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Abstract: In this paper, we study different geometric structures that can be defined as section endomorphisms of the
generalized tangent bundle TM := TM ⊕T ∗M → M . This vector bundle admits some structures that arise canonically
and other that can be induced from geometric structures defined on the manifold. We comment some well-known
examples and present new structures, focusing on the polynomial structures that can be induced in the generalized
tangent bundle.
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1. Introduction
The notion of generalized tangent bundle was first introduced by N. Hitchin [6] in 2003 and further developed
by M. Gualtieri in his PhD published in 2011 in [5]. This vector bundle, TM := TM ⊕ T ∗M → M , is defined
as the Whitney sum of the tangent and the cotangent bundle of a manifold M . Generalized complex structures
were the first point of study in TM . Almost complex and almost symplectic structures defined on the base
manifold M induce generalized almost complex structures, thus allowing to see them as similar mathematical
objects. The study of these structures has been useful in the development of other science fields, such as the
geometric context of string theory [6]. They can also be used to obtain different geometric structures in other
vector bundles (e.g., an induced Norden structure on the cotangent bundle T ∗M [14]).

While the first analysis of the generalized tangent bundle was focused on generalized complex structures,
it did not take long to study other geometric structures over it. A. Wade proposed in [17] the study of
generalized paracomplex structures over TM in a similar way to the study of generalized complex structures.
Both generalized complex and paracomplex structures have been widely investigated since then (for example,
complex structures in [7] and paracomplex structures in [4]), using different points of view and studying specific
examples. Other structures, such as generalized tangent structures, were subsequently studied (e.g., [1]).

Although originally generalized complex structures were forced to be compatible with a metric that
emerges naturally within the vector bundle, later studies such as [11] by A. Nannicini suggested that this
condition may be omitted. This suggestion agrees with other specialized texts in vector bundles, such as [15]
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by W. A. Poor. The advantage of studying these geometric structures in this way is that the majority of the
concepts can be defined for any vector bundle E → M . Then, if we take the tangent bundle E = TM → M ,
we recover the well-known geometric structures on a manifold M . In our case, we are interested in studying
the case E = TM → M . Following this line, we will use terminology as close as possible to that of structures
on manifolds instead of that used in the majority of studies in generalized geometry. This perspective allows
us to induce more generalized structures. For example, we can construct a generalized complex structure and
a generalized paracomplex structure using a metric over the manifold.

When analyzing the generalized tangent bundle, different structures arise naturally, without the need of
adding more structures to the base manifold. These structures are a pseudo-Riemannian metric, a symplectic
structure, and a paracomplex structure. This should not be surprising: other vector bundles also have canonical
structures. For example, every vector bundle E → M has a vector field L ∈ X(E) , called the Liouville or dilation
vector field, such that locally it is defined as L(x,e) = ej ∂

∂ej for any natural chart (xi, ej) of E . Another example
is the canonical 1-form θ ∈ Λ1(T ∗M) that can always be defined on the cotangent bundle T ∗M → M . Locally,
it is θ(x,w) = widx

i for any natural chart (xi, wj) in T ∗M . This 1-form generates a canonical symplectic 2-form
ω = dθ on the cotangent bundle. However, the Liouville field as well as the canonical 1-form are structures
defined on the tangent bundle of E and the cotangent bundle of T ∗M , respectively, while the generalized
canonical structures indicated are defined on TM as a vector bundle over M .

In this document, we want to study different geometric structures defined on TM . Some of the structures
that are presented here are familiar examples, and others are original. The paper is structured as follows:

In Section 2, inspired in classical texts as [9, 15], we present the definitions of different geometric structures
over any vector bundle E → M . We define Riemannian and pseudo-Riemannian metrics, symplectic structures
and polynomial structures, in particular almost complex, almost product, almost paracomplex, and almost
tangent structures. After that, we check the possible interactions between a polynomial structure and a metric
in the form of (α, ε) -metric structures, previously studied over the tangent bundle in studies such as [2, 3].

Section 3 takes the geometric structures defined in Section 2 for any vector bundle E → M and specializes
them for the generalized tangent bundle E = TM , also called big tangent bundle in some references (e.g., [16]).
Firstly, we study the geometric structures that arise naturally in the bundle, without introducing more additional
structures on the base manifold M . These canonical structures are a canonical pseudo-Riemannian metric G0 ,
a symplectic structure Ω0 (both introduced in [5, 6]) and a paracomplex structure F0 (presented in [17]). We
also show how these three generalized structures interact between them.

Finally, in Section 4, we obtain different induced generalized structures by a structure on the base
manifold, according this one is a metric, an almost symplectic structure, a polynomial structure, or a polynomial
structure with a compatible metric. Thus, we enlarge the original vision of generalized structures which allowed
to see almost complex and almost symplectic structures on the base manifold, both of them inducing generalized
almost complex structures. Besides, we show the richness of structures of the generalized tangent bundle.

It is worth noting that in this document we do not analyze the integrability of these structures. Therefore,
each polynomial structure is preceded by the adverb “almost” (e.g., generalized almost complex structures).

2. Geometric structures on vector bundles
In this section, we work with any smooth manifold M and a vector bundle E → M over it, denoting the fiber
in each point p ∈ M as Ep ⊂ E . Several geometric structures will be defined over the F(M) -module of sections
of E , Γ(E) , where F(M) denotes the ring of differentiable functions over M . Most of these structures can be
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found in reference books specialized in vector bundles (for example, in [15]).

Definition 2.1 ([15, Def. 3.1]) A metric defined on the vector bundle E is a differentiable morphism
g : Γ(E)× Γ(E) → F(M) that is bilinear, symmetric, and nondegenerate.

