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Abstract— This work presents an investigation of the nonlinear
dynamics of an oscillator that is inductively coupled to an external
resonator for power transfer applications. Analytical expressions
are derived for the oscillation frequency and output power, which
provide insight into the effect of the coupled resonator on the
oscillator solution. From the analytical study, criteria are derived
to maximize the k range with a high efficiency and a limited
variation of the oscillation frequency. The resistor of the external
resonator can be modulated for data transmission to the core
oscillator. Here the sensitivity to this resistor and its dependence
on the coupling factor are analyzed in detail. The methods have
been applied to a Class-E oscillator that has been analyzed
through a contour-intersection technique. This is based on the
extraction from harmonic balance (HB) of a bi-variate nonlinear
admittance function accounting for the oscillator circuit, which
is combined with the passive linear admittance function of the
coupled resonator. The advantage is taken of the ease of this
analysis to obtain constant-efficiency contours in the oscillatory
regime, traced in the plane defined by the coupling factor and any
suitable analysis parameter. By means of a bifurcation analysis,
various phenomena, including the oscillation extinction plus onset
versus the coupling factor and the appearance of quasi-periodic
solutions, are detected and avoided. Very good correspondence
has been obtained between simulation and measured results.

Index Terms— Bifurcation, inductive coupling, nonlinear
circuit analysis, oscillator.

I. INTRODUCTION

SHORT-DISTANCE wireless power transfer can be applied
to recharge sensor networks, implantable devices, electri-

cal car batteries, and other systems [1], [2]. To obtain high effi-
ciency, a Class-E amplifier inductively coupled to an external
resonator is often used on the primary side [3]. However, this
requires a suitable drive signal, which complicates the design
and reduces the power-added efficiency. This limitation can
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be overcome through the implementation of a high-efficiency
oscillator [3]–[13] as this allows the autonomous generation
of the excitation signal. As in the amplifier case, the loading
conditions depend on the coupling factor between the transmit
and receive coils, which may significantly degrade the transfer
efficiency. The works [7], [13] optimize the oscillator design
for a given distance between the coils, while [5], [8], [12], [14]
perform this optimization considering the variation of the
oscillator equivalent load. With a different goal, [15] focuses
on the global behavior of the inductively coupled oscillator
versus variations in the coupling factor k. Using a simplified
expression of the oscillator equivalent load, [15] presents
an analytical study that allows the derivation of a compact
relationship between the oscillation amplitude and k. However,
the formulation in [15] cannot reliably predict the variation
with k of the oscillation frequency, which is an essential
characteristic of the coupled-oscillator solution. Moreover, the
simplifying assumptions in [15] prevent the prediction of
relevant phenomena such as the extinction and onset of the
oscillation when increasing k, and the appearance of doubly
autonomous quasi-periodic solutions, observed experimentally.

This work expands and generalizes the analytical inves-
tigation in [15] by considering the full dependence of the
oscillator load on the coupling factor k, which will demand
judicious derivations to get insightful results. Using these gen-
eral expressions, we will analyze the impact of the k-dependent
load admittance on the startup conditions and steady-state
oscillation. This will allow predicting the variation with k
of the oscillation frequency, which may lead the system out
of the regulated frequency bands. Departing from a cubic
nonlinearity oscillator, we will demonstrate that the normal-
ized oscillation frequency is governed by a bi-cubic equation
solely depending on k and the quality factor of the coupled
resonator. Criteria will be derived to maximize the k range
with a high efficiency and a limited variation of the oscillation
frequency. Note that a suitable behavior in a sufficiently large
k interval is necessary even at short distances because of
possible misalignments between the coils [16]. As proposed
in [17]–[20], the external resonator can be modulated for
data transmission purposes. Here the modulated behavior will
be analyzed with an envelope transient [21]–[23] formula-
tion. The aim will be to maximize the oscillator sensitivity
to the load modulation considering its dependence on k,
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Fig. 1. Simple oscillator used in the analytical study: C1 = C2 = 9.7 pF,
L1 = 5.6 nH, R2 = 30 �, i(v) = av + bv3 (a = –0.01 A/V and b =
0.01 A/V3).

or equivalently, on the distance between the oscillator and the
resonator.

After this analytical study, a practical Class-E oscillator
will be analyzed, focusing on the impact of the coupling
on the oscillator solution and its dynamics. Among other
new techniques, a graphical procedure for a quick global
evaluation of the oscillation startup conditions in terms of the
coupling factor and element values of the external resonator
is presented. For the steady-state analysis, the core oscillator
is described with a numerical bi-variate nonlinear admittance
function, depending on the frequency and amplitude at the
coupled-inductor terminals, which is extracted from harmonic
balance (HB). In turn, the coupling to the external resonator
is described analytically. This way, and under any variation
in the external resonator and/or coupling conditions, one can
predict the system behavior with no need to perform a new
HB oscillator analysis, often exhibiting convergence problems,
as will be shown here. Taking advantage of the ease of
this oscillator analysis, a new method is proposed to derive
constant-efficiency contours in the oscillatory regime for the
first time to our knowledge. A bifurcation detection technique
will allow predicting and avoiding various phenomena, includ-
ing the oscillation extinction and the appearance of quasi-
periodic solutions. The inductively coupled oscillator has been
manufactured and experimentally characterized to validate the
analysis results.

