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Abstract Hydrological modeling of ungauged catchments, which lack observed streamflow data, is an
important practical goal in hydrological sciences. A major challenge is to identify a model structure that reflects
the hydrological processes relevant to the catchment of interest. This study contributes a Bayesian framework
for identifying individual model mechanisms (process representations) from flow indices regionalized to the
catchment of interest. We extend a method previously introduced for mechanism identification in gauged
basins, by formulating the inference equations in the space of (regionalized) flow indices and by accounting for
posterior parameter uncertainty. A flexible hydrological model is used to generate candidate mechanisms and
model structures, followed by statistical hypothesis testing to identify “dominant” (more a posterior probable)
model mechanisms. The proposed method is illustrated using real data and synthetic experiments based on

92 catchments from northern Spain, from which 16 catchments are treated as ungauged. 624 hydrological
model structures from the flexible framework FUSE are employed. In real data experiments, the method
identifies a dominant mechanism in 27% of 112 trials (processes and catchments). The most identifiable
process is routing, whereas the least identifiable processes are percolation and unsaturated zone processes. In
synthetic experiments, where “true” mechanisms are known, the reliability of method varies from 60% to 95%
depending on the combined regionalization and hydrological error; the probability of making an identification
remains stable at around 25%. More broadly, the study contributes perspectives on hydrological mechanism
identification under data-scarce conditions; limitations and opportunities for improvement are outlined.

1. Introduction

Hydrological modeling and streamflow prediction in ungauged catchments is a challenging but practically impor-
tant branch of hydrological science. The defining feature of ungauged catchments is the lack of observed (meas-
ured) streamflow data, which poses a stark challenge for modeling endeavors expressly intended to simulate and
predict streamflow. The lack of observed streamflow also complicates the development of hydrological models
(structures and parameters) that provide a suitable representation of internal catchment processes.

Given that the majority of catchments worldwide are ungauged (Goswami et al., 2007; Sivapalan et al., 2003),
model identification and application in these catchments has been a notable challenge of the hydrological
community for several decades (e.g., Almeida et al., 2016; Hrachowitz et al., 2013; Kratzert et al., 2019; Prieto
et al., 2019; Sivapalan, 2003). The present study focuses on the problem of model identification in ungauged
catchments from the perspective of identifying appropriate process representations from a range of competing
alternatives, combining and extending several recent modeling advances.

Previous research with respect to model identification in gauged catchments has suggested that hydrological
model structures tend to be catchment specific (e.g., Beven, 2000; Clark et al., 2008; Coxon et al., 2014; Perrin
et al., 2001). This perception motivated the hydrological community to move from seeking a single “one-size-
fits-all” (Fenicia et al., 2008; McDonnell, 2003) hydrological model to finding hydrological models that represent
“uniqueness-of-the-place” (Addor & Melsen, 2019; Beven & Lane, 2019; Craig et al., 2020; Knoben et al., 2020).
Flexible modeling frameworks allow to compare multiple working hypotheses describing catchment processes
and their mechanisms in a controlled and systematic way (e.g., FUSE [Clark et al., 2008]; SUPERFLEX [Fenicia
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etal., 2011]; CEM [Kraft et al., 2011]; SUMMA [Clark et al., 2015]; MARRMOoT [Knoben et al., 2019]; RAVEN
[Craig et al., 2020]).

Formal approaches for model identification include Bayesian Model Selection (e.g., Hoge et al., 2019; Marshall
et al., 2005; Prieto et al., 2021; Schoniger et al., 2014; Wohling et al., 2015; Ye et al., 2008), information-theoretic
approaches (Nearing et al., 2020), and optimization approaches (Spieler et al., 2020).

This study approaches model identification from the Bayesian perspective, which is widely used in statisti-
cal hypothesis testing, model identification, and uncertainty quantification (Kass & Raftery, 1995; Marshall
et al., 2005; Prieto et al., 2021; Raftery, 1995; Schoniger et al., 2015; Vrugt & Robinson, 2007; Wohling
etal., 2015). In Bayesian Model Selection, model probabilities are determined from the Bayesian Model Evidence
(BME) term, which is defined as the integral of the model likelihood over the parameter space. Direct evaluation
of the BME is usually difficult or impossible, and in practice it is often approximated via information criteria
or (Monte Carlo) numerical integration (e.g., see Schoniger et al., 2015). The treatment of posterior parameter
uncertainty within the BME is expected to become particularly important in ungauged basins, where compara-
tively less information is available for parameter estimation and model identification.

In gauged catchments, model identification is typically based on calibration to streamflow time series (Knoben
et al., 2020; Lane et al., 2019; Spieler et al., 2020). Alternatively, streamflow time series can be replaced by flow
indices, also referred to as “signatures” or “hydrological indices” (Gupta et al., 2008). When carefully chosen,
these indices can encapsulate a substantial quantity of information from the streamflow time series and help
guide model identification (e.g., Clark et al., 2011; Coxon et al., 2014). Typical flow indices include, for example,
average and monthly flows, runoff coefficients, quantiles and slope of flow duration curves, baseflow index, etc.
However, calibration to flow indices is challenged by the corresponding information loss (Fenicia et al., 2018;
McMillan et al., 2017; Westerberg et al., 2016), which in some cases can be mitigated by using a large number of
indices, especially in multiobjective approaches (e.g., Shafii & Tolson, 2015).

In ungauged catchments, streamflow time series are not available. One approach to overcome this limitation
is to calibrate the hydrological models to “regionalized” flow indices (Wagener & Montanari, 2011). These
regionalization models are typically constructed by establishing approximate relationships between flow indices
(e.g., mean annual flow) and catchment descriptors (e.g., climate, topography, geology) from comparable or
nearby gauged “donor” catchments, which are then extrapolated to ungauged “target” catchments of interest.
Such models are usually implemented using regression models—traditionally, linear regression (e.g., Almeida
et al., 2016; Yadav et al., 2007; Zhang et al., 2008)—and more recently machine learning techniques such as
random forests (RF; e.g., Addor et al., 2018; Prieto et al., 2019; Snelder et al., 2013). In order to identify the
most informative subsets of indices and to minimize redundancy, these relationships have also been formulated in
principal component (PC) space (e.g. Olden & Poff, 2003; Pefias et al., 2014; Prieto et al., 2019).

Compared to model calibration on observed time series, calibration on regionalized flow indices poses additional
challenges, as these indices, besides being potentially less informative than the full time series, are subject to
substantial uncertainty due to their extrapolation from the donor catchments (Westerberg et al., 2016). Thus,
multiple studies have incorporated flow index regionalization into a Bayesian framework, which allowed to
combine the information from multiple indices and to incorporate rigorous uncertainty quantification (e.g.,
Almeida et al., 2016; Bulygina et al., 2009, 2011; Prieto et al., 2019; Westerberg et al., 2016).

Previous studies on identifying models best suited to simulate specific ungauged catchments used the “fixed
model” approach (“one-size-fits-all”’). These studies did not explore the identification of individual model
components and did not allow for catchment specific models. In this article, we focus on hydrological model
identification in ungauged catchments from the perspective of identifying “process mechanisms” rather than
complete models. In this context, a “hydrological process” is the physical phenomenon occurring in a catchment,
for example, surface runoff generation, and each hydrological process is approximated via a hydrological mecha-
nism. Therefore, a “hydrological mechanism” is the set of equations intended to describe such process.

Recently, Prieto et al. (2021) proposed a method to identify hydrological mechanisms in gauged catchments
using a statistical hypothesis-testing perspective. Their framework combines: (a) Bayesian estimation of posterior
probabilities of individual mechanisms from a given ensemble of model structures; (b) a test statistic that defines
a “dominant” mechanism as a mechanism more probable than all its alternatives given observed data; and (c) a
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flexible modeling framework to generate model structures using combinations of available mechanisms. In that
work, the BME was approximated using the Bayesian Information Criterion, which assumes that the observed
data (streamflow time series) is of sufficiently long duration that the posterior parameter uncertainty is small.

In this article, we advance model identification in ungauged catchments by extending the hypothesis testing
method proposed by Prieto et al. (2021) to use regionalized flow indices as the inference data and to account for
posterior parameter uncertainty.

The study aims are:

1. Develop a Bayesian method for identification of dominant mechanisms in ungauged catchments, using a
multiple working-hypothesis approach (modular flexible models) and regionalized flow index PCs

2. Assess the method empirically using real data from multiple catchments, as well as using synthetic experi-
ments where the true mechanisms are known

3. Gain insights into which hydrological model processes are most and least identifiable in the case study
catchments

The case study is based on 92 catchments in northern Spain, from which 16 are treated as “ungauged” (target).
Experiments using both real and synthetic data are employed to gain insights into how the proposed method is
impacted by errors in the hydrological model and/or regionalization model.

The article is organized as follows. Section 2 presents theoretical developments, Section 3 describes the case
study setup, and Section 4 presents the case study results, which are then discussed in Section 5. Finally, Section 6
summarizes the key conclusions.

2. Theoretical Development

This section presents the theoretical basis of the mechanism identification framework for ungauged catchments.
Section 2.1 provides the basic definitions of processes, models, and mechanisms. Sections 2.2 and 2.3 formulate,
respectively, the hydrological and regionalization models. Section 2.4 describes the methods for estimating the
posterior probabilities of mechanisms. Section 2.5 details the hypotheses testing setup and methods.

