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Abstract
In this paper we study the linear congruential generator on elliptic curves from the crypto-
graphic point of view. We show that if sufficiently many of the most significant bits of the
composer and of three consecutive values of the sequence are given, then one can recover
the seed and the composer (even in the case where the elliptic curve is private). The results
are based on lattice reduction techniques and improve some recent approaches of the same
security problem. We also estimate limits of some heuristic approaches, which still remain
much weaker than those known for nonlinear congruential generators. Several examples are
tested using implementations of ours algorithms.
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1 Introduction

A PseudoRandom Bit Generator(PRBG) is a deterministic algorithm that, once initialized
with some random value (called the seed), outputs a sequence that appears random, in the
sense that an observer who does not know the value of the seed cannot distinguish the output
from that of a (true) random bit generator. PRBG’s have important applications on simula-
tions (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation),
and cryptography. Good statistical properties are a vital requirement for the output of a
PRBG. Cryptographic applications require the output not to be predictable from earlier out-
puts, and more elaborate algorithms, which do not inherit the linearity of simpler PRBGs,
are needed.

There is a vast literature devoted to generating pseudorandom numbers using arithmetic
of finite field and residue rings, see [33, 37, 38, 45]. In 1994, Hallgreen [21] proposed a
pseudorandom number generator based on the group of points of an elliptic curve defined
over a prime finite field.
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For a prime p, denote by Fp the field of p elements and always assume that it is rep-
resented by the set {0, 1, . . . , p − 1}. Accordingly, sometimes, where obvious, we treat
elements of Fp as integer numbers in the above range.

Let E be an elliptic curve defined over Fp given by an affine Weierstrass equation, which
for gcd(p, 6) = 1 takes form

Y 2 = X3 + aX + b, (1)

for some a, b ∈ Fp with 4a3 + 27b2 �= 0.
We recall that the set E(Fp) of Fp-rational points forms an abelian group, with the point

at infinity O as the neutral element of this group (which does not have affine coordinates).
For a given point G ∈ E(Fp) the Linear Congruential Generator on Elliptic Curves,

EC-LCG is a sequence Un of pseudorandom numbers defined by the relation

Un = Un−1 ⊕ G = nG ⊕ U0, n = 1, 2, . . . , (2)

where ⊕ denotes the group operation in E(Fp) and U0 ∈ E(Fp) is the initial value or seed.
We refer to G as the composer of the EC-LCG.

It is clear that the period of the sequence (2) is equal to the order of G. The EC-LCG
provides a very attractive alternative to linear and non-linear congruential generators with
many applications to cryptography and it has been extensively studied in the literature, see
[3, 12, 17, 18, 21, 22, 34, 35, 39, 40].

In the cryptographic setting, the initial value U0 = (x0, y0) and the constants G, a, and b

are assumed to be the secret key, and we want to use the output of the generator as ephemeral
key of a stream cipher. Of course, if two consecutive values Un are revealed, it is almost
always easy to find U0 and G. So, we output only the most significant bits of each Un in the
hope that this makes the resulting output sequence difficult to predict.

It is known that not too many bits can be output at each stage: the EC-LCG is unfortu-
nately predictable if sufficiently many bits of its consecutive elements are revealed, see [20,
31, 32].

Now, we are formalising the results. Assume that the sequence (Un) is not known, but for
some n, approximations Wj of two consecutive values Un+j , j = 0, 1 are given. The results
involve another parameter � which measures how well the values Wj approximate the
terms Un+j . This parameter is assumed to vary independently of p subject to satisfying the
inequality � < p (and is not involved in the complexity estimates of our algorithms). More
precisely, we say that W = (xW , yW )∈ F

2
p is a �-approximation to U = (xU , yU )∈ F

2
p if

there exist integers e, f satisfying:

|e|, |f | ≤ �, xW + e = xU , yW + f = yU .

In general, we say that W = (α1, α2, . . . , αn)∈ F
n
p is a �-approximation to U =

(x1, x2, . . . , xn)∈ F
n
p if there exist integers εi , (i = 1, . . . , n) satisfying:

|εi | ≤ �, αi + εi = xi, i = 1, . . . , n.

The case where � grows like a fixed power pδ where 0 < δ < 1 corresponds to the situation
where a positive proportion δ of the least significant bits of terms of the output sequence
remain hidden. The goal is to get δ as much larger as possible, recovering the rest of the bits
in polynomial time.

The problem is a particular case of the following computational problem: given
f1(X1, . . . , Xn), . . . , fs(X1, . . . , Xn) irreducible multivariate polynomials defined over the
integer ring Z, having a common root (x1, . . . , xn) modulo a known integer N , namely,

fi(x1, . . . , xn) ≡ 0 mod N, i = 1, . . . , s.
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The root should be small root, in the sense that each xi is bounded by a known value
�. We require to bound the sizes of � allowing to recover the desired root in polynomial
time. For polynomial in one variable an algorithm has been given by Coppersmith in [9].
For bivariate polynomials does exist different methods in [6, 10, 11, 16] and, for general
multivariate polynomials in [16, 24]. All of them are based on the so called lattice reduc-
tion techniques, also called the LLL techniques, because the celebrated LLL algorithm of
Lenstra, Lenstra and Lovász [30]. However in the general case only heuristic results are
known, which are just generalization of the original result by Coppersmith.

An algorithm to recover the seed U0 in deterministic polynomial time if � < p1/6,
requiring compute a closest vector of a lattice of dimension 8 and coefficients size log p is
presented in [20]. The recent results [31, 32] recover ‘heuristically’ the seed U0 if � < p1/5.
The heuristic method, since there is no guarantee of success, may fail by several reason,
among them the difficulty of finding a short vector in a high dimensional lattice. Since the
number of the monomials is quite large; those results does not imply practical attacks, since
the naive application of Coppersmith method is impractical for high dimensional lattice.

The computation which is theoretically polynomial-time becomes in practice prohibitive,
for instance and according to [32], if the quality is 0.187 < 0.2 = 1/5 requires 188
polynomials and 314 monomials, so the lattice dimension is 502.

In this paper, we prove a deterministic algorithm to recover the seed U0 in polynomial
time if � < p1/6, requiring compute a closest vector of a lattice of dimension 5. Previous
result in [20] required a lattice of dimension 8.

We also provide an heuristic method to recovering U0 if � < p
k−1
4k−2 , requiring compute a

closest vector for a lattice of dimension 3k−1, when k > 2 consecutive �−approximations
to points Ui , (0, . . . , k − 1) of the curve E are given. A similar result is also presented in

[31, 32] with a theoretical better bound � < p
3k

11k+4 , but again requiring computing LLL’s
algorithm for a lattice of huge dimension. In fact, there is no practical way of testing their
methods, not only because the lattice large dimension used, but the size of the prime p

should be several hundreds of bits. On the other hand, for instance, we can recover the
sequence produced by EC-LCG if only three consecutive �−approximations are given as
soon as � < p1/5 requiring, the most time consuming, to find a closest vector for a lattice
of dimension 7, and it matched by primes p of only 1000 bits.

