted mean particle volume.
For DCM f (x;, zj) = L(H;, ,uj) (equation (1)) and from M(H) the volume-weighted moment distribution
py (1) was extracted according to:
N
MH) = oY py()L(H; 1) A, (15)
j=1
In this case cp = Ms (equation (9)).
For ACS f (xi, zj) = Xp Wi, Tj) /X, (equation (2)) and from the measurement the relaxation time
distribution p(7) was determined by simultaneously adjusting the real and imaginary part of the complex
volume susceptibility ¥(w):

N

1

Y(w) = ¢ (1j)) ———AT;. (16)

i AEP Jl-l—lw,"rj !

Here ¢y = X’g (equation (11)). As discussed above, the prefactor X? and the weighting of the relaxation time

distribution depends on the correlation between y and 7. For further details regarding this issue see [14, 51, 52].
Solving of equation (13), however, is an ill-conditioned problem. Therefore, we implemented a non-

negative constraint and additionally applied a regularized inversion. To determine the probability for a given
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Figure 2. TEM micrograph of the particles and the histogram of the core diameter d_ fitted with alog-normal distribution
(o = 0.10(1), deny = 18.7(3) nm, table 2).

regularization parameter we performed a Bayesian analysis, as introduced in [34, 35]. The computational details
can be found in the appendix.

For a detailed analysis and interpretation of the extracted distributions a pre-characterization of the sample
was necessary. A structural pre-characterization included the measurement of the iron concentration in the
colloidal dispersion by ICP-OES as well as the determination of the core-size distribution p(d.) by TEM and the
hydrodynamic size distribution p(d},) of the particles in dispersion by DLS. Additionally, we characterized the
magnetic properties of the immobilized particles to estimate the number of thermally blocked particles at 300 K.

4. Pre-characterization of the nanoparticles

With ICP-OES the iron concentration of the sample was determined to be ¢ge = 4.23 mg;, mL . Using the
density of magnetite or maghemite (table 1), the volume fraction of particles in the colloidal dispersion could be
estimated to be ¢l§e304 = 1.13 x 10%and tobe ¢;’F @0 = 1.24 x 1073, respectively.

Figure 2 shows a representative TEM image of the IONPs. The histogram (figure 2) represents the number-
weighted distribution Py of the core diameter d. and was fitted with the probability density p(z) (equation (6)) of
alog-normal distribution function scaled by ¢ (Px(d.) = ¢ - py(d.)). The best fit result was obtained for
on = 0 = 0.10(1)and d. y = 18.7(3) nm. The resulting arithmetic mean of the core diameter is
then (d. ) = 18.8(3) nm.

With DLS the intensity-weighted hydrodynamic diameter or z-average was determined to be
(dn1) = 52(2) nm and the polydispersity index PDI = 0.53(2). The z-average is significantly above
(d.n) = 18.8(1) nm, which can be primarily attributed to an increased hydrodynamic volume due to the
surfactant layer and surface charges (figure 1). Additionally, it has to be considered that with DLS the determined
hydrodynamic size is intensity-weighted and hence the signal is dominated by large particles.

Considering the quite large size of the particles it was important to monitor the stability of the colloidal
dispersion. With a core diameter of about 19 nm and assuming a homogeneous magnetization with
Ms = 0.48 MAm (table 1), the dipolar energy between two neighboring particles with parallel aligned moments
can be estimated [22] to be in the range of 10kg T'. Thus, dipolar interactions could lead to particle agglomeration
and ultimately coagulation. However, the measured z-average and PDI basically did not change over a time span
of 15 months, and no sedimentation was observed. In addition, the measured zeta potential remained constant
over time and was determined to be about —30 mV. The same applied for the pH value, which remained at 7,
and hence we can conclude that the sample remained stable over time across all metrics. We attributed the
colloidal stability to the comparatively low volume concentration of nanoparticles, and their surrounding
surfactant layer and surface charge.

Later on, the SAXS, DCM and ACS measurements of the colloidally dispersed IONPs are analyzed. In a
colloidal dispersion, the static magnetization behavior of thermally blocked and non-blocked
(superparamagnetic) particles is identical, provided the particles are individually dispersed in the viscous matrix.
Hence, to estimate the amount of thermally blocked particles a physical rotation (Brownian rotation) of the
particles has to be suppressed. Additionally, large average distances between the particles have to be assured to
avoid dipolar interactions, which can significantly alter the magnetization behavior of such ensembles [53, 54].
For this purpose the particles were immobilized and measured as discussed in section 2.
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Figure 3. Normalized isothermal magnetization curve m(H) /ms of the particles deposited on cotton wool. The inset shows the
hysteretic behavior with a normalized remanence of m, /mg = 0.06.