The key steps of the mechanism identification procedure are schematized in Figure 1. Detailed descriptions are
provided in the following sections.

2.1. Terminology and General Overview

The modeling concepts underpinning the model identification framework used in this study are defined as follows
(see Prieto et al., 2021 for additional details):

1. A hydrological process is a physical phenomenon occurring in a catchment, for example, surface runoff
generation

2. A hydrological model process go is a single hydrological process intended to be represented by a hydrological
model

3. A hydrological model mechanism, m® is the set of equations (and associated parameters) to represent a
process g

4. A hydrological model structure is the combination of mechanisms to represent N# preselected hydrological
processes

5. An ensemble of hydrological model structures is the set of hydrological models that differ in their processes
and/or mechanisms. In this work, the ensemble is generated using FUSE (Clark et al., 2008). FUSE (Clark
et al., 2008) is a modular hydrological model that can be used for hypothesis testing

Given these definitions, a mechanism m# is here considered “dominant” if it is “substantially” more likely (a
posteriori probable) to represent a particular process go than all alternative mechanisms under consideration. Note
that a “dominant mechanism” should be not confused with a “dominant process”, which is typically intended as
a process that contributes substantially to the overall catchment water balance.
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z27% = r(é";d), d = descriptors — section 2.3

'

For all hydro models G in the ensemble G:

C) Condition @, on 2% 0° — section 2.4.1

’

For all hydro models G in the ensemble G:
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Section 2.4.2 and Appendix A
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Mechanism m, is dominant if

g) ®f>1-a/NF; a=0.05 -section 2.5

Figure 1. Flowchart of the mechanism identification method for ungauged catchments.

2.2. Hydrological Model

Consider a deterministic hydrological model 4 that estimates streamflow q?,, at time ¢,

q?h = h(6h;X1:1, Sony) @

where 6), are the hydrological model parameters, X; ., are the forcing data, sy are the initial conditions, and let Q
denote the domain of model parameters.

In an ungauged catchment, hydrological model identification and parameter inference must proceed from flow
indices rather than from streamflow time series. Moreover, the flow indices are themselves estimated from catch-
ment attributes rather than computed from streamflow data, as described next.
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2.3. Probabilistic Regionalization Model

LetZ = {Z;;i = 1, ..., N,} denote the PCs of observation-based flow indices in a given catchment. Note that the
flow index PCs are dimensionless because all flow indices are normalized (centered and scaled) before the Prin-
cipal Component Analysis (PCA) is applied. These flow index PCs are derived as follows: (a) compute the obser-
vation-based flow indices @ = {@;;i = 1, ..., N, } from observed streamflow time series q = {G;;t = 1, ..., N7},
@ = £, (q); (b) “compress” @ into Z using a rotation matrix ¢, Z = ¢@; note that N, < N,,. The rotation matrix is
constructed a priori from the set of observation-based flow indices {(I)d"“‘”("); i=1,.., Ndonor} in the gauged donor
catchments, using PCA and the number of flow index PCs to be retained (IV.) is determined prior to regionaliza-
tion using the Broken Stick criterion (Prieto et al., 2019). In a practical context, Z is available only in the donor
catchments, but in a case study experiment where gauged catchments are treated as ungauged, the procedure
above can also be used to calculate Z in a target catchment as part of verification and analysis of results. Note that
we use the “tilde” to indicate quantities computed from “observed” data. For example, @ refers to flow indices
computed from observed streamflow, Z refers to flow index PCs computed from observed streamflow, and so on.

The probabilistic regionalization model of the observation-based flow index PCs, Z is constructed by combining
a deterministic regionalization model with a random error term (Prieto et al., 2019),

77t = R(0%d) =7 + ¢(6°) =1 (0:) + £(6") @

where z"¢ refers to the deterministic estimate of the “regionalized” flow index PCs in a given catchment. This
estimate is obtained using the deterministic regionalization model r (9’; d), which relates the flow index PCs to
the catchment attributes d. The parameters of this model are denoted by 0". The residual error model & (96), with
parameters 0%, is used to characterize the uncertainty in the deterministic model r. The complete set of parameters
of the probabilistic regionalization model is denoted by 8% = {9’, o° } The dimension of z, and hence of Z'¢, z"¢
and €(6°), are all equal to N,.

The probabilistic regionalization model R is calibrated using observed flow index PCs z%"" and catchment
descriptors d*"r from the donor catchments (see Pefias et al., 2014 and Prieto et al., 2019 Section 3.2). Rather
than having a fixed set of gauged and ungauged catchments, the flow index PCs in a given ungauged catchment
are estimated from all remaining catchments. Since we treat 16 catchments as ungauged (one catchment at a
time), we have 16 regionalization models. This is the same approach as employed in Almeida et al. (2016) and
Prieto et al. (2019). Following previous work, the deterministic model  can be constructed using RF regression,
and the residual error model can be constructed using a jack-knife approach with subsequent fitting of a paramet-
ric distribution with parameters 6° (Prieto et al., 2019). This stage of the analysis is illustrated schematically in
Figure 1 row a, and detailed further in Section 3.

The regionalized flow index PCs in the ungauged target catchments, Z™¢, are obtained as follows,

Ar

¢ =r (6 ;d“"ge‘) where 8" are the estimated parameters of the deterministic regionalization model and d'*&¢*
are the catchment descriptors in the target catchment (see Pefias et al., 2014; Prieto et al., 2019). This stage of the
analysis is depicted in Figure 1 row b.

2.4. Bayesian Inference of Mechanisms Given Regionalized Flow Index PCs
2.4.1. Parameter Inference for a Hydrological Model Structure Given Regionalized Flow Index PCs

We now consider the inference of hydrological model parameters in a given hydrological model structure from
regionalized flow index PCs Z™¢ estimated in Section 2.3. It is assumed that observed rainfall and other hydrolog-
ical model forcings X, are available in the ungauged catchments.

We formulate a probabilistic model for flow indices Z based on the (deterministic) hydrological model 4 and a
(random) residual error term 1 representing the combined errors of the hydrological and regionalization models,

2" = G(0y, 0°) = 27O 4 n(69) 3)

im©,)

wherez® are the flow index PCs computed from the streamflow time series simulated by the hydrological model

. . . - . )
with parameters 0, that is, z5m%» = g [h(Gh;xl;,,so)] = ¢ 0% with @%@ and ¢% = {q?";z =1,.,N, }
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The term 0° denotes all parameters of the combined error model. The number of simulation time steps N, used to
calculate z™®) need not equal the number of observed time steps N7 used to calculate Z¢ and/or Z in Section 2.3,
and indeed these time steps may span different periods.

The combined error is difficult to characterize for several reasons. For example, even if the hydrological model
errors were known in the streamflow space, they would require propagation into the space of PCs, leading to an
error model without a closed form probability distribution (Kavetski et al., 2018). Estimating the combined error
directly in PC space is also difficult because the length of z is short (unlike for streamflow time series); it would
also be limiting because in practice hydrological models are intended to make predictions in the streamflow space.

In light of these challenges, we make the pragmatic approximation that the combined error is dominated by the
regionalization model error, that is, r,(@”) ~ € (96). A similar assumption was effectively made in previous works
(e.g., Almeida et al., 2016; Bulygina et al., 2012, 2009; Prieto et al., 2019; Yadav et al., 2007). Under this assump-
tion, the only parameters requiring inference are 0, with 6° kept fixed at values 0" estimated earlier during the
regionalization.

The posterior distribution of parameters 0, of the probabilistic model G given Z™¢ and 0" is obtained from Bayes
equation as follows,

p(i'€g|6h,ég,G)p(6h|G) ) p(iregwh,éic)p(ehm)
p(00°G)  [p(2410.0°.G) ptolnde
N a 4
p (Zreglzslm(eh), 0 R G) p (ehlh)

p(0sl2.8.G)

[ (321279, 8°,G ) p(ol e
Q

The likelihood function p ( Z¢| 0}, éé, G)=p i”’glz“m(eh), ée, G | describes the relationship between regional-
ized and simulated flow index PCs, as given by the probabilistic model G. The prior on the hydrological param-
eters, p (Ghlh), is set to uniform over the feasible parameter ranges unless specific prior information is available.
This stage of the analysis is schematized in Figure 1 row c.

Equation 4 explicitly indicates conditioning on the entire probabilistic model G, which in addition to the deter-
ministic hydrological model includes the regionalization residual error model. Note also that the conditioning on
2"¢ in equation Equation 4 corresponds to conditioning on the deterministic regionalization model and its param-
eters estimated during flow index PC regionalization. These quantities are kept fixed during the identification of
dominant mechanisms.

2.4.2. Posterior Probability of a Single Hydrological Model Structure

Consider an ensemble of N model structures, G = { G9i=1,...,Ng }, for example, generated using a modular
modeling framework.