In principle, we cannot obtain any approximation to composer G from any approxima-
tions to two consecutive values Un, Un+1 of the EC-LCG, because the elliptic curve group
operation. We also rigorously demonstrate our approach in the special case when we have
an approximation to composer G; we show that given � if sufficiently many of the most
significant bits of G and of three consecutive values Un,Un+1, Un+2 of the EC-LCG are
given, one can recover the seed U0 and the composer G as soon as O(�) < p1/6 requir-
ing compute two closest vector for two lattices of dimension 7. And heuristic algorithm if
O(�) < p5/12 by computing a short vector for a lattice of dimension 9. Finally, we obtain

an heuristic method to recovering the whole sequence if � < p
k−1
5k−4 , by computing a closest

vector of a certain lattice of dimension 4k−3 when k>2 consecutive �−approximations to
points Ui , (0, . . . , k−1) of the curve E and an �−approximation to composer G are given.

This suggests that for cryptographic applications EC-LCG should be used with great
care. For the linear congruential generator similar problems have been introduced by
Knuth [26] and then considered in [7, 13, 23, 27]; see also the surveys [8, 28]. The quadratic
congruential generator and the inverse congruential generator have been studied in [4] and
[15], see also the recent paper [44] for a more general problem

On the other hand, our results are substantially weaker than those known for the linear
and nonlinear congruential generators.
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The remainder of the paper is structured as follows. We start with a very short outline
of some basic facts about the Closest Vector Problem (CVP), and the polynomial equations
associated to the elliptic curve abelian group in Section 2. In Section 3 we attack the EC-
LCG when the composer G is known. Section 4 is dedicated to study the case when the
composer G is private. Then in Section 5 we discuss the results of numerical tests of pour
approaches. We conclude with Section 6, which makes some final comments and poses
open questions.

Throughout the paper, we use the convention that the parameters on which the implied
constant in a Landau symbol O are written in the subscript of O. A symbol O without a
subscript indicates and absolute implied constant.

2 Preliminaries

2.1 Closest vector problem in lattices

Here we review some results and definitions concerning the Closest Vector Problem, all of
which can be found in [19]. For more details and more recent references, we recommend
consulting [23].

Let {b1, . . . ,bs} be a set of linearly independent vectors in R
r . The set

L = {c1b1 + · · · + csbs | c1, . . . , cs ∈ Z}
is an s-dimensional lattice with basis {b1, . . . ,bs}. If s = r , the lattice L is of full rank.

One basic lattice problem is the Closest Vector Problem (CVP): given a basis of a lattice
L in R

s and a shift vector t in R
s , the goal is finding a vector in the lattice L closest to the

target vector t. It is well known that this problem is NP-hard when the dimension grows.
However, it is solvable in deterministic polynomial time provided that the dimension of L
is fixed (see [25], for example).

In fact, lattices in this paper consist of integer solutions:
x = (x0, . . . , xs−1) ∈ Z

s of a system of congruences

s−1∑

i=0

aij xi ≡ 0 mod qj , j = 1, . . . , m,

modulo some positive integers q1, . . . , qm. Typically (although not always) the volume of
such a lattice is the product Q = q1 · · · qm. Moreover, all the aforementioned algorithms,
when applied to such a lattice, become polynomial in log Q. If
textbf b1, . . . ,bs} is a basis of the above lattice, by the Hadamard inequality we have:

s∏

i=1

‖bi‖ ≥ vol(L). (3)

For a slightly weaker task of finding a sufficiently close vector, the celebrated LLL algo-
rithm of Lenstra, Lenstra and Lovász [30] provides a desirable solution, as noticed by [2],
that is, a polynomial time algorithm in the bit size coefficients of the lattice basis and also
of the lattice dimension. Here, we state this result as Lemma 1.

Lemma 1 There exists a deterministic polynomial time algorithm which, when given an s-
dimensional full rank lattice L and a shift vector t, finds a lattice vector u ∈ L satisfying
the inequality

‖t − u‖ ≤ 2s/2 min{‖t − v‖ : v ∈ L}.
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An outline of the algorithms presented in this paper goes as follows. They are divided
into two stages.

• Stage 1: We construct a certain lattice L of dimension s; this lattice depends on the
given approximations. We also show that a certain vector E directly related to miss-
ing information is a very short vector. A closest vector F is found; see [25] for fixed
dimension and Lemma 1 the approximation solution for arbitrary dimension.

• Stage 2: We show that F provides the required information about E if the approximation
is good enough.

Many other results on both exact and approximate finding of a closest vector in a lattice
are discussed in [19, 23].

2.2 The polynomial equation of the group associated to an elliptic curve

The operation ⊕ acts over the points P = (xP , yP ) and Q = (xQ, yQ) of E(Fp) with
P, Q �= O as follows:

P ⊕ Q = R = (xR, yR)

• If xP �= xQ, then

xR = m2 − xP − xQ, yR = m(xP − xR) − yP ,

where m = yQ−yP

xQ−xP
.

(4)

• If xP = xQ but yP �= yQ, then P ⊕ Q = O.
• If P = Q and yP �= 0, then

xR = m2 − 2xP , yR = m(xP − xR) − yP ,

where m = 3x2
P +a

2yP
.

(5)

• If P = Q and yP = 0, then P ⊕ Q = O.

See [1, 5, 43] for these and other general properties of elliptic curves.
Our context is a pseudorandom bit generator which outputs affine points in an elliptic

curve. One obtains recursively them by operating a fixed composer G to the previous value.
So, almost always, the above equations in the first case (4) will determine the process.

If P is not Q or −Q, then, clearing denominators in (4), we can translate P ⊕ Q = R

into the following identities in the field Fp:

L1 = L1(xQ, yQ, xP , yP , xR) ≡ 0 mod p

and

L2 = L2(xQ, yQ, xP , yP , xR, yR) ≡ 0 mod p,

where
L1 = xQ

3 + xRxQ
2 − xP xQ

2 − 2 xRxQxP − xQxP
2

+xP
3 + 2yQyP + xRxP

2 − yQ
2 − yP

2,

L2 = yRxQ − yRxP − yQxP + yQxR − yP xR + yP xQ.
(6)

Lemma 2 Let L1(XQ, YQ, XP , YP ,XR), L2(XQ, YQ,XP , YP ,XR, YR) be elements of
the polynomial ring Fp[XQ, YQ,XP , YP ,XR, YR] and let U, V,W be algebraically inde-
pendent variables.
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1. Let � be the linear transformation:

(XP → XP , YP → YP ,XQ → XP + U, YQ → YP + V,XR → XP + W)

we have �(L1) = 3XP U2 + U3 + U2W − V 2.
2.