Table 2. Main results of the structural and magnetic pre-characterization. ICP-OES: iron concentration cg, in
the colloidal dispersion and particle concentration ¢, in the colloidal dispersion calculated assuming
stoichiometry of magnetite or maghemite. TEM: number-weighted log-normal distribution of core size d. with
broadness o, median value d x and mean value (d. v). DLS: intensity-weighted hydrodynamic size or
z-average (dy, 1) and polydispersity index PDI (in the case of alog-normal distribution, PDI and broadness o are
related by: 0 = /In(1 + PDI) ). DCM: volume fraction of particles behaving superparamagnetically (¢gp) and
thermally blocked (¢) at 300 K.

ICP-OES TEM DLS DCM (immobilized)
Cre 4.23 mgy, mL! I 0.10(1) PDI 0.53(2) Bsp 0.88
Pres 113 x 107? d.n 187(3)nm  {dn;)  52(2) nm Oz 0.12
@)~ Fe20s 1.24 x 1073 (den) 18.8(3) nm

P

Figure 3 shows the magnetic moments m(H) of the immobilized IONPs normalized to the saturation
moment ms of the sample, as a function of the applied field H. The determined coercive field was
toH: = 1.3 mT and the normalized remanence m, /mg = 0.06. For an ensemble of particles with uniaxial
magnetic anisotropy and with a random orientation distribution of the anisotropy axes (isotropic Stoner—
Wohlfarth particle ensemble [55]) the expected normalized remanence would be 1, /mg = 0.5. The detected
remanence of the sample of just m, /mg = 0.06 indicates that, as expected, a significant number of particles
behave superparamagnetically at T = 300 K. The volume fraction of superparamagnetic particles within the
ensemble can be estimated to be ¢, ~ 1-2 - m, /mg = 0.88. This means that a volume fraction of ¢ = 0.12
is thermally blocked at T = 300 K.

The main results of the structural and magnetic pre-characterization of the sample are shown in table 2,
which are essential for interpreting the results of SAXS, DCM and ACS in the following.

5. Analysis of distribution functions

In this section we present and discuss the particle size, magnetic moment and relaxation time distributions
determined from the SAXS, DCM and ACS measurements of the colloidal dispersion. First, we estimated the
distributions in each case by fitting the data under the usual assumption of log-normal shape. Afterwards, we
determined the discrete, apparent distributions by numerical inversion without a priori assumptions regarding
the line shape. We analyzed the discrete distributions further to extract the core size (SAXS), magnetic core size
(DCM) and hydrodynamic size (ACS) distributions.

5.1. Small-angle x-ray scattering (SAXS)

5.1.1. Log-normal fit

Figure 4 shows the measured SAXS intensity I(q). The data was fitted with equation (7) using either the scattering
length density contrast between particle and water Ap, = 31.1 x 10~* nm™?2 for magnetite or

Ap, = 28.6 x 10~* nm~?for maghemite (table 1). Aleast squares fit resulted in ¢£e304 = 1.02(8) x 10~%and

¢;”F @0 = 1.2(1) x 1073, respectively. These values for ¢, arein good agreement with the particle
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Figure 4. SAXS scattering intensity I(g) of the colloidal dispersion, fitted with equation (7) (dashed line) and reconstructed data with
cs - py T (de) (figure 6), determined by numerical inversion (solid line). Inset shows the low g-range.
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Figure 5. Number-weighted log-normal distribution of the core diameter d. determined by TEM (figure 2) and by fitting the SAXS

data (dashed line, figure 4). Solid line: number-weighted log-normal distribution p™(d.) of the simulated core-shell particles from
figure 7.

concentrations determined by ICP-OES (table 2). The obtained value for the background was

bkg = 3.4(2) x 10~ cm~!and the determined log-normal distribution pI\SIAXS (d.) isshownin figure 5. The

broadness of prIAXS (do)is o = 0.15(4) and the median d. \y = 21(1) nm. Comparison with the distribution
determined by TEM (figure 5, table 2) shows that the log-normal distribution according to SAXS is broader and
shifted to larger values. It can be observed that in the low g-range of figure 4 the forward scattering of the sample
is significantly enhanced compared to the fit, which indicates the presence of larger structures, i.e. agglomerates.

To verify this we determined the discrete core-size distribution numerically.

5.1.2. Numerical inversion

We numerically inversed the data using the form factor of a sphere as model function (equation (14)) to extract
the particle size distribution p,(d.).In doing so, the incoherent scattering background bkg can be, in principal,
implemented as a fitting parameter [35], however, here the result bkg = 3.4 x 107 cm™! from the log-normal
fit was used. For the inversion the range of the histogram p,, (d.) was set to be from d. = 1-50 nm in

Ad. = 0.5 nm steps (N = 99).

