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(57) Abstract: A network device (300) arranged to determine a shared key

with a second network device (350) is presented. The first network device is

arranged to substitute an identity number of the second network device into a

univariate private key polynomial to obtain an intermediate key. The net-

work device comprises - a key derivation unit arranged to - extract from the
v intermediate key multiple bit-strings, the multiple bit-strings being non-over-
lapping, consecutive substrings of the intermediate key, each two adjacent
bit-strings of the multiple bit-strings are separated in the intermediate key by
at least one bit which does not belong to any of the multiple bit-strings, and -
derive the shared key from the multiple bit-strings.
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Key sharing device and method

FIELD OF THE INVENTION
The invention relates to a network device, a key material generation device, a
key sharing method, a key material generation method, a computer program, and a computer

readable medium.

BACKGROUND

In cryptography, a key-agreement protocol is a protocol whereby two or more
parties that may not yet share a common key can agree on such a key. Preferably, both parties
can influence the outcome so that neither party can force the choice of key. An attacker who
eavesdrops on all communication between the two parties should learn nothing about the key.
Yet, while the attacker who sees the same communication learns nothing or little, the parties
themselves can derive a shared key.

Key agreement protocols are useful, e.g., to secure communication, e.g., to
encrypt and/or authenticate messages between the parties.

Practical key agreements protocols were introduced in 1976 when Whitfield
Diffie and Martin Hellman introduced the notion of public-key cryptography. They proposed
a system for key agreement between two parties which makes use of the apparent difficulty
of computing logarithms over a finite field GF(q) with q elements. Using the system, two
users can agree on a symmetric key. The symmetric key may then be used for say, encrypted
communication between the two parties.

The Diffie-Hellman system for key agreement is applicable when the parties
do not yet have a shared secret. The Diffie-Hellman key agreement method requires resource-
heavy mathematical operations, such as performing exponentiation operations over a finite
field. Both the exponent and the field size may be large. This makes key agreement protocols
less suitable for low-resource devices. On the other hand key agreement protocols would be
very useful in resource-restrained devices. For example, in application areas such as the
internet of things, ad-hoc wireless networks, and the like, key agreement could be used to

protect links between devices. Another example is communication between a reader and an
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electronic tag, say a card reader and a smart card, or a tag reader and tag, e.g., an RFID tag or
an NFC tag.

Another approach to the problem of setting up secure connections between
pairs of network devices in a given communications network is given in C. Blundo, A. De
Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung, ‘“Perfectly-Secure Key distribution
for Dynamic Conferences”, Springer Lecture Notes in Mathematics, Vol. 740, pp. 471-486,
1993 (referred to as ‘Blundo’).

This system assumes a key material generation device, e.g., central authority,
also referred to as the network authority or as the Trusted Third Party (TTP), that generates a
bivariate polynomials f(x,y), with coefficients in the finite field F with p elements, wherein p
is a prime number or a power of a prime number. Each device has an identity number in F
and is provided with local key material by the TTP. For a device with identifier number 1), the
local key material is the coefficients of the polynomial f(1),y). If a device n wishes to
communicate with device 1, it uses its key material to generate the key K(n, 1) = f(n, n).
As f is symmetric, the same key is generated. The local key material is secret. Knowledge of
the local key material would directly compromise the system. In particular it would allow an
eavesdropper to obtain the same shared key. The method requires that each device in a
network of devices has its own unique identity number and local key material.

A problem of this key sharing scheme occurs if an attacker knows the key
material of t+1 or more devices, wherein t is the degree of the bivariate polynomial. The
attacker can then reconstruct the polynomial f(x,y). At that moment the security of the system
is completely broken. Given the identity numbers of any two devices, the attacker can
reconstruct the key shared between this pair of devices.

International Patent Application PCT/EP2013/056730 by the same applicant,
published as WO/2013/174554, discloses a key sharing technique that resists obtaining the
root key material from the key material of hacked devices (also called colluding devices).
Unlike the Blundo scheme this key sharing agreement system starts with multiple bivariate
polynomials. Univariate polynomials obtained from the bivariate polynomials are added over

different moduli, making reconstruction of the root key material harder for the attacker.

SUMMARY OF THE INVENTION
There is a need to further complicate the complexity of the reconstructing the

root key material from the private key material of multiple colluding (e.g. hacked) devices;
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also known as collusion attacks. It would be advantageous to have an improved system for
sharing keys among devices.

A first network device arranged to determine a shared key with a second
network device is provided. The first network device comprises
- an electronic storage storing a univariate private key polynomial and a public
global reduction integer obtained from an external key material generation device arranged to
configure at least the first and second network device for key sharing, the storage further
storing a first identity number for the first network device used by the key material
generation device to generate the univariate private key polynomial,

- a communication unit arranged to obtain a second identity number of the
second network device, the second network device being different from the first network
device,

- a polynomial manipulation unit arranged to

- substitute the second identity number into the univariate private key
polynomial,

- reduce the result of the substituting modulo the public global
reduction integer thus obtaining an intermediate key, and
- a key derivation unit arranged to

- extract from the intermediate key multiple bit-strings, the multiple
bit-strings being non-overlapping, consecutive substrings of the intermediate key, each two
adjacent bit-strings of the multiple bit-strings are separated in the intermediate key by at least
one bit which does not belong to any of the multiple bit-strings, and

- derive the shared key from the multiple bit-strings.

The first network device has a higher resistance against collusion attacks. A
lattice built from the univariate polynomials of colluding devices has much larger coefficients
than a comparable lattice which does not use spacing between adjacent bit strings.
Furthermore, the spacing complicates the lattice; for example, one way to deal with the
absence of information on the intermediate key in the area where spacing is used, is to model
each one of the multiple bit strings separately in the lattice, which directly increases its
dimension. Thus, if the degree of the bivariate polynomials is lowered, but spacing is
introduced, the dimension of the resulting lattice may be comparable.

If the univariate private key polynomial were obtained by summing
polynomials reduced over different moduli, the shared keys are on the one hand more

resilient against collusion attacks, but on the other hand there is a chance that the shared key
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derived in a first network device is not exactly the same as the shared key derived in a second
network device. If needed, this problem can be resolved by exchanging key-reconciliation
data. Only one of the first and second devices needs to do reconciliation. In an embodiment, a
first network device initiates the key sharing and send his identity number to a second
network device, the second network device responds to the key sharing request by sending
reconciliation data and its identity number; allowing the first network device to arrive at the
same shared key as the second network device.

In an embodiment, the first device comprising a key-reconciliation unit
arranged to compute key-reconciliation data from the multiple bit-strings, the communication
unit being further arranged to send the key-reconciliation data to the second device.

In an embodiment, the communication unit is further arranged to receive key-
reconciliation data from the second device, the first device comprising a key-reconciliation
unit arranged to modify the multiple bit-strings to conform to the received key-reconciliation
data, the shared key being derived from the modified multiple bit-strings.

The univariate private key polynomial may be generated by a key material
generation device. In a first embodiment, the key material generation device uses a single
bivariate polynomial without private reduction integers. Univariate private key polynomials
that are obtained in this way have the property that they do not need reconciliation. They are
however more vulnerable to collusion attacks.

In a second embodiment the key material generation device obtains a set of
univariate polynomials by

- for each particular polynomial of a first private set, substituting the
identity number into said particular polynomial f; and reducing modulo the reduction integer
associated with said particular polynomial, and

- summing the set of univariate polynomials and reducing modulo the
public global reduction integer.

Summing polynomials reduced over different private reduction integers is an
unusual operation. As the modulo operations are not compatible with each other, the
reconciliation becomes necessary. On the other hand, mathematical analysis of the univariate
polynomials has become increasingly complicated. Applying spacing in the intermediate key
appears to be especially beneficial when the univariate polynomials are derived from multiple
bivariate polynomials in this way instead of from a single bivariate polynomial.

In an embodiment, the amount of spacing between the multiple-bit strings is

linked to the degree of the bivariate polynomials used to generate the univariate private key
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polynomials. In an embodiment, the spacing number of bits s has (a + 1)B bits or more,
wherein

- a 1s the highest degree in a single variable of the bivariate
polynomials in the first private set

- the first and second identity numbers have an identity number length
B bits. Having such spacing guarantees that keys of first and second device are quite close.

In a further aspect of the invention concerns a key material generation device
arranged to configure a first network device for sharing a shared key, and a method of key
sharing and key material generation.

The network devices described herein may be applied in a wide range of
practical applications. Such practical applications include: lighting networks, sensor
networks, home automation, HVAC (heating, ventilation, and air conditioning) networks,
industry networks, control networks, ad-hoc wireless communication networks, etc. For
example, lighting nodes may include a network device.

A method according to the invention may be implemented on a computer as a
computer implemented method, or in dedicated hardware, or in a combination of both.
Executable code for a method according to the invention may be stored on a computer
program product. Examples of computer program products include memory devices, optical
storage devices, integrated circuits, servers, online software, etc. Preferably, the computer
program product comprises non-transitory program code means stored on a computer
readable medium for performing a method according to the invention when said program
product is executed on a computer.

In a preferred embodiment, the computer program comprises computer
program code means adapted to perform all the steps of a method according to the invention
when the computer program is run on a computer. Preferably, the computer program is
embodied on a computer readable medium.