L1(XQ, YQ + U,XP , YP + U, XR) = L1(XQ, YQ,XP , YP ,XR)

L2(XQ + U, YQ,XP + U, YP ,XR + U, YR) = L2(XQ, YQ,XP , YP ,XR, YR)

Proof It is straightforward.

On the other hand, since P = (xP , yP ), Q = (xQ, yQ) and R = (xR, yR) are points of
the elliptic curve E, we have:

y2
P = x3

P + axP + b,

y2
Q = x3

Q + axQ + b,

y2
R = x3

R + axR + b.

Eliminating the curve parameters a, b and assuming that xP �= xR , we obtain the following
polynomial L3 ∈ Fp[XQ, YQ, XP , YP ,XR, YR]

L3 = −X3
RXP + X3

RXQ + XRX3
P − XRY 2

P − XRX3
Q + XRY 2

Q

+Y 2
RXP − Y 2

RXQ − X3
P XQ + XP X3

Q − XP Y 2
Q + Y 2

P XQ
(7)

verifying L3(xQ, yQ, xP , yQ, xR, yR) ≡ 0 mod p. Now, we consider the linear map � :
(XQ → XQ, YQ → YP + U, XP → XP , YP → YP , XR → XR, YR → −YP + V )

�(L3) = [2U(XQ − XP ) + 2V (XR − XP )]YP + A (8)

where degree of A ∈ Fp[XQ, YQ, XP , YP ,XR, YR, U, V ] with respect the variable YP is
zero.

3 Predicting EC-LCG for Known composer

Assume that a, b are unknown, but the prime p is given to us. In [20] shows that when we
are given �-approximations Wn, Wn+1 to (respectively) two consecutive affine values Un,
Un+1 produced by the EC-LCG; we can recover the exact values, provided that x0 does not
lie in a certain set, whose size is bounded by O(�6). Note that once two affine points in a
curve as (1) are given, such that their first component is different, the curve (the parameters
a and b) are determined. Then, after discovering the values Un and Un+1, we can reproduce
(backwards and forwards) the whole sequence. To simplify the notation, we assume that
n = 0 from now on.

We write Wj = (αj , βj ), Uj = (xj , yj ), for j = 0, 1; so there exist integers ej , fj for
j=0, 1 with:

xj = αj + ej , yj = βj + fj

|ej |, |fj | ≤ �, j = 0, 1.
(9)

Theorem 1 [20] With the above notations and definitions, there exists a set U(�; a, xG,

yG) ⊆ Fp of cardinality #U(�; a, xG, yG) = O(�6)with the following property: whenever
x0 �∈ U(�; a, xG, yG) then, given �−approximations W0, W1 to two consecutive affine
values U0, U1 produced by linear congruential generator on elliptic curves (2), and given
the prime p one can recover the seed U0 in deterministic polynomial time.
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The proof of this result in [20], the ‘bad’ set of values U(�; a, xG, yG) for the compo-
nents x0 is described, proving whenever that value lies outside the set, the algorithm works
correctly. Furthermore, the size of the set is asymptotically bounded with �6. This means
that if � = o(p1/6) and p is large enough, assuming an uniform distribution of probabilities
for x0 ∈ Fp, the method is unlikely to fail.

The proof in [20] requires the two polynomials L1 and L2 of (6) and 8 monomials, so
the involved lattice has dimension 8. Here, we use only the polynomial L2 of (6), then
the corresponding lattice dimension is only 5. The present proof is a simple observation
of the same strategy, we have included here a significant part of the details for the reader
convenience.

Proof We assume that x0 ∈ Fp is chosen so as not to lie in a certain subset U(�; a, xG, yG)

of Fp We place the value xG ∈ U(�; a, xG, yG), so that U0 is not G or −G. Then, clearing
denominators in (4),

U1 = U0 ⊕ G (10)
we obtain

L2(xG, yG, x0, y0, x1, y1) ≡ 0 mod p,

Using the equalities xj = αj + ej and yj = βj + fj for j = 0, 1, the polynomial L2 of
(6) become:

(−β1 − yG) e0 + (xG − α1) f0 + (yG − β0) e1 + (xG − α0) f1 − [e0f1 + e1f0] =

β1α0 − xGβ1 + yGα0 − yGα1 + β0α1 − xGβ0.
Now, we linearize this polynomial system. Writing

B0 ≡ β1α0 − xGβ1 + yGα0 − yGα1 + β0α1 − xGβ0 mod p,

B1 ≡ −β1 − yG mod p, B2 ≡ xG − α1 mod p,

B3 ≡ yG − β0 mod p, B4 ≡ xG − α0 mod p,

B5 ≡ −1 mod p.

(11)

is it easy to check that the vector

E = (�e0, �f0,�e1,�f1, e1f0 + e0f1) =
(�E1,�E2, �E3,�E4, E5)

is a solution to the following linear system of congruences:
∑4

i=1 BiXi + �B5 ≡ �B0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod �
(12)

Moreover, bounds (9) implies E is a relatively short vector. We have:

|Ei | ≤ �, i = 1, 2, 3, 4, |E5| ≤ 2�2; ‖E‖ ≤ √
8�2. (13)

Let L be the lattice consisting of integer solutions X = (X1, X2, . . . , X5) ∈ Z
5 of the

system of congruences:

4∑

i=1

BiXi + B5X5 ≡ 0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod �. (14)

We compute a solution T of the system of congruences (12), using linear diophantine
equations methods. Applying an algorithm solving the CVP for the shift vector T and the
lattice (14), we obtain a vector

F = (�F1,�F2, �F3,�F4, F5).
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We have F = v + T (where v is the lattice vector returned by the CVP algorithm) is the
vector of minimal norm satisfying (12), hence F must have norm at most equal to the norm
of the solution E. Using the bounds (13), we get:

‖F‖ ≤ √
8�2. (15)

Note that we can compute F in polynomial time from the information we are given. We
might hope that E and F are the same, or at least, that we can recover the approximations
errors from F. If not, we will show that x0 belongs to a subset U(�; a, xG, yG) ⊆ Fp of
cardinality #U(�; a, xG, yG) = O(�6). Vector D = E − F lies in L:

D = (�D1,�D2,�D3,�D4,D5), Di = Ei − Fi, i = 1, . . . , 5.

Bounds (13) and (15) imply ‖D‖ ≤ 4�2 and

|Di | ≤ 4�, i = 1, 2, 3, 4, |D5| ≤ 4�2.

From here, by closely following the proof in [20], since only depends on L2 and Di , we
bound the “bad” possibilities for which this process does not succeed.

We now present some heuristic arguments showing that Theorem 1 could possibly be
strengthened so that it becomes nontrivial when the precision � is of the order of p1/4 rather
than of order p1/6 as currently.