Figure 6 shows, for the 200 o values, the determined distributions cs - py (d.) and the inset of figure 6 the
corresponding probabilities P (). The average distribution cs - p3™" (d.) was calculated using equation (A.9).
Reconstruction of I(q) with equation (A.6) for P(zj) = ¢s - py"™" (d. ;) Ad, j resulted in very good agreement
with the experimental data over the whole g-range (figure 4).

The prefactor cs = B, A pf / (V2) (equation (14)) can be determined to be

€5 = Cg Z;-\]: Pxde)Ad,j = 2.04 x 10 cm™7 and the mean volume to be

(Ven) = Z?]: Py (e Ve(de ) Ad, j = 5011 nm’. Using the same values for the scattering length density
contrastasabove (ApF*% = 31.1 x 107 nm~2, Ag~ " = 28.6 x 10~* nm~2) the calculated volume
concentrations were ¢£e30‘* = 1.05 x 1073and ¢;_Fe203 = 1.25 x 1073, which matches well with the log-

normal fit and ICP-OES (table 2).
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Figure 6. Gray lines: 200 discrete core-size distributions cs - py (dc) determined by numerical inversion of I(g) (figure 4). Inset:
corresponding evidence values P (). Black line: weighted average cs - py™ (de)-
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Figure 7. The number-weighted log-normal distribution of the core diameter d. determined by fitting the SAXS data under the
assumption of alog-normal distribution (dashed line, figure 5). The discrete distribution py™ (d.) determined by numerical inversion
(fullline, figure 6). Circles: distribution determined for simulated core—shell particles with a 2 nm thick shell and the core diameter

distribution p*(d.) displayed in figure 5. Gray area: volume-weighted distribution p™ (d.) o< py™ (de) - d3.

The comparison between the probability density py™ (d.) and the log-normal distribution prAXS (d.)

(figure 7) shows that the main peak (peak 2) is at the same position as pI\SIAXS (d.), but that prAXS (d.) is slightly

broader. Also, by numerical inversion some additional features are observed (peak 1, peak 3, peak 4, peak 5). The
shoulder of p3"™ (d.) at small d. (peak 1) indicates the presence of a fraction of smaller particles not observed in
TEM. Peak 3 on the other hand can be attributed to a few nm thick polymer layer on the particles (figure 1). This
means that the extracted distribution p 3" (d.) does not represent the real core-size distribution of the IONPs.
The reason for this is that the data was inversed using the form factor of a homogeneous sphere, neglecting the
surrounding polymer (DMSA) layer. To verify this, peaks 2 and 3 of the determined distribution pi™ (d.) were
further analyzed with the goal of extracting the real core-size distribution of the individual particles.

To get a deeper physical understanding of the results, we investigated what a core—shell model [50] predicts
regarding the extracted size distribution. For this purpose we simulated the scattering intensity 5™ (q) of an
ensemble of IONPs surrounded by a surfactant layer with the core—shell model [50], assuming a log-normal
distribution of the core sizes. The free parameters in the core—shell model were (i) the shell (surfactant) thickness
s (figure 1), (ii) the scattering length density pzheu of the shell and (iii) the broadness o and median value d_ \ of
the number-weighted core-size distribution. Afterwards, I*™™(q) was numerically inversed the same way as the
experimental data and the free parameters adjusted until good agreement between the extracted distribution and
peaks 2 and 3 of p"™" (d.) was obtained (figure 7). This approach is comparable to a core—shell model fit of the
reciprocal scattering data I(q), which is the standard approach to analyzing the structural properties of
nanoparticles surrounded by a surfactant layer [56]. The difference, however, is that we can analyze separately
the scattering behavior of the individual particles, which is achieved by focusing on the adjustment of peaks 2
and 3. By contrast, a fit of I(g) would include all scattering contributions (peaks 1-5).

The best agreement between p3"" (d.) and the distribution of the simulated ensemble shown in figure 7 was
found for: (i) a thickness of s = 2 nm of the surfactant layer (figure 1), (ii) a scattering length density of the
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Table 3. Main results of the SAXS, DCM and ACS data analysis of the colloidal dispersion
by numerical inversion. SAXS: number-weighted log-normal distribution p™(d.) of
core size d. with broadness o, median value d. x and mean value (d. ) as well as the
volume fraction of individual particles qzﬁi:\xs. DCM: volume-weighted mean moment
{Hzp,v)> number-weighted mean magnetic core diameter (dy,n) and volume fraction of
individual particles @E}CM ACS: number-weighted log-normal distribution of

hydrodynamic diameter dj, with broadness o, median value d}, 5 and mean value (d}, \)
as well as effective anisotropy constant K.