The morphism g can also be seen as a section g ∈ Γ(E∗ ⊗E∗) , such that for each p ∈ M the morphism
gp : Ep×Ep → R must fulfill the indicated properties over the fiber Ep as a vector space. If the metric is positive
definite, it is named a Riemannian metric, whilst if it is not positive definite, it is called pseudo-Riemannian
metric. In the latter case, for each fiber Ep , it is possible to find an orthonormal basis {e1, . . . , er+s} of Ep in
such a way that gp(ei, ei) > 0 for i = 1, . . . , r and gp(ej , ej) < 0 for j = r + 1, . . . , r + s . Then, the pair (r, s)

is called the signature of g . In the specific case when r = s , the metric signature is said to be neutral.
When we work with the tangent bundle E = TM , the usual concepts of Riemannian manifold and

pseudo-Riemannian manifold arise. If we work over the generalized tangent bundle E = TM , we will talk
about generalized Riemannian and pseudo-Riemannian metrics.

Definition 2.2 ([15, Def. 8.4]) A symplectic structure on the vector bundle E is a differentiable morphism
ω : Γ(E)× Γ(E) → F(M) that is bilinear, skew-symmetric, and nondegenerate.

As for the metrics, a symplectic structure can also be considered an element ω ∈ Γ(E∗ ⊗E∗) , such that
for each p ∈ M , the morphism ωp : Ep × Ep → R must meet all the requirements indicated in the previous
definition as a structure over the vector space Ep . In this case, the rank of the bundle E must be even.

If we take the particular case when E = TM , we retrieve the concept of almost symplectic manifold. An
almost symplectic manifold is called a symplectic manifold if the almost symplectic structure ω is closed (that
is, dω = 0). In the case E = TM , these morphisms will be called generalized symplectic structures.

The nondegeneracy of these two structures leads to isomorphisms between Γ(E) and Γ(E∗) . These
morphisms are commonly known as musical isomorphisms. If we take a symplectic structure ω (the construction
for a metric g is analogous), these isomorphisms are defined as follows.

Definition 2.3 ([15, Def. 3.8]) The flat isomorphism ♭ω : Γ(E) → Γ(E∗) with respect to ω transforms each
element X ∈ Γ(E) to the section ♭ωX ∈ Γ(E∗) , defined as (♭ωX)(Y ) := ω(X,Y ) for every Y ∈ Γ(E) . The
sharp isomorphism with respect to ω , ♯ω : Γ(E

∗) → Γ(E) , is defined as the inverse of the flat isomorphism.

It can be easily proven that the sharp isomorphism satisfies the relation ω(♯ωξ,X) = ξ(X) for all
ξ ∈ Γ(E∗) and X ∈ Γ(E) . These morphisms of sections can also be seen as bundle isomorphisms between E

and its dual bundle E∗ over the identity map id : M → M . For example, the flat isomorphism can be thought
as the bundle morphism ♭ω : E → E∗ such that the diagram

E E∗

M M
��

♭ω //

��id //

commutes and (♭ωXp)(Yp) := ωp(Xp, Yp) for every p ∈ M and Xp, Yp ∈ Ep . In other words, if Xp ∈ Ep then
♭ωXp ∈ E∗

p for every p ∈ M .
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The main focus of this document is to work with polynomial structures on generalized geometry. There-
fore, we introduce now this type of geometric structures for any vector bundle E .

Definition 2.4 A polynomial structure over the vector bundle E is defined as a section endomorphism
J : Γ(E) → Γ(E) given a minimal polynomial P , such that P (J) = 0 . When P = x2 + 1 (that is, J2 = −Id)
the endomorphism J is called an almost complex structure over E [15, Def. 1.58]; if P = x2 − 1 (in other
words, J2 = +Id) we say that J is an almost product structure over the bundle; and when P = x2 (that is to
say, J2 = 0) and the rank of J is half of the rank of E , J is an almost tangent structure.

The morphism J can also be seen as a bundle endomorphism J : E → E over the identity with the same
minimal polynomial, that is, the diagram

E E

M M
��

J //

��id //

commutes (in other words, JXp ∈ Ep for each Xp ∈ Ep ).
Depending on the given polynomial P , the structure that arises over the bundle E present different

properties. It is relevant to study the eigenbundles associated to each eigenvalue of an almost complex and
almost product structure over E . We analyze these three structures separately:

• For an almost product structure F defined on E we can find the eigenbundles L+
F , L

−
F ⊂ E associated,

respectively, to the eigenvalues +1,−1 of the endomorphism. These two subbundles are the following:

L+
F := {Yp ∈ E : FYp = Yp} = {Xp + FXp ∈ E : Xp ∈ E},

L−
F := {Yp ∈ E : FYp = −Yp} = {Xp − FXp ∈ E : Xp ∈ E}.

(2.1)

The projections over each eigenbundle, P+
F , P−

F (seen as section endomorphisms), are given by

P+
F X =

1

2
(X + FX), P−

F X =
1

2
(X − FX), (2.2)

for every X ∈ Γ(E) . In principle, the dimensions of L+
F and L−

F do not have to be equal. When this
happens (that is, when dimL+

F = dimL−
F ), it is said that the endomorphism F is an almost paracomplex

structure on the vector bundle E .

• When working with an almost complex structure J over the bundle E , it is required to introduce the
complexified bundle

EC := E ⊗ C = {Xp + iYp : Xp, Yp ∈ E, p ∈ M}.

The endomorphism J is extended to EC defining J(iXp) := iJXp . Then, as the minimal polynomial
associated to J is P = x2 + 1 , its eigenvalues are +i,−i . If we denote their respective eigenbundles as
L1,0
J , L0,1

J ⊂ EC , they are determined by

L1,0
J := {Yp ∈ EC : JYp = iYp} = {Xp − iJXp ∈ EC : Xp ∈ E},

L0,1
J := {Yp ∈ EC : JYp = −iYp} = {Xp + iJXp ∈ EC : Xp ∈ E}.