The article is organized as follows. Section II presents
an analytical study of a coupled system based on
a cubic-nonlinearity oscillator. Section III describes the
transistor-based oscillator, considering the startup condi-
tions, steady-state operation, oscillation boundaries, constant-
efficiency contours, and modulated behavior.

II. ANALYTICAL STUDY OF THE

FREE-RUNNING OSCILLATOR

The initial analytical study will be based on the cubic
nonlinearity oscillator in Fig. 1, inductively coupled to a
passive resonator. We have considered a parallel-resonator
oscillator coupled to a series external resonator. However, the
analysis methodology can be extended to other topologies
in a straightforward manner. The coupled system will be
analyzed at the fundamental frequency using the describing
function [24]. As will be shown in Section III, the main results
of this study are applicable to practical oscillators described
with an outer-tier admittance function extracted from HB, due
to their output filtering effects.

When coupled to the external resonator, the steady-state
oscillation at the frequency ω fulfills the complex equation

YT (V , ω, k) = a + 3

4
bV 2 + jC1ω + Yc(k, ω) (1)

where a < 0 and b > 0 and Yc(k, ω) is the coupled admit-
tance, seen from the oscillator coupled inductor (including this
inductor), as shown in Fig. 1. This admittance is

Yc(ω, k) = 1

j L1ω + jk2 L1 L2C2ω3

1−L2C2ω2+ j R2C2ω

. (2)

In the work [15], we had performed a Taylor series expansion
of Yc about k = 0, which provided the expressions

YT,r (V , ω, k)

∼= a + 3

4
bV 2 + 1

L1

k2 L2 R2C2
2ω2�

1 − L2C2ω2
�2 + (R2C2ω)2

= 0 (3a)

YT,i (ω, k)

∼= C1ω − 1

L1ω
+ 1

L1

k2 L2C2ω
�
1 − L2C2ω

2
�

�
1 − L2C2ω2

�2 + (R2C2ω)2
= 0 (3b)

where the subscripts r and i indicate real and imaginary
parts. The approximation (3a) facilitates the analysis of the
coupled system but fails to predict relevant effects observed
for intermediate and high k values. For example, when the
external resonator frequency agrees with the standalone oscil-
lation frequency ωo = 1/(L1C1)

1/2 = 1/(L2C2)
1/2, (3b)

provides ω = ωo for all the k values. However, this will only
be true for relatively small k. Here, the full expression of the
coupled admittance Yc(k, ω) will be considered, which due
to its complexity, will demand judicious derivations to obtain
insightful results.

A. Oscillation Startup Conditions

We will first consider the imaginary part of the complex
equation in (1). This provides the following real equation:
YT,i (ω)

= C1ω + Yc,i (k, ω)

= C1ω −
L1 L2

2C2
2 (1 − k2)ω5�

L1C2
2 R2

2 + L1 L2C2(k2 − 2)
�
ω3 + L1ω⎡

⎣ L1 L2
2C2

2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1 L2C2(k2 − 1)

�
ω3

+L1ω

⎤
⎦L1ω

= 0.

(4)

Note that at k = 0, equation (4) becomes the standalone
resonance condition YT,i = C1ω − 1/(L1ω) = 0. In general,
to maximize the coupling effects [25] one should have ωo =
1/(L1C1)

1/2 = 1/(L2C2)
1/2. Assuming this condition, we will

transform (4) into a manageable expression by defining a
normalized oscillation frequency γ = ω/ωo and making use
of the quality factor Q2 of the external resonator, given by
Q2 = 1/(R2C2ωo). Introducing both expressions in (4) and
performing some manipulations, one obtains

f (γ, k, Q2) = (k2 − 1)2γ 6 + �
3(k2 − 1) + Q−2

2

�
γ 4

+�
3 − Q−2

2 − k2
�
γ 2 − 1 = 0. (5)
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The equation (5), which is bi-cubic in γ 2, has a general
validity for all the coupled systems that can be modeled with
the equivalent circuit of Fig. 1, such as those in [26] and [27].
Equation (5) demonstrates that for ωo = 1/(L1C1)

1/2 =
1/(L2C2)

1/2 the normalized frequency γ (which must be
a real quantity) only depends on k and Q2. As expected,
for k = 0 (uncoupled operation), (5) is fulfilled for γ =
ω/ωo = 1 only. From the inspection of (5), the variation
of f (γ, k, Q2) versus k will be more significant for a larger
Q2, since k becomes more relevant in the various coefficients.
To understand this counterintuitive result, one must consider
that though the external resonator is a series one, it enters
the oscillator equations in a parallel manner. This is better
seen by considering the Taylor series expansion of the coupled
admittance Yc about k = 0