Another aspect of the invention provides a method of making the computer
program available for downloading. This aspect is used when the computer program is
uploaded into, e.g., Apple’s App Store, Google’s Play Store, or Microsoft’s Windows Store,

and when the computer program is available for downloading from such a store.

BRIEF DESCRIPTION OF THE DRAWINGS
Further details, aspects, and embodiments of the invention will be described,

by way of example only, with reference to the drawings. Elements in the figures are
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illustrated for simplicity and clarity and have not necessarily been drawn to scale. In the
Figures, elements which correspond to elements already described may have the same
reference numerals. In the drawings,

Figure 1 schematically shows an example of an embodiment of a key material
generation device,

Figure 2a schematically shows an example of an embodiment of a first
network device,

Figure 2b schematically shows an example of an embodiment of an
intermediate key,

Figure 3a is a schematic block diagram of a key sharing system 100,

Figure 3b is a schematic block diagram of a key sharing system 102

Figure 4a is schematic block diagram of an integrated circuit 400,

Figure 4b schematically shows a computer readable medium (1000) having a
writable part (1020) comprising a computer program according to an embodiment,

Figure 5 schematically shows a flowchart illustrating a key sharing method,

Figure 6 schematically shows a flowchart illustrating a key material generation

method.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

While this invention is susceptible of embodiment in many different forms,
there are shown in the drawings and will herein be described in detail one or more specific
embodiments, with the understanding that the present disclosure is to be considered as
exemplary of the principles of the invention and not intended to limit the invention to the
specific embodiments shown and described.

In the following, for the sake of understanding, elements of embodiments are
described in operation. However, it will be apparent that the respective elements are arranged
to perform the functions being described as performed by them.

Further, the invention is not limited to the embodiments, and the invention lies
in each and every novel feature or combination of features described above or recited in
mutually different dependent claims.

Below an embodiment of the key sharing method is described in mathematical
terms. The key sharing method may be implemented in devices as described below, e.g., on a
key material generation device (200), a network device (300), in a key sharing system (100),

(102) and the like.
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In the embodiment below network devices are configured to obtain a shared
key. Generally, the shared key will have fewer bits than the identity numbers of the network
devices. Multiple of such shared keys may be combined to obtain a larger key, but this is not
necessary. The method has a set-up phase and a use phase. The set-up phase may include
initiation steps and registration steps. The initiation steps do not involve the network devices.

The initiation steps select system parameters. The initiation steps may be
performed by the trusted third party (TTP). The system parameters may also be regarded as
given inputs. In that case the trusted third party need not generate them, and the initiation
steps may be skipped. For example, the trusted third party may receive the system parameters
from a device manufacturer. The device manufacturer may have performed the initiation
steps to obtain the system parameters. For convenience of exposition we will refer to the
trusted third party as performing the initiation steps, bearing in mind that this is not

necessary.

Initiation steps

The desired key length for the key that will be shared between devices in the
use phase is selected; this key length is referred to as b’. The shared key will be selected
from different locations in an intermediate key. The number of multiple bit-strings is referred
to as ¢t. The bit length of the multiple bit-strings will be referred to as b,, ..., b, ; the bit-lengths
are given in the order in which the bit-strings appear in the intermediate key, starting with b,
which is closest to the LSB of the intermediate key. The parameters ¢ and b, ..., b, are selected
in the initiation phase. Obtaining a shared key from the multiple bit-strings is further
explained below. We have ¢t > 1 and b = }_, b;. In an embodiment, ¢ = 2.

In an embodiment, two adjacent bit-strings of the multiple bit-strings are
separated in the intermediate key by a same spacing number of bits (s). The total number of
bits in the intermediate key used for spacing, and not for the shared key may be referred to as
S. In an embodiment, S = ts.

The desired identity number length is also selected. During the later
registration steps each device will be associated with an identity number of identity number
length; the identity number length is referred to as ‘B’. The length of numbers are measured
in bits. In an embodiment b < B.

It has been found that b < B, increases resilience to so-called collusion attacks.
In a collusion attack, an attacker obtains information on the shared key used between a target

network node and multiple colluding network nodes. The amount of information learned
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from each additional colluding network node is of size b. However, the amount of
information that needs to be reconstructed in order to break commutation between the target
network node and non-colluding network nodes grows with B. In an embodiment B is a
multiple of b; say B is at least 2b, or for recommended security levels, B is at least 4b.

One may also have that b = B. For example, b = B = 64, or b = B = 128. Having b = B reduces
key storage. It is noted that the present way of selecting a shared key also improves resistance
against collusion attacks, so that having b = B is acceptable in more applications.

Next the parameters are selected. The desired degree is selected; the degree
controls the degree of certain polynomials. The degree will be referred to as ‘a’, it is at least
1. Although the system will work with @ = 1, the underlying problem changes in nature from
a>1. We will assume « = 2 from here on. A more secure application may use a higher value
of a, say 3 or 4, or even higher; for example, in embodiments m may even be 10 or more.

For a simple application also a =1 is possible. The case a = 1 is related to the
so called ‘hidden number problem’; higher “a” values are related to the extended hidden
number problem confirming that these cases are hard to break. The value a = 1, although
possible, is not recommended, and should only be considered for very low security
applications. For low security application a value of a > 2, say a = 3 is possible. However, for
high security a = 32 is recommended, say a = 32.

The number of polynomials is selected. The number of bivariate polynomials
will be referred to as ‘m’. A practical choice for m is 2. A more secure application may use a
higher value of m, say 3 or 4, or even higher.

Note that a low-complexity application, say for resource bounded devices may
use m = 1. The value m = 1, although possible, is not recommended, and should only be
considered for low security applications. Higher values of security parameters a and m
increase the complexity of the system and accordingly increase its intractability. More
complicated systems are harder to analyze and thus more resistant to cryptanalysis. Below it
is assumed that m = 2.

A public modulus N is selected satisfying 25*~* < N. Preferably, public
modulus N is chosen to have exactly S + b bits, and thus that also N < 2°*?. For example, N
may be chosen at random in this interval. In an embodiment, the spacing is equal for each
one of the multiple bit-strings, in this case S = ts. In an embodiment, N is odd. In particular,
in a practical embodiment N is odd and has exactly ¢s + b bits. In an embodiment, s > (a +

1)B. In particular s = (¢ + 1)B. This choice for s allows less reconciliation. Constant spacing,
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including at the MSB, with s = (a + 1)B and S = ts is assumed from now on unless otherwise
indicated.

Often the degree a, number of polynomials m, key length b, number of bit-
strings t, spacing s, sizes of key parts b;, will be pre-determined, e.g., by a system designer
and provided to the trusted party as inputs. The public modulus may also be fixed, say in a
standard, but more typically will be selected by a key material generation device during
generation of the parameters.

A number of m private moduli p,,p,,...,p,, are selected. Moduli are positive
integers. Each selected number satisfies a relationship with the public global modulus N. In
an embodiment, each private modulus satisfies the following relationship with public global

modulus N.

t
pi=N— z ﬁi(k)zs(k—1)+z’;=1 by
k=1

for some integers g with g < 2% for 1 < k < t. For example, the ! may be random B-bits
integers; more preferably they have exactly B bits, i.e., 2°7' < 8; < 2”. In the exponent of 2 in
the above formula, s(k — 1), equals the amount of spacing introduced up to the introduction of
BY¥. There is more freedom in choosing the private moduli. Embodiment may use different
choices for p;, or if using the above construction, ﬁl.("). However, the above construction is
both convenient in implementations, and gives good guarantees for the amount of
reconciliation (see below).

For m > 1, the system is more complicated, and thus more secure, since
modulo operation for different moduli are combined even though such operations are not
compatible in the usual mathematical sense. For this reason it is advantageous to choose the
selected private moduli p; as pairwise distinct.

A number of m bivariate polynomials f;, f,,..., f;, of degrees a; are generated.
Preferably, the bivariate polynomials are symmetric; this allows all network devices to agree
on a shared key with each other network device. These bivariate polynomials may also be
chosen asymmetric. All degrees satisfy a; < a, and for at least one j, we have a; = a. A better
choice is to take each polynomial of degree a. A bivariate polynomial is a polynomial in two
variables. A symmetric polynomial f satisfies f(x,y) = f(y,x). Each polynomial f; is
evaluated in the finite ring formed by the integers modulo p;, obtained by computing modulo
p;. The integers modulo p; form a finite ring with p; elements. The coefficients of polynomial

f; are integers, and represent an element in the finite ring defined by modulo p; operations. In
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an embodiment the polynomial f; is represented with coefficients from O up to p; — 1. The
bivariate polynomials may be selected at random, e.g., by selecting random coefficients
within these bounds.

The security of the key sharing depends on these bivariate polynomials as they
are the root key material of the system; so preferably strong measures are taken to protect
them, e.g., control procedures, tamper-resistant devices, and the like. Preferably the selected
integers py,p,,..., 0., are also kept secret, including the values ﬁj(") corresponding to p;, though
this is less critical. We will refer to the bivariate polynomials also in the following form: for
j=1, 2,..., m, we write f;(x,y) = 3&, fi,(X)y'.