(2.3)
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The projections over each of these eigenbundles, P 1,0
J , P 0,1

J , are defined for every X ∈ Γ(E) as

P 1,0
J X =

1

2
(X − iJX), P 0,1

J X =
1

2
(X + iJX), (2.4)

and extended to Γ(EC) with P 1,0
J (iX) = iP 1,0

J (X) and P 0,1
J (iX) = iP 0,1

J (X) . It is immediate to check

that the dimensions of the subbundles L1,0
J , L0,1

J are equal, so the rank of a vector bundle with an almost
complex structure defined on it must be even.

• Finally, for an almost tangent structure S on the bundle E , it is straightforward that the rank of E must
be even and

Im S = kerS.

In the particular case when we work with the tangent bundle E = TM , the usual concepts of almost
complex, almost product, almost paracomplex, and almost tangent manifolds arise. When we work with the
generalized tangent bundle E = TM , these structures will be called generalized almost complex, generalized
almost product, generalized almost paracomplex and generalized almost tangent.

Before continuing, since the generalized tangent bundle is the Whitney sum of two vector bundles, it is
worthwhile showing that the complexification of a vector bundle behaves correctly with the Whitney sum of
vector bundles.

Proposition 2.5 If E,F → M are two vector bundles over a manifold M , then (E ⊕ F )C ∼= EC ⊕ FC .

Proof The isomorphism between the two bundles is clear: each element (e1p+f1p)+ i(e2p+f2p) of (E⊕F )C ,
such that e1p, e2p ∈ E and f1p, f2p ∈ F for a certain p ∈ M , is assigned to the element (e1p+ie2p)+(f1p+if2p) ,
belonging to EC ⊕ FC . 2

A polynomial structure J on a vector bundle E induces a geometric structure J∗ over the dual vector
bundle E∗ . This endomorphism is defined as follows.

Definition 2.6 Let J : Γ(E) → Γ(E) be a polynomial structure. Then, the dual structure of J is defined
as the endomorphism J∗ : Γ(E∗) → Γ(E∗) such that for each ξ ∈ Γ(E∗) , the section J∗ξ is defined as
(J∗ξ)(X) := ξ(JX) for every X ∈ Γ(E) .

It is straightforward to check that the minimal polynomial of a dual structure J∗ is the same that the
one associated to the endomorphism J .

Until now, we have described each geometric structure (metrics, symplectic structures, and polynomial
structures) separately. We take now two different geometric structures such that they interact in different ways.
In particular, we study the possible interactions between a metric g and a polynomial structure J with minimal
polynomial P = x2 ± 1 (that is, J is almost complex or almost product). If this endomorphism interacts with
the metric g as an isometry or antiisometry, we reach the following definition.

Definition 2.7 The (α, ε)-metric structures over E , with α, ε taking values in {+1,−1} , are defined as the
structure (E, J, g) composed by a polynomial structure J : Γ(E) → Γ(E) and a metric g over the bundle such
that

J2 = αId, g(JX, JY ) = εg(X,Y ), (2.5)
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for every X,Y ∈ Γ(E) . Depending on the values of α and ε , an (α, ε)-metric structure receives a different
name:

• If α = +1 , ε = +1 , (E, J, g) is called almost product Riemannian structure. In this case, g is required
to be Riemannian. If J is almost paracomplex, then (E, J, g) is named almost para-Norden structure.

• If α = +1 , ε = −1 , (E, J, g) is called almost para-Hermitian structure. Because of the compatibility
condition between J and g , the metric must be pseudo-Riemannian with neutral signature.

• If α = −1 , ε = +1 , (E, J, g) is called almost Hermitian structure. The metric g is requested to be
Riemannian.

• If α = −1 , ε = −1 , (E, J, g) is called almost Norden structure. As in the case of the almost para-
Hermitian structures, the metric g must be pseudo-Riemannian with neutral signature.

Using the metric g and the endomorphism J it is possible to define a new geometric structure called
fundamental tensor associated to the (α, ε) -structure. This structure Φ: Γ(E)× Γ(E) → F(M) is defined as

Φ(X,Y ) := g(JX, Y ), (2.6)

for all X,Y ∈ Γ(E) . It is immediate to check that if αε = +1 the fundamental tensor is a metric over the
vector bundle (called twin metric), whereas if αε = −1 the morphism Φ is a symplectic structure over E (called
fundamental symplectic structure).

As Φ is nondegenerate, its musical isomorphisms can be studied. These isomorphisms are related to the
musical isomorphisms of the metric g , as it is stated in the following proposition.

Proposition 2.8 Let (E, J, g) be an (α, ε)-metric structure over the fiber bundle E with fundamental tensor
Φ . Then, the following equalities hold:

♭Φ = ♭gJ = αεJ∗♭g,

ε♯Φ = ♯gJ
∗ = αεJ♯g.

(2.7)

Proof We start checking the first equations. If we take X,Y ∈ Γ(E) , using the definition of the flat
isomorphism then

(♭ΦX)(Y ) = Φ(X,Y ) = g(JX, Y ) = (♭gJX)(Y ).

This happens for every Y ∈ Γ(E) ; hence, ♭ΦX = ♭gJX for all X ∈ Γ(E) . In respect of the second equality,

(♭gJX)(Y ) = g(JX, Y ) = αεg(X, JY ) = αε(♭gX)(JY ) = αε(J∗♭gX)(Y ),

for all X,Y ∈ Γ(E) . Therefore, the first equations hold. For the other equalities, taking any η ∈ Γ(E∗) and
Y ∈ Γ(E) , then

g(ε♯Φη, Y ) = g(J♯Φη, JY ) = Φ(♯Φη, JY ) = η(JY ) = (J∗η)(Y ) = g(♯gJ
∗η, Y ),

g(♯gJ
∗η, Y ) = (J∗η)(Y ) = η(JY ) = g(♯gη, JY ) = g(αεJ♯gη, Y ).