Yc(ω, k) ∼= 1

j L1ω
+ k2 L2

L1

1
1

jC2ω
+ j L2ω + R2

. (6)

The form of (6) is that of a parallel connection of L1 with a
series resonator R2, L2, C2, affected by the factor k2 L2/L1.
Note that the approximation (6) has been introduced for
illustration purposes only and will not be used in any of
the calculations presented in this work. Fig. 2 presents the
nomogram that provides γ versus k taking Q2 as a parameter.
For a Q2 value higher than (approximately) 4 there are three
real solutions, one departing from γ = 1 at k = 0 and the other
two appearing from certain k and belonging to an isolated
curve. The open curve departs from γ = 1 and decreases
with k for reasons given later in this section. For a higher Q2

the curve deviates from γ = 1 from a lower k. The additional
solutions (in the disconnected curve) are due to changes of the
slope of Yc,i (k, ω) versus ω. This slope is positive (indicated
with “P”) in the open curve, negative (indicated with “N”)
in the lower section of the isolated curve, and positive in
the upper section, so the change of slope takes place at the
turning point. The k value from which the isolated curve arises
decreases when increasing Q2.

Though in general only a rigorous stability analysis (based
on pole-zero identification [28], for instance) can guarantee
the fulfillment of the oscillation startup conditions, an admit-
tance/impedance analysis can be helpful to facilitate these
conditions at the design stage. In the circuit of Fig. 1, one
should have YT,r (V = 0, ωi (k), k) < 0 at the frequen-
cies ωi (k), where i is an index, that fulfills YT,i (ωi , k) =
0, ∂YT,i (ωi , k)/∂ω > 0. The condition YT,r < 0 depends on
the real part of (2), given by

Yc,r (k, L1, L2, ω)

= L1 L2C2
2 R2k2ω2

C2
2 L2

1 L2
2(k

2−1)2ω4+�
C2

2 L2
1 R2

2 +2C2 L2 L2
1(k

2−1)
�
ω2+L2

1

.

(7)

For each k, the function (7) tends to zero at ω = 0 and
ω → ∞, and exhibits a maximum at

ωmax = 1

(1 − k2)L2C2

. (8)

Fig. 2. Nomogram providing the variation of the normalized resonance
frequency γ of the circuit in Fig. 1 versus the coupling factor k and taking
Q2 as a parameter. The usual condition ωo = 1/(L1C1)

1/2 = 1/(L2C2)
1/2 is

assumed.

Replacing (8) into (7), the maximum of the real part of the
coupled admittance is

Yc,r (ωmax, k) = L2k2

L1 R2
. (9)

The maximum departs from zero at k = 0 (uncoupled condi-
tions) and increases with k in a quadratic fashion. It increases
with the ratio L2/L1 and decreases with R2.

The frequency ωmax in (8) shifts to higher values when
increasing k, as shown in Fig. 3(a), which presents the
variation of YT,r = a + Yc,r in the circuit of Fig. 1 for
different k and Q2 values. The quality factor Q2 has been
modified by changing L2 and calculating C2 to maintain the
same resonance frequency C2 = 1/(L2ω

2
o). In Fig. 3 when

changing L2 and C2, we have also modified the oscillator
elements as L1 = L2 and C1 = C2.

Fig. 3(b) shows the variation of YT,i (V = 0, ω), which, for
a larger Q2, exhibits a more significant variation versus k and
a lower slope. Note that the frequency at which the imaginary
part crosses through zero decreases with k in agreement with
the nomogram in Fig. 2. This can be understood by paying
attention to the frequency ωc at which the function Yc,i (k, ω)
intersects with −1/(L1ω), this being the termination admit-
tance of the uncoupled oscillator. This intersection frequency
is calculated imposing Yc,i (k, ω) + 1/(L1ω) = 0, which
provides

ωc = 1

(1 − k2)L2C2

. (10)

It agrees with the one at which the real part Yc,r (k, ω)
takes its maximum value [see (8)]. One will have Yc,i (k, ω) >
−1/(L1ω) below ωc, so for ωc > ωo, the startup frequency
will shift from its original value ωo to lower values since
we are adding a less negative imaginary part to C1ω. The
opposite is true for ωc < ωo. This explains the evolution of
the open curves in Fig. 2. Fig. 3(c) presents the variation
of both the real and imaginary parts of YT (V = 0, ω) for
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Fig. 3. Small-signal analysis. (a) Variation of YT ,r (V = 0, ω) for different
values of k and Q2. (b) Variation of YT ,i (V = 0, ω). (c) Oscillation startup
conditions for Q2 = 0.8 and three different k values.

Q2 = 0.8 and three different k values. As gathered from the
figure, the oscillation conditions are not fulfilled from certain
k, due to the increase in the maximum of Yc,r . However, the
shift to higher frequencies of this maximum, plus the evolution
of the resonance frequencies predicted by the nomogram
may give rise to a second oscillation interval, as shown in
Section II-B.