The above embodiment can be varied in a number of ways. The restrictions on
the public and private moduli may be chosen in a variety of ways, such that obfuscation of
the univariate polynomial is possible, yet that the shared keys obtained at network devices
remain sufficiently close to each other sufficiently often. What is sufficient will depend on
the application, the required security level, and the computing resources available at the
network devices. The above embodiment combines positive integers such that the modular
operations which are carried out when generating the polynomials shares are combined in a
non-linear manner when they are added over the integers, creating a non-linear structure for
the local key material stored on a network device. The above choice for N and p; has the
property that: (i) the size of N is fixed for all network devices and linked to «; (ii) the non-

linear effect appears in the coefficients forming the key material stored on the device.

Registration steps

In the registration step each network device is assigned key material (KM).
The key material is unique to a network device.

A network device is associated with an identity number A. The identity
number may be assigned on demand, e.g. by the TTP, or may already be stored in the device,
e.g., stored in the device at manufacture, etc. The bit size of A is B bits. Generating A may be
done in a variety of ways. For high security the low bits of A are random. For example, A may
be selected as a random number; A may be the hash of a further identity number, say a serial
number, possibly truncated to B bits.

The TTP generates a set of key material for a device A as follows:

m

KMA(x) = zjzl < fi(x,A) >, = Z CAx

It is possible to add further obfuscating numbers to this, as follows:
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m

a
KMA(x) = z < fi(eA) >, + 2 z Xl = z Chxi
j=1 i=0 7

Wherein KM4(x) is the key material of a device with identity number A4; x is a
formal variable. Note that the key material is non-linear in the identity number A. The

notation < - >, denotes reducing modulo p; each coefficient of the polynomial between the
brackets. Stated differently, we have that ¢/ = Y- (f; ; M)y, + 2%¢, ;. This additional

obfuscation is optional.

The notation ‘e,;” denotes a random integer, which is an example of an
obfuscating number, such that le, ;| < 2(**1=Db, Note that any one of the random integers may
be positive or negative. The random numbers e are generated again for each device. The term
Y&, eq: X" thus represents a polynomial in X of degree a, of which the coefficient length is
shorter with increasing degree. Alternatively, a more general, but more complicated condition
is that ¥ | e4,| - 2% is small, e.g., < 2¢**, The mixing effect over different finite rings
provides the largest contribution to security, the use of obfuscating numbers is thus optional.

All other additions may either use the natural integer arithmetic, i.e., in the
ring Z, or (preferably) they use addition modulo N. So the evaluation of the univariate

polynomials ¥72, < f;(x,A) >, is each individually done modulo a smaller modulus p; but the

summation of these reduced univariate polynomials themselves is preferably done modulo V.
Also adding the obfuscating polynomial 2° ¥ e, X* may be done using natural integer
arithmetic or, preferably, modulo N. The key material comprises the coefficients ¢/ with
i =0, ..,a. The key material may be presented as a polynomial as above. In practice, the key
material may be stored as a list, e.g., an array, of the integers ¢/. The device A also receives
the numbers N and b; and information of the spacing, e.g., s; so that A and B may extract the
multiple bit strings in the same manner. Manipulation of polynomials may be implemented,
e.g., as manipulation of arrays containing the coefficients, e.g., listing all coefficient in a
predetermined order. Note that polynomials may be implemented, in other data structures,
e.g., as an associative array (also known as a ‘map’) comprising a collection of (degree,
coefficient) pairs, preferably such that each coefficient appears at most once in the collection.
The coefficients ¢/ that are provided to the device may be in the range O, 1, ..., N-1.
Univariate private key polynomials generated in this fashion have the property
that they may be used to derive shared keys, have resistance against collusion attacks and
control over the distance between the shared key derived at the respective devices (if any).
These properties are a result of the process used to generate the univariate private

polynomials.
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Use phase

Once two devices have an identity number A and B and received the key
material from the TTP, they may use their key material to obtain a shared key, shared
between them. Device A may perform the following steps, to obtain his shared key. First,
device A obtains the identity number B of device B. Then device A first generates the

intermediate key by computing the following:

K(A,B) = < KMA(X)|yp >n= < Z CABL >y

1

That is, A evaluates his key material, seen as an integer polynomial, for the
identity number B; the result of evaluating the key material is an integer. Next device A
reduces the result of the evaluation modulo the public modulus N. The angle brackets indicate
a modulo operation. The intermediate key is the result of the modulo N operation.

Figure 2b schematically shows an example of an embodiment of an
intermediate key 4000. Intermediate key 4000 is a bit string, the least significant (LSB) and
most significant bits (MSB) being indicated in figure 2b.

From the intermediate key, multiple bit-strings are extracted. The multiple bit-
strings are non-overlapping, consecutive substrings of the intermediate key. Each two
adjacent bit-strings of the multiple bit-strings are separated in the intermediate key by at least
one bit which does not belong to any of the multiple bit-strings. In figure 2b, three bit-strings
are indicated: bit-strings 4012, 4022, and 4032. Bit strings 4012 and 4022 are separated by
spacing 4020. Bit strings 4022 and 4032 are separated by spacing 4030.

In figure 2b, a spacing 4010, which includes the MSB of intermediate key
4000 separates bits string 4012 from the MSB part of the intermediate key. That is, a most
significant part of the intermediate key is not included in the multiple bit strings. Not using
the MSB part improves reconciliation.

In the embodiment shown in figure 2b, each two adjacent bit-strings of the
multiple bit-strings are separated in the intermediate key by a same number of spacing bits:
spacing number of bits (s). That is spacing parts 4010, 4020 and 4030 each have s bits. The
multiple bit strings have lengths b;. Also the multiple bit-strings may have equal lengths. As
shown in figure 2b, the bit strings are counted starting from the LSB.

The multiple bit-strings may be obtained as follows:
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The first bit-strings may be the least b, least significant bits of intermediate
key K(A,b), e.g.:

K = (K(A, B)),n,

For 2 < k < ¢, the k-th block K, j’g may be b, consecutive bits of K(4, B). Bit-
string k and bit-string k — 1 are separated by s bits. In an embodiment s = (« + 1)B bits. The k-
th bit-string may be computed as:

8 = (g

The shared key may be derived from the multiple bit-strings. For example,
they may be concatenated. The result will be referred to as A’s shared key with B, it is an
integer in the range of 0 up to 2 — 1. For its part, device B can generate B’s shared key with
A by evaluating its keyed material for identity A and reducing the result modulo N and
extracting the same multi-bit strings. Device B will obtain multiple bit-strings Kg_‘j.

In the example, given above the first bit string includes the least significant bit
of the intermediate key. This has the advantage that the intermediate key is shorter, and thus
reduces computation time. On the other hand, the most significant bits are not included in a
bit string. This has the advantage that shared keys are closer to each other between devices A
and B, and thus shortens reconciliation; in an embodiment the s most significant bits of the
intermediate key are excluded.

If the bivariate polynomials in the root key material are symmetric A’s shared
key with device B and device B’s shared key with A are often, though not necessarily always,
equal. The particular requirements on the integers p,,p,,...,p,, and on the random numbers e
are such that the keys are often equal and almost always close to each. If devices A and B
have obtained the same shared key, then they may use it as a symmetric key which is shared
between devices A and B; for example, it may be used for a variety of cryptographic
applications, for example, they may exchange one or more messages encrypted and/or or
authenticated using the shared key. Preferably, a key derivation algorithm is applied to the
shared key for further protection of the master key, e.g., a hash function may be applied.
Even if devices A and B have not obtained the same shared keys, it is certain that these keys
are close to each other. It can mathematically be shown that for k = 1

(1) € {(K(l) +]N)2b1|—2m <j< Zm}

and thatfor2 <k <t
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JN
K e {<K,;{;> N [ ] .

2s(k=1)+L{Z] by

—2m$j$2mand—m—3£e$m+3}

To ensure that the shared key is the same at both devices the devices may enter
a so-called reconciliation phase. For example, device A may compute key-reconciliation data
from the multiple bit-strings, and send it to device B. Or the other way round, device B may
compute key-reconciliation data from the multiple bit-strings, and send it to device A.

The receiving party, say device A, may modify the multiple bit-strings so that
they conform to the received key-reconciliation data, the shared key being derived from the
modified multiple bit-string; e.g., concatenating the modified multiple bit-string, applying a
key derivation function, hashing them etc. Alternatively, key reconciliation may comprise a
number ¢ of least significant bits of each of the multiple bit-strings. In an embodiment, ¢ < 4,
this reduces reconciliation; in particular ¢ may be 2 to minimize reconciliation.

Key-reconciliation data may be a cryptographic hash over the multiple bit
strings, €.g., a sha-1 hash over the concatenation of the multiple bits strings. Device A may
vary his multiple bit-strings within the above identified parameters until key-reconciliation
data computed over the modified bit-strings, e.g., the same hash function computed there
over, equals the received key-reconciliation data.

For example, device A may generate all multiple bit-strings that conform to
the above bounds until a set of multiple bit-strings is found that conforms to the received key
reconciliation data. For example, device A may use a set of nested for-next loops; each loop
generating the allowed values of one of the multiple-bit strings.