The metric g is nondegenerate, so Eq. (2.7) holds. 2

This proposition is useful, for example, in order to study the eigenbundles associated to a dual structure.
In particular, we study briefly the case of an almost product structure F .
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Proposition 2.9 Let F be an almost product structure on a vector bundle E , and F ∗ its dual structure on
E∗ . Then, the dimensions of the eigenbundles L+

F , L
+
F∗ are the same (and, consequently, the dimensions of

L−
F , L

−
F∗ coincide). In particular, if F is almost paracomplex on E then F ∗ is almost paracomplex on E∗ .

Proof If we build an auxiliar metric g over E such that g(FX,FY ) = g(X,Y ) (just take any metric G

over E and define g(X,Y ) = G(X,Y ) + G(FX,FY )), it can be checked that ♭g(L
+
F ) = L+

F∗ . In the first
place, if we take an element Xp + FXp ∈ L+

F and name ξp = ♭gXp , because of the Eq. (2.7), we have
♭g(Xp + FXp) = ξp + F ∗ξp ; therefore, ♭g(L

+
F ) ⊂ L+

F∗ . Conversely, if ξp + F ∗ξp ∈ L+
F∗ and we name Xp = ♯gξp

then ♭g(Xp + FXp) = ξp + F ∗ξp and L+
F∗ ⊂ ♭g(L

+
F ) . 2

These structures have been widely studied in the tangent bundle (see, for example, [2, 3]). A manifold
endowed with an (α, ε) -metric structure is called an (α, ε) -metric manifold.

3. Canonical structures on the generalized tangent bundle
We work now with the generalized or big tangent bundle TM := TM ⊕ T ∗M . In this section, we describe
some geometric structures that can be defined over this 2n -rank vector bundle (with n = dimM ), following
the definitions given in Section 2. This line is followed in recent studies as, for example, A. Nannicini’s studies
in the field [10–14].

As in Section 2, the geometric structures that are presented here are defined as morphisms of sections.
The sections of the bundle TM can be described as combinations of vector fields and 1-forms over the manifold.
In other words, Γ(TM) = Γ(TM ⊕T ∗M) = X(M)⊕Λ1(M) , where X(M) denotes the F(M) -module of vector
fields and Λ1(M) the F(M) -module of 1-forms on M .

Firstly, it is necessary to establish the matrix notation that will be used from now on. If we have a section
endomorphism K : Γ(TM) → Γ(TM) , then we can write

K =

(
H α
β K

)
, (3.1)

where H : X(M) → X(M), α : Λ1(M) → X(M), β : X(M) → Λ1(M), K : Λ1(M) → Λ1(M) . This means that
if we take X + ξ ∈ Γ(TM) , then

K(X + ξ) =

(
H α
β K

)(
X
ξ

)
=

(
HX + αξ
βX +Kξ

)
= (HX + αξ) + (βX +Kξ).

This matrix notation is useful in order to look for restrictions. For example, if we want K to be a generalized
almost product or almost complex structure, computing K2 , we obtain

K2 =

(
H α
β K

)(
H α
β K

)
=

(
H2 + αβ Hα+ αK
βH +Kβ βα+K2

)
=

(
±Id 0
0 ±Id

)
, (3.2)

where Id and 0 denote the identity and null morphisms, respectively (with respect to the bundles referred in
Eq. (3.1)).

We search now canonical structures, that is, structures that arise naturally within the generalized tangent
bundle TM without adding any additional structure over the tangent or the cotangent bundle. The main
structures that are defined on this bundle are the canonical metric and the canonical symplectic structure.
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Definition 3.1 ([5, Sec. 1]) The canonical pairing or natural generalized metric over the generalized tangent
bundle TM is defined as G0 : Γ(TM)× Γ(TM) → F(M) such that for each X,Y ∈ X(M) and ξ, η ∈ Λ1(M) ,

G0(X + ξ, Y + η) :=
1

2
(ξ(Y ) + η(X)). (3.3)

Definition 3.2 ([10, Sec. 2]) The canonical or natural generalized symplectic structure over the bundle TM
is defined as Ω0 : Γ(TM)× Γ(TM) → F(M) such that for each X,Y ∈ X(M) and ξ, η ∈ Λ1(M) ,

Ω0(X + ξ, Y + η) :=
1

2
(ξ(Y )− η(X)). (3.4)

The canonical generalized metric is a pseudo-Riemannian with neutral signature. Associated to each of
these two structures, we can study their musical isomorphisms. These isomorphisms can be seen as bundle
morphisms between the generalized tangent bundle TM and its dual bundle T∗M := (TM)∗ over the identity,
that is to say, ♭G0

, ♭Ω0
: TM → T∗M and ♯G0

, ♯Ω0
: T∗M → TM . Then, the following proposition is true.

Proposition 3.3 The generalized tangent bundle TM is canonically isomorphic to its dual bundle, T∗M .

This is an enormous difference with respect to the tangent bundle TM : it is isomorphic to the cotangent
bundle T ∗M , but not canonically (it is necessary to define previously a metric g on the tangent bundle). On
the contrary, the existence of a canonical metric over the generalized tangent bundle avoids this disadvantage.

There is another canonical structure that can be studied on the generalized tangent bundle. This
morphism is an almost paracomplex structure. We present it as an endomorphism of Γ(TM) .

Definition 3.4 ([17, Ex. 1]) The canonical or natural generalized almost paracomplex structure is defined
as the polynomial structure F0 : Γ(TM) → Γ(TM) such that F0(X + ξ) := −X + ξ for all X ∈ X(M) and
ξ ∈ Λ1(M) . In matrix notation, it is

F0 =

(
−Id 0
0 Id

)
. (3.5)

According to the Eqs. (2.1, 2.2), the eigenbundles L+
F0

,L−
F0

⊂ TM associated to the eigenvalues +1,−1

of F0 are, respectively,
L+
F0

= T ∗M, L−
F0

= TM,

and the projections over these subbundles are the expected ones:

P+
F0

(X + ξ) = ξ, P−
F0

(X + ξ) = X.

The following result shows the relation that exists between the three canonical structures on TM recalled
above.