B. Steady-State Oscillation

The steady-state oscillation amplitude is calculated by
replacing the solutions of (5), given by ωi (k) = γi(k)ωo, into
the following real equation:

YT,r = a + 3

4
bV 2 + Yc,r (ω, k)

= a+ 3

4
bV 2+ Q−1

2 k2γ 2/(L1ωo)

(k2−1)2γ 4+�
Q−2

2 +2(k2 − 1)
�
γ 2+1

=0.

(11)

As gathered from (10), the oscillation amplitude depends on
γ and k, as well as ωo and L1. Solving (11), the oscillation
amplitude is

V =
�

−Yc,r (ωi (k), k) − a

3b/4
. (12)

Fig. 4. Oscillator solution curve versus k for different values of R2.
HB simulations with NH = 1 and seven harmonics are overlapped with the
curves obtained with the new analytical formulation. (a) Output power for R2
between 30 � and 100 �. (b) For R2 = 10 � and 10.5 �. (c) Frequency for
R2 between 10 � and 100 �.

Because a < 0, the higher Yc,r (ωi,k) (while fulfilling
Yc,r (ωi (k), k) < −a), the smaller the oscillation amplitude.
The output power is given by

Pout = 2Yc,r (ωi (k), k)

�−Yc,r (ωi(k), k) − a
�

3b
. (13)

The maximum of (13) if obtained for Yc,r (ωi , k) =
−a/2 and is given by Pout,max = a2/6b, which only depends
on the nonlinear-device parameters. This is verified in Fig. 4(a)
and (b), which present the variation of the output power and
frequency versus k for different values of R2. Under a higher
R2, one requires a higher k to obtain Yc,r (ωi , k) = −a/2 and
the oscillation is extinguished at a higher k, in agreement with
the lower value of the conductance maximum in (9).

In Fig. 4(a) and (b) the results of the complete formulation
are compared with those obtained with the approximation
in [15] based on the use of a Taylor-series expansion in k.
They are overlapped up to a certain k, but the approxima-
tion in [15] overestimates the k value at which the oscil-
lation is extinguished. Unlike the approximate formulation,
the complete one can predict the resurgence of the periodic
oscillation curve for relatively low R2 values. The variation
of the oscillation frequency versus k is shown in Fig. 4(c).
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In agreement with the nomogram of Fig. 2, when increasing
k there is a progressive deviation from ωo to lower values and
this reduction is more significant for lower R2 (higher Q2).
The new analytical formulation has been validated with HB
simulations considering the fundamental frequency only and
NH = 7 harmonic terms. Due to the high-quality factor of the
oscillator, we obtain the same results in the two cases. These
results are overlapped with those obtained with the analytical
formulation. The HB results represented with squares for R2 =
50 � and R2 = 10 � are overlapped in Fig. 4. Note that to
obtain the second oscillation curve for R2 = 10 � an auxiliary
generator (AG) [29], [30] was necessary to supply an initial
guess to the default oscillator analysis in commercial HB.
Otherwise, the commercial HB software failed to provide this
solution that was missed in [15].

C. Oscillation Boundaries

At the oscillation boundaries, the oscillation condition is
fulfilled for V = 0, which, in terms of γ and k (or any other
parameter), provides the two real equations

YT,r (0, γ , k)

= a + Q−1
2 k2γ 2/(L1ωo)

(k2 − 1)2γ 4 + �
Q−2

2 + 2(k2 − 1)
�
γ 2 + 1

= 0

f (γ, k) = (k2 − 1)2γ 6 + �
3(k2 − 1) + Q−2

2

�
γ 4

+ �
3 − Q−2

2 − k2
�
γ 2 − 1 = 0. (14)

It is interesting to note that the oscillation is extinguished
for Yc,r (ωi , k) = −a, which is twice the value that provides
the maximum output power. Fig. 5(a) presents the contours of
zero value of the two functions in (14) in the plane defined by
γ and k for R2 = 50 � and R2 = 10.5 �. For R2 = 10.5 �,
there are two intersection points at which the oscillation is
extinguished or generated. Note that under the approximation
in [15], there is no possibility to obtain more than one
intersection. Fig. 5(b) presents the locus of points fulfilling
(14) (Hopf locus [31]–[33]) traced in the plane defined by
k and R2. The coupled system oscillates in the white and
lined regions. The lined region is delimited by subcritical
Hopf bifurcations, so the generated oscillation curve exhibits
a turning point (see the inset). As expected, the oscillation
interval with regular behavior versus k increases with R2.
Note that the coupling effects would become negligible for too
large R2.