The heuristic that we use is of a totally different nature than that used in the so called
Coppersmith’s method, where the heuristic assumption is that all created polynomials define
a zero dimension algebraic variety. Here, we use the so-called “Gaussian heuristic” that
suggests that and s-dimensional lattice L with volume vol(L) is unlikely to have a nonzero
vector which is substantially shorter than vol(L)1/s . Moreover, if it is known that such a
very short vector does exist, then up to a scalar factor it is likely to be the only vector with
this property.

Let us formalise the problem. Again, we assume that a, b are unknown, but the prime p is
given to us. Suppose that we are given k ≥ 2 consecutive �−approximations Wj = (αj , βj )

to Uj = (xj , yj ) ∈ E(Fp) (j = 0, . . . , k − 1), produced by the EC-LCG, so there exist
integers ej , fj with:

xj = αj + ej , yj = βj + fj

|ej |, |fj | ≤ �, j = 0, . . . , k − 1
(16)

Theorem 2 With above notation, under the ‘Gaussian heuristic’ we can recovering the seed

U0 in polynomial time in log p as soon as � < p
k−1

4k−2 by computing a closest vector of a
certain lattice of dimension 3k − 1.

Proof As in the previous Theorem 1 we use only the polynomial L2 in (6) for a pair of points
(Uj , Uj+1) for j = 0, . . . , k − 2. Again, we translate Uj+1 = Uj ⊕ G into a polynomial
system of equation:

L
(0)
2 (xG, yG, x0, y0, x1, y1) = L2(xG, yG, x0, y0, x1, y1) ≡ 0 mod p,

L
(1)
2 (xG, yG, x1, y1, x2, y2) = L2(xG, yG, x1, y1, x2, y2) ≡ 0 mod p,

· · ·
· · ·
L

(k−2)
2 (xG, yG, xk−2, yk−2, xk−1, yk−1)=L2(xG, yG, xk−2, yk−2, xk−1, yk−1)≡0 mod p.

Using the equalities (16) the above polynomial L
(j)

2 , for j = 0, . . . , k − 2, becomes:
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(−βj+1 − yG

)
ej + (

xG − αj+1
)
fj + (

yG − βj

)
ej+1 + (

xG − αj

)
fj+1 − [ejfj+1 +

ej+1fj ] =
βj+1αj − xGβj+1 + yGαj − yGαj+1 + βj αj+1 − xGβj .

Now, we linearize this polynomial system. Writing, for j = 0, . . . , k − 2 and for i =
0, . . . , k − 1:

�(j) ≡ βj+1αj − xGβj+1 + yGαj − yGαj+1 + βj αj+1 − xGβj mod p,

A
(j)
j ≡ −βj+1 − yG mod p, A

(j)

j+1 ≡ yG − βj mod p,

B
(j)

j+1 ≡ xG − αj+1 mod p, B
(j)
j ≡ xG − αj mod p,

A
(j)
i ≡ 0 mod p, B

(j)
i ≡ 0 mod p, i �= j ∨ i �= j + 1,

C
(j)
j ≡ −1 mod p, C

(j)
i ≡ 0 mod p, j �= i.

we obtain that vector E =
(�e0,�e1, . . . , �ek−1,�f0,�f1, . . . , �fk−1,

e1f0 + e0f1, e2f1 + e1f2, . . . , ek−1fk−2 + ek−2fk−1)

= (�E1, . . . , �Ek,�Ek+1, . . . , �E2k, E2k+1, . . . , E3k−1)

is a solution to the following linear system of congruences (j = 0, . . . , k − 2):
∑k−1

i=0 A
(j)
i Xi + ∑k−1

i=0 B
(j)
i Yi + ∑k−1

i=0 �C
(j)
i Zi ≡ ��j mod p,

X0 ≡ X1 ≡ . . . ≡ Xk−1 ≡ 0 mod �

Y0 ≡ Y1 ≡ . . . ≡ Yk−1 ≡ 0 mod �.
(17)

Moreover, bounds (16) imply E is a relatively short vector. We have:

‖E‖ ≤ √
6k − 6�2. (18)

Let Lk be the lattice consisting of integer solutions:

(X0, . . . , Xk−1, Y0, . . . , Yk−1, Z0, . . . , Zk−1) ∈ Z
3k−1

of the system of congruences, (j = 0, . . . , k − 2):

k−1∑

i=0

A
(j)
i Xi +

k−1∑

i=0

B
(j)
i Yi +

k−1∑

i=0

�C
(j)
i Zi ≡ 0 mod p, (19)

X0 ≡ X1 ≡ . . . ≡ Xk−1 ≡ 0 mod �

Y0 ≡ Y1 ≡ . . . ≡ Yk−1 ≡ 0 mod �.

We compute a solution T of the system of congruences (17), using linear diophantine
equations methods. Applying an algorithm solving the CVP for the shift vector T and the
lattice (19) we obtain a vector

F = (�F1, . . . , �F2k, F2k+1, . . . , F3k−1).

We have F = v + T (where v is the lattice vector returned by the CVP algorithm) is the
vector of minimal norm satisfying (17), hence F must have norm at most equal to the norm
of the solution E. Using the bounds (18), we get:

‖F‖ ≤ √
6k − 6�2. (20)

Note that we can compute F in polynomial time from the information we are given, see
Lemma 1. We might hope that E and F are the same, or at least, that we can recover the
approximations errors from F. The volume of the lattice (19) is pk−1�2k (see Section 2.1)
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Then, using (20) and Gaussian heuristic vector E is likely to be the one founded whenever

�2 < p
k−1
3k−1 �

2k
3k−1 , this is:

� < p
k−1

4k−2 .

This finishes the proof.

This time, we did not provide a rigorous proof to bound the number of possibilities for
which this method could fail. We will see in Section 5 that our SAGEMATH implementation
certifies the above bound.

The following illustrates the importance of knowledge parameter a of the elliptic curve (1).

Remark 1 If three consecutive values of the EC-LCG are given, then can eliminated G from
U0 ⊕ G = U1 and U1 ⊕ G = U2:

U2 ⊕ U0 = 2U1

So, given three �−approximations to U0, U1, U2 and, assuming that U0 and U1 are not
G or −G and y0y1 �= 0, clearing denominators in (4) and (5) we can translate equation
U2 ⊕ U0 = 2U1 into two polynomial identities in the field Fp , but involving the unknown
parameter a.

On the other hand, given the parameters a and b of the elliptic curve (1) and
�−approximation (α0, β0) to point P = (x0, y0) of the curve we can recover P as soon as
� < p1/7, see [14, 16].

4 Predicting EC-LCG for unknown composer

In previous section, it has been assumed that the cryptanalyst has access to the composer
G, which places his task in a quite optimistic frame. This section is devoted to the case that
the parameter G is also private. This case is studied in [20] and also [32] requiring three
approximations, no necessarily consecutive, instead of two. They consider the information
given as approximations to arbitrary points in the same elliptic curve, in such a way that
they are not taking advantage from the knowledge of the procedure which has generated
them. In other words, they provide a method to recover three points lying in an elliptic
curve in the form (1), given corresponding approximations. And then use that method in the
frame of an EC-LCG and three values partially revealed. Both methods are heuristics. In
[20] requieres a �−approximations such that � < p1/46, a better result is presented in [31,
32], which requieres � < p1/24. Both methods are looking for small roots of polynomial
(7) L3 ∈ Fp[XQ, YQ,XP , YP ,XR, YR].