The selected m private moduli, py, p,, ..., pn, are preferably pairwise relatively
prime. If these numbers are pairwise relatively prime the lack of compatibility between the
modulo operations is increased. Obtaining pairwise relatively prime numbers may be
obtained by selecting the integers in order, testing for each new integer if all pairs of different
numbers are still relatively prime, if not the just selected number is removed from the set.
This procedure continues until all m numbers are selected. The complexity increases even
further by requiring that the selected m private moduli, p,, p,, ..., p,, are distinct prime
numbers.

Below some further examples are given, which may be used in embodiments.
These numbers are examples, different choices may be made, as indicated herein.

In a first example, B =b = 64, t =2, b, = b, = 32,

In a second example, B =128, b = 64,t =2, b, = b, =32,
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In a third example, B =128, b =128, t =4, b; = b, = by = b, = 32,

In all these examples, the root key material may be chosen with, say, a = 30,
and m = 10; Spacing may be chosen constant with s = (« + 1)B and size of N is ts + b. Size of
b; may be chosen larger or smaller than 32. There is a practical preference for power of two
for the various parameters; From a cryptographical point of view there is however no need to
restrict parameters to powers of two.

In the first example given above, the public global modulus N has length
2 %3164 + 64 = 63 *64 bits. The key material has (a + 1) = 31 coefficients, each of 63 x 64
bits, so in total 31 * 63 * 64 bits.

We compare this first example with a comparative key sharing scheme which
works the same except that t=1, i.e., in which the shared key is obtained from one
consecutive bit-string instead of multiple strings. The only spacing, is the spacing between
the MSB of the intermediate key and the single bit string. In the comparative system we have
t=1, and b, = b = B = 64. To make a fair comparison we select a degree a’ such that the
amount of key material is similar. In the comparative example, we have (a’ + 1)((a’ + 1)B +
b), thus solving for (a’ + 1)((a’ + 1)B + b) = 31 * 63 * 64 gives a’ =43. With this degree the
public modulus in the comparative example has length ((a’ + 1)B + b) = 45 = 64. So for the
same number of key material bits, the comparative example has higher degree bivariate
polynomials but no spacing.

The best known attacks on both these systems are lattice attacks. It turns out
that the spacing complicates the lattice to such an extent that, although the degree of the
bivariate polynomials is lower (30 versus 43) the dimension of the lattice dimension for both
the first and comparative example is comparable. However, in the first example, the lattice
uses a bit size of 63*64 bits, whereas in the comparative example, the bit size is only 45%64.
In other words, by moving from a key-sharing example (the comparative example) without
spacing to a key-sharing example with spacing, keeping the size of the shared key and the
amount of key material constant, attacks require 40% larger lattices of similar dimension.

Another alternative to multiple bit-strings from the same intermediate key is to
create multiple parallel key agreements so that multiple bit-strings may be obtained from
multiple intermediate keys. The parallel system is easier to attack however as the different
key parts may be attacked independently which is not the case when they are obtained from
the same intermediate key.

Resistance to lattice attacks is higher in embodiments that use a univariate

private key polynomial that was obtained by a key material generation device that substituted
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an identity number into multiple bivariate polynomials, reducing them modulo the reduction
integer associated with said particular polynomial, and then summing the univariate
polynomials. This is however not necessary.

In a simpler embodiment the key material generation device has a single
bivariate polynomial, no private reduction integers only a public global reduction integer.
Private key material is obtained by substituting the identity number into the bivariate
polynomial and reducing modulo the public global reduction integer. The first network
devices may use such a univariate polynomial with spacing to complicate lattice attacks.

Figure 1 is a schematic block diagram of a key material generation device 200
for configuring a network device for key sharing and a first network device 300;

Key generation device 200 is typically implemented as an integrated device.
For example, key material generation device 200 may be comprised in a server. Key
generation device 200 may configure network devices over a network, say a wireless
network, or the internet, and the like. However, key material generation device 200 may also
be integrated in a manufacturing device for manufacturing the network devices.

Key generation device 200 comprises a key material obtainer 210, a network
device manager 230, and a polynomial manipulation unit 220. Key generation device 200 is
intended to work with multiple network devices. Figure 1 shows one such device, first
network device 300.

Key generation device 200 selects secret key material, also referred to as root
key material. Key generation device 200 then derives local key material for each of the
multiple network devices. The local key material is derived from the root key material and at
least one public identity number A of the network device. In figure 1, network device 300
stores identity number 310. A network device may also store a further identity number and
derive the identity number 310 therefrom when needed, e.g., by hashing the further identity
number.

The local key material comprises parts that are private to a particular network
device, i.e., only accessible to one particular network device and possibly trusted devices.
The local key material may also contain parts that, though needed to obtain a shared key, are
less critical to keep secret.

The use of the adjectives public and private, is intended as helpful for
understanding: Even with access to all public data, the private data cannot be computed, at
least not without unreasonable high resources given the security of the application or

compared to the resources needed for key material generation, encryption, and decryption.
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However, ‘public’ does not mean that the corresponding data is necessarily made available to
anybody else than key material generation device 200 and the network devices. In particular,
keeping the public global reduction integer and other public parameters secret from untrusted
parties increases security. Likewise, access to private data may be restricted to the party that
generated or needs that data, this increases security. However, a trusted party may be allowed
access to the private data; Access to private data reduces security.

Using their local key material and the identity number of the other party, the
network devices can agree on a shared key between them.

Key material obtainer 210 is configured to obtain in electronic form at least a
first parameter set 250. Parameter set 250 comprises a public global reduction integer 256, N,
a first private set of bivariate polynomials 252, £;(,), and a second private set of reduction
integers 254, p;, with each bivariate polynomial in the first set there is associated a reduction
integer of the second set, and a public global reduction integer 256, N. The parameter set is
generated for network nodes having identifying number of bit-size B. The parameter set will
be used for generating local key material which in turn will be used to derive a shared key.
The bit-size of the shared key b satisfies b < B. In an embodiment, b < B, in this way the
amount of information that can be learned from the shared key is smaller than the amount of
information that needs to be reconstructed. This makes the corresponding lattice problem
harder.

The public global reduction integer of the parameter set 256, N is different
from each of the reduction integers 254. Preferably, the public global reduction integer of
parameter set 256, N is larger than each of the reduction integers 254 of that parameter set.

Key material obtainer 210 does not need interaction with a network device for
obtaining the key material; in particular key material obtainer 210 does not need an identity
number. Key generation device 200 may be a distributed system in which key material
obtainer 210 is located at a different physical location than polynomial manipulation unit
220. Key material obtainer 210 generates all or part of the key material and/or obtains all or
part of the key material from an external source. For example, key material obtainer 210 is
suited to receive the public global reduction integer 256 from an external source and generate
the first private set 252 and second set 254.

Key material obtainer 210 may comprise an electronic random number
generator. The random number generator may be a true or pseudo random number generator.

Key material obtainer 210 may generate a public global reduction integer, N, €.g., using the
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electronic random number generator. Although, the public global reduction integer is public
information, introducing randomness makes analyzing the system more difficult.

With each bivariate polynomial in a first set, a reduction integer from a second
set is associated. The random coefficients may be randomly selected from the integers
modulo the associated reduction integer.

Key material obtainer 210 may generate one or more coefficients of a
reduction integer p; in a second private set using the electronic random number generator. It
is not necessary that the reduction integers are primes. However, they may be chosen as
prime to increase resistance. Prime numbers give rise to fields, which is a species of rings.
The same parameter set, i.e., the same first and second private sets, and public global
reduction numbers, are used for all network devices that later need to share a key.

Key material obtainer 210 may generate one or more coefficients of a bivariate
polynomial £;(,)) in first private set 252, e.g., using the electronic random number generator.
Key material obtainer 210 may generate all of the bivariate polynomial in this fashion. Key
material obtainer 210 may use a maximum degree of these polynomials, say 2, or 3 or higher,
and generate one more random coefficient than the degree. The maximum degree is higher
for more secure applications, say, a maximum degree of 30, etc.

It is convenient to prescribe some aspects of first private sets 252 such as the
number of polynomials in private sets 252 and the degrees of the polynomials, or the
maximum degrees. It may also be prescribed that some of coefficients in the polynomials are
zero, e.g., for reducing storage requirements.

First set 252 may contain two equal polynomials. This will work, however,
unless the associated reduction integers are different the sets may be reduced in size. So
typically, whenever two or more bivariate polynomials in the first set are the same, the
associated reduction integers, i.e. the underlying rings, are different.

In an embodiment all first private sets of bivariate polynomials (f;(,)) only
comprise symmetric bivariate polynomials. Using only symmetric polynomials has the
advantage that each network device can agree on a shared key with any other network device
of the configured network devices. However, a first private set of bivariate polynomials may
contain one or more asymmetric polynomials; this has the effect that the devices can be
portioned into two groups: a device from one group can only agree on a shared key with a
device of the second group.

Key material obtainer 210 is configured to obtain in electronic form a first

private set of bivariate polynomials 252, also referred to as f;(,) in formulas. The
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embodiment described below assumes that all bivariate polynomials in set 252 are
symmetric.

A symmetric bivariate polynomial may also be notated as f;(x,y ) with two
formal variables as placeholder. A symmetric bivariate polynomial satisfies f;(x,y ) = f;(y,x).
This requirement translates to a requirement on the coefficients, e.g., that the coefficient of a
monomial x%y®? equals the coefficient of a monomial x?y*.