The posterior probability p(G®|z™¢, ég, G) of a model structure G, given the regionalized flow index PCs 7',
the error model parameters € and the ensemble G is:

e 720" GRYp(GW
p(G(k)lireg’e ,G) — Np(z | > )P( |G) —
G ~AE
> pee|6 , GR)p(GP|G)
i=1
f P8 Onty, O, G (011 | G)d O p(GP|G) 5)

Q)

Ng e
Y [ p(@e|Oniy, 0, GO)p(Oni)|GD)dOi p(GD|G)

i=1Q,
where p(G”|G) denotes the prior of model structure G,

The integral terms in Equation 5 are often referred to as the BME or Marginal Likelihood. There are several
approaches for their computation, including “semi-analytical” and numerical approximations (e.g., see Schoniger
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etal., 2014; Ye et al., 2008 for analysis in hydrological contexts). In this work, we use Monte Carlo integration with
importance sampling as discussed in Appendix A. This stage of the analysis is schematized in Figure 1 rows d—e.

Note that in this work, the residual error term in the probabilistic model G is kept fixed at the structure identified
during the flow index PC regionalization stage. For this reason, for a given ungauged catchment, the model struc-
tures G within the ensemble G differ solely in the structure used for the hydrological model 4; see later discussion
in Section 5.4.

2.4.3. Posterior Probability of a Hydrological Model Mechanism

Suppose the model ensemble G comprises model structures that represent N# hydrological model processes,
using hydrological model mechanisms {mf; k=1,.,N® . @=1,.,N? } The number of available mechanisms
to represent process g is N£.

The posterior probability of a mechanism mf can be approximated as the average of the posterior probabilities of

all model structures that contain mechanism mf,

1 iaree f°
or 2, PGUIEE 8.6 ©)

G i€S(kG.p)

p(m?127%, 0", G)

where S(k; G, ) contains the indices of the subset of model structures within ensemble G that represent process
g using mechanism mf and N, ff * denote the number of models within this subset (see details in Prieto et al., 2021).

The assumptions behind Equation 6 are: (a) on average, highly probable mechanisms are those appearing in
highly probable model structures and vice versa, (b) we assume that the multiple hypothesis framework provides
a sufficient coverage of the space of possible mechanisms. This assumption is more likely to be reasonable if we
use a large ensemble of models since such an ensemble is expected to provide a relative complete representa-
tion of the major hydrological fluxes (e.g., Addor & Melsen, 2019; Clark et al., 2011, 2008; Kavetski & Feni-
cia, 2011), (c) mechanisms are mutually exclusive—a hydrological process is represented by a single model
mechanism, (d) the prior on the mechanisms is uniform, and punif(mf|G) =1/N, f .

This stage of the analysis is depicted in Figure 1 row e. Detailed derivation of Equation 6 and its use of corrections
to account for unbalanced (opportunistic) distribution of mechanisms when the model ensemble is biased toward
particular mechanisms, can be found in (Prieto et al., 2021); see also Elkan (2001) and Saerens et al. (2002).

2.5. Multiple Hypothesis Testing to Identify Hydrological Mechanisms
2.5.1. Key Definitions

The posterior probabilities of mechanisms are used to identify the dominant mechanism for a process g. The
identification is conditioned on the regionalized flow index PCs Z™¢, representing an extension of the method
introduced by Prieto et al. (2021) for mechanism identification from observed streamflow time series. In addition,
the method is extended to account for hydrological parameter uncertainty, which is likely to be more pronounced
when working with the first few flow index PCs instead of long streamflow time series. The mechanism identifi-
cation method includes the specification of a significance level @, and accounts for the potentially large number of
hypothesis tests being carried out (which raises the probability of identifying a wrong mechanism as the dominant
mechanism, i.e., of Type 1 errors).

The key definitions of the multiple hypothesis testing methods are as follows (Prieto et al., 2021):

1. Anindividual comparison is an individual test of whether a mechanism mZJ is “dominant”, that is, substantially
more likely than alternative mechanisms available in G to represent go

2. The null hypothesis for an individual test HOZJ is “mechanism mZJ is not the dominant mechanism for process

@

3. A family of comparisons for a process g is the set of individual tests of each mechanism against all other
mechanisms that represent that process

4. The null hypothesis for a family of comparisons HO? is “none of the proposed hydrological mechanism is
dominant for process go”

PRIETO ET AL.
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5. The family wise error rate (FWER) is the probability of making one or more type I errors in the family of
multiple tests, that is, the probability of incorrectly identifying a mechanism as dominant for a given process.
The (conservative) Bonferroni's correction is employed to keep the FWER below a prescribed significant level
a, by imposing a stricter a* in each individual test (Hochberg, 1988)

6. A test statistic ¢ is required for each individual null hypothesis HOZJ. As detailed in Prieto et al. (2021), the
test statistic has a probability distribution without a closed analytical form, and hence the probability that the
statistic exceeds a prescribed threshold 7 is estimated using a bootstrap approach. The estimated exceedance
probability is then compared to a significance level a (see next section for more details)

2.5.2. Test Statistic and Identification of Dominant Mechanisms

The test statistic for the individual null hypothesis HO,E’J is taken as the posterior probability of mechanism mf’. A
mechanism is considered dominant if this test statistic exceeds a threshold value 7 that is,

#=p (m,f’nreg, éiG) >7 %)

The hypothesis HO? is rejected if one of the proposed hydrological mechanisms is found to be dominant for
process g (if 7 > 0.5 then only a single process can be dominant).

The threshold 7 and the significance level a control the stringency of the hypothesis test. In the previous study on
mechanism identification in gauged catchments (Prieto et al., 2021), we used 7 = (.75 because the inference was
conditioned on observed streamflow data with thousands of time steps (data points). In the present article, where
the inference is based on just a few flow index PCs, the threshold is relaxed to = = 0.6, that is, a mechanism is
considered dominant if it is at least 1.5 times more probable than all its alternatives. See Figure 1 row f.

The test statistic tf depends on the model ensemble G and is treated as a realization of a random variable T,f“, with
cumulative distribution function (cdf) Fr, . (f). An individual hypothesis HOE’ is rejected if the probability wf
that tf' exceeds the threshold 7, that is, cof =1- Frgux (tf), is no less than the pre-specified significance for an
individual test, that is, wf >1-a; . Wherea; .=af NP and N is the number of mechanisms available for
process g (Section 2.4.3). The overall significance level is here chosen as a = 0.05. Since the cdf Fr,1(f) has
no closed form, wf is estimated by applying bootstrapping (Efron & Tibshirani, 1986) to the ensemble G. The
bootstrap re-sampling represents (approximately) the uncertainty associated with a particular choice of model
structures within the ensemble; see Prieto et al. (2021) for a detailed discussion. The null hypothesis HOZJ is then
tested using the procedure in Prieto et al. (2021) as given in Appendix B. These stages of the analysis are illus-

trated schematically in Figure 1 row g.

3. Case Study Description
3.1. Catchments

The case study employs 92 gauged catchments in northern Spain, shown with black stars in Figure 2. To evaluate
the method, we treat 16 of the 92 catchments as “ungauged” (one at a time); these catchments are indicated with
red circles and labels in Figure 2. The 16 catchments are selected because they have a sufficiently long (at least
8 years) concomitant record of observed daily rainfall and streamflow. Daily potential evapotranspiration (PET)
is estimated from monthly PET. The data set is the same as in the earlier studies of (Pefias et al., 2014; Prieto
et al., 2019).

Land cover of the 16 catchments is dominated by pastures, broadleaf forests, and coniferous forests; urbanized
zones comprise less than 8% of the catchment areas. Catchment areas range from 22 to 623 km?, elevations from
483 to 1,505 m, slopes of main river channels from 21% to 53%, annual average temperature from 7°C to 12°C,
surface runoff coefficient from 0.24 to 0.95, annual average rainfall from 681 mm/year to 1,809 mm/year, and
annual average PET from 564 mm/year to 962 mm/year. In Figure 2, the catchments are colored according to
their aridity index (Arora, 2002) and minimum monthly average temperature as described in Prieto et al. (2019).

The full list of the 103 flow indices includes, for example, the mean and standard deviation of the annual flow,
maximum and minimum monthly annual flow, quantiles of the flow duration curve, etc. These indices can be
found in (Penas et al., 2014).
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Figure 2. Case study catchments in northern Spain. Adapted from Prieto et al. (2019).

3.2. Regionalized Flow Indices

The first 4 PCs collectively explain 87% of observed variability in the 103 flow indices (see supplementary
material in Pefias et al., 2014) across all 92 case study catchments and were used to construct the regionalization
model using RF regression. This section reports earlier results from Prieto et al. (2019) to provide context. When
working with a given target catchment, the residual errors of the regionalization model were estimated across
the remaining 91 catchments using a jack-knife strategy and approximated by a joint Gumbel-Gauss distribution
(Prieto et al., 2019). More specifically, the residuals of the first PC follow (empirically) a Gumbel distribution
(Generalized Extreme Value Distribution Type I); the residuals for the second and third PCs are correlated and
follow a bivariate Gaussian distribution; the residuals for the fourth PC have a Gaussian distribution,

' . bs
Elilcdl ~G ('u(l)bs’ ﬂi) s)

®)

G?bs — ”ﬂ?bs/\/g

obs

s~ NGu, 27
2
o _| (7)o ©
po.obs 508 (Gobs ) 2

2 3 3

Ezcat ~N (Mgbs’ szs) (10)

where u denotes the mean parameters, f denotes the Gumbel dispersion parameter, and ¢ (and X) denote the
standard deviation parameter. The ranges of estimated parameters in Equations 8-10 are reported in Prieto
et al. (2019), and reproduced in Appendix C (Table C1).