SAXS (colloid) DCM (colloid) ACS (colloid)
I 0.14 (Hipv) 1.91 x 10718 A m? o 0.38
dex 18.8 nm (dmN) 18.0 nm dnn 30 nm
(den) 19.0 nm o™ 0.92 (dnn) 32.2 nm
¢f};"‘5 0.92 K 9k] m3

surfactant pzheu with pzheu = 0.38 - p;°" and (iii) alog-normal core-size distribution with o = 0.14,

d.n = 18.8 nm and hence (d x) = 19.0 nm. This distribution p*™(d,) is plotted in figure 5 and, as can be
seen, is in accordance with the core-size distribution determined by TEM (table 2), just slightly broader. In the
following we will regard the distribution p(**(d,) as the real core-size distribution of the individual IONPs
according to SAXS.

Furthermore, numerical inversion offers the opportunity of observing and hence characterizing larger
structures present in the dispersion by analyzing the peaks in the large d.-range (peaks 4 and 5 in figure 7). We
surmise that these larger structures are particle agglomerates. With sizes in the range 37-47 nm the agglomerates
apparently consist of only a few particles (~2-8).

The number of agglomerates appears to be insignificant compared to the number of individual particles. But
transforming the number-weighted distribution p3™ (d.) to a volume-weighted distribution

py " (do) o< py(de) - d? (figure 7, gray area) shows that a significant volume fraction of the particles seems to
be agglomerated. This volume fraction ¢,,, can be estimated by integrating over the peaks at 40 and 45 nmin

figure 7 (peaks 4 and 5) to ¢,,, &~ 0.08. Consequently, the volume fraction of individually dispersed particles
amounts to ¢§;XS = 0.92 according to SAXS.
sum

In summary, via the analysis of the discrete size distribution p™ (d.) we estimated the real core-size

distribution of the individual particles (not agglomerated) to be the log-normal distribution p™(d.), with

o = 0.14,d.x = 18.8 nm and thus (d.x) = 19.0 nm. Additionally, we evaluated the volume fraction of

individual particles to be about d)isl;\XS = 0.92. The central results are summarized in table 3 and compared in the

following with the results obtained from the analysis of the DCM and ACS data.

5.2.Isothermal magnetization (DCM)

5.2.1. Log-normal fit

In figure 8 the complete isothermal magnetization measurement in the field range 1o H = £4.9 T is shown. The
magnetizationat i H = 4.9 Tis126.1 A m* kg ;el, which is close to the saturation magnetization of bulk

magnetite M %% = 128.3 A m? kg;e1 (table 1). That the magnetization curve is not completely saturated, even
at4.9 T, can be attributed to a paramagnetic-like contribution of uncorrelated surface spins [39, 57]. To correct
the magnetization curve from all linear contributions in the high field range, the last three data points were fitted
linearly to obtain x,, (A m? kglje1 T-Yand X, Ho H is subtracted. We used the corrected data set for the log-
normal fitand the numerical inversion.

We obtained the best fit result of the initial magnetization branch (¢ H = 0 — 4.9 T) using equation (10)
for alog-normal distribution of the magnetic core sizes with & = 0.37(2), d, x = 12.2(5) nm and hence
(dmN) = 13.1(5) nm. The comparison of the extracted magnetic core-size distribution with the core-size
distributions determined by TEM (table 2) or SAXS (table 3) shows significant differences. Additionally, large,
systematic deviations between the experimental data and the fit are observed (figures 8 and 9). Two possible
contributing factors to the deviations are (i) the unknown magnetization behavior of the surface spins and (ii)
particle agglomerates. From these discrepancies it can be concluded that the isothermal magnetization behavior
of the colloidal particle ensemble cannot be modeled ad hoc by a single log-normal distribution, which has also
been observed for other systems [57, 58]. To verify this, we determined the apparent moment distribution of the
particles by numerical inversion.
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Figure 8. Isothermal magnetization curve of the colloidal dispersion and data corrected from linear contributions in the high field
range. Dashed line: fit of corrected data under the assumption of a log-normal distribution of the magnetic core diameter d,,,
(equation (10)). Inset: residuals of the log-normal fit.
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Figure 9. Isothermal magnetization curve and fit from figure 8 in logarithmic field scale. Solid line: M(H) reconstructed with
o - py'" () Ap (figure 10). Dotted line: M *(H) reconstructed using only the main peak of ¢p - Py (1) Ape. Inset: residuals of the
log-normal fit and numerical inversion.
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Figure 10. Gray lines: 200 discrete moment distributions ¢p - py; (1) Ay determined by numerical inversion of M(H) (figure 9). Inset:

corresponding evidence values P (). Black line: weighted average cp - py™ (1) Ap.