The number of polynomials in first private set 252 may be chosen differently
depending on the application. The system will work when the first set contains only a single
polynomial; in such a system keys may be successfully shared and provide a moderate level
of security. However, the security advantage of mixing over different rings is only achieved
when the first set has at least 2 polynomials in them, and the second set has at least two
different reduction integers.

Private set 252 comprises at least one bivariate polynomial. In an embodiment
of initiating key-agreement device 100 the private set 252 consists of one polynomial. Having
only one polynomial in private set 252 reduces complexity, storage requirements and
increases speed. However, having only one polynomial in private set 252 is considered less
secure than having two or more polynomials in private set 252 because such a one-
polynomial system does not profit from additional mixing in the summation described below.
However, key sharing will work correctly and are considered sufficiently secure for low-
value and/or low-security applications.

In the remainder, we will assume that private set 252 comprises at least two
symmetric bivariate polynomials. In an embodiment, at least two, or even all of the
polynomials are different; this complicates analysis of the system considerably. It is not
necessary though, private set 252 may comprise two equal polynomials and still benefit from
mixing in the summation step if these two polynomials are evaluated over different rings.
Note that different reduction integers define different rings. In an embodiment, private set
252 comprises at least two equal polynomials associated with different associated reduction
integers. Having two or more equal polynomials in the first set reduces storage requirements.
In an embodiment, the second set comprises at least two polynomials, and all polynomials in
the second set are different.

The polynomials in private set 252 may be of different degrees. With the
degree of a symmetric bivariate polynomial we will mean the degree of the polynomial in
one of the two variables. For example, the degree of x*y? + 2xy + 1 equals 2 because the

degree in x is 2. The polynomials may be chosen to have the same degree in each variable; if
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the polynomials in private set 252 are symmetric the degree will be the same in the other
variable.

The degrees of polynomials in private set 252 may be chosen differently
depending on the application. Private set 252 comprises at least one symmetric bivariate
polynomial of degree 1 or higher. In an embodiment, private set 252 comprises only
polynomials of degree 1. Having only linear polynomials in private set 252 reduces
complexity, storage requirements and increases speed. However, having only degree one
polynomials in private set 252 is considered less secure than having at least one polynomial
of degree at least two in private set 252 because such a system is considerably more linear.
Even so, if multiple polynomials in private set 252 are evaluated over different rings, then the
resulting encryption is not linear even if all polynomials in private set 252 are. In an
embodiment, private set 252 comprises at least one, preferably two, polynomials of degree 2
or higher. However, key material generation, encryption, and decryption will work correctly
if only degree 1 polynomials are used, and are considered sufficiently secure for low-value
and/or low-security applications.

Having one or more polynomials in private set 252 with degree 0 will not
impact the system, so long as the polynomial(s) with higher degree provide sufficient
security.

For a mid-security application, private set 252 may comprise, or even consist
of, two symmetric bivariate polynomials of degree 2. For a higher security application,
private set 252 may comprise or even consist of two symmetric bivariate polynomials, one of
degree 2 and one of degree higher than 2, say 3. Increasing the number of polynomials and/or
their degrees will further increase security at the cost of increased resource consumption.

Preferably, the reduction integers are selected so that the difference of any two
reduction integers in the same set of reduction integers has a common divisor. In particular,
the common divisor may be 2%1; or in words, the difference between any two reduction
integers ends in a least as many zero’s as the size of the first bit-string.

For example, one way to generate the reduction integers and the public global
reduction integer is as follows.

1. First generate the public global reduction integer N. For example as a

random integer of prescribed size,

2. For each reduction integer p;, generate integers g with 1 < g < 25 for

1<k<t.

3. Generate the reduction integer p; as the difference
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t
p =N — z ﬁi(k)z(a+1)(k—1)3+z’;=1 be
k=1

The public global reduction integer may be chosen to have ¢(a + 1)B + b bits or
more, wherein « is the highest degree in a single variable of the bivariate polynomials in the
first private set.

Key material obtainer 210 may be programmed in software or in hardware or
in a combination thereof. Key material obtainer 210 may share resources with polynomial
manipulation unit 220 for polynomial manipulation.

Network device manager 230 is configured to obtain in electronic form an
identity number 310, A for network device 300. Network device manager 230 may receive
the identity number from the network device. For example, network device manager 230 may
comprise or make use of a communication unit for receiving the identity number over a
network. For example, network device manager 230 may comprise an antenna for receiving
the identity number as a wireless signal. The identity number may be represented as a number
of bits, typically, the number of bits in the identity number B is at least as large as the number
of bits in the shared key.

Polynomial manipulation unit 220 is configured to compute a univariate
private key polynomial 229 for a parameter set and an identifying number A. Polynomial
manipulation unit 220 is applied to the parameter set of key material obtainer 210. The
univariate private key polynomial that is thus obtained and the corresponding public global
reduction integer are part of the local key material that will be sent to the network device.

Polynomial manipulation unit 220 receives the data in a parameter set from
key material obtainer 210 over connection 238. Below it is described how polynomial
manipulation unit 220 determines a univariate private key polynomial from the parameter set.
Polynomial manipulation unit 220 may compute the univariate private key polynomial 229 as
follows:

Univariate polynomials are obtained by substituting the identity integer A into
each of the polynomials in the first private set of the parameter set that is currently processed.
By substituting a value for only one variable of a bivariate polynomial, the bivariate
polynomial reduces to a univariate polynomial. The resulting univariate polynomial is then
reduced modulo the reduction integer associated with the bivariate polynomial in which the

identity integer 4 was substituted. The resulting set of univariate polynomials is summed,
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e.g., by adding the coefficients of equal powers of y in the polynomials. This may be
obtained from the formula for ¢/ in: KMA(x) = X7, < f;(x,A) > =L Cixt

Suppose f;(x,y) is one of the bivariate polynomials in the first private set. The
coefficients of this polynomial are taken from the ring Z, . That is the coefficients of the
polynomials in the first set are taken from an integer ring. For simplicity, the variables x and
y are used to represent the formal variables of the integers in the first set.

After substitution, polynomial manipulation unit 220 obtains f;(4, y).
Polynomial manipulation unit 220 is further configured to reduce this term modulo p;.
Coefficients are reduced in the ring over which the system operates, e.g., Z,, e.g., by reducing
mod p. Preferably, polynomial manipulation unit 220 brings the result into a canonical form,
i.e., a predetermined standardized representation. A suitable canonical form is representation
of the coefficient sorted by degrees of the monomials. Alternatively, the substitution may be
fory.

To ensure that the identity numbers act ‘random’ in the system a
randomization step at a point in the chain is advisable to ensure that lattice attacks do not
simplify. Especially if the network devices are given identity numbers according to a
particular order, e.g., serial numbers, such a randomization step is advisable. For example, a
cryptographic hash, say, sha-256 may be applied to the identity number, the result being
shortened to B bits, before the substitution step.

Furthermore, identity numbers may be extended to more bits. For example, an
identity number of B’ bits may extended, e.g., by hashing and/or concatenation, to B bits,
with B’ < B. For example and identity number 4 may be extended to H(A) or to A||H(A); H
denotes hashing and || denotes concatenation. The concatenation is done at the LSB side. A
highly non-linear hash, such as a cryptographic hash is preferred for this operation.

If the first set only contains symmetric polynomials, then substitution of the
identity integer 4 may be in either one of the two variables of the bivariate polynomial.
However, if substitution is done in an asymmetric polynomial, more care is needed. For
example polynomial manipulation unit 220 may be configured to obtain whether first
network device 300 is in a first or second group. The first and second groups are associated
with the first and second variable of the bivariate polynomials, respectively. For a network
device in the first group always the first variable is used. For a network device in the second
group always the second variable is used.

Figure 1 shows one possible way to implement this function. Figure 1 shows a

substituting unit 222, a polynomial reduction unit 224, a polynomial addition unit 226 and a
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sum of a set of univariate polynomials 228; the latter will be univariate private key
polynomial 229. These may work as follows. Substituting unit 222 substitutes the identity
integer A into a bivariate polynomial of the first set. Substituting unit 222 may collect terms
to bring the result in canonical form, but this may also wait. Polynomial reduction unit 224
receives the result of the substitution and reduces it modulo the reduction integer associated
with the bivariate polynomial in which was substituted.

The result of substituting the identity integer A into said particular polynomial
f:(4,y) and reducing modulo the reduction integer associated with said particular polynomial
is represented as a list of coefficients in a canonical form before the summing by polynomial
addition unit 226. The variable y acts as a formal variable. This substitution is sometime
notated simply as: f;(4,).

Polynomial addition unit 226 receives the reduced univariate polynomials and
adds them to a running total in sum 228. Sum 228 was reset to O prior to the generation of the
univariate private key polynomial. Polynomial addition unit 226 may add the polynomials
coefficient-wise, using either natural arithmetic or modulo the public global reduction
number associated to the parameter set.

When all polynomials of the first private set are processed in this way, the
result in sum 228 may be used as the univariate private key polynomial. The resulting
univariate private key polynomial, say in sum 228, may be represented as a list of
coefficients and in a canonical form.