The “quantity” of information / conveyed by the selected number of flow index PCs is defined by the fraction of
variance explained with respect to the full set of available flow indices,

NZ
; @)

N, (11
> @)
i=1
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and is calculated separately in each target catchment. Given this definition,

Table 1
Information Content of the First Four Flow Index PCs in the 16 Table 1 shows that the quantity of flow index information conveyed by the
“Ungauged” Catchments—Experiments I and 2 first four flow index PCs in the 16 catchments varies from 41% to 96%.

Catchments Information content

FID Experiment 1  FID Experiment 2

As such, the “quantity” of information is controlled by the number of flow

X9269
X9197
X1265
AN313
C7Z1
C8Z1
X9257
ANS530
X9221
ANS520
X1404
AN433
X1303
AN439
X9040
X1353

41%
53%
54%
58%
65%
66%
69%
73%
79%
81%
86%
87%
87%
91%
94%
96%

0.14 0.43 index PCs included in the analysis, and the “quality” of information is

0.29 0.14 controlled by the bias and dispersion of the errors.

0.29 0.00

0.29 0.57 3.3. Hydrological Model Structures

Bl T The hydrological models and mechanisms for hypothesis testing are gener-

0.29 0.14 ated using the Framework for Understanding Structural Errors (FUSE; Clark

0.29 0.29 et al., 2011, 2008).

0z e FUSE allows choosing among multiple model mechanisms to represent each

0.14 0.29 model process. In this article, we consider 7 processes: (a) (water) storage in

0.29 0.00 the unsaturated zone, defined by the architecture of the upper soil layer; (b)

0.29 0.29 storage of water occurring in the unsaturated zone, defined by the architecture

043 043 of the lower soil layer; (c) evaporation; (d) interflow for the lateral movement

o e of the water into the soil; (e) percolation for the vertical movement of water
' ' from the unsaturated zone (upper soil layer) to the saturated zone (lower soil

0.14 0.14 layer); (f) surface runoff generation; and (g) routing for the evolution (shape

0.57 0.29 and time) of the surface runoff hydrograph as the water moves through the

0.29 0.14 river. The number of mechanisms for each process ranges from 2 to 4, with a

total of 19 mechanisms (Table 1 in Prieto et al., 2021). In this article, we use
the implementation of FUSE in the R language (Vitolo et al., 2016).

3.4. Approximation of the BME of a Hydrological Model Structure

The mechanism identification framework requires estimates of the BME of each model structure in the ensemble
G. BME is approximated via Monte Carlo integration, using an importance sampling algorithm; see Appendix A.
The importance sampling makes use of 1,000 parameter sets sampled from a uniform prior using the Latin Hyper-
cube method.

The simulated streamflow time series, needed to estimate the BME of a given model structure in a given catch-
ment, are computed using the FUSE model structure, forced by observed daily rainfall and (estimated) daily
PET. The first year of daily data is used as warm-up and the corresponding streamflow is not used in the BME
estimation.

This stage of the analysis is by far the most computationally expensive, requiring a total of 9,984,000 simulations
(16 basins X 624 models x 1,000 parameter sets), with at least 8 yr of daily data each. Parallel computing was
undertaken; the total CPU runtime is estimated at approximately 11 year.

3.5. Performance Metrics

The performance of the mechanism identification framework in the case study experiments is evaluated using two
metrics, namely “Fraction of Identifications” F,; and “Reliability” R. The fraction of identifications characterizes
the probability of making an identification, irrespective of whether the identification is correct or incorrect. The
reliability metric characterizes the probability that an identification, once made, is correct. In the real data exper-
iments, which do not use replication, the metrics are calculated across the 16 catchments treated as ungauged. In
the synthetic experiments, the metrics are additionally averaged across multiple replicates of (synthetic) inference
data.

3.5.1. Fraction of Identifications

The fraction of identifications metric, F,, seeks to quantitatively answer the following question: How likely is the
method to identify a mechanism as dominant? The metric is defined as follows,

PRIETO ET AL.
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Nig

Fo= %
N, trials

12)
where Nijq is the number of trials where dominant mechanisms are identified, and Nyias is the total number
of trials. The trials are represented by the application of the mechanism identification method across multi-
ple synthetic replicates, multiple catchments, and multiple processes (real data experiments), or across multiple
synthetic replicates and multiple catchments (synthetic experiments).

In each experiment, we define two types of this metric:

1. the fraction of identifications across all hydrological processes. The number of trials for this metric is 112
(16 catchments X 7 processes) in the real data experiments, and 11,200 (16 catchments X 7 processes X 100
replicates) in the synthetic experiments

2. the fraction of identifications for each individual process. The number of trials for this metric is 16 (16 catch-
ments X 1 process) in the real data experiments and 1,600 (16 catchments X1 process X 100 replicates) in the
synthetic experiments

The F;, metric ranges from O to 1; a value of 0 indicates that a dominant mechanism is never identified, while
1 indicates that a dominant mechanism is always identified (though the identification may be incorrect). F; is
broadly similar to the power metric P used in Prieto et al. (2021), except that F,; can be calculated for any exper-
iment while P can be calculated only when the “true”” model is known.

3.5.2. Reliability

The reliability metric R seeks to answer the following question: How reliable (“trustworthy”) is the mechanism
identification method? Is the mechanism identified as dominant the actual true mechanism? The metric is defined
as follows,

NTP

R= ——— 13
Nrtp + Nrp (13)

where Ntp is the number of trials where a true mechanism is identified as dominant, and Ngp is the number of
trials where the wrong mechanism is identified as dominant.

Reliability can be calculated only in synthetic experiments where the true model is known.
In each experiment, we define two types of this metric:

1. the reliability of mechanism identification across all hydrological processes. The number of trials here is
11,200
2. the reliability of mechanism identification for each individual process. The number of trials here is 1,600

The reliability metric ranges from O to 1; a value of 0 indicates that the identification (when made) is always
incorrect, while value of 1 indicates that the identification (when made) is always correct. Reliability has also
been termed “Positive Prediction Value” (Tharwat, 2020) and was used in the earlier study by Prieto et al. (2021).

3.6. Empirical Analysis Using Real and Synthetic Data

Mechanism identification is affected by multiple sources of error: (a) hydrological model error (structure, input,
and parameter uncertainties), (b) regionalization model error (including structure, catchment descriptors, and
flow indices), (c) the quantity of information (including the number of flow index PCs and the fraction of vari-
ance they explain, the use of flow indices instead of observed time series; and the use of PCs to represent the
flow indices) and (d) algorithmic aspects, in particular, the (relatively) limited number of samples of parameter
sets used to estimate the BME.
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Figure 3. Flow chart of the case study experiments.

Four experiments are carried out to investigate the impact of the first two sources of error on mechanism iden-
tification, holding the number of PCs equal to the number used in the real data experiments. Flow charts of the
Experiments are given in Figure 3.

3.6.1. Experiment 1: Real Regionalized Data

This experiment illustrates the intended usage of the proposed mechanism identification method in ungauged
catchments, where observed-based flow index PCs are not available. We investigate the following questions:
(a) What is the method performance in terms of fraction of identifications? (b) Which are the most identifiable
processes and most identified mechanisms? The most identifiable processes are those for which a dominant
mechanism is most frequently identified. The most identified mechanism is the mechanism that is most frequently
identified for a given process.

In a given target catchment, we estimate the first 4 regionalized flow index PCs z™¢" using the regionalization
model constructed from the remaining 91 (donor) catchments, condition FUSE on these flow index PCs (Prieto
et al., 2019), and undertake mechanism identification. This procedure is repeated for each of the 16 catchments
treated as ungauged (target). The flow chart for Experiment 1 is schematized in Figure 3 row 1.

Since the true mechanisms are not known, we can only calculate the fraction of identifications metric, F,;. Limi-
tations in identifying a mechanism (F; below 1) can be attributed to regionalization error and/or hydrological
model error and/or insufficient quantity of information. Note also that the first four flow index PCs cover a differ-
ent quantity of information in each catchment, as low as 41% in some cases.
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3.6.2. Experiment 2: “Accurate” Regionalized Data (Observation-Based Flow Index PCs)

This experiment evaluates mechanism identification when the regionalization model error is lower than in Exper-
iment 1. Are dominant mechanisms identified for more processes? Are the same mechanisms identified as in
Experiment 1?

The experiment is devised such that the regionalization has low error (i.e., nearly exact). In each target catchment,
the synthetic “regionalized” flow index PCs 2°¢® used to condition the mechanism identification are set equal to
the observation-based flow index PCs Z. The same number (4) of PCs is used as in Experiment 1.

The deterministic term in the regionalization model is also set equal to Z, that is, the regionalization model is
unbiased. The residual error term is set to a Gaussian distribution with mean equal to 0 and a standard deviation
equal to 5% of the full range of observation-based flow index PCs computed for all 92 case study catchments.
This value is intended to reflect an accurate regionalization model based on values reported in the earlier litera-
ture (Almeida et al., 2016). The flow chart for Experiment 2 is given in Figure 3 row 2.