We assume that approximations to the coordinates of G = (xG, yG) ∈ E(Fp) and also
Wn, Wn+1 to (respectively) two consecutive affine values Un, Un+1 produced by the EC-
LCG; we are trying to recover the exact values, provided that the approximations are good
enough.

We write Ḡ = (γx, γy) and Wj = (αj , βj ), Uj = (xj , yj ), for j = 0, 1; so there exist
integers hx, hy and ej , fj for j=0, 1 with:

xG = γx + hx, yG = γy + hy, & |hx |, |hy | ≤ �

xj = αj + ej , yj = βj + fj (21)

|ej |, |fj | ≤ �, j = 0, 1.
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The first attempt to design a such procedure would be, as in the previous Theorem 1,
translate (10) into the identity in the fielp Fp getting

L2(xG, yG, x0, y0, x1, y1) ≡ 0 mod p,

and looking for small roots of L2. However, Lemma 2-(2) shows it is no possible recovering
the seed. Neither from L1 ≡ 0 mod p, again by Lemma 2-(2). So, we have to involve both
polynomials:

L1 ≡ 0 mod p, L2 ≡ 0 mod p

First, we rigorously demonstrate how recovering only abscissa coordinates if � < p1/6.

Lemma 3 With the above notations and definitions, there exists a set U(�)⊆ F
6
p of car-

dinality #U(�) = O(p5�6) with the following property: whenever P = (xG, yG, x0, y0,

x1, y1) �∈ U(�) then, given �−approximation
to point P and given the prime p, one can recover xG, x0, x1 in deterministic polynomial

time by computing a closest vector of a certain lattice of dimension 5.

Proof First, we place all points of the form (x0, yG, x0, x1, y0, y1) ∈ U(�), so that U0 is
not G or −G. We write L2 as

L2 = (YP + YR)(XQ − XP ) + (YP − YQ)(XP − XR).

Taking W0 = YP + YR, V0 = XQ − XP , W1 = YP − YQ, V1 = XP − XR , we consider
polynomial L̄2 ∈ Fp[W0,W1, V0, V1]:

L̄2 = W0V0 + W1V1

We write

w0 = y0 + y1, v0 = xG − x0, w1 = y0 − yG, v1 = x0 − x1 (22)

From (21), we obtain (β0 + β1, γx − α1, β1 − γy, α0 − α1) = (b0, a0, b1, a1) is 2�-
approximation to the root (w0, v0, w1, v1) ∈ F

4
p of L̄2. So, rewriting the (21) and (22):

w0 = b0 + f0, v0 = a0 + e0, w1 = b1 + f1, v1 = a1 + e1, |ej |, |fj | ≤ 2�, j = 0, 1.
(23)

The polynomial L̄2 ∈ Fp[W0,W1, V0, V1] becomes:

b0e0 + a0f0 + b1e0 + a1f1 + [e0f0 + e1f1] = −(a0b0 + a1b1)

Writing:

C0 ≡ −(a0b0 + a1b1) mod p, C1 ≡ b0 mod p, C2 ≡ a0 mod p,

C3 ≡ b1 mod p, C4 ≡ a1 mod p, C5 ≡ 1 mod p.

we obtain that vector

E = (�e0,�f0,�e1,�f1, e0f0 + e1f1) =
(�E1,�E2, �E3,�E4, E5)

is a solution to the following linear system of congruences:

4∑

i=1

CiXi + �C5X5 ≡ �C0 mod p, (24)

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod �.
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Moreover, bounds (23) imply E is a relatively short vector. We have:

|Ei | ≤ 2�, i = 1, . . . , 4, |E5| ≤ 4�2; ‖E‖ ≤ √
32�2. (25)

Let L be the lattice consisting of integer solutions X = (X1, X2, . . . , X5) ∈ Z
5 of the

system of congruences:

4∑

i=1

CiXi + �C5X5 ≡ 0 mod p, (26)

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod �.

We compute a solution T of the system of congruences (24), using linear diophantine equa-
tions methods. Applying an algorithm solving the CVP for the shift vector T and the lattice
(26), we obtain a vector

F = (�F1,�F2, �F3,�F4, F5)

We have F = v + T (where v is the lattice vector returned by the CVP algorithm) is the
vector of minimal norm satisfying (24), hence F must have norm at most equal to the norm
of the solution E. Using the bounds (25), we get:

‖F‖ ≤ √
32�2. (27)

Note that we can compute F in polynomial time from the information we are given. We
might hope that E and F are the same, or at least, that we can recover the approximations
errors from F. If not, we will show that (xG, yG, x0, y0, x1, y1) belongs to a subset U(�) ⊆
F

6
p of cardinality #U(�) = O(p5�6).

Vector D = E − F lies in L:

D = (�D1,�D2,�D3,�D4,D5), Di = Ei − Fi, i = 1, . . . , 5.

Bounds (25) and (27) imply ‖D‖ ≤ 8
√

2�2 and

|Di | ≤ 8
√

2�, i = 1 . . . , 4, |D5| ≤ 8
√

2�2. (28)

Now, we distinguish two cases:

1. Di ≡ 0 mod p, i = 1, . . . , 4,
2. Di is nonzero for some i, i = 1, . . . , 4

In the first case, we can recover the root (w0, v0, w1, v1) of the polynomial L̄2(W0, V0,

W1, V1), then by (22), we have

xG = x0 + v0, x1 = x0 − v1, yG = y0 − w1.

Substituting those equalities into (6) polynomial L1 and since xG �= x0, that is v0 �= 0, then
by Lemma 2-(1) we can recover xG, x0, x1.

Hence, we may assume that Di is nonzero for some i, i = 1, . . . , 4. Substituting bj =
Wj − ej , aj = Vj − fj , j = 0, 1 in the first equation of lattice (26), we obtain a nonzero
polynomial: G = G(W0, V0,W1, V1) =

(W0 − e0)D1 + (V0 − f0)D2 + (W1 − e1)D3 + (V1 − f1)D4 + D5

whose coefficients are in Z[Di, ej , fj ], for i = 0, . . . , 5 and j = 0, 1 and such that:

G(w0, v0, w1, v1) ≡ 0 mod p.