D. Modulated Behavior

The recent work [19] proposes the use of load-shift-keying
modulation to transmit data from the external resonator to
the oscillator; the resonator load is varied using a switch that
gives rise to a modulation of the oscillation amplitude. Here
advantage will be taken of the previous static formulation
to predict the impact of R2. Fig. 6(a) presents the variation
of the oscillation amplitude versus R2 for different k values.
In agreement with the previous derivations, there is an R2

interval in which the oscillation is extinguished from a certain
k [see Fig. 5(b)]. Under the modulation of R2, the circuit

Fig. 5. Hopf-bifurcation loci. (a) Contours of zero value of the two functions
in (14) in the plane defined by γ and k, for R2 = 50 � and R2 = 10.5 �.
(b) Hopf loci. The system oscillates in the white and lined regions.

is governed by the following system of envelope-domain
equations at the fundamental frequency:

I (V (t)) + jC1ωV (t) + C1V̇ (t) + I1(t) = 0

− V (t) + j L1ωI1(t) + L1 İ1(t) + j MωI2 + M İ2(t) = 0

−V2 + j L2ωI2(t) + L2 İ2(t) + j MωI1(t) + M İ1(t) = 0

jC1ωV3(t) + C1V̇3(t) − I2(t) = 0

V2(t) + V3(t) + R2(t)I2(t) = 0 (15)

where M = k(L1 L2)
1/2 and the variables V (t), V2(t),

V3(t), I1(t), and I2(t) are the time-varying phasors at the
fundamental frequency ω of the voltages v, v2, v3 and currents
i1, i2, indicated in the circuit of Fig. 1.

The coupling will give rise to dynamical effects at the
envelope scale,M İ1(t), M İ2(t), which will be stronger for a
higher k. Note that system (15) accounts for the changes in the
oscillation frequency in the time variation of the phase of the
state variables through the integral

�
�ω(t)dt , so a sufficiently

fine time step must be used to take this phase variation into
account. For proper operation, the oscillation must exhibit
sufficient sensitivity to the resistor R2 in the expected k range.
We have considered a periodic change between 50 � and 5 �
(close to the loss resistor of a switch), with the period T =
25 μs, with the results shown in Fig. 6(b). For the higher k
values (0.4 and 0.5), there is an oscillation extinction. The
startup time after the extinction is highly dependent on k,
as expected from (15). In fact, for higher k, the system
dominant poles at R2 = 50 � are closer to the imaginary
axis, as shown in the pole locus of Fig. 7(a), obtained through
pole-zero identification [28] that are traced versus k. At k =
0.5, the poles are closer to the imaginary axis than at k =
0.4, which gives rise to a slower startup transient, as validated
through time-domain integration in Fig. 7(b).
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Fig. 6. Modulated behavior. (a) Variation of the oscillation amplitude
versus R2 in static conditions for different k. (b) Amplitude modulation when
changing R2 between 50 � and 5 �.

Fig. 7. Dependence of the startup transient on the coupling factor k. (a) Pole
locus for R2 = 50 �. (b) Oscillation startup for k = 0.4 and k = 0.5.

III. ANALYSIS OF TRANSISTOR-BASED OSCILLATOR

The main analysis strategies presented in Section II will
be applied to the Class-E oscillator in Fig. 8, based on the
transistor MOSFET IRLML0040TRPbF (FR-4 substrate, h =
1.6 mm, εr = 4.5). This proof-of-concept oscillator with no
specific application operates at 12 MHz and is coupled to
a series resonator, in a manner similar to [34]–[36]. The
oscillator has been obtained by introducing series feedback
in a Class-E amplifier through the procedure described in
detail in [15]. With respect to the previous work [15], the

Fig. 8. Class-E oscillator at 12 MHz. (a) Schematic showing the connection
of the AG to extract the nonlinear admittance function YN (V, ω) through HB.
Note that Yc is suppressed for this calculation. (b) Experimental setup.

aim here will be to reduce the k value from which a high
transfer efficiency is obtained and maximize the k interval with
this high efficiency. As stated, this is necessary even at short
distances since there can be misalignments between the coils.
We have modified the original amplifier design to obtain a
higher efficiency under a smaller conductance in parallel, like
the one resulting from a small k. This is immediately derived
from (6). Under a small k, the resonance of the inductor and
capacitor will ideally agree with the oscillation frequency and
the equivalent admittance of the coupled circuit, looking into
the oscillator inductor, will be

Yc(ω, k) ∼= 1

j L1ω
+ k2 L2

L1

1

R2
. (16)

Thus, under a small k, the coupling effects introduce a high
resistor in parallel. For an input voltage of 2.5 V and a parallel
resistor of 1 k� (to emulate the coupling under small k), with
the original values C1 = 100 pF and L1 = 3.3 μH, one obtains
the efficiency of 19.82%. With the new values C1 = 70 pF and
L1 = 2.9 μH, one obtains 47.65%. As will be shown, a penalty
is the oscillation extinction for lower k values (in agreement
with the results of Section II), which will be corrected through
a suitable redesign of the coupled resonator.