This experiment is “synthetic”, though without the concept of “true” hydrological mechanisms. Hence we can
only calculate F, . Deficiencies in mechanism identification can be attributed to hydrological model error, inaccu-
racies in the observed streamflow used to compute the flow index PCs, and/or insufficient quantity of “regional-
ized” information (since only four PCs are employed, which once again convey a different quantity of information
across the catchments).

An important benefit of Experiment 2 is that it helps appraise the assumption made in Section 2.4.1 that the
combined model error is dominated by regionalization error. Specifically, in the 16 target catchments, we
compare three estimates of flow index PCs: (a) the regionalized estimate 2%, (b) the observation-based estimate
Z, and (c) the “best” estimate z from the full ensemble of hydrological models calibrated to the observation-based
values. If regionalization model errors are (considerably) larger than hydrological model errors, we would see
a (considerably) larger discrepancy between Z™¢ and Z than between z and Z. Conversely, if hydrological model
errors dominate, the opposite relationship would hold. Note that this analysis is also impacted by measurement
errors in the observed streamflow data, which we assume to be smaller than the other two sources of error.

3.6.3. Experiment 3: Synthetic Experiment With “Typical” Model Error

This experiment evaluates mechanism identification in a synthetic scenario where the “true” mechanisms are
known, under the condition that the combined error 7 in Equation 3 is “typical” (here taken as similar to the error
estimated in Experiment 1). Note that, as per the inference setup in Section 2.4.1, the combined error represents
the joint effects of errors in the regionalization and hydrological models, and in this synthetic setup we do not
attempt to assign or infer them individually.

We investigate the following questions: Are the mechanisms identified as dominant the “true” mechanisms?
Does mechanism identification improve with respect to the previous experiments? For which process is a domi-
nant mechanism most and least frequently identified? For which process is the “true” mechanism most and least
frequently identified?

The “true” hydrological model, which comprises the “true” mechanisms for a given catchment, is selected as
the model structure that provided the best match to the observation-based flow index PCs in Experiment 2; see
Appendix C2 for details. The flow index PCs computed using the true model are treated as the “true” flow index
PCs, z.

In each target catchment, the synthetic “regionalized” flow index PCs 27°¢® are obtained by corrupting the “true”
flow index PCs with known (“synthetic”’) error with magnitude based on the combined error in Experiment 1,
that is, 2'°¢® =z — """ where the error term €™ is sampled from the same joint Gumbel-Gauss distribution
from Experiment 1. The negative sign is used because the Gumbel distribution used within the residual error
model is asymmetric.

The same number of flow index PCs is used as in Experiments 1-2; the quantity of regionalized information
varies across catchments.

PRIETO ET AL.
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The deterministic term in the regionalization model is set equal to z, which in this setup corresponds to both the
regionalization and hydrological models being unbiased. The combined error model is set to the joint Gumbel-
Gauss distribution with catchment-specific parameters equal to those used in Experiment 1.

Experiment 3 allows us to investigate mechanism identification performance in the hypothetical case where the
error model used in Experiment 1 is statistically consistent with the actual errors. While this naturally represents
a considerable idealization, we argue it provides a useful appraisal of the proposed method. Moreover, given the
limitations of the jack-knife estimation of the regionalization residual error model (which itself operates in very
data-scarce conditions), it is difficult to design synthetic experiments that reflect its characteristics better than
Experiment 3 without making other strong assumptions about the nature of the errors (in particular their bias and
random components).

The flow chart for Experiment 3 is given in Figure 3 row 3. Note that 100 replicates of the “conditioning data”
223 are generated, in order to obtain meaningful estimates of the performance metrics.

As the true mechanisms are known in this synthetic experiment, we calculate the reliability metric R in addition to
the fraction of identifications metric F,,. Deficiencies in mechanism identifiability (F;; below 1) and/or discrep-
ancies between identified vs. “true” mechanisms (R below 1) can be attributed to (synthetic) combined error and/
or insufficient quantity of information.

3.6.4. Experiment 4: Dependence of Method Performance on Model Error (Synthetic)

This experiment examines the performance of the method for a range of values of the combined (hydrological and
regionalization) model error. We expect to see improved (though not perfect) performance when the combined
error is low, and conversely worse performance when the combined error is large.

The experiment is constructed in the same way as Experiment 3, but we scale the random errors by a “synthetic”
factor £&. When & = 1 the errors have the same dispersion as in Experiment 3 (which itself was set according to
Experiment 1); £ > 1yield (on average) larger errors and & < 1yield (on average) smaller errors. We report results
for£ =2,1,0.5,0.1 and 0.05.

The flow chart for Experiment 4 is given in Figure 3 row 4. Note that 100 replicates of the “conditioning data”,
772@ are generated for each value of the error factor &.

We report both the fraction of identifications and reliability. Deficiencies in mechanism identification are attrib-
uted to the (synthetic) combined error and incomplete regionalized information (as not all flow index PCs are
used, which as mentioned earlier provides a varying quantity of information across the catchments).

4. Results

Figure 4 reports the fraction of identifications for Experiments 1-3, and the reliability for Experiment 3. Figure 5
provides a map of catchments with results from Experiments 1 and 2, distinguishing the locations where mech-
anisms are identified (circles colored according to mechanism) and not identified (empty circles). Additionally,
Figure 5 distinguishes the identification in Experiment 1 (large circles) and Experiment 2 (smaller circles).

4.1. Experiment 1: Real Regionalized Data

Figure 4 shows that the overall fraction of identifications in Experiment 1, that is, F,; computed across all
processes, is 0.27 (i.e., identification made in 30 out of 112 trials). When computed for individual processes,
F,4 ranges between 0 and 0.94. The processes with most identifiable mechanisms are routing (F,; = 0.94, i.e.,
identifications made in 15 out of 16 trials), surface runoff (F}; = 0.31), evaporation (F}; = 0.25), and inter-
flow (F,4y = 0.25). The processes with least identifiable mechanisms are those related to the unsaturated zone
(F;y = 0.0), percolation (F,; = 0.0), and saturated zone (F,; = 0.12).

The most frequently identified mechanisms (when a dominant mechanism is identified) are as follows: a routing
component (i.e., there is a routing delay) is identified in 15 out of 15 trials; surface runoff generation controlled
by the topographic index is identified in 5 out of 5 trials; sequential evaporation is identified in 3 out of 4 trials;
no interflow mechanism is identified as dominant in 4 out of 4 trials; and a tension saturated storage with two
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Figure 4. Performance of the mechanism identification method in Experiments 1-3. Fraction of identifications is reported
for all three experiments; reliability is reported for Experiment 3 only. Metric values are reported as overall across all
processes (row 1) and for each individual process (rows 2-8).

parallel tanks is identified in 2 out of 2 trials. Figure 5 provides a general sense of spatial aspects of mechanism
identification. Apart from the consistent identification of mechanism 3 for surface runoff (controlled by topo-
graphic index, large pink circles) and mechanism 2 for routing (routing present, large blue circles), no obvious
spatial patterns in the mechanism distribution are noted. For evaporation, a few different mechanisms are identi-
fied in different catchments.

4.2. Experiment 2: “Accurate” Regionalized Data (Observation-Based Flow Index PCs)
4.2.1. Fraction of Identifiability and Processes

Figure 4 shows that the overall fraction of identifications in Experiment 2, F,; = 0.25, remains largely unchanged
with respect to Experiment 1. For individual processes, F,, ranges from 0 to 0.63 (0—10 out of 16 trials). The same
processes are among the most/least identifiable as in Experiment 1, namely surface runoff and routing are most
identifiable while unsaturated zone and percolation are the least identifiable. However, for individual processes,
the fraction of mechanisms identified as dominant may increase (e.g., for surface runoff process) or decrease
(interflow process) with respect to Experiment 1.
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Figure 5. Identified mechanisms in Experiment 1 vs. Experiment 2. Outer colored circles show the identification for
Experiment 1, inner colored circles show the identification for Experiment 2, blank circles show where no mechanism
is identified. Catchments without the “inner” circle in this figure are those where a dominant mechanism is identified in
Experiment 1 but not in Experiment 2.

Figure 5 shows that Experiment 2 is consistent with Experiment 1 in terms of the most frequently identified type
of mechanisms for the processes of routing and surface runoff generation (a routing component is preferred and
the surface runoff generation is controlled by the topographic index). In addition, there are 2 “switches” (i.e., a
different mechanism identified for 2 processes) in Experiment 2 with respect to Experiment 1, and 10 new iden-
tifications (i.e., a mechanism was not identified for process in Experiment 1 but it is in Experiment 2).