Network device manager 230 is further configured for electronically storing
the generated univariate private key polynomial 229 and the corresponding public global
reduction integer 256, N at the network device. Using the univariate private key polynomial
229 and its identity number or numbers, first network device 300 can share keys with other
devices configured from the same root material. Network device manager 230 may also be
configured for electronically storing the parameters B and b at the network device.

Although polynomial manipulation unit 220 may be implemented in software,
polynomial manipulation unit 220 is particularly suited for implementation in hardware. If
only polynomial reduction unit 224 is implementing hardware a significant speed
improvement will be obtained; part of the functionality of key material generation device 200
that is not performed by a hardware version of the unit 224 may be performed in software
running of a processor.

Figure 1 shows polynomial manipulation unit 220 receiving an identity

number message 232 from first network device 300; first network device 300 receiving a
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public global reduction integer message 234 from key material obtainer 210 and a univariate
private key polynomial message 236 from polynomial manipulation unit 220. These
messages typically are sent and received through network device manager 230. Univariate
private key polynomial message 236 and public global reduction integer message 234 may be
combined in a single message. The public global reduction integer message 234 contains the
public global reduction integer, corresponding to the univariate private key polynomial in the
univariate private key polynomial message 236. Identity number message 232 may contain
the identity number. Identity number message 232 may also or instead contain a further
identity number, key material generation device 200 being configured to derive the identity
number from the one or more further identity numbers, e.g., by hashing them.

Key generation device 200 may be configured to obtain an identity number by
generating an identity number for first network device 300. Such a configuration is well
suited to a manufacturing facility. In that case first network device 300 receives identity
number message 232 from configuration key material generation device 200, instead of
sending it, say receive identity number message 232 from key material obtainer 210 or
polynomial manipulation unit 220.

Figure 2a is a schematic block diagram of a first network device 300 and a
second network device 350. First network device 300 and second network device 350 are
configured to determine a shared key together.

Second network device 350 may be of the same design as network device 300.
We only describe first network device 300 in detail, second network device 350 may be the
same or similar. Figure 2a only shows that second network device 350 stores an identity
number 355. The identity number 355 of second network device 350 is public and may be
exchanged with network device 300 to share a key. Second network device 350 also needs
local key material (not shown), in particular a univariate private key polynomial
corresponding to identity number 355.

First network device 300 comprises an electronic storage 320, a
communication unit 342, a polynomial manipulation unit 330 and a key derivation device
340.

Storage 320 stores local key material of device 300.; local key material
comprises a univariate polynomial univariate private key polynomial and a public global
reduction integer. In the embodiment shown in figure 2a, the device 300 comprises a set of
key material 370. Key material 370 comprises univariate private key polynomial 372 and a

public global reduction integer 374.
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Storage 320 also stores the identity number 310, 4, that was used to generate
the univariate private key polynomial in the key material.

Storage 320 may be a memory, say a non-volatile and writable memory, such
as flash memory. Storage 320 may be other types of storage, say magnetic storage such as a
hard disk. Storage 320 may be write-once memory.

Communication unit 342 is configured to obtain the identity number 355 of
second network device 350. Communication unit 342 may be implemented as a wired
connection, say a Wi-Fi, Bluetooth or ZigBee connection. Communication unit 342 may be
implemented with a connection over a data network, say the internet.

Polynomial manipulation unit 330 is configured to derive a shared key with
device 350 using the key material in storage 320. Device 350 also has key materials
corresponding to the same root key material as device 300. Device 300 may receive the
identity number B from device 350. Device 300 may also receive a further identity number
and derive the identity number therefrom. Below it is described how polynomial
manipulation unit 330 may derive a shared key using first key material 370.

Polynomial manipulation unit 330 may comprise a substituting unit 332, and
an integer reduction unit 334.

Polynomial manipulation unit 330 is configured to substitute the identity
integer B, say of device 350, into the univariate private key polynomial 372 and reduce the
result of the substitution modulo the public global reduction integer 374; thus obtaining an
intermediate key. Polynomial manipulation unit 330 may use similar hardware or software as
substituting unit 222 and polynomial reduction unit 224. Note that first network device 300
does not have access to the first and second private set 252, 254.

In an embodiment, key derivation unit 340 is configured to extract from the
intermediate key multiple bit-strings, the multiple bit-strings being non-overlapping,
consecutive substrings of the intermediate key, each two adjacent bit-strings of the multiple
bit-strings are separated in the intermediate key by at least one bit which does not belong to
any of the multiple bit-strings, and derive the shared key from the multiple bit-strings.

For example, consider three bit-strings (¢ = 3). The binary representation of the
intermediate key K may comprise a = 3s + b, + b, + b; bits (assuming constant spacing s).
Let us say that K has binary representation k,_.k,_, ... k,. Where k,, is the least significant bit.
The bits in the first bit-string are the bits k,, _, ... k,. The bits in the second bit string are the

bits k, .p,+5-1 - kb, 1+s. The bits in the third bit string are the bits k;, ., p,425-1 - Kb, +5,425. THE
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top s bits of the intermediate key are also spacing and not used anyone of the multiple bit-
strings.

The spacing is not necessarily constant, although this appears to give better
reconciliation. The multi-bit strings each have at least length 1. To obtain best distribution
over the different bit-strings, they may have equal lengths.

The key derivation unit may directly derive a key from the multiple-bit strings
and accept that there is a chance that the shared keys derived at device A and B are not the
same. For some applications this is acceptable.

Optionally network device 300 comprises a key-reconciliation unit 336; shown
in figure 2a as part of the key derivation unit 340. It may happen that device 300 and device
350 do not arrive at the same shared key. An application may chose to ignore this possibility.
In doing so, some pairs of network devices may not be able to engage in encrypted and/or
authenticated communication as they lack a common shared key. For some applications it is
sufficient that only some pairs of network devices are secured, e.g., ad-hoc networks are an
example of this. Devices 300 and 350 may also be configured with an optional key-
reconciliation unit 336. In one of the two devices 300 and 350 the key-reconciliation unit 336
generates key-reconciliation data from the generated key and sends it to the other device; in
the other device key-reconciliation unit 336 uses received key-reconciliation data to adapt the
generated shared key so that the shared key derived in both devices is the same.

If key-reconciliation unit 336 is used to adapt keys, it adapts the generated
shared key until it conforms to the key-reconciliation data, i.e., deriving key-reconciliation
data from the adapted shared key would give the same result as the received key-
reconciliation data for that key. If the least significant bits are used as confirmation data, the
key-reconciliation unit adds multiples until the c least significant bits are the same as the
received bits.

Instead of sending and receiving key-reconciliation data per bit-string key, the
key-reconciliation unit may also be configured to generate key-reconciliation data over the
assembled large shared key, possibly even after a key confirmation algorithm like KDF. In
this case, the key-reconciliation unit adapts all bit-strings keys simultaneously until a large
key is found that satisfies the key-reconciliation data. Although varying multiple bit-strings
keys at the same is more work, generating key-reconciliation data over the large key is also
much more secure as less direct information is available for the bit-strings keys.

After reconciliation key derivation device 340 may use, e.g., the concatenation

of the multiple bit-strings directly as a key. Key derivation device 340 may also apply a key
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derivation function to the shared key, for example the function KDF, defined in the OMA
DRM Specification of the Open Mobile Alliance (OMA-TS-DRM-DRM-V2_0_2-20080723-
A, section 7.1.2 KDF) and similar functions.

Figure 2a further shows an optional cryptographic unit 345 in first network
device 300. Cryptographic unit 345 is configured to use the shared key. For example,
cryptographic unit 345 may be an encryption unit configured for encrypting an electronic
message with the shared symmetric key. For example, cryptographic unit 345 may be a
decryption unit configured for decryption an electronic message with the shared symmetric
key.

Typically, the device 200 and the 300 each comprise a microprocessor (not
shown) which executes appropriate software stored at the device 200 and the 350; for
example, that software may have been downloaded and/or stored in a corresponding memory,
e.g., a volatile memory such as RAM or a non-volatile memory such as Flash (not shown).
Alternatively, the devices 200 and 300 may, in whole or in part, be implemented in
programmable logic, e.g., as field-programmable gate array (FPGA). Devices 200 and 300
may be implemented, in whole or in part, as a so-called application-specific integrated circuit
(ASIC), i.e. an integrated circuit (IC) customized for their particular use. For example, the
circuits may be implemented in CMOS, e.g., using a hardware description language such as
Verilog, VHDL etc.

In an embodiment, first network device 300 comprises a storage circuit,
communication circuit, a polynomial manipulation circuit, and a key derivation circuit. The
device 300 may comprise additional circuits, e.g., a key-reconciliation circuit. In an
embodiment, key material generation device 200 comprises a key material obtainer circuit, a
network device manager circuit, a polynomial manipulation circuit. The circuits implement
the corresponding units described herein. The circuits may be a processor circuit and storage
circuit, the processor circuit executing instructions represented electronically in the storage
circuits. The circuits may also be, FPGA, ASIC or the like.

Figure 3a is a schematic block diagram of a key sharing system 100.