For every choice of Di, ej , fj , for i = 0, . . . , 5 and for j = 0, 1, the specialised
Ḡ(W0,W0,W1, V1) ∈ Fp[(W0,W0, W1, V1)] is a linear polynomial, so the number of
solutions in F

4
p is exactly p3. Now, for every zero (w0, v0, w1, v1) of Ḡ we have exactly
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p2 points of the form (y0 + y1, xG − x0, y0 − yG, x0 − x1). In total we have p5 points
(xG, yG, x0, x1, y0, y1) ∈ F

6
p such that L2(xG, yG, x0, x1, y0, y1) ≡ 0 mod p, we place all

of then into the set U(�)⊆ F
6
p . We need to show that the cardinality of U(�) is as claimed

in the statement of the theorem. In other words, we need to prove that for every choice of
Di, ej , fj , (i = 0, . . . , 5 and j = 0, 1), the number of non zero specialized polynomials
Ḡ(W0,W0,W1, V1) ∈ Fp[(W0, W0,W1, V1)] are bounded by O(�6).

We write
G = W0D1 + V0D2 + W1D3 + V1D4 + C,

where C ≡ D5 − (e0D1 + f0D2 + e1D3 + f1D4) mod p. By (28) the number of possible
choices for D1,D2,D3,D4 is O(�4). On the other hand, C can take O(�2) distinct values,
because from bounds (23) and (28) we obtain that D5 − (e0D1 + f0D2 + e1D3 + f1D4) =
O(�2). So, the number of nonzero polynomials G are bound by O(�6), which finishes the
proof.

The above result also finds the values U = y0 + y1 and V = y0 − yG. Plugging y1 =
−y0 + U and yG = y0 + V to polynomial L3 defined in (7), then from (8) we have

L3(xG, y0 + V, x0, y0, x1, −y0 + U) ≡ 0 mod p

So, we cannot recover yG, y0, y1 from L3.
On the other hand, substituting y1 = −y0 +U and yG = y0 +V in the elliptic curve (1):

y2
0 = x3

0 + ax0 + b,

(y0 + V )2 = x3
G + axG + b,

(−y0 + U)2 = x3
1 + ax1 + b.

We can derive a linear equation in a and y0:

a(x0 − xG) + 2Vy0 − x3
G + x3

0 + V 2

Now, we can recover a and y0 if a0 is ε-approximation to a with ε < p1/2 using the same
lattice technique’s.

As previous remark, we can also obtain from (4) a linear equation in b and quadratic in y0

b(xG − x0) + Ay0 + Ay2
0 + C.

where A, B,C ∈ Z[x0, x1, xG, U, V ] and A,B, C �≡ 0 mod p. Again, we can recover b

and y0 if b0 is ε-approximation to b as soon as ε < p1/3.
Then, as consequence of Lemma 3 we have the following:

Corollary 1 With the above notations and definitions, there exists a set U(�)⊆ F
6
p of car-

dinality #U(�) = O(p5�6) with the following property: whenever P = (xG, yG, x0,

y0, x1, y1) �∈ U(�) then, given �−approximation to U0 = (x0, y0), U1(x1, y1) and to
G = (xG, yG) and ε−approximation to a with ε < p1/2 or an ε−approximation to b with
ε < p1/3 one can recover the sequence produced EC-LCG in deterministic polynomial time.

Previous result it has been assumed that we have access to approximations to elliptic
curve (1) parameters a or b, which again places this task in a quite optimistic frame.

Then suppose �-approximations to U0 = (x0, y0), U1 = (x1, y1) and U2 = (x2, y2)

points generated by the EC-LCG and to G = (xG, yG) then applying Lemma 3 to equation
U0 ⊕ G = U1 we recovering (xG, x0, x1) and also

Z1 = y0 + y1, Z2 = y0 − yG
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Again applying the same Lemma 3 but in this case to equation U1 ⊕ G = U2, we are able
to recovering xG, x1, x2 and

Z3 = y1 + y2, Z4 = y1 − yG

as soon as � < p1/6. We obtain the following linear system of equation in Fp:
⎛

⎜⎜⎝

Z1
Z2
Z3
Z4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−1 1 0 0
0 1 1 0
0 0 1 1

−1 0 1 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

yG

y0
y1
y2

⎞

⎟⎟⎠

Since det

⎛

⎜⎜⎝

−1 1 0 0
0 1 1 0
0 0 1 1

−1 0 1 0

⎞

⎟⎟⎠ = 1 it has a unique solution and we can recovering all the

missing information.

Theorem 3 With the above notations and definitions, there exists two sets U(�)⊆ F
6
p

and V(�)⊆ F
6
p both the cardinality O(p5�6) with the following property: whenever

P = (xG, yG, x0, y0, x1, y1) �∈ U(�) and Q = (xG, yG, x1, y1, x2, y2) �∈ V(�) then, given
�−approximation to U0 = (x0, y0), U1(x1, y1), U2 = (x2, y2) and to G = (xG, yG), one
can recover the whole sequence produced by EC-LCG in deterministic polynomial time.

Notice that we can not applies Remark 1 because the parameter a of the elliptic curve (1)
is unknown.

On one hand the previous result requires computing a closest vector of two distinct lat-
tices. On the other hand, it would be interesting attacking EC-LCG when we have access
to several consecutive approximations and having an approximation to composer G. The
following result try to answer those interesting computational problems.

Let us formalise the problem. Again, we assume that a, b and the composer G are
unknown, but we have a �−approximation Ḡ = (γx, γy) to G = (xG, yG). Suppose that
we are given k + 1 ≥ 2 consecutive �−approximations Wj = (αj , βj ) to Uj = (xj , yj ) ∈
E(Fp) (j = 0, . . . , k − 1), produced by the EC-LCG, so there exist integers hx, hy and ej ,
fj with:

xG = γx + hx, yG = γy + hy, with |hx |, |hy | ≤ �

xj = αj + ej , yj = βj + fj

|ej |, |fj | ≤ �, j = 0, . . . , k − 1
(29)

Theorem 4 With above notation, under the ‘Gaussian heuristic’ we can recovering the

whole sequence (2) in polynomial time in log p as soon as � < p
k−1
5k−4 by computing the

closest vector of a certain lattice of dimension 4k − 3.

Proof For every pair of points of the form Ui−1 = (xi−1, yi−1), Ui = (xi, yi), i =
1, . . . , k − 1, we denote by

wi = yi−1 + yi, si = xG − xi−1, vi = xi−1 − xi, ti = yi−1 − yG,

L̄
(i)
2 = WiSi + ViTi ∈ Fp[Wi, Si, Vi, Ti]
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By Ui−1 ⊕ G = Ui , we have L̄
(i)
2 (wi, si , vi , ti ) ≡ 0 mod p and we obtain the following

system of congruences:

L̄
(1)
2 (w1, s1, v1, t1) = L2(xG, yG, x0, y0, x1, y1) ≡ 0 mod p,

L̄
(2)
2 (w2, s2, v2, t2) = L2(xG, yG, x1, y1, x2, y2) ≡ 0 mod p,

· · ·
· · ·
L̄

(k−1)
2 (wk−1, sk−1, vk−1, tk−1) = L2(xG, yG, xk−2, yk−2, xk−1, yk−1) ≡ 0 mod p.