4.2.2. Exploration of Assumption That Regionalization Errors Dominate Hydrological Errors

Panels a—e in Figure 6 show, for each of the 16 target catchments, the observation-based flow index PCs (black
circles, computed), regionalized flow index PCs (blue triangles), and flow index PCs estimated using the best of
the 624 hydrological models calibrated in the respective catchment (red crosses). Panel e in Figure 6 shows the
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Figure 6. Regionalized vs. hydrological model error. Panels (a—e) compare flow index PCs estimated based on regionalization (Experiment 1), observations
(Experiment 2), and the best hydrological model fit (Experiment 2); note that the latter is taken as the true model (in Experiment 3). Box plots of the synthetic
regionalized flow index PCs used in Experiment 3 are also shown. Panel (e) shows the difference between |2"¢ — Z| and |z — Z|. Catchments where this difference is
positive (i.e., |2 — Z| > |z — Z|) correspond to catchments where regionalization model errors dominate hydrological model errors. The error distributions of 2™ for
Experiment 1 are shown in Figure 4 in Prieto et al. (2019).
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difference between |2™¢ — Z| and |z — Z|. Catchments where this difference is positive correspond to catchments
where regionalization model errors exceed hydrological model errors.

This comparison enables an appraisal of the assumption that regionalization errors dominate hydrological errors.
In the majority of cases, the regionalized estimates are clearly further away from observation-based estimates
than the hydrological model estimates (e.g., z, in catchments 1,353, 9,040, and 1,303). In the majority of cases
(54 of 64), |z™¢ — Z|is indeed larger than |z — Z|.

4.3. Experiment 3: Synthetic Experiment With “Typical” Model Error

As seen from Figure 4, the overall fraction of identification in Experiment 3, F,; = 0.28, is once again similar
to the values in Experiments 1 and 2. For individual processes, F;, ranges from 0 to 0.73 (0-1,166 out of 1,600
trials). The processes for which a dominant mechanism is most frequently identified are interflow (F}; = 0.73)
and routing (F;; = 0.61), which is in partial disagreement with Experiments 1 and 2 (where interflow had a low
F,; = 0.25). The processes for which a dominant mechanism is least frequently identified are those in the unsatu-
rated zone (F,; = 0.0) and percolation (F;; = 0.006), which are consistent with Experiment 1.

For this experiment, Figure 4 also reports the reliability R. The overall reliability is 0.66 (correct identifications
in 2070 out of 3,149 trials where an identification is made). For individual processes, reliability varies from 0.53
to 0.98, except for percolation where it is very low 0.11. Note that reliability is undefined for the unsaturated
zone because no identifications are made. Reliability is close to perfect for mechanisms in the saturated zone
and surface runoff generation processes (R = 0.98 and 0.94 respectively) but is notably lower for evaporation
(R =0.73), interflow (R = 0.59), and routing (R = 0.53).

Figure 6 provides additional context for this experiment, by displaying the range of synthetic flow index PCs
generated across the 100 replicates. The synthetic replicates generally reproduce (on average) the distances
between the regionalized estimates and the observation-based values.

4.4. Experiment 4: Dependence of Method Performance on Model Error (Synthetic)

Figure 7 shows a plot of F; and reliability R as a function of the synthetic error dispersion factor £. The overall
trends are that F; stays relatively constant with values around 0.25, whereas R improves as £ decreases. For exam-
ple, R = 0.6 when & = 2 which is improved to R = 0.95 when & = 0.05.

For individual processes, two distinct trends emerge for F,. For the unsaturated zone, percolation, saturated zone,
surface runoff, F; increases monotonically as & is reduced. In contrast, for interflow and routing, the opposite
trend takes place, with F; decreasing as & is reduced. These results are interpreted in Section 5.3.3 in terms of
process identifiability and interactions. The behavior for R is more consistent: it increases as & is reduced—except
for saturated zone and surface runoff, for which R is already very high (around 0.95) even when & = 2.

As a consequence of the divergent trends in F,,, the processes that are most identifiable change depending on
the value of £&. When the model error is large (high values of &), the most identifiable processes are interflow
(F;y=0.77) and routing (F,, = 0.53). As the model error is reduced (lower values of &), surface runoff emerges as
the most identifiable process, though its identifiability stays relatively low at F,, = 0.46.

5. Discussion
5.1. Connection to Other Studies on Hypothesis-Testing and on Prediction in Ungauged Catchments

This work focuses on identification of dominant mechanisms in ungauged catchments, which is in contrast to
existing methods focusing directly on flow prediction (e.g., Almeida et al., 2016; Bulygina et al., 2011; Prieto
et al., 2019), or identification of dominant mechanisms in gauged catchments (Prieto et al., 2021). The study
builds on previous work in Bayesian modeling and mechanism identification in gauged catchments (Prieto
et al., 2021; Schoniger et al., 2014; Wohling et al., 2015) and extends the methodology to ungauged catchments.
The key ingredient to achieve this is the conditioning of the inference on regionalized flow indices (e.g., Bloschl
et al., 2013; Coxon et al., 2014; Hrachowitz et al., 2013; Prieto et al., 2019; Westerberg et al., 2016) instead of
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Figure 7. Performance of mechanism identification in synthetic Experiment 3, where the dependence of fraction of
identifications and reliability metrics on the synthetic error factor £ is examined. Results shown for individual processes and
for the overall estimate. Analysis based on 100 synthetic replicates.

streamflow time series. In addition, parameter uncertainty is incorporated into the estimation, as it is expected to
be considerably larger in ungauged catchments than in gauged catchments. These advances represent the major
contribution of this study, and enable mechanism identification in a broader range of catchments.

5.2. Do Regionalization Errors Dominate Hydrological Errors?

An important finding from Experiments 1 and 2 concerns a key simplifying assumption made when deriving the
mechanism identification method in the context of regionalized flow indices, namely that regionalization errors
dominate hydrological errors (Section 2.2). As shown empirically in Section 3.6.2 and Figure 6, the flow index
PCs obtained by the regionalization model are generally further away from the observation-based flow index PCs
than flow index PCs obtained by the hydrological model. Therefore, at least for the models and data used in this
work, the assumption appears justified. This finding is perhaps unsurprising because extrapolating flow indices
from donor to target catchments is (arguably) an inherently harder challenge than estimating flow indices by the
best of many (here, 624) hydrological models calibrated directly in the catchment of interest. This assumption
was already common (explicitly or implicitly) in previous regionalization work (e.g., Almeida et al., 2016; Buly-
gina et al., 2012, 2009; Prieto et al., 2019; Yadav et al., 2007), and corroborating it empirically represents another
contribution of this work.

It is nevertheless worth noting how close are all three estimates of the flow index PCs in many of the catchments,
giving credence to the RF regionalization model. Note also that the ability to match the observation-based flow
index PCs does not by itself guarantee that the underlying streamflow time series are also simulated with high
accuracy (Prieto et al., 2019).

5.3. Insights on Method Performance/Interpretation of Real Scenarios Using Synthetic Insights
5.3.1. Real Data Experiments

As the true mechanisms are unknown in the experiments based on real observed data (Experiments 1 and 2), we
focus on the fraction of identifications.
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In Experiment 1, where the inference proceeds from regionalized flow index PCs, the first four flow index PCAs
allow identifying dominant mechanisms in 27% out of 112 total trials. As such, a dominant mechanism is not
identified for the majority of the processes. As will be elaborated below in Section 5.3.3, relatively poor identi-
fiability is unsurprising in ungauged catchments, where the mechanism identification method has comparatively
little data to work with, and indeed the data itself is extrapolated according to the regionalization model and hence
are likely to contain appreciable uncertainty.

Mechanisms for routing are found to be the most identifiable. Mechanisms for water storage in unsaturated zone
and percolation are the least identifiable, followed by mechanisms for saturated zone processes. These findings
are generally consistent with the existing literature. In particular, previous work has suggested that the hardest
identifiable processes are processes in the subsurface (e.g., Massmann, 2020; van Esse et al., 2013), baseflow and
percolation (e.g., Coxon et al., 2014; Spieler et al., 2020).

Routing strongly affects lag time and flow variability. These characteristics are captured by flow indices such
as the duration of high pulses within each year and number of days with increasing flow. In the FUSE models
employed in our analysis, routing is either enabled or disabled, as opposed to other mechanisms for which alterna-
tive formulations are provided. Enabling vs. disabling routing has arguably a strong effect on the model ability to
simulate flow delays and damping effects—hence routing tends to be well identified compared to other processes.

Experiment 2, where observation-based flow index PCs are used, achieves a similar fraction of identifications as
Experiment 1 (25% vs. 27%) and finds the same processes as the most/least identifiable. The overall similarity
between the results of Experiments 1 and 2, despite employing very different data sources, is re-assuring and
increases confidence in the empirical findings in terms of method performance and process identifiability.

5.3.2. Synthetic Experiments

In Experiments 3 and 4, the true mechanisms are known and therefore both the fraction of identification F; and
reliability R are evaluated. The key findings are that, as the magnitude of (random) model errors decreases, over-
all R improves to above 0.9 for most processes, but overall F, stays relatively constant at around 0.25.

The overall value of F,; ~ 0.25 is seen as relatively low and is tentatively attributed to using only 4 of 103 flow
index PCs (which inherently limits the total quantity of information available). There may also be inherent limi-
tations in mechanism identification due to factors such as the similarity of competing mechanisms, algorithm
assumptions, limited number of importance samples in the estimation of BME, and so forth. Moreover, the
stability in overall F,; masks appreciable internal variations in the identifiability of individual processes: as the
error decreases the identifiability of interflow (and routing) decreases but the identifiability of unsaturated and
saturated processes increases.