Key sharing system 100 comprises key material generation device 200, and
multiple network devices; shown are network device 300, 350 and 360. The network devices
each receive an identity number, univariate private key polynomial and the global reduction
integer from key material generation device 200. Using this information they can agree on a
shared key. For example, first network device 300 and second network device 350 each send

their identity number to the other party. They can then compute a shared key. Someone with
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knowledge of the communication between first network device 300 and second network
device 350 and even the global reduction integer cannot obtain their shared key, without
using unreasonable large resources. Not even device 360 can derive the key shared between
devices 300 and 350.

Figure 3b is a schematic block diagram of a similar key sharing system 102.
System 102 is the same as system 100 except that the network devices receive their identity
number from a configuration server 110, also referred to as a personalization device. The
network devices then register with key material generation device 200 by sending their
identity number. The configuration server 110 may assign an identity number that is also
used for other purposes. For example, configuration server 110 may assign a network
address, such as a MAC address. The network address is used by the network node for
routing network traffic from a second network node to itself. However, the network address
may also be used as the identity number. In this case, the network node makes its network
address available to key material generation device 200 and receives a univariate private key
polynomial which allows the network node to engage in encrypted communication using its
network address as identity number. It is preferred that an identity number has full entropy,
i.e., B bits of entropy. However, when this cannot be realized, it is preferred to perform an
entropy smoothing function, e.g., a hash function before using the number as the identity
number.

The configuration server 110 may generate identity numbers to increase
security of the system by avoiding identity numbers that are close, i.e., that share many or all
of the most significant bits. For example, server 110 may generate the identity numbers
randomly, say true or pseudo random. It is also sufficient to append predetermined number of
random bits to an identity number, say 10 bits. The identity number may have the form
A(|| Az, in which 4, is not random, say a serial number, network address, or the like, and
wherein 4, is random. A, may be generated by a random number generator. 4, may also be
generated by hasing 4,. If a keyed hash is used, say an HMAC, this then 4, is
indistinguishable from random to parties without access to said key. The key may be
generated and stored by server 110.

Server 110 may be included in key material generation device 200, e.g.,
incorporated in network manager 230.

Figure 4a is schematic block diagram of an integrated circuit 400 which may
be configured as a key material generation device or network device. Integrated circuit 400

comprises a processor 420, a memory 430, and an I/O unit 440. These units of integrated
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circuit 400 can communicate amongst each other through an interconnect 410, such as a bus.
Processor 420 is configured to execute software stored in memory 430 to execute a method
as described herein. In this way integrated circuit 400 may be configured as key material
generation device 200 or as a network device, such as first network device 300; Part of
memory 430 may store a public global reduction integer, first private sets of bivariate
polynomials, second private sets of reduction integers, an identity number, a plain message
and/or encrypted message as required.

I/O unit 440 may be used to communicate with other devices such as devices
200, or 300, for example to receive key data, such as first private set of bivariate polynomials
252 and possibly associated parameters, such as sizes, degrees, moduli and the like, or to
send and receive encrypted and/or authenticated messages. I/0 unit 440 may comprise an
antenna for wireless communication. I/O unit 440 may comprise an electric interface for
wired communication.

Integrated circuit 400 may be integrated in a computer, mobile communication
device, such as a mobile phone, etc. Integrated circuit 400 may also be integrated in lighting
device, e.g., arranged with an LED device. For example, an integrated circuit 400 configured
as a network device and arranged with lighting unit such as an LED, may receive commands
encrypted with a shared symmetric key.

Multiple network devices, say incorporated in a lighting device, may form the
nodes of an encrypted network, in which links are encrypted using shared keys between the
nodes.

Although polynomial manipulation may be performed by processor 420 as
instructed by polynomial manipulation software stored in memory 430, the tasks of key
material generation, and calculating the univariate polynomials are faster if integrated circuit
400 is configured with optional polynomial manipulation unit 450. In this embodiment,
polynomial manipulation unit 450 is a hardware unit for executing substitution and reduction
operations.

Figure 4b shows a computer readable medium 1000 having a writable part
1010 comprising a computer program 1020, the computer program 1020 comprising
instructions for causing a processor system to perform a method of key sharing or key
material generation, according to an embodiment. The computer program 1020 may be
embodied on the computer readable medium 1000 as physical marks or by means of
magnetization of the computer readable medium 1000. However, any other suitable

embodiment is conceivable as well. Furthermore, it will be appreciated that, although the
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computer readable medium 1000 is shown here as an optical disc, the computer readable
medium 1000 may be any suitable computer readable medium, such as a hard disk, solid state
memory, flash memory, etc., and may be non-recordable or recordable. The computer
program 1020 comprises instructions for causing a processor system to perform said method
of key sharing or key material generation.

Figure 5 schematically shows a flowchart illustrating a key sharing method
500. Method 500 may be executed by first network device 300 to share a key with second
network device 350. Key sharing method 500 is arranged for a first network device to
determine a shared key with a second network device 350

Method 500 comprises:

- storing 502 a univariate private key polynomial 372 and a public global
reduction integer 374, N obtained from an external key material generation device arranged to
configure at least the first and second network device for key sharing, and storing a first
identity number 310, A used by the key material generation device to generate the univariate
private key polynomial 372,

- obtaining 504 a second identity number 355 of the second network device,

- substituting 506 the second identity number into the univariate private key
polynomial,

- reducing 508 the result of the substituting modulo the public global reduction
integer N thus obtaining an intermediate key, and

- extracting 510 from the intermediate key multiple bit-strings, the multiple bit-
strings being non-overlapping, consecutive substrings of the intermediate key, each two
adjacent bit-strings of the multiple bit-strings are separated in the intermediate key by at least
one bit which does not belong to any of the multiple bit-strings, and

- deriving 512 the shared key from the multiple bit-strings.

Figure 6 schematically shows a flowchart illustrating a key material generation
method. Method 600 may be executed by key material generation device 200. Key generation
method 600 configures a first network device 300 for sharing a shared key, the shared key
being b bits long,

the key material generation method comprising:

- obtaining 602 in electronic form a first private set of bivariate polynomials
252, f:(,), and a second private set of reduction integers 254, p;, with each bivariate
polynomial in the first set there is associated a reduction integer of the second set, and a

public global reduction integer 256, N, the public global reduction integer has at least
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t(a + 1)B + b bits, wherein « is the highest degree in a single variable of the bivariate
polynomials in the first private set, and ¢ is the number of bit-strings in the multiple bit-
strings,

- obtaining 604 in electronic form an identity number 310, A for the network
device, the identity number being B bits long, and

- computing 606 for the network device a univariate private key polynomial 229
from the first and second private sets by

- obtaining 608 a set of univariate polynomials by

- for each particular polynomial of the first private set,
substituting the identity number A into said particular polynomial f;, and reducing modulo the
reduction integer associated with said particular polynomial, and

- summing the set of univariate polynomials,

- storing 610 the generated univariate private key polynomial 229, 236 and the
public global reduction integer 256, N at the first network device.

Many different ways of executing the method are possible, as will be apparent
to a person skilled in the art. For example, the order of the steps can be varied or some steps
may be executed in parallel. Moreover, in between steps other method steps may be inserted.
The inserted steps may represent refinements of the method such as described herein, or may
be unrelated to the method. For example, steps 608 may be executed, at least partially, in
parallel. Moreover, a given step may not have finished completely before a next step is
started.

A method according to the invention may be executed using software, which
comprises instructions for causing a processor system to perform method 500 and 600.
Software may only include those steps taken by a particular sub-entity of the system. The
software may be stored in a suitable storage medium, such as a hard disk, a floppy, a memory
etc. The software may be sent as a signal along a wire, or wireless, or using a data network,
e.g., the Internet. The software may be made available for download and/or for remote usage
on a server. A method according to the invention may be executed using a bitstream arranged
to configure programmable logic, e.g., a field-programmable gate array (FPGA), to perform
the method.

It will be appreciated that the invention also extends to computer programs,
particularly computer programs on or in a carrier, adapted for putting the invention into
practice. The program may be in the form of source code, object code, a code intermediate

source and object code such as partially compiled form, or in any other form suitable for use
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in the implementation of the method according to the invention. An embodiment relating to a
computer program product comprises computer executable instructions corresponding to
each of the processing steps of at least one of the methods set forth. These instructions may
be subdivided into subroutines and/or be stored in one or more files that may be linked
statically or dynamically. Another embodiment relating to a computer program product
comprises computer executable instructions corresponding to each of the means of at least
one of the systems and/or products set forth.

It should be noted that the above-mentioned embodiments illustrate rather than
limit the invention, and that those skilled in the art will be able to design many alternative
embodiments.

In the claims, any reference signs placed between parentheses shall not be
construed as limiting the claim. Use of the verb "comprise" and its conjugations does not
exclude the presence of elements or steps other than those stated in a claim. The article "a" or
"an" preceding an element does not exclude the presence of a plurality of such elements. The
invention may be implemented by means of hardware comprising several distinct elements,
and by means of a suitably programmed computer. In the device claim enumerating several
means, several of these means may be embodied by one and the same item of hardware. The
mere fact that certain measures are recited in mutually different dependent claims does not
indicate that a combination of these measures cannot be used to advantage.

In the claims references in parentheses refer to reference signs in drawings of
embodiments or to formulas of embodiments, thus increasing the intelligibility of the claim.