Although the coupled admittance seen from the oscillator
inductor is the same considered in Section II, one can expect
some qualitative differences; this is because both the real
part and imaginary parts of the nonlinear admittance function
YN seen from the circuit output [see Fig. 8(a)] depend on
the excitation frequency and voltage amplitude. In a small
signal, the frequency variation of the imaginary part of this
admittance will be more complex than that of the simple
capacitive admittance of Section II.
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A. Oscillation Startup

Although, as stated, only a rigorous stability analysis can
reliably predict the oscillation startup, the admittance-based
analysis is insightful from a design viewpoint. Moreover,
it is a convenient way to relate these startup conditions
with the loading effects of the inductively coupled resonator.
To analyze the small-signal resonances, we will obtain the
small-signal admittance function YN (V = 0, ω) exhibited
by the oscillator from the terminals of its coupled inductor,
as shown in Fig. 8(a). This function will be extracted from
a commercial simulation software and added to the passive
admittance Yc(k, ω) of the coupled load (including the oscil-
lator inductor) to evaluate the startup conditions [37]. The
resonance condition is (17), as shown at the bottom of the next
page

For given values of the oscillator inductor L1 and external-
resonator elements, (17) defines a resonance curve in the plane
k, ω. This is easily obtained by performing a double sweep
in k, ω and tracing the zero-value contour of YT,i (0, ω, k).
When considering different values of R2, one gets the curve
family in Fig. 9(a). All the curves YT,i (0, ω, k) = 0 depart
at k = 0 from the oscillation startup frequency in uncoupled
conditions, denoted by ωs , which in the oscillator of Fig. 8
is fs = 12.69 MHz. It is also interesting to note that all the
resonance curves intersect at the same k value (ko = 0.488),
regardless of R2, and the intersection frequency agrees with �s

[see Fig. 9(a)]. As shown in the following, this is because
there is a k value for which the function YT,i (0, ω, k) =
YN,i (0, ω) + Yc,i (ω, k) formally agrees with the one obtained
in uncoupled conditions and given by YT,i (0, ω, k = 0) =
YN,i (0, ω) − 1/(L1ω). Equating the two functions (which
should be individually equal to zero) one obtains the
condition


L1 L2
2C2

2 (1 − k2)ω5

+�
L1C2

2 R2
2 + L1 L2C2(k2 − 2)

�
ω3 + L1ω

�



L1 L2
2C2

2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1 L2C2(k2 − 1)

�
ω3 + L1ω

� = 1 (18)

which is fulfilled at two points, both having ω = ωs . The two
k values are k = 0 and

k2
o = 1 − 1

C2 L2ω2
(19)

which is independent of R2. It is also independent of
the numerical function YN,i (0, ω). Note that in the cubic-
nonlinearity oscillator considered in Section II, the startup
frequency is ωs = 1/(L1C1)

1/2 = 1/(L2C2)
1/2, so the only

solution of (18) is ko = 0. The value of ko is relevant for
the behavior of the coupled oscillator since it indicates a
change in the startup frequency, from ω > ωs to ω < ωs ,
or the opposite. In Fig. 9(a), for R2 < 100 �, the resonance
curve YT,i (0, ω, k) = 0 is multivalued with two turning points.
In principle, the oscillation startup requires YT,r (0, ωs , k) <
0, ∂YT,i (0, ωs , k)/∂ω > 0 [38], which is fulfilled in the upper
and lower sections of the curve, as indicated with “P.” As in the
derivations of Section II, the multivalued section starts from a
higher k as R2 increases, and there is also a compression of

the resonance curve. At R2
∼= 85 �, the two turning points

merge and the curve becomes single valued.
For a simple evaluation of the startup conditions, one can

also trace the contour YT,r (0, ωs , k) = 0 in the plane defined
by k and ω. This has been done in Fig. 9(b) and (c) for the
two resistor values R2 = 50 � and R2 = 100 �, respectively.
In principle, the oscillation will startup in sections of the
curve YT,i (0, ωs , k) = 0 with a positive slope, belonging
to the region YT,r (0, ωs , k) < 0. On the other hand, the
intersection points of the two curves YT,r (0, ωs , k) = 0 and
YT,i (0, ωs , k) = 0 accurately provide the Hopf bifurca-
tions at which the steady-state oscillation is generated or
extinguished.

For a given function YN (V = 0, ω), the new graphical
procedure enables a quick global evaluation of the oscillation
startup conditions in terms of k and the element values of the
external resonator. In the oscillator of Fig. 8, for R2 = 50 �,
the startup conditions are fulfilled in two different sections of
the resonance curve, at quite distinct frequencies. Increasing
k from a low value, and moving along the resonance curve,
the first oscillation will be extinguished at the Hopf bifurcation
(H1) obtained for k = 0.465 and the second oscillation will be
generated at the Hopf bifurcation (H2) obtained for k = 0.609.
In contrast, for R2 = 100 �, the oscillation startup conditions
are only fulfilled in one section, so a single oscillation curve
is expected. This curve will be extinguished at the Hopf
bifurcation point obtained for k = 0.412.