We attribute these variations to poor identifiability and process/mechanism interactions. For example, when
multiple processes and/or mechanisms can mimic each other in reproducing the flow index PCs being fitted,
we expect to see a low F;. This interpretation is very plausible given conditioning on only four data points per
catchment. Moreover, the presence of large errors, £ = 1 — 2, makes it likelier that a particular set of flow index
PCs is matched by the “wrong” mechanism(s), in which case we expect a higher rate of false positives, that is, an
artificially high F,, and a low R. As model error is reduced, & < 1, the rate of false positives decreases, which can
manifest in a reduced F;; and increased R. A combination of such trends is indeed seen in Figure 7. See further
discussion in Section 5.3.3.

The reliability of mechanism identification for several processes is very high (R > 0.95) even when errors are
large (¢ = 1 — 2). For the remaining processes, reliability exceeds 0.8 once errors are reduced below a certain
level (here £ = 0.05), that is, the method identifies the true dominant mechanism with a relatively high probabil-
ity, which is seen as a valuable empirical check.

The findings also highlight that a high fraction of identifications is not necessarily indicative of correct identifi-
cations. For example, in Experiment 3, for routing, a dominant mechanism is identified in 61% of trials, but that
mechanism is correct in only 53% of these latter trials. Conversely, for the saturated zone process, a dominant
mechanism is identified in only 6% of trials, but this identification is correct in the vast majority, 98%, of these
trials. For the saturated zone, high reliability is maintained at all error levels.
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There is a broad, though not full, consistency between the most/least identifiable processes in the real vs. synthetic
experiments. Percolation and unsaturated zone are always the least identifiable process. The most identifiable
processes are not always the same: routing in Experiment 1 and interflow in Experiment 3 (though here routing is
the second most identifiable process). The process identifiability in Experiment 2 (observation-based flow index
PCs) is generally consistent with Experiment 4 when the errors are small (¢ = 0.1 — 0.05), with surface runoff
being the most identifiable process.

5.3.3. Limited Reliability and Identifiability as a Consequence of Limited Information

The fraction of identifications and reliability found in this work is notably lower than in previous study on mecha-
nism identification from streamflow time series in a gauged catchment (Prieto et al., 2021), where power (similar
to fraction of identifications) and reliability were as high as 1 for most processes (in synthetic experiments with
replication).

The relatively lower reliability and fraction of identifications found in Experiments 3 and 4, even when errors
are (relatively) small, £ << 1, can be attributed to two potential causes: (a) the limited quantity and type of infor-
mation (here the flow index PCs); and/or (b) a limited number of importance samples when estimating the BME
(Section 2.4.2 and Appendix A). These potential causes are elaborated below.

The quantity of information is highly relevant because, when only a few flow index PCs are used, it is more likely
that hydrological structures with different mechanisms can generate streamflow time series that match these
flow index PCs, which in turn makes it difficult or impossible to discriminate between multiple hypotheses (Ley
et al., 2016) and leads to poor identifiability. Note that similar values of flow indices could be obtained by two
genuinely similar time series as well as by two time series with some characteristics that are similar and others
that are different. In general, a diverse set of multiple indices is needed to fully characterize catchment behavior
(Euser et al., 2013). In the present case study, we regionalized the first 4 PCs of 103 flow indices, which appears
insufficient to achieve an overall fraction of identifiability above about 0.25-0.3.

Also note that, depending on the catchment, the same flow indices can be more or less representative of the
underlying streamflow data, as seen in Table 1. Information content of the first four flow index PCs in the 16
“ungauged” catchments—Experiments 1 and 2. In other words, these flow index PCs represent different quantity
of information across the 16 study catchments, which adds further variability into the analysis. Therefore, the
selection of “informative” flow indices (including type and number) may be catchment and process-dependent.
Such considerations relate to the difficulty of quantifying the data information content (here flow indices), and
how to extract such information in ungauged catchment lacking streamflow observations (Gupta et al., 2008;
Wagener and Montanari, 2011). Note that regionalization as an overall concept effectively relies on the presump-
tion that the available physical characteristics of a catchment are sufficient to estimate their hydrological charac-
teristics without direct observations of streamflow time series; these considerations fall within the broader theme
on “uniqueness of the place” (Beven, 2000) and continue to attract research attention.

The limited number of importance samples when approximating the BME can also contribute to poor identifiabil-
ity, as well as to poor reliability. The BME estimation in our case study uses 1,000 sampled sets of hydrological
model parameters per hydrological model structure, in order to manage computational costs. This number of
parameter sets might be insufficient to accurately reproduce the hydrographs (and hence the flow indices and
their PCs) across all catchments. For example, a set of flow index PCs might not be reproduced because the
parameter set that would lead to a similar underlying hydrograph has not been sampled. In this case, the likelihood
of all sampled flow index PCs might be similarly low (leading to poor identifiability) or a flow index PC spuri-
ously close to the regionalized value (leading to poor reliability). Preliminary tests suggest that the variability of
the BME estimation with 1,000 samples has a small influence on the results. For example, for catchment X1404,
a bootstrap analysis over 1,000 model runs, where each run is the result of a different parameter set, suggests that
the standard deviation in the fraction of identifications is <1% and the standard deviation of the reliability is <1%
except for the evapotranspiration case where it is 6%; see Supporting Information S1.

Finally, as discussed in Prieto et al. (2021), the degree of difference in the competing mechanisms is also of clear
relevance. If two mechanisms are very similar, it is harder to distinguish them. However, mechanism similarity
does not decrease the reliability of mechanism identification, but rather reduces the fraction of identification, that
is, the chance to identify a dominant mechanism. For example, distinguishing between three mechanisms will be
much harder if they employ similar equations (e.g., see earlier study by Gupta & Sorooshian, 1983).
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5.4. General Limitations and Future Work

The mechanism identification method assumes that the true mechanisms are included in the model ensemble G.
This assumption is typical in statistical model identification methods (Hoge et al., 2019). However, in practice,
the method will be applied with imperfect models to understand real catchments, infer mechanisms and make
predictions. A key question is then, how “good” should be the “best available”” mechanisms/model representa-
tion to be identified as “dominant”? For example, consider a model with the (quasi) true mechanism for a single
process and a poor choice of mechanisms for other processes. This model may have a low posterior probability,
which in turn will lower the posterior probability of the quasi-true mechanism (since the posterior probability of
a mechanism is approximated as the average of all model structures that contain such mechanism). However, if
the posterior probability of the remaining models containing the (quasi) true mechanism is high, this mechanism
will be identified as dominant.

A related question is the design of synthetic experiments in a way most consistent with the errors of real region-
alization models. A complicating factor is that the regionalization error model is constructed by replicating the
errors across multiple catchments but is applied to describe errors at a single catchment. This approximation,
corresponding to the jack-knife procedure, is difficult to avoid when working with flow indices, which unlike
streamflow time series have a very short length. The approximation results in difficulties separating biases and
random error components in ungauged locations, as well as challenges in designing synthetic experiments that
reproduce these types of error.

The assumption that the regionalization model error dominates the hydrological model error avoids the consid-
erable challenge of disaggregating hydrological and regionalization uncertainties. Relaxing this limitation may
require formulating a hydrological residual error model in the time domain but inferring it from the (estimated)
flow index PCs. This kind of “mixed-domain” decompositional inference is computationally challenging and
could be implemented using techniques such as Approximate Bayesian Computation (Albert et al., 2015; Kavet-
ski et al., 2018; Nott et al., 2012; Sadegh & Vrugt, 2014). Note also that precipitation error is not considered in
this work but may be considered in follow up studies.

Another key assumption in this work and many other regionalization studies (e.g., Almeida et al., 2016; Bulygina
et al., 2012, 2009; Prieto et al., 2019) is that flow indices do not vary significantly in time and can be treated as
an internal catchment property. This assumption can of course be limiting; however, this is a general challenge
of inference and prediction that is not specific to our work. If there is a substantial temporal change in the flow
indices (and hence their PCs)—or in any observed data used for model selection—then model selection for the
future will necessarily be less reliable and will require extrapolation along some estimated trends. Such analysis
is not within the scope of this work. Furthermore, in this article, we assume the mechanisms are stationary over
time. A further step would be to update the regionalization model to reflect any climate change differences. For
example, this could be implemented by applying the methods presented in this article independently to multiple
time periods.

The generalization of the analysis to use different numbers of flow index PCs for each catchment, and to vary
these in a similar way to the errors in Experiment 4 would shed additional light into the reasons for the relatively
low fraction of identifiability. However, such analysis is challenging to implement in a way that maintains corre-
spondence to the real data analysis and may require constructing dozens or hundreds of residual errors models
using the jack-knife approach for different numbers of flow index PCs. Hence this analysis is deferred to future
work.

The synthetic studies suggest that dominant mechanisms can be identified (relatively) reliably even from limited
and highly uncertain information, in particular from a limited number of regionalized flow index PCs. The
following questions arise: Which flow index PCs contain information allowing to constrain process representa-
tion in a given catchment? How much and what hydrological information (in the form of flow index PCs) needs to
be assimilated into a hydrological model (Markstrom et al., 2016)? What is the impact of using a limited number
of PCs vs. using the streamflow time series in the identification of dominant mechanisms and vs. using the flow
indices with highest weights in the PCs?