Proposition 3.5 The three canonical generalized structures are related between them with the expression

Ω0(X + ξ, Y + η) = G0(F0(X + ξ), Y + η), (3.6)

for every X + ξ, Y + η ∈ Γ(TM) .
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4. Induced structures on the generalized tangent bundle
If the base manifold M presents certain geometric structures defined for vector fields of the manifold, various
generalized geometric structures can be induced on TM . We describe in this section different induced structures
that can be defined on TM . We focus on generalized almost complex, generalized almost product and
generalized almost tangent structures that arise from structures in TM . We introduce the examples based
on the geometric structure on the base manifold.

4.1. Generalized polynomial structures induced from a metric

When the base manifold is endowed with a Riemannian or pseudo-Riemannian metric (M, g) , the musical
isomorphisms associated to g induce different generalized polynomial structures on the generalized tangent
bundle. These morphisms are two generalized almost tangent structures, a generalized almost complex structure
and a generalized almost paracomplex structure. We present these endomorphisms in the following propositions.

Proposition 4.1 Let (M, g) be a Riemannian or pseudo-Riemannian manifold. Then, the metric g induces
two generalized almost tangent structures, defined as Sg,♭(X + ξ) = ♭gX and Sg,♯(X + ξ) = ♯gξ . In matrix
notation, they are

Sg,♭ =

(
0 0
♭g 0

)
, Sg,♯ =

(
0 ♯g
0 0

)
. (4.1)

The image and the kernel of each structure are given by

Im Sg,♭ = kerSg,♭ = T ∗M, Im Sg,♯ = kerSg,♯ = TM.

Proposition 4.2 ([8, Ex. 3.1], [11, Sec. 4]) Let (M, g) be a Riemannian or pseudo-Riemannian manifold.
Then, we can induce a generalized almost complex structure and a generalized almost paracomplex structure.
These structures are, respectively,

Jg =

(
0 −♯g
♭g 0

)
, (4.2)

Fg =

(
0 ♯g
♭g 0

)
. (4.3)

The +i,−i-eigenbundles of the generalized almost complex structure Jg are

L1,0
Jg

= {Xp − i♭gXp ∈ TMC : Xp ∈ TM}, L0,1
Jg

= {Xp + i♭gXp ∈ TMC : Xp ∈ TM},

and the projections to each subbundle are

P1,0
Jg

(X + ξ) =
1

2
((X − i♭gX) + (ξ + i♯gξ)) , P0,1

Jg
(X + ξ) =

1

2
((X + i♭gX) + (ξ − i♯gξ)) .

On the other hand, the +1,−1-eigenbundles of the generalized almost paracomplex structure Fg are

L+
Fg

= {Xp + ♭gXp ∈ TM : Xp ∈ TM}, L−
Fg

= {Xp − ♭gXp ∈ TM : Xp ∈ TM},

and the projections to each subbundle are

P+
Fg

(X + ξ) =
1

2
((X + ♭gX) + (ξ + ♯gξ)) , P−

Fg
(X + ξ) =

1

2
((X − ♭gX) + (ξ − ♯gξ)) .

1500



ETAYO et al./Turk J Math

4.2. Generalized polynomial structures induced from an almost symplectic structure
Similarly to Subsection 4.1, when there is an almost symplectic structure ω defined on the manifold M , using
the musical isomorphisms ♭ω, ♯ω we can generate two generalized almost tangent structures, a generalized almost
complex structure and a generalized almost paracomplex structure. These structures are shown in the next two
propositions.

Proposition 4.3 Let (M,ω) be an almost symplectic manifold. Then, ω induces two generalized almost tangent
structures, namely Sω,♭(X + ξ) = ♭ωX and Sω,♯(X + ξ) = ♯ωξ . In matrix notation, they are

Sω,♭ =

(
0 0
♭ω 0

)
, Sω,♯ =

(
0 ♯ω
0 0

)
. (4.4)

The image and the kernel of each structure are given by

Im Sω,♭ = kerSω,♭ = T ∗M, Im Sω,♯ = kerSω,♯ = TM.

Proposition 4.4 ([5, Sec. 3], [17, Ex. 2]) Let (M,ω) be an almost symplectic manifold. Then, we can
induce a generalized almost complex structure and a generalized almost paracomplex structure. These structures
are, respectively,

Jω =

(
0 −♯ω
♭ω 0

)
, (4.5)

Fω =

(
0 ♯ω
♭ω 0

)
. (4.6)

The +i,−i-eigenbundles of the generalized almost complex structure Jω are

L1,0
Jω

= {Xp − i♭ωXp ∈ TMC : Xp ∈ TM}, L0,1
Jω

= {Xp + i♭ωXp ∈ TMC : Xp ∈ TM},

and the projections to each subbundle are

P1,0
Jω

(X + ξ) =
1

2
((X − i♭ωX) + (ξ + i♯ωξ)) , P0,1

Jω
(X + ξ) =

1

2
((X + i♭ωX) + (ξ − i♯ωξ)) .

On the other hand, the +1,−1-eigenbundles of the generalized almost paracomplex structure Fω are

L+
Fω

= {Xp + ♭ωXp ∈ TM : Xp ∈ TM}, L−
Fω

= {Xp − ♭ωXp ∈ TM : Xp ∈ TM},

and the projections to each subbundle are

P+
Fω

(X + ξ) =
1

2
((X + ♭ωX) + (ξ + ♯ωξ)) , P−

Fω
(X + ξ) =

1

2
((X − ♭ωX) + (ξ − ♯ωξ)) .