The results of Fig. 9 are validated in Fig. 10, which presents
the real and imaginary parts of the total admittance function
for R2 = 50 � in standalone operation and three k values.
For k = 0.2, the resonance curve is not multivalued, and
the oscillation startup conditions are fulfilled at a frequency
higher than the one in standalone operation, given by ωs .
In agreement with the derivations in Section II, this is because
the crossing frequency that fulfills Yc,i (k, ωc) = −1/(L1ωc) is
lower than ωs . For k = 0.45, we are close to the limit of the
fulfillment of the oscillation startup conditions at the upper-
frequency range [H1 in Fig. 9(b)] and for k = 0.7 the startup
conditions are only fulfilled at the lower ω range. Thus, a
qualitative change of the oscillation frequency to lower values
can be expected.

B. Steady-State Oscillation

To obtain the steady-state oscillation curve versus k in an
efficient and insightful manner, we will extract the nonlinear
numerical admittance function YN (V , ω) from HB software.
This is calculated by looking into the oscillator circuit from the
coupled inductor terminals, as shown in Fig. 8. It is obtained
by means of an HB simulation with the aid of an AG, also
shown in Fig. 8, and as many harmonic terms as desired.
A double sweep is carried out in ω and V , obtaining, at each
sweep step, the function YN (V , ω) as the ratio between the
AG current (pointing toward the oscillator circuit) and the
AG voltage. The function YN (V , ω) is exported to in-house
software, where it is combined with the analytical expression
of Yc(k, ω). From the same double sweep in commercial
HB, one obtains also the oscillator drain current, given by
IDC (V , ω), which will allow the calculation of the power
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Fig. 9. New graphical method for a global evaluation of the oscillation startup
conditions. (a) Family of zero-value contours of the function YT ,i (0, ω, k)
resulting from the variation of R2. All the curves intersect at the same
point given by (19). (b) Resonance curve YT ,i (0, ω, k) = 0 and negative
conductance boundary YT ,r (0, ωs , k) = 0 for R2 = 50 �. The oscillation
should startup in sections of YT ,i (0, ωs , k) = 0 with positive slope that
fulfills YT ,r (0, ωs , k) < 0. The intersection points of YT ,r (0, ωs , k) = 0 and
YT ,i (0, ωs , k) = 0 accurately provide the Hopf bifurcations. (c) Same for
R2 = 100 �.

efficiency. The oscillation condition is (20), as shown at the
bottom of the next page.

For each value of the external-resonator parameter (which
may be k or a passive element value), one performs a sweep
in ω and uses the numerical function YN (V , ω) to obtain
two surfaces: YT,r (V , ω) and YT,i (V , ω), in the spaces defined
by V , ω, and YT,r , and V , ω, and YT,i , respectively. Then,
one obtains the zero-value contours YT,r (V , ω) = 0 and
YT,i (V , ω) = 0 from the intersections of these surfaces with
their respective zero-value planes. Finally, all the solutions
of (20) coexisting for the particular parameter value are
obtained from the intersections of the two zero-value contours
YT,r (V , ω) = 0 and YT,i (V , ω) = 0. One should emphasize

that for each parameter value, there can be one or more
intersection points Vo, ωo, so the possibly multivalued solution
curves are obtained in a straightforward manner, with no
need for continuation procedures. The output power and drain
efficiency are calculated interpolating the following functions
at the solution points resulting from the intersections:

Pout = 1

2
Yc,r (k, ω)V 2

ηDC = Pout/[VDC IDC(V , ω)]. (21)

The solutions obtained with the described method are
shown in Fig. 11. Even though the equations in (20) are
formulated at the fundamental frequency, it is possible to
predict the coupled-oscillator behavior with great accuracy.
This is because the outer-tier function YN (V , ω) is extracted
by means of an HB simulation with a sufficiently high number
of harmonic terms (NH = 7 is considered here), which duly
accounts for the strong nonlinearity of the transistor operation.
Note that the oscillator equations (20) are written at the
oscillator output node, where the harmonic content should be
significantly filtered due to the parallel capacitor; the much
higher harmonic content at the transistor terminals is consid-
ered in the HB calculation of YN (V , ω). The advantage of this
numerical–analytical (N-A) procedure is its versatility versus
changes in the coupled inductor and the external resonator.
Under changes in k, the coupled inductor L1 or the coupled
resonator elements, only the two equations in (20) are solved
in terms of V and ω, instead of performing a new HB oscillator
analysis, often unable to complete the solution curves.