5.2.2. Numerical inversion

We inversed the data with equation (15) to extract p,, (1t). The range of the extracted moment distribution was
settobe 107210~ '* Am?, divided into N = 141 bins (20 points per decade) with alogarithmic spacing A ;.
Figure 10 shows the 200 determined distributions ¢p - py; (1) Ay, the corresponding probabilities P(«) and the

mean distribution ¢p - py"™ (1) Aps. Reconstruction of M(H) with P(u) = ¢p - py™ (1) Ap results in very good
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Figure 11. Number-weighted magnetic core diameter distribution p’™(dm) (dotted line) determined by transforming the main peak
of the moment distribution cp - py™™ (1) A (figure 10) and the number-weighted core diameter distribution p™™(d.) from figure 5
(solid line). Dashedline: p°™(d,) shifted by 1 nm.

agreement with the experimental data (figure 9). As shown in figure 9, the residuals are nearly zero over the
whole field range, indicating the high quality of the fit by numerical inversion. Therefore, the extracted moment
distribution cp - py"™ (1) Ay seems to be a very good representation of the real intrinsic moment distribution.

Over the whole yi-range several peaksin ¢p - pi™ (1) Ap can be observed. In the following we assume that
the main peak at ~10~!® Am? corresponds to the magnetic cores of the individually dispersed nanoparticles,
whose magnetization behavior can be modeled over the whole field range, each by a single Langevin function.
The other peaks describe magnetization contributions that lead to deviations from the simple Langevin-type
behavior, e.g. the uncorrelated surface spins or agglomerates [59, 60].

The main peak in figure 10 starts at the index j = 54 and ends at j = 78. The volume-weighted mean moment
of the individual cores is determined from the main peak to (1, ;) = 1.91 X 10! Am?2. The reconstruction of
the magnetization curve with only the contributions of the main peak results in the curve
M*H) = ¢p Z?SZM v (1) L(Hj, p17) A,uj, also shown in figure 9. At 4.9 T this curve reaches a value of

M*(4.9T) = 99.8 Am? kg;e1 and is basically completely saturated. With this information the contribution of
the magnetic cores of the individual particles to the total magnetization of the sample can be estimated to be
Bine = M*(4.9 T) /MEO = 0.78. Assuming a homogeneous magnetization, this means that the magnetic
cores of the individual particles (non-agglomerated /non-interacting) constitute a volume fraction of

®ime = 0.78 of the total sample (iron oxide). This is below the volume fraction ¢isé\xs = 0.92 of individually

= 0.78 and qbprXS = 0.92 canbe
attributed to the reduced magnetic core volume compared to the total particle core volume due to the surface
layer with uncorrelated spins. This can be shown by transforming the main peak of the extracted moment
distribution to a number-weighted magnetic core-size distribution p™(dp).

To determine p**(dy,) we transformed the main peak of the discrete moment distribution as follows. First
the moments /1, were converted to dy,; = (64;/ (mMg))'/? with Mg = 0.48 MA m~! (table 1) and the discrete

values cppy™ (1) AM,— = cppy " (dm,j) Ady jwere divided by cp = Ms = 128.3 A m? kggel. In the next step

the values p

dispersed particles according to SAXS (table 3). The discrepancy between ¢

imc

sum
\Y%

histogram was normalized so that fo = p
plotted.

Compared to the core-size distribution p™(d.) determined by SAXS (table 3), the magnetic core-size
distribution is shifted to lower values. The number-weighted mean value of the magnetic core size is
(dmN) = Z?’: ] (A j) dm, jAdry j = 18.0 nm. This is 1 nm below the mean value of the core size according to
SAXS ({(d.n) = 19.0 nm). As illustrated in figure 1, this indicates (on average) a shell thickness of uncorrelated
surface spins of 0.5 nm. Accordingly, very good agreement between the core size and magnetic core-size
distribution is found when p{(d.) is shifted by 1 nm (di, = dc — 1 nm).