These references shall not be construed as limiting the claim.
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List of Reference Numerals in figures 1. 2a. 3a, 3b

100,102 a key sharing system

110 a personalization device

200 a key material generation device

210 a key material obtainer

220 a polynomial manipulation unit

222 a substituting unit

224 a polynomial reduction unit

226 a polynomial addition unit

228 sum of a set of univariate polynomials
229 univariate private key polynomial

230 a network device manager

232 an identity number message

234 a public global reduction integer message
236 a univariate private key polynomial message
250 a parameter set

252 a first private set of bivariate polynomials
254 a second private set of reduction integers
256 a public global reduction integer

300 a first network device

310 an identity number

320 an electronic storage

330 a polynomial manipulation unit

332 a substituting unit

334 an integer reduction unit

336 a key-reconciliation unit

340 a key derivation device

342 a communication unit

345 a cryptographic unit

350 a second network device

355 an identity number

360 a third network device

370 a key material
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372 a univariate private key polynomial

374 a public global reduction integer
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CLAIMS:

1. A first network device (300) arranged to determine a shared key with a second
network device (350), the first network device comprising
- an electronic storage (320) storing a univariate private key polynomial (372)
and a public global reduction integer (374, N) obtained from an external key material
generation device arranged to configure at least the first and second network device for key
sharing, the storage further storing a first identity number (310, A) for the first network device
used by the key material generation device to generate the univariate private key polynomial
(372),
- a communication unit (342) arranged to obtain a second identity number (355)
of the second network device, the second network device being different from the first
network device,
- a polynomial manipulation unit (330) arranged to

- substitute the second identity number into the univariate private key
polynomial,

- reduce the result of the substituting modulo the public global
reduction integer (N) thus obtaining an intermediate key, and
- a key derivation unit arranged to

- extract from the intermediate key multiple bit-strings, the multiple
bit-strings being non-overlapping, consecutive substrings of the intermediate key, each two
adjacent bit-strings of the multiple bit-strings are separated in the intermediate key by at least
one bit which does not belong to any of the multiple bit-strings, and

- derive the shared key from the multiple bit-strings.

2. A first network device as in Claim 1, wherein
- each two adjacent bit-strings of the multiple bit-strings are separated in the

intermediate key by a same spacing number of bits (s).

3. A first network device as in any one of the preceding claims, wherein all of the

multiple bit-strings have the same size.
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4. A first network device as in any one of the preceding claims, wherein a first

bit string of the multiple bit strings includes the least significant bit of the intermediate key.

5. A first network device as in any one of the preceding claims, wherein a last bit
string of the multiple bit strings does not include the most significant bit of the intermediate

key.

6. A first device (300) as in any one of the preceding claims, wherein

- the communication unit (342) is further arranged to receive key-reconciliation
data from the second device, the first device comprising a key-reconciliation unit (336)
arranged to modify the multiple bit-strings to conform to the received key-reconciliation data,
the shared key being derived from the modified multiple bit-strings,

or

- the first device comprising a key-reconciliation unit (336) arranged to compute
key-reconciliation data from the multiple bit-strings, the communication unit (342) being

further arranged to send the key-reconciliation data to the second device.

7. A first device (300) as in any one of the preceding claims, wherein the
univariate private key polynomial (372) has previously been obtained by:

- obtain in electronic form a bivariate polynomial, and a public global reduction
integer (256, N),

- obtain in electronic form an identity number (310, A) for the first network
device,

- compute for the first network device a univariate private key polynomial (229)
by substituting the identity number (4) into the bivariate polynomial and reducing modulo the

public global reduction integer.

8. A first device (300) as in any one of the preceding claims, wherein the
univariate private key polynomial (372) has previously been obtained by:

- obtain in electronic form a first private set of bivariate polynomials (252,
f:(,)), and a second private set of reduction integers (254, p;), with each bivariate polynomial
in the first set there is associated a reduction integer of the second set, and a public global

reduction integer (256, N),
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- obtain in electronic form an identity number (310, A) for the network device,
and
- compute for the network device a univariate private key polynomial (229)
from the first and second private sets by

- obtaining a set of univariate polynomials by

- for each particular polynomial of the first private set,

substituting the identity number (4) into said particular polynomial f;(4,) and reducing
modulo the reduction integer associated with said particular polynomial, and

- summing the set of univariate polynomials and reducing modulo the

public global reduction integer.

9. A first network device as in Claim 8, wherein the spacing number of bits (s)
has (a + 1)B bits or more, wherein

- a 1s the highest degree in a single variable of the bivariate
polynomials in the first private set

- the first and second identity numbers have an identity number length

B bits.

10. A first device (300) as in Claim 8 or 9, wherein the public global reduction
integer has ts + b bits or more, wherein

- t is the number of bit-strings in the multiple bit-strings, t being larger

than one
- s 1s the spacing number of bits
- the multiple bit-strings together have a key length b bits.
11. A first device as in any one of Claims 8, 9 and 10, wherein each private

reduction integer

t
pi=N— z ﬁi(k)z(a+1)(k—1)3+z’;=1 be
k=1

for some integers g with 1 < g% < 28 for1 < k < t.

12. A key sharing system comprising a first device (300) as in any one of the
preceding claims and a key material generation device (200), wherein the key material

generation device (200) is arranged to configure a first network device (300) for sharing a
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shared key, the key generation device comprising:
- a key material obtainer (210) arranged to

- obtain in electronic form a bivariate polynomial, and a public global
reduction integer (256, N),
- a network device manager (230) arranged to obtain in electronic form an
identity number (310, A) for the first network device,
- a polynomial manipulation unit (220) arranged to compute for the network
device a univariate private key polynomial (229) by

- computing for the first network device a univariate private key
polynomial (229) by substituting the identity number (4) into the bivariate polynomial and
reducing modulo the public global reduction integer
- the network device manager being further arranged to electronically store the
generated univariate private key polynomial (229, 236) and the public global reduction

integer (256, N) at the first network device.

13. A key sharing system as in Claim 12, wherein the shared key is b bits long,
and the identity number is B bits long
- the key material obtainer (210) being arranged to
- obtain in electronic form a first private set of bivariate polynomials
(252, f:(,)), and a second private set of reduction integers (254, p;), with each bivariate
polynomial in the first set there is associated a reduction integer of the second set, and a
public global reduction integer (256, N), the public global reduction integer has at least
t(a + 1)B + b bits, wherein «a is the highest degree in a single variable of the bivariate
polynomials in the first private set, and ¢ is the number of bit-strings in the multiple bit-
strings,
- the polynomial manipulation unit (220) being arranged to compute for the
network device a univariate private key polynomial (229) from the first and second private
sets by

- obtaining a set of univariate polynomials by

- for each particular polynomial of the first private set,

substituting the identity number (4) into said particular polynomial f;(4,) and reducing
modulo the reduction integer associated with said particular polynomial, and

- summing the set of univariate polynomials.
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14. A key sharing method (500) arranged for a first network device to determine a
shared key with a second network device (350), the method comprising

- storing (502) a univariate private key polynomial (372) and a public global
reduction integer (374, N) obtained from an external key material generation device arranged
to configure at least the first and second network device for key sharing, and storing a first
identity number (310, 4) used by the key material generation device to generate the univariate
private key polynomial (372),

- obtaining (504) a second identity number (355) of the second network device,
- substituting (506) the second identity number into the univariate private key
polynomial,

- reducing (508) the result of the substituting modulo the public global reduction
integer (N) thus obtaining an intermediate key, and

- extracting (510) from the intermediate key multiple bit-strings, the multiple
bit-strings being non-overlapping, consecutive substrings of the intermediate key, each two
adjacent bit-strings of the multiple bit-strings are separated in the intermediate key by at least
one bit which does not belong to any of the multiple bit-strings, and

- deriving (512) the shared key from the multiple bit-strings.

15. A key sharing system method (600) comprising a key material generation
method to configure a first network device (300) for sharing a shared key and the key sharing
method of Claim 14, the shared key being b bits long, the key material generation method
comprising:

- obtaining (602) in electronic form a first private set of bivariate polynomials
(252, f:(,)), and a second private set of reduction integers (254, p;), with each bivariate
polynomial in the first set there is associated a reduction integer of the second set, and a
public global reduction integer (256, N), the public global reduction integer has at least

t(a + 1)B + b bits, wherein « is the highest degree in a single variable of the bivariate
polynomials in the first private set, and ¢ is the number of bit-strings in the multiple bit-
strings,

- obtaining (604) in electronic form an identity number (310, A) for the network
device, the identity number being B bits long, and

- computing (606) for the network device a univariate private key polynomial
(229) from the first and second private sets by

- obtaining (608) a set of univariate polynomials by
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- for each particular polynomial of the first private set,
substituting the identity number (4) into said particular polynomial f;(4,) and reducing
modulo the reduction integer associated with said particular polynomial, and

- summing the set of univariate polynomials,
- storing (610) the generated univariate private key polynomial (229, 236) and

the public global reduction integer (256, N) at the first network device.

16. A computer program (1020) comprising computer program instructions
arranged to perform the method of claim 14 or 15 when the computer program is run on one

Oor more computer S.

17. A computer readable medium (1000) comprising the computer program (1020)

as in claim 16.
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