From (29), we have

(βi−1 + βi , γx − αi−1, βi − γy, αi−1 − αi) = (bi, pi, ai, qi)

is 2�-approximation to the root (wi, si , vi , ti ) of L̄i
2. So, rewriting the (29)

f̄i = fi−1 + fi, m̄i = hx − ei−1, ēi = ei−1 − ei, n̄i = fi−1 − hy

wi = bi + f̄i , si = pi + m̄i , vi = ai + ēi , ti = qi + n̄i ,

|f̄j |, |m̄i |, |n̄i |, |ēj | ≤ 2�.
(30)

Using the equalities (30) the polynomial L̄
(i)
2 becomes:

(bi + f̄i )(pi + m̄i) + (ai + ēi )(qi + n̄i )

= qi ēi + pif̄i + ai n̄i + bim̄i + [m̄i f̄i + ēi n̄i]
= −(bipi + aiqi)

Since m̄i = hx − ei−1 = m̄i−1 + ēi−1, writing ē0 = 0 and m̄1 = m̄ then polynomial L̄
(i)
2

for i = 1, . . . , k − 1 becomes:

qi ēi + pif̄i + ai n̄i + bi(m̄ +
i−1∑

j=0

ēi ) + [(m̄ +
i−1∑

j=0

ēj )f̄i + ēi n̄i] = −(bipi + aiqi)

Now, we linearize this polynomial system. Writing, for i = 1, . . . , k − 1 and for j =
1, . . . , k − 1:

C(i) ≡ −(bipi + aiqi) mod p, B
(i)
0 ≡ bi mod p,

Q
(i)
j ≡ bi mod p, (0 < j < i), Q

(i)
i ≡ qi mod p, Q

(i)
j ≡ 0 mod p, (j > i)

P
(i)
i ≡ pi mod p, P

(i)
j ≡ 0 mod p, i �= j

A
(i)
i ≡ ai mod p, A

(i)
j ≡ 0 mod p, i �= j

B
(i)
i ≡ 1 mod p, B

(i)
j ≡ 0 mod p, i �= j

we obtain that vector E =
(�m̄,�ē1, . . . , �ēk−1,�f̄1, . . . , �f̄k−1, �n̄1, . . . , �n̄k−1,

m̄f̄1 + ē1n̄1, (m̄ + ē1)f̄2 + ē2n̄2, . . . , (m̄ +
k−2∑

j=0

ēj )f̄k−1 + ēk−1n̄k−1)

= (�E1,�E2, . . . , �E3k−2, E3k−1, . . . , E4k−3)

is a solution to the following linear system of congruences (i = 1, . . . , k − 1):

B
(i)
0 X0 +

k−1∑

j=1

Q
(i)
j Xj +

k−1∑

j=1

P
(i)
j Yj +

k−1∑

j=1

A
(i)
j Zj +

k−1∑

j=1

�B
(i)
j �j ≡ �C(i) mod p,

Xj ≡ 0 mod � (j = 0, . . . , k − 1) (31)

Yj ≡ 0 mod �, Zj ≡ 0 mod � (j = 1, . . . , k − 1).
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Moreover, from (30) we have E is a relatively short vector. We have:

‖E‖ ≤ 2(k + 1)�2. (32)

Let Lk be the lattice consisting of integer solutions

X = (X0, X1, . . . , Xk−1, Y1, . . . , Yk−1, Z1, . . . , Zk−1, �1, . . . , �k−1) ∈ Z
4k−3

of the system of congruences, (i = 0, . . . , k − 1):

B
(i)
0 X0 +

k−1∑

j=1

Q
(i)
j Xj +

k−1∑

j=1

P
(i)
j Yj +

k−1∑

j=1

A
(i)
j Zj +

k−1∑

j=1

�B
(i)
j �j ≡ 0 mod p,

Xj ≡ 0 mod � (j = 0, . . . , k − 1) (33)

Yj ≡ 0 mod �, Zj ≡ 0 mod � (j = 1, . . . , k − 1).

We compute a solution T of the system of congruences (31), using linear diophantine
equations methods. Applying an algorithm solving the CVP for the shift vector T and the
lattice (33), we obtain a vector

F = (�F1, �F2, . . . , �F3k−2, F3k−1, . . . , F4k−3)

We have F = v + T (where v is the lattice vector returned by the CVP algorithm) is the
vector of minimal norm satisfying (31), hence F must have norm at most equal to the norm
of the solution E. Using the bounds (32), we get:

‖F‖ ≤ 2(k + 1)�2. (34)

Note that we can compute F in polynomial time from the information we are given, see
Lemma 1. We might hope that E and F are the same, or at least, that we can recover the
approximations errors from F. This time, we are not giving a rigorous proof to bound the
number of possibilities for which this method could fail. The volume of the lattice (33) is
pk−1�3k−2 (see Section 2.1) Then, by Gaussian heuristic and (34) vector E is likely to be

the one founded whenever �2 < p
k−1

4k−3 �
3k−2
4k−3 , this is:

� < p
k−1

5k−4 .

As we can see, if k = 3, we obtain from Theorem 4 that O(�) = p2/11 which is an
improvement of Theorem 3.

5 Numerical results

We have proposed algorithms to recover a sequence of pseudorandom numbers produced by
EC-LCG. The input required by all of them include approximations to some pseudorandom
values. The first Theorem 1 and the second one Theorem 2 requires additionally precise
knowledge of the parameter G. The rest require an approximation to the composer G. The
quality of those approximations is the measure used to characterise when the algorithms
output the expected sequence.

In Theorem 1 a “bad” set of values for the components x0 is described, proving that
whenever that value lies outside the set, the algorithm works correctly. Furthermore, the
size of the set is asymptotically bounded with O(�6). This means that if � < p1/6 and p

is large enough, assuming a uniform distribution of probabilities for x0 ∈ Fp , the method
is unlikely to fail. The same applies in Theorem 3 where the two “bad” subsets of F6

p are
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asymptotically bounded with O(p5�6), again it means that if � < p1/6 and p is large
enough the method is unlikely to fail.

In Theorem 2 the heuristic algorithm requires k consecutive �−approximations with

� < p
k−1

4k−2 when G is public. Finally, the heuristic method described in Theorem 4 when an
approximation to composer G and k consecutive �−approximations are given recovering

the whole sequence if � < p
k−1

5k−4

However, two aspects must be taken into account before considering those bounds as
the threshold for the error tolerance upon which the algorithms fail. On the one side, the
constants hidden in the asymptotic reasoning (namely, the size of the prime p). On the other
one, the threshold could be higher, as the “bad” set does not guarantee that the methods
indeed fails.