With this information the volume fraction ¢, . of the total particle volume, which is homogeneously
magnetized, can be estimated to be on average ¢, . = (dn)*/(dcn)? = 0.85. Hence, according to the DCM
measurement the volume fraction of individual particles within the ensemble is
QSE M= / P = 0.78 / 0.85 = 0.92. Thisis in very good agreement with the results from SAXS, where the

volume fraction of the individual particles was also determined to be ¢f;xs = 0.92 (table 3). Accordingly, the

(dm,j) Ady, were divided by the corresponding volume Vi, ; and by the weight Ad,y, ;. Finally, the

(dw)dd,, = 1.Infigure 11 the resulting distribution Py (dm)is

core
N

volume fraction of agglomerated particles can be estimated to be qbzégM = 0.08.
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Figure 12. Real and imaginary part of the complex volume susceptibility of the colloidal dispersion measured by ACS. Dashed lines: fit
of x/(w) and x”(w) with equation (11) under the assumption of a bimodal distribution p(7) (superposition of two log-normal
distribution). Solid line: reconstructed data set for the discrete relaxation time distribution ¢, - p*"™(7) A7 determined by numerical
inversion (figure 13).

With the DCM measurement of the immobilized particles the volume fraction of thermally blocked particles
was determined to be ¢, = 0.12 (table 2). The quite good agreement between qbzng and ¢y, could indicate
that most of the agglomerated particles are thermally blocked, due to dipolar interactions. As shown in [60], a
blocking of the macrospins in agglomerates of normally superparamagnetic particles can result in increased
effective moments of the agglomerates, compared to the individual particles. This could also explain the
observed peak in the high moment range (10~17-10~!8 Am?) in the extracted moment distribution (figure 10).
Accordingly, the agglomerates can significantly contribute to the ACS spectra of the colloidal dispersion, as
shown in the following.

The peaks in the low moment range on the other hand correlate to non-linear magnetization processes in the
high field range. We surmise that they can be either attributed to dipolar interactions within the agglomerates
[59] or to uncorrelated surface spins.

5.3. Frequency dependent AC susceptibility (ACS)

5.3.1. Log-normal fit

Figure 12 shows the real and imaginary part of the measured volume susceptibility ¥(w). In the imaginary parta
pronounced peak at ~10° rad/s is observed, which correlates to a characteristic relaxation time of 7 = 107> s.
In the case of Brownian relaxation (equation (4), = 1 mPa s~ ! for water), a relaxation time of 73 = 107> s
corresponds to a hydrodynamic size of dy ~ 30 nm, which is below the z-average measured by DLS

({(dn,1) = 52 nm, table 2). But with DLS we determined the intensity-weighted mean of the hydrodynamic
diameter, and the expected volume- or number-weighted means would, in theory, be significantly smaller. Thus
we surmise that the peak at ~10° rad /s is mostly a result of Brownian relaxation processes.

To fit measurements of polydisperse nanoparticle ensembles, however, normally Néel contributions also
have to be considered, which is done for example in the generalized Debye model [14, 51, 52]. Qualitatively, this
model is comparable to the superposition of two log-normal functions p(7) = a - p;(7) + (1 — a) - p,(7)in
equation (11) in the case that Néel and Brownian contributions do not overlap. Fitting v’ and x” under the
assumption of a bimodal distribution of relaxation times resulted in the high frequency part (w > 10* Hz) in
good agreement with the data (figure 12). From the extracted relaxation time distributions structural parameters
such as the hydrodynamic size or the magnetic core size can be determined [14, 51, 52]. However, as can be seen
in figure 12, in the low frequency range significant deviations between data and fit are observed, which indicates
the presence of slow relaxation processes. It is safe to assume that these can be attributed to the contributions
from particle agglomerates. To extract the complete spectra of relaxation times we numerically inversed the
experimental data using equation (16) as a model function.

5.3.2. Numerical inversion

To adjust the experimental data shown in figure 12 over the whole w range, the range of the extracted relaxation
time distribution had to be set to 10719 — 10° 5. The histogram was divided into N = 181 bins (20 points per
decade) with alogarithmic spacing A7;. Figure 13 shows the 200 determined distributions ¢, - p®(7) A7, the
corresponding probabilities P () and the average distribution ¢, - p*“™(7) A7. Due to the missing information
in the very high and low frequency range (no data points in the ACS spectra) the solutions for the extracted
relaxation time distribution in the very low and high time range are not reliable [61, 62]. The time ranges with
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Figure 13. Gray lines: 200 discrete relaxation time distributions ¢5 - p*(7) A7 determined by the simultaneous numerical inversion
of x/(w) and x”(w) (figure 12). Ranges of unreliable solutions are indicated by gray areas. Inset: corresponding evidence values P(«).
Solid line: weighted average ¢y - pS'™(7) AT.
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Figure 14. Solid line: average relaxation time distribution p*™(7) A7 from figure 13. Dark gray area: distribution of Brownian
relaxation times P (7},) ATy, calculated with equation (4) for a number-weighted log-normal distribution of the hydrodynamic
diameter dj, with ¢ = 0.42 and dj, y = 35.5 nm. Light gray area: Néel relaxation times P (7,) A, calculated with equation (3) for the
magnetic core diameter distribution p3'™ (dm) from figure 11 (red line). The points of both distributions P (7,) ATy and P(7,) AT,
are logarithmically spaced and weighted accordingly.

unreliable information can be roughly estimated tobe 7 < 1077 sand 7 > 1072 5, as indicated in figure 13 by
the gray areas.