There is an inherent difficulty in identifying processes from flow indices alone since these quantities mask
short-scale variability. For example, vegetation dynamics is expected to affect the storage and flux of water in
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the unsaturated zone; however, this dynamic is not represented by the flow indices. Augmenting the flow indi-
ces with remote sensed data may increase model identification in this case (Wagener & Montanari, 2011). For
example, estimates of evaporation based on satellite data could be used in the conditioning procedure (Winsemius
et al., 2009).

Finally, PUB is predicated on the idea of reducing uncertainty through hydrological process understanding
(Wagener & Montanari, 2011). Before using a fixed pre-selected model, it seems beneficial to estimate the model
structure. In this work, we present an approach that tries to help in that direction, by identifying dominant mech-
anisms most likely to represent specific hydrological processes. An interesting study to be undertaken in future
work is a comparison between the predictive capacity of model structures that include the dominant mechanisms
with respect to common (fixed) model structures.

6. Conclusions

This study explores the representation of hydrological processes in ungauged catchments, where streamflow
observations are not available. The focus is on the identification of dominant hydrological mechanisms, that
is, mechanisms that are more a posteriori probable to represent a given process. A new method is proposed by
combining a Bayesian mechanism identification method introduced in recent work on gauged catchments with
advances in methods for flow prediction in ungauged catchments.

The method is illustrated using real and synthetic experiments using data from 92 catchments in northern Spain,
from which 16 catchments are treated as ungauged. We use 624 hydrological model structures from the hydro-
logical modeling system “Framework for Understanding Structural Error” (FUSE), which represent a total of 7
hydrological processes. The synthetic experiments illustrate how the magnitude of hydrological and regionaliza-
tion model error impact mechanism identification.

The key findings are as follows:

1. Bayesian identification of dominant mechanisms can be based on flow indices regionalized from gauged to
ungauged catchments. Here, following previous work on regionalization, the flow indices are represented in
PC space, keeping the first 4 PCs out of a total of 103 based on information content analysis. In its current
form, the mechanism identification method is implemented under the assumption that regionalization model
errors are larger than hydrological model errors, in order to avoid an uncertainty decomposition problem. This
assumption is shown to be reasonable at least for the current selection of models and data

2. Inthe real data experiment, the average fraction of identifications across the 16 catchments and 7 hydrological
processes is 0.27. The process for which a dominant mechanism is most identified is routing, with an average
fraction of identifications of 0.94; the processes for which a mechanism is least identified are percolation and
the unsaturated zone, for which dominant mechanisms are not identified in any of the 16 catchments

3. In synthetic experiments, where the true mechanisms are known and the same error model is used as in the
real data experiment, the mechanism identification method achieves a reliability of 0.66. As expected a priori,
this value is lower than in previous work in gauged catchments, where streamflow time series are available
Prieto et al. (2021). The loss in reliability is attributed to the fundamentally reduced and uncertain quantity
of information: four data points per catchment (first 4 flow index PCs), moreover corrupted with (random)
errors. The overall fraction of identifiability, estimated at 0.28, is very close to the value achieved in the real
data experiment

4. The magnitude of model error impacts primarily on reliability, which increases from 0.6 when model error is
“large” (error dispersion multiplier of 2 relative to Experiment 1) to 0.95 when model error is “small” (error
dispersion multiplier of 0.05). The overall fraction of identifications remains stable at around 0.22-0.31,
though for individual processes it varies depending on the error level, suggesting interactions between the
identified mechanisms. The relatively low fraction of identifications and the evidence of interactions are
attributed to the reduced quantity of information

Future work envisages a more complete treatment of uncertainty using a probabilistic hydrological model (i.e.,
explicitly distinguishing between hydrological vs. regionalization model errors), understanding the impact of
even the “best” mechanisms being approximations of the actual hydrological processes, and understanding the
limits on mechanism identification imposed by the use of (a limited number of) regionalized flow index PCs
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instead of streamflow time series. These research questions are of particular importance for model identification
in ungauged catchments, where fundamentally less information is available than in gauged catchments.

Appendix A: Estimation of Bayesian Model Evidence (BME) Using Importance
Sampling

The mechanism identification framework requires estimates of BME. This section describes the estimation on
this quantity using Monte Carlo integration.

For a given hydrological model structure and catchment, BME is:

p(ireglhk) = / p (ireg|9h(k)’ /’lk) p (Gh(k)|hk) deh(k) (A1)

Qn(k)

In this work, we approximate BME using Monte Carlo integration with importance sampling (Kuczera &
Parent, 1998; Prieto et al., 2019; Schoniger et al., 2014).

The following computations are implemented:

1. Draw Nimp parameter sets { 8,3 s = 1, ..., Ninp | from the uniform prior distribution p (6|« )

2. Run the hydrological model A, with each sampled parameter set 62(/() to generate Nim, streamflow time
series {qi‘"‘; s=1,..., Nimp} and project the latter to PC space to obtain the corresponding flow index PCs,
{zi™;s=1,..., Nimp }

3. Compute the un-scaled weight z; = p (i“eg|62(k)) for each parameter set 0° using the likelihood function in
Equation 5

4. Sum z, over all sampled parameter sets

Nimp

M=)zt (A2)
s=1

5. The BME is then given by scaling (normalizing) the weights so they add up to 1

I,
Np
Y, (A3)

i=1

p (™) =

1. The approximation error in this procedure depends on the number of parameter sets, Nimp, sampled in step a
2. The procedure is used to estimate the BME of each hydrological model 4, in the ensemble G. The estimated
BME:s are then used to estimate mechanism probabilities as described in Section 2.4.3

Appendix B: Identification of a Dominant Mechanism Using a Bootstrap Approach

This section describes the steps used to test whether a mechanism is dominant. The null hypothesis is that there
is no dominant mechanism.

The null hypothesis HOZJ is tested using the procedure in (Prieto et al., 2021) as follows:

1. Sample with replacement N ,f“ model structures with mechanism mf, where N, ,f“ is the number of models with
mechanism mZJ in the sample space G

2. Denote this “bootstrapped” ensemble of model structures as G®

. Calculate p(m,;go |z"¢, G®) using Equation 6

4. Calculate p(mfO
Equation 6

W

|z"¢, G®) for all other mechanisms available for process ¢, i = 1,..., N¥ ni # k, also using

5. Repeat steps a—c for b =1,..., N as illustrated schematically in Figure 1 row f. In this study, we set
Nboot = 10, 000, that is, 10,000 bootstrapped model ensembles are generated

6. Calculate tf(b) for each bootstrapped ensemble b = 1, ..., N*** using Equation 7

7. Calculate the empirical frequency of tf > 7 across all bootstrapped ensembles

PRIETO ET AL.

24 of 28



~1
AGU

Water Resources Research 10.1029/2021WR030705
a)f: ﬁcount{tf(b)>r;b= 1,...,Nb°°‘} (B1)

where the function countwv is defined as the number of true elements in a Boolean set v;
8. Reject HO?, that is, identify mZJ as dominant, if:

@f > 1 - apont (B2)

where apont = @/ N is the Bonferroni correction to the prescribed significance level a. Otherwise HOZJ is not
rejected.

Steps 68 are repeated for all mechanisms {mf; k=1,...,N¥ } proposed for process go. If none of the individual
null hypotheses {HOW; k=1,...,N¥ } are rejected, then the null hypothesis HO¥ for the entire family of compari-
sons is not rejected, and no mechanism is identified as dominant (i.e., the dominant mechanism is “not identified”
or “undefined”).

The same hypothesis-testing procedure is then applied to estimate the dominant mechanisms for all other model
processes g = 1, ..., N¥. See Prieto et al. (2021) for further details.

Appendix C: Case Study Details
C1. Regionalization Residual Error Model Parameters

Table Cl1 lists the ranges of mean and standard deviation of the residual error distributions of the regionalization
model from Section 3.2. These values are reproduced from Table 4 in Prieto et al. (2019).

C2. Selection of the “True” Hydrological Model

The true model for Experiments 3-5 is selected separately for each ungauged catchment, as follows. Consider
all model structures, and all 1,000 parameter sets per model structure generated as described in Section 3.4. For
each hydrological model structure and parameter set, we calculate the normalized distance between observed and
simulated flow index PCs,

i

N, (Z - Z?im(eh))z
$(On;h) = o (CH
]

=1 var[z

m(

simulations obtained using model structure 4. The true hydrological model structure h is taken as the model
structure that (for one of its parameter sets) achieves the lowest distance ¢ across all models and their respective

where var [z:l ")] denotes the variance of the ith flow index PC computed from the 1,000 streamflow time series

parameter sets. The “best” parameter set 0, is treated as the “true” parameter set.

Table C1
Ranges of Mean and Standard Deviation of the Residual Error Distributions of the Regionalization Model for the 16
“Ungauged” Catchments

Flow index PC Range of values of the mean (y) Range of values of the standard deviation (o)
Z 4.13-4.72 4.51-4.86
Z, 0.14-0.20 1.34-2.37
Z3 0.02-0.05 1.65-2.71
2 3.52-3.79 1.84-1.93

Note. Table adapted from Table 4 in Prieto et al. (2019).
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