4.3. Generalized polynomial structures induced from a polynomial structure
When we have a polynomial structure defined on the manifold, it is possible to induce a generalized polynomial
structure with the same minimal polynomial. This generalization can be made using diagonal matrices. The
following propositions gather the generalized structures that are induced using an almost complex, almost
product, or almost tangent structure on the base manifold, respectively.
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Proposition 4.5 Let (M,J) be an almost complex manifold. Then, the following generalized almost complex
structures are induced, with λ ∈ {+1,−1} :

Jλ,J =

(
J 0
0 λJ∗

)
. (4.7)

When λ = +1 , the eigenbundles L1,0
J+1,J

,L0,1
J+1,J

⊂ TMC associated to the eigenvalues +i,−i of J+1,J are

L1,0
J+1,J

= L1,0
J ⊕ L1,0

J∗ , L0,1
J+1,J

= L0,1
J ⊕ L0,1

J∗ ,

where L1,0
J , L0,1

J ⊂ TMC are the +i,−i-eigenbundles of J ; and L1,0
J∗ , L

0,1
J∗ ⊂ T ∗MC are the +i,−i-eigenbundles

of J∗ . The projections over each subbundle are, respectively,

P1,0
J+1,J

(X + ξ) = P 1,0
J X + P 1,0

J∗ ξ, P0,1
J+1,J

(X + ξ) = P 0,1
J X + P 0,1

J∗ ξ,

where P 1,0
J , P 0,1

J are the respective projections into L1,0
J , L0,1

J , and P 1,0
J∗ , P 0,1

J∗ are the corresponding ones into

L1,0
J∗ , L

0,1
J∗ . Likewise, for λ = −1 these subbundles are

L1,0
J−1,J

= L1,0
J ⊕ L0,1

J∗ , L0,1
J−1,J

= L0,1
J ⊕ L1,0

J∗ ,

and the projections over each subbundle are

P1,0
J−1,J

(X + ξ) = P 1,0
J X + P 0,1

J∗ ξ, P0,1
J−1,J

(X + ξ) = P 0,1
J X + P 1,0

J∗ ξ.

It can be easily checked that J−1,J is isometric with respect to the canonical metric G0 , while J+1,J is
antiisometric. The example associated to λ = −1 was one of the first examples presented by M. Gualtieri in [5,
Sec. 3]. Although J+1,J is not isometric with respect to G0 , following our terminology both morphisms Jλ,J

for λ ∈ {+1,−1} are generalized almost complex structures.

Proposition 4.6 ([8, Sec. 3.2]) Let (M,F ) be an almost product manifold. Then, the following generalized
almost product structures are induced, with λ ∈ {+1,−1} :

Fλ,F =

(
F 0
0 λF ∗

)
. (4.8)

When λ = +1 , the eigenbundles associated to the eigenvalues +1,−1 of Fλ,F are, respectively,

L+
F+1,F

= L+
F ⊕ L+

F∗ , L−
F+1,F

= L−
F ⊕ L−

F∗ ,

and the projections over each of these subbundles are

P+
F+1,F

(X + ξ) = P+
F X + P+

F∗ξ, P−
F+1,F

(X + ξ) = P−
F X + P−

F∗ξ.

Likewise, for λ = −1 the subbundles associated to each eigenvalue are

L+
F−1,F

= L+
F ⊕ L−

F∗ , L−
F−1,F

= L−
F ⊕ L+

F∗ ,

with respective projections

P+
F−1,F

(X + ξ) = P+
F X + P−

F∗ξ, P−
F−1,F

(X + ξ) = P−
F X + P+

F∗ξ.
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Analyzing the dimensions of each subbundle, as dimL+
F = dimL+

F∗ (see Proposition 2.9) then F+1,F

is a generalized almost paracomplex structure if and only if F is almost paracomplex, while F−1,F is always
a generalized almost paracomplex structure, regardless of whether F is almost paracomplex or just almost
product.

Proposition 4.7 Let (M,S) be an almost tangent manifold. Then, the following generalized almost tangent
structures are induced, with λ ∈ {+1,−1} :

Sλ,S =

(
S 0
0 λS∗

)
. (4.9)

Independently of the value of λ , we have that

Im Sλ,S = kerSλ,S = kerS ⊕ kerS∗.

The structure corresponding to λ = −1 (studied in [1, Ex. 3.3]) is skew-symmetric with respect to the
canonical metric G0 , while for λ = +1 the structure S+1,S is symmetric. In other words,

G0(Sλ,S(X + ξ), Y + η) = λG0(X + ξ,Sλ,S(Y + η)).

4.4. Generalized polynomial structures induced from an (α, ε)-manifold

The examples shown so far are induced from the most basic geometries in the base manifold. We want now
to induce generalized polynomial structures from manifolds endowed with more complicated structures. In
particular, we work with a manifold with a polynomial structure and a compatible metric, that is, an (α, ε) -
manifold.

If we denote the metric as g and its fundamental tensor as Φ (Φ is the twin metric or the fundamental
almost symplectic structure), we can always induce the generalized almost tangent structures Sg,♭,Sg,♯,SΦ,♭,SΦ,♯

from Eqs. (4.1, 4.4), the generalized almost complex structures Jg,JΦ from Eqs. (4.2, 4.5) and the generalized
almost paracomplex structures Fg,FΦ from Eqs. (4.3, 4.6). Furthermore, when α = −1 the generalized almost
complex structures Jλ,J defined in Eq. (4.7) can be generated from the manifold (M,J, g) , while for λ = +1

the generalized almost product structures Fλ,F from Eq. (4.8) are induced from the manifold (M,F, g) .
However, there are more generalized polynomial structures that can be defined using both the polynomial

structure and the metric at the same time. In [11, Sec. 4], A. Nannicini induces a generalized almost complex
structure from an almost Norden manifold (M,J, g) , as follows:

J =

(
J 0
♭g −J∗

)
.

In a similar way, we propose the following “triangular” examples of generalized almost complex structures that
can be induced from any (α, ε) -metric manifold such that α = −1 .