We have performed some numerical tests with a SAGEMATH implementation of all meth-
ods. Firstly, we generate an elliptic curve over a prime finite field of a desired size by
chossing randomly in Fp parameters a, b to fix (1). Then, we generate randomly points in
the curve (1). For several pairs of points, an EC-LCG is simulated, and approximations to
some consecutive values are given as input to our algorithms.

size_prime = 1024

p=next_prime(ZZ.random_element(2**size_prime))

a=ZZ.random_element(p); b=ZZ.random_element(p)

if (4*a**3+27*b**2)%p != 0:

C =EllipticCurve(GF(p),[a,b])

G=C.random_element(); U_0=C.random_element()

U_1= U_0 + G

d=int(p**(0.14))

# We use the ZZ.random_element SageMath method

ZZ.random_element(-d+int(U_1[0]), d+int(U_1[0]))

And it is certified that both heuristic and deterministic methods confirm the obtained
bounds. We show the numerical results of the heuristic algorithms, which, on the other hand,
also include the deterministic ones. We summarize its results in the following tables. We
have selected primes of several sizes, and note the obtained success threshold.

• Theorem 2: �−approximations to k consecutive values and G public.

– k = 2, � = O(p1/6), 1
6 = 0.16666. Lattice dimension: 5.

– k = 3, � = O(p1/5), 1
5 = 0.2. Lattice dimension: 8

– k = 13, � = O(p6/25), 6
25 = 0.24. Lattice dimension: 38
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• Theorem 4: �−approximation to G and to k consecutive values.

– k = 3, � = O(p2/11), 2
11 = 0.1818. Lattice dimension: 9

– k = 13, � = O(p12/61), 12
61 = 0.1967. Lattice dimension: 49

We have implemented the attack in SAGEMATH-8.1 on a MacBook Pro laptop computer
(3,3 GHz Intel Core i7, 16 GB RAM 2133 MHz LPDDR3 Mac OSX 10.12.6). Since the
lattice dimension is very low -the biggest one is 49 which correspond the case k = 13 in
Theorem 4- the time consuming in any trail is, as maximum, a couple of seconds.

6 Remarks and open questions

We have presented efficient algorithms for predicting the sequence produced by the linear
congruential generator on elliptic curves. In fact, they only require computing a closest
vector for a lattice of very low dimension, and for practical purposes can be used Babai’s
Nearest Plane algorithm, see [2].

Following the ideas in [9] by generating more non-linear equations by multiplication
of several non-linear equations before the linearization step, papers [31] and [32] present

theoretical better bound O(p1/5) for Theorem 1 and O(p
3k

11k+4 ) for Theorem 2, under the
heuristic assumption that the created polynomials define a zero dimensional ideal. Their
algorithm need to compute the LLL algorithm of a certain lattice of huge dimension and,
after that, it also requires a Groebner Basis computation or alternatively any other elimi-
nation polynomial method. In practice the performance of the so called of Coppersmith’s
methods in those cases are very bad because of large dimension of the lattice as it is shown

in that papers. In fact, they can not test the bound O(p
3k

11k+4 ) not only because the large
dimension but the size of the prime p should be several hundreds of bits. On the other hand,
for instance, we can recover the sequence produced by EC-LCG if only three consecutive
�−approximations are given as soon as � < p1/5 requiring, the most time consuming, to
compute a closest vector for a lattice of dimension 7 and it it matched by primes p of only
1000 bits.

As papers [31] and [32] show the bound of the size of the set of exceptional values of u0
given in Theorem 1 is not tight and might be improved by more careful examination of the
structure of (4) and (5) and this applies to Theorem 2.

Obviously the result in Theorem 3 is nontrivial only for � = O(p1/6), we believe that
this can be improvement to � = O(p2/11) as Theorem 4 shows.

Giving rigorous proofs of our heuristic Theorem 2 and Theorem 4 is a challenging open
question as well.

Same question has been studied in [32] for the Power Generator on elliptic curves: for
a positive integer e > 1 and a point G ∈ E(Fp) of order l with gcd(e, l) = 1, the elliptic
curve Power Generator, (see [29]) generate a sequence of points Vn defined by the relation

Vn = [en]G
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Requiring the prime p, integer e, constants a and b of the elliptic curve (1), and �−approxima-

tions W0, W1 to two consecutive values V0, V1 for � < p
1

2e2 . An improvement is presented
in [14] recovering the root U0 = (x0, y0) of the polynomial (1) from a �−approximation
to (x0, y0) as soon as � < p1/7, considering the information given as approximation to
the seed, in such a way that it is not taking advantage from the knowledge of the procedure
which has generated them, see also [16]. We also think that better bounds are expected.

Another open problem is to mount an attack when the modulo p is unknown. Unfortu-
nately, we do not know how to predict the EC-LCG when the modulus p is secret.

Finally, it would be interesting to study the security other PRBG based on elliptic curves
under these type of attacks. In particular, it is not clear how to mount an attack based on the
lattices to the Naor-Reingold Generator on Elliptic curves, see [36, 41, 42].

Acknowledgements The author wishes to thank Arne Winterhof for reading and commenting on a draft
version.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K.K.: Elliptic and hyperelliptic curve
crytography: Theory and practice. CRC Press (2005)

2. Babai, L.: On lovasz lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–6 (1986)
3. Beelen, P., Doumen, J.: Pseudorandom Sequences from Elliptic Curves. Finite Fields with Applications

to Coding Theory Cryptography and Related Areas, pp. 37–52. Springer, Berlin (2002)
4. Blackburn, S., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.: Predicting nonlinear pseudorandom

number generators. Math. Comput. 74, 1471–1494 (2005)
5. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Math. Soc., Lecture Note

Series, vol. 265. Cambridge Univ Press (1999)
6. Bloemer, J., May, A.: A tool kit for Finding small roots of Bivariate Polynomial over the Integers.

Advances in Cryptology-Crypt. LNCS 2729, pp. 27–43. Springer (2003)
7. Boyar, J.: Inferring sequences produced by pseudo-random number generators. J. ACM 36, 129–141

(1989)
8. Brickell, E., Odlyzko, A.M.: Cryptanalysis: A survey of recent results. Contemp. cryptology, pp. 501–

540. IEEE Press, NY (1992)
9. Coppersmith, D.: Small solutions to polynomial equations and low exponent RSA vulnerabilities. J.

Cryptol. 10(4), 233–260 (1997)
10. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equations; Factoring with High Bits

Known’. In: Maurer, U. (ed.) Proc. EUROCRYPT-96, LNCS 1070,155–156. Springer, Berlin (1996)
11. Coron, J.S.: Finding small roots of Bivariate Integer Polynomial Equations Revisted. Proc. Advances in

Cryptology- Eurocrypt’04, LNCS, 3027, pp. 492–505. Springer (2004)
12. El Mahassni, E., Shparlinski, I.: On the Uniformity of Distribution of Congruential Generators over Ellip-

tic Curves. Proc. Intern. Conf. on Sequences and Their Applications, 257–264 Bergen 2001. Springer,
London (2002)
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34. Mérai, L.: Remarks on pseudorandom binary sequences over elliptic curves. Fund. Inf. 114(3-4), 301–
308 (2012)
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