In the region 7 = 1077-1072 s with reliable solutions, two peaks can be identified. The main peak at ~107 s
and a smaller peak (shoulder) at ~3 x 1077 s. As mentioned before, the main peak seems to correspond to the
Brownian relaxation of the individually dispersed and thermally blocked particles, whereas the smaller peak can
be attributed to small particles, which respond by Néel relaxation. The remaining very small relaxation times can
be probably attributed to intra-well relaxation processes [63, 64] (transversal relaxation). Additionally,
contributions in the very large relaxation time range are observed (107>~10~! s). As mentioned before, it is safe
to assume that these slow processes correspond to the relaxation dynamics of the agglomerated particles, as
discussed for example in [14].

Hence, by numeric inversion we could isolate the different contributions and subsequently analyze them
separately. First, we estimated the hydrodynamic diameter distribution of the particles from the main peak of
p*™(7) AT. Considering that now the individually dispersed particles could be analyzed separately, we could
assume a log-normal shape for the hydrodynamic size distribution.

For this purpose, we calculated the Brownian relaxation time distribution P (7,) with equation (4) for a given
log-normal distribution of the hydrodynamic diameter d,, until visually good agreement was found between
P (7,) A7, and the main peak. The distribution P (73,) A, shown in figure 14 was obtained for a number-
weighted log-normal distribution of d;, with o = 0.38, d}, x = 30 nm and thus (d}, y) = 32 nm. Asalready
mentioned at the beginning of this section, this is significantly below the z-average measured by DLS
({dn,1) = 52 nm, table 2), which can be mainly attributed to the fact that by DLS the intensity-weighted mean is
determined.

To analyze if the second peak at ~3 x 1077 s could be in fact attributed to Néel relaxation, we calculated the
expected distribution P (7,) A7, with equation (3) using the magnetic core diameter distribution determined by
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DCM (figure 11). The distribution P (1;,) A7, shown in figure 14 was obtained when the anisotropy constant was
setto K = 9 kJ] m~, which is inbetween the magnetocrystalline anisotropy constant of bulk magnetite and
maghemite (table 1). The quite good agreement with p™'™ (7) A7 seems to verify that this peak corresponds to
the Néel relaxation of small particles. With K = 9 k] m™2 the estimated effective anisotropy constant is in good
agreement with other studies, where K was derived from ACS measurements and found to be in the range of

K = 10 k] m~ for similar iron oxide nanoparticles [ 14, 65]. However, it has to be taken into account that in the
case of cubic anisotropy the expected value for the effective anisotropy constant relevant for equation (3) would
be (1/12)|K;| [66] and hence much lower than K = 9 k] m~>. A possible explanation for this discrepancy is
that the effective anisotropy constant of the IONPs is dominated by surface anisotropy, as theorized in [67].

6. Final remarks

Prior to an application of magnetic nanoparticles, for example in biomedicine, the main physical properties of
the ensembles (structural as well as magnetic) must be evaluated, ideally in a standardized way [5, 6]. Amongst
other properties, of outmost importance is knowledge on the characteristic particle sizes, such as core, magnetic
and hydrodynamic size. The usual approach to determining the relevant size distributions from measurements
(scattering, magnetization, susceptibility) is to assume a priori alog-normal shape and fit the data accordingly
[10—14]. However, subtle details relevant for the application of magnetic nanoparticles can be missed, as we have
revealed in our results described above. Our numerical inversion procedure, derived from a method used for the
analysis of small-angle scattering data [34, 35], is a finer approach to revealing the distribution functions. This
method does not imply a complication in deriving the relevant physical parameters compared to classical model
fits but in fact our aim is to reach an easily applicable numerical approach. For this purpose the applied model
functions are intended to be kept as simple as possible.

In this study we initially extracted the particle size distribution of an ensemble of iron oxide nanoparticles by
numerical inversion from SAXS data of the colloidal particle dispersion. Then we determined the moment
distribution of the particle ensemble from the isothermal magnetization (DCM) measurement and its relaxation
time distribution from the ACS measurement of the colloidal dispersion, using the same numerical approach. As
model functions we simply used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and
the Debye model (ACS). In figures 6, 10 and 13 the extracted size, moment and relaxation time distributions are
shown. In all three cases the distributions deviate from the commonly expected log-normal shape.