Proposition 4.8 Let (M,J, g) be an (α, ε)-metric manifold with α = −1 (that is, J is an almost complex
structure). Then, the following endomorphisms are generalized almost complex structures:

JJ,g,♭ =

(
J 0
♭g εJ∗

)
, JJ,g,♯ =

(
J ♯g
0 εJ∗

)
. (4.10)
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The eigenbundles of these structures associated to the eigenvalues +i,−i are, respectively,

L1,0
JJ,g,♭

= {Xp − i(JXp + ♭gXp) ∈ TMC : Xp ∈ TM}, L0,1
JJ,g,♭

= {Xp + i(JXp + ♭gXp) ∈ TMC : Xp ∈ TM},

L1,0
JJ,g,♯

= {ξp − i(♯gξp + εJ∗ξp) ∈ TMC : ξp ∈ T ∗M}, L0,1
JJ,g,♯

= {ξp + i(♯gξp + εJ∗ξp) ∈ TMC : ξp ∈ T ∗M}.

Therefore, the projections to each subbundle of TMC (using the notation from Eq. (2.4)) are

P1,0
JJ,g,♭

(X + ξ) = P 1,0
J X + P 1,0

εJ∗ξ −
i

2
♭gX, P0,1

JJ,g,♭
(X + ξ) = P 0,1

J X + P 0,1
εJ∗ξ +

i

2
♭gX,

P1,0
JJ,g,♯

(X + ξ) = P 1,0
J X + P 1,0

εJ∗ξ −
i

2
♯gξ, P0,1

JJ,g,♯
(X + ξ) = P 0,1

J X + P 0,1
εJ∗ξ +

i

2
♯gξ.

Proof Using Proposition 2.8, it can be easily seen that JJ,g,♭,JJ,g,♯ are generalized almost complex structures.
We check now the eigenbundles of JJ,g,♭ . Taking any Xp + ξp ∈ TM , we compute (Xp + ξp)− iJJ,g,♭(Xp + ξp)

and (Xp + ξp) + iJJ,g,♭(Xp + ξp) :

(Xp + ξp)− iJJ,g,♭(Xp + ξp) = (Xp + ξp)− i(JXp + ♭gXp + εJ∗ξp) = (Xp − i(JXp + ♭gXp)) + (ξp − iεJ∗ξp),

(Xp + ξp) + iJJ,g,♭(Xp + ξp) = (Xp + ξp) + i(JXp + ♭gXp + εJ∗ξp) = (Xp + i(JXp + ♭gXp)) + (ξp + iεJ∗ξp).

It can be checked that for any element ξp − iεJ∗ξp (likewise, ξp + iεJ∗ξp ) there is a vector Yp ∈ TMC

such that Yp − i(JYp + ♭gYp) = ξp − iεJ∗ξp (likewise, Yp + i(JYp + ♭gYp) = ξp + iεJ∗ξp ). We propose
Yp = i♯g(ξp − iεJ∗ξp) = ε♯gJ

∗ξp + i♯gξp (analogously, Yp = −i♯g(ξp + iεJ∗ξp) = ε♯gJ
∗ξp − i♯gξp ). We compute

both cases using Proposition 2.8:

Yp − i(JYp + ♭gYp) = ε♯gJ
∗ξp + i♯gξp − i2J♯g(ξp − iεJ∗ξp)− i2♭g♯g(ξp − iεJ∗ξp)

= ε♯gJ
∗ξp + i♯gξp + J♯gξp + iJ2♯gξp + ξp − iεJ∗ξp

= ε♯gJ
∗ξp + i♯gξp − ε♯gJ

∗ξp − i♯gξp + ξp − iεJ∗ξp

= ξp − iεJ∗ξp,

Yp + i(JYp + ♭gYp) = ε♯gJ
∗ξp − i♯gξp − i2J♯g(ξp + iεJ∗ξp)− i2♭g♯g(ξp + iεJ∗ξp)

= ε♯gJ
∗ξp − i♯gξp + J♯gξp − iJ2♯gξp + ξp + iεJ∗ξp

= ε♯gJ
∗ξp − i♯gξp − ε♯gJ

∗ξp + i♯gξp + ξp + iεJ∗ξp

= ξp + iεJ∗ξp.

Therefore, L+
JJ,g,♭

and L−
JJ,g,♭

are the indicated ones. The proof of the eigenbundles of JJ,g,♯ is analogous. 2

Similarly, other “triangular” generalized structure is proposed by C. Ida and A. Manea in [8]. This
example is generated from an almost para-Hermitian manifold (M,F, g) with F almost paracomplex. In this
situation, the following generalized almost paracomplex structure is induced:

F =

(
F 0
♭g F ∗

)
.

Analogously to Proposition 4.8, we present now a result that gathers that example and other similar ones. The
proof of this proposition is parallel to the proof of Proposition 4.8 and therefore will be omitted.
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Proposition 4.9 Let (M,F, g) be (α, ε)-metric manifold with α = +1 (that is, F is an almost product
structure). Then, the following endomorphisms are generalized almost product structures:

FF,g,♭ =

(
F 0
♭g −εF ∗

)
, FF,g,♯ =

(
F ♯g
0 −εF ∗

)
. (4.11)

These structures are generalized almost paracomplex if and only if F is almost paracomplex. The eigenbundles
of these structures associated to the eigenvalues +1,−1 are, respectively,

L+
FF,g,♭

= {Xp + FXp + ♭gXp ∈ TM : Xp ∈ TM}, L−
FF,g,♭

= {Xp − FXp − ♭gXp ∈ TM : Xp ∈ TM},

L+
FF,g,♯

= {ξp − εF ∗ξp + ♯gξp ∈ TM : ξp ∈ T ∗M}, L−
FF,g,♯

= {ξp + εF ∗ξp − ♯gξp ∈ TM : ξp ∈ T ∗M}.

Therefore, the projections to each subbundle of TMc (using the notation from Eq. (2.2)) are

P+
FF,g,♭

(X + ξ) = P+
F X + P−

εF∗ξ +
1

2
♭gX, P−

FF,g,♭
(X + ξ) = P−

F X + P+
εF∗ξ −

1

2
♭gX,

P+
FF,g,♯

(X + ξ) = P+
F X + P−

εF∗ξ +
1

2
♯gξ, P−

FF,g,♯
(X + ξ) = P−

F X + P+
εF∗ξ −

1

2
♯gξ.