These deviations are well interpreted as stemming partly from particle agglomerates (SAXS, DCM, ACS). It
also appears, unambiguously, that uncorrelated surface spins modify the expected magnetization behavior
(DCM). Such surface spins are a common finding in magnetic nanoparticles as described, e.g., in [39—-44].
Finally, a good description of the relaxation time spectra may be connected to the presence of intra-well
relaxation processes [63, 64]. Accordingly, the distributions determined by numerical inversion exhibit
characteristic peaks, which we attributed to these contributions. However, we additionally observed peaks in the
discrete distributions, which we could distinctly ascribe to the individually dispersed and non-interacting
particles. Ultimately, evaluation of these peaks allowed us to estimate their core, magnetic core and
hydrodynamic sizes as well as relevant ensemble parameters, summarized in table. 3.

According to these results the mean core size of the particles was 19 nm and the mean magnetic core size
18 nm. This indicated the presence of a 0.5 nm thick surface layer of uncorrelated surface spins. Furthermore,
from an analysis of the as determined size and moment distributions we calculated the volume fraction of
agglomerated particles to be 0.08. From the extracted relaxation time distribution we estimated the
hydrodynamic size distribution of the particles to have a mean value of 32.2 nm. Additionally, we could evaluate
the effective anisotropy constant to be 9 k] m~3, which is in good agreement with other studies where K was
derived from ACS measurements [14, 65].

Taking all these comments together it can be concluded that the analysis of the discrete distribution
functions extracted by numerical inversion enables a detailed analysis of the structural and magnetic properties
of the particle ensemble. This is fundamental for technical application and related standardization criteria.
Naturally, the inversion method cannot eliminate the errors caused by an inadequacy of the applied model
functions, which need to be carefully chosen. The main strength of the numerical inversion method is then the
possible separation of contributions of the model-like contributions of the individually dispersed particles from
the total measurement signal. The numerical approach to determining such distribution functions without
a priori assumptions regarding the line shape is universally applicable, as we have shown in this study by means
of scattering, magnetization and ACS data. The code for the numerical inversion of the SAXS, DCM and ACS
data used for this study was written in Python and is available from the authors.
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Appendix: numerical inversion

Solving equation (13) is in general an ill-conditioned problem, in particular due to measurement uncertainties.
This can give rise to large, unphysical oscillations in the extracted distribution. To overcome this problem two
approaches were combined. First, a non-negative constraint [68] was implemented as done in [26, 28] to ensure
positive values P(z;) > 0 in the extracted distributions. Additionally, a Tikhonov regularization was applied to
force smooth distributions. In this case, instead of equation (13) the functional [69]

é IAPz) — D@ + a [|ILP@)|P (A1)

is minimized, here additionally with the constraint P(z) > 0. The N x N matrix L is a regularization matrix
which is generally chosen to force smooth solutions, weighted by the regularization parameter a.. To additionally
force the extracted distribution to approach zero at the start and end points the following non-singular
approximation of the discrete second-order derivative operator was used:

2 0

L=4f ] (A.2)
-1 2 -1
0 2

For numerical computation equation (A.1) is not suited and the least square solution of

2
1 1
—-A -D
A lpe - [P (A.3)
V2aL On,1
was determined for P(z) > 0, with Oy, being a zero vector of length N.

To find the optimal value for the regularization parameter « the a posteriori probability or evidence P ()
according to [35] was determined:

exp(—x2%/2 — aS)

P(a) A4
(@) det'/2(H/ ) &4
The 2 in equation (A.4) is defined in the usual manner, i.e.
M 2
(Drec(xi) - D(xl))
2 = > A-S
X ; o (A.5)
with D, (x;) being the reconstructed data points:
N N
Drec(xi) = > AjP(z)) = Y Ajic - p(z)) Az (A.6)
j=1 =1
In equation (A.4) the functional S is
N —
S = Z Sj with: § = (L - P(2))? (A7)
=1
and H is the Hessian of the Tikhonov functional (equation (A.1)):
H= LZATA + 2al?. (A.8)
o

The approach was then as follows. First, the distribution P(z) was determined for different o values—in the
following labeled as P (z)—by finding the least square solution of equation (A.3). Afterwards the a posteriori
probability P («) was calculated with equation (A.4) for the determined distribution P®(z). This was done in all
cases for 200 values of «, with «v varying logarithmically spaced over several orders of magnitude. Finally the 200
distributions P“(z) were summed up, weighted by the probability P («) to calculate
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S0P () PUi(2) Aay;
200 :
Zi:lp(ai) Ao

psum(z) = (A.9)
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