Until now, we have induced generalized almost complex structures using almost complex structures on M ,
and generalized almost product structures using almost product structures on M . We want now to elaborate
richer structures starting with an (α, ε) -metric manifold. Specifically, we want to induce a new generalized
almost complex structure using an almost product structure on the manifold, and a new generalized almost
product structure from an almost complex structure on M .

Firstly, if we take an (α, ε) -metric manifold (M,J, g) such that α = −1 , we want to find a generalized
almost product structure that looks like (

λ1J λ2♯g
λ3♭g λ4J

∗

)
, (4.12)

with λi ∈ F(M) for i = 1, 2, 3, 4 . We use Eq. (3.2) in order to obtain constraints for the functions λi . If
we want each λi to be constant and fix λ1 equal to λ1 = 1 , then we have λ2λ3 = 2 . If we decide to take
λ2 = λ3 =

√
2 , then a direct computation using Eq. (2.7) gives the result λ4 = ε . Therefore, we expose the

following proposition.

Proposition 4.10 Let (M,J, g) be an (α, ε)-metric manifold with α = −1 . Then, the following generalized
structure is almost paracomplex for the corresponding value of ε :

FJ,g =

(
J

√
2 ♯g√

2 ♭g εJ∗

)
. (4.13)

The eigenbundles associated to the eigenvalues +1,−1 of FJ,g are, respectively,

L+
FJ,g

= {Xp + JXp +
√
2 ♭gXp ∈ TM : Xp ∈ TM}, L−

FJ,g
= {Xp − JXp −

√
2 ♭gXp ∈ TM : Xp ∈ TM}.

The projections over each subbundle are the following:

P+
FJ,g

(X + ξ) =
1

2

(
(X + JX +

√
2 ♭gX) + (ξ +

√
2 ♯gξ + εJ∗ξ)

)
,

P−
FJ,g

(X + ξ) =
1

2

(
(X − JX −

√
2 ♭gX) + (ξ −

√
2 ♯gξ − εJ∗ξ)

)
.

1505



ETAYO et al./Turk J Math

Proof We check the expressions proposed for the subbundles corresponding to each eigenvalue. To this end,
we compute (Xp + ξp) + FJ,g(Xp + ξp) and (Xp + ξp)−FJ,g(Xp + ξp) :

(Xp + ξp) + FJ,g(Xp + ξp) = (Xp + JXp +
√
2 ♭gXp) + (ξp +

√
2 ♯gξp + εJ∗ξp),

(Xp + ξp)−FJ,g(Xp + ξp) = (Xp − JXp −
√
2 ♭gXp) + (ξp −

√
2 ♯gξp − εJ∗ξp).

We want to verify that for any element ξp+
√
2 ♯gξp+εJ∗ξp (likewise, ξp−

√
2 ♯gξp−εJ∗ξp ) there is a Yp ∈ TM

such that Yp + JYp +
√
2 ♭gYp = ξp +

√
2 ♯gξp + εJ∗ξp (or Yp − JYp −

√
2 ♭gYp = ξp −

√
2 ♯gξp − εJ∗ξp ). Our

proposal is Yp = 1√
2
♯g(ξp + εJ∗ξp) (analogously, Yp = − 1√

2
♯g(ξp − εJ∗ξp)). We compute both cases using Eq.

(2.7):

Yp + JYp +
√
2 ♭gYp =

1√
2
♯gξp +

ε√
2
♯gJ

∗ξp +
1√
2
J♯gξp +

ε√
2
J♯gJ

∗ξp + ξp + εJ∗ξp

=
1√
2
♯gξp −

1√
2
J♯gξp +

1√
2
J♯gξp −

1√
2
J2♯gξp + ξp + εJ∗ξp

=
2√
2
♯gξp + ξp + εJ∗ξp

= ξp +
√
2 ♯gξp + εJ∗ξp,

Yp − JYp −
√
2 ♭gYp = − 1√

2
♯gξp +

ε√
2
♯gJ

∗ξp +
1√
2
J♯gξp −

ε√
2
J♯gJ

∗ξp + ξp − εJ∗ξp

= − 1√
2
♯gξp −

1√
2
J♯gξp +

1√
2
J♯gξp +

1√
2
J2♯gξp + ξp − εJ∗ξp

= − 2√
2
♯gξp + ξp − εJ∗ξp

= ξp −
√
2 ♯gξp − εJ∗ξp.

Hence, L+
FJ,g

and L−
FJ,g

are the proposed ones. 2

Following the same reasoning and similar calculations (the proof is analogous to the one indicated for
Proposition 4.10; therefore, it will be omitted), it can be checked the following result when we start with an
(α, ε) -metric manifold such that α = +1 .

Proposition 4.11 Let (M,F, g) be an (α, ε)-metric manifold for α = +1 . Then, the following generalized
structure is almost complex for the corresponding value of ε :

JF,g =

(
F −

√
2 ♯g√

2 ♭g −εF ∗

)
. (4.14)

The eigenbundles associated to the eigenvalues +i,−i of JF,g are, respectively,

L1,0
JF,g

= {Xp−i(FXp+
√
2 ♭gXp) ∈ TMC : Xp ∈ TM}, L0,1

JF,g
= {Xp+i(FXp+

√
2 ♭gXp) ∈ TMC : Xp ∈ TM}.
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The projections over each subbundle are the following:

P1,0
JF,g

(X + ξ) =
1

2

(
(X − i(FX +

√
2 ♭gX)) + (ξ + i(

√
2 ♯gξ + εF ∗ξ))

)
,

P0,1
JF,g

(X + ξ) =
1

2

(
(X + i(FX +

√
2 ♭gX)) + (ξ − i(

√
2 ♯gξ + εF ∗ξ))

)
.
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