In Fig. 11, the results of (20) are compared with those
provided by the default oscillation analysis of commercial HB,
which confirms the existence of two distinct oscillation curves
at different frequencies. In the first curve, the results of the new
method and those provided by commercial HB are overlapped.
However, in the second curve (for which several convergence
problems were encountered in HB), there are discrepancies
due to the significant reduction of the oscillation frequency
[see Fig. 11(c)], and, as a result, of the filtering effects of
the oscillator output capacitor. This has been validated with a
second simulation in commercial HB, with the same number
of harmonic terms (NH = 7) but using an ideal filter to
remove the coupling effects at frequencies higher than the
fundamental one. In that case, the results of the new method
and those provided by commercial HB are overlapped. When
increasing k, the accuracy of (20) will degrade if there is a
strong reduction of the oscillation frequency; this is due to
the impact of the resonator coupling at the harmonic terms.
However, that undesired frequency variation can be predicted
and mitigated with the resonance analysis in Fig. 9. Without
that strong variation, the analysis based on (20) is fully
applicable.

The extinction of the oscillation from relatively small k
will give rise to unreliable behavior, since it establishes a

YT,i (0, ω, k) = YN,i (0, ω) − L1 L2
2C2

2 (1 − k2)ω5 + �
L1C2

2 R2
2 + L1 L2C2(k2 − 2)

�
ω3 + L1ω�

L1 L2
2C2

2(k
2 − 1)2ω5+�

L1C2
2 R2

2 + 2L1 L2C2(k2 − 1)
�
ω3 + L1ω

�
L1ω

= 0 (17)
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Fig. 10. Oscillation startup conditions in standalone operation and for three
different k values. (a) k = 0.2. The coupling gives rise to an upward shift of
the startup frequency. (b) k = 0.45. The startup conditions are fulfilled near
the bifurcation that gives rise to the oscillation extinction. (c) k = 0.7. The
startup conditions are fulfilled in the lower frequency range.

minimum operating distance between the oscillator and the
resonator. On the other hand, the significant change in the
oscillation frequency versus k, seen in Fig. 11(c), may lead
the system to operate outside the regulated frequency bands.
In view of the analytical study of Section II, in order to
prevent the strong variation of the oscillation frequency, one
should increase the quality factor of the full oscillator system,

Fig. 11. Class-E oscillator coupled to a resonator with R2 = 50 �.
Solution curves versus the coupling factor k, obtained with the N-A method
and validated through HB with NH = 7. (a) Output power. (b) Efficiency.
(c) Oscillation frequency.

or equivalently, reduce the quality factor Q2 of the external
oscillator. At a fixed resonance frequency ωo, this can be
done by increasing the output resistor R2 or reducing the ratio
L2/C2, while maintaining the original resonance ωo2 of the
external resonator. Here these modifications will be carried out
without altering the original oscillator design, that is, keeping
the original values of L1 and the rest of its elements and
parameters.

YT,r (V , ω, k) = YN,r (V , ω) + L1 L2C2
2 R2k2ω4�

L1 L2
2C2

2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1 L2C2(k2 − 1)

�
ω3 + L1ω

�
L1ω

= 0

YT,i (V , ω, k) = YN,i (V , ω) − L1 L2
2C2

2 (1 − k2)ω5 + �
L1C2

2 R2
2 + L1 L2C2(k2 − 2)

�
ω3 + L1ω�

L1 L2
2C2

2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1 L2C2(k2 − 1)

�
ω3 + L1ω

�
L1ω

= 0 (20)

YT,r (V , ω, k) = YN,r (V , ω) + L1ω
−2
o2 C2 R2k2ω4�

L1ω
−4
o2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1ω

−2
o2 (k2 − 1)

�
ω3 + L1ω

�
L1ω

= 0

YT,i (V , ω, k) = YN,i (V , ω) − L1ω
−4
o2 (1 − k2)ω5 + �

L1C2
2 R2

2 + L1ω
−2
o2 (k2 − 2)

�
ω3 + L1ω�

L1ω
−4
o2 (k2 − 1)2ω5

+�
L1C2

2 R2
2 + 2L1ω

−2
o2 (k2 − 1)

�
ω3 + L1ω

�
L1ω

= 0 (22)
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Fig. 12. Class-E oscillator. Influence of the external resonator design.
(a) Efficiency for four different values of β = C2 R2, achieved by modifying
R2 and the pair L2, C2. Solution curves obtained with commercial HB are
superimposed. Note that this HB analysis failed to convergence in some
intervals. (b) Oscillation frequency versus k for the same cases. (c) Power
efficiency. New N-A method and experimental results for R2 = 50 � and
R2 = 200 �. (d) Frequency increment for the same cases (R2 = 50 � and
R2 = 200 �).

Because we will keep ωo2 at a constant value, we can write
L2 = 1/(C2ω

2
o2) and replace this expression in the steady-state

oscillation equations (20), (22), as shown at the bottom of the
previous page.

From inspection of the equation (22), under the condition
L2 = 1/(C2ω

2
o2), one can merge C2 and R2 into a single

parameter β = C2 R2 since they only appear in the product
C2 R2. Thus, provided that β has the same value, the solution
curves obtained under modification of either R2 or the pair L2

and C2 will be the same. This is verified in Fig. 12(a) and (b),

Fig. 13. Complex dynamics in the Class-E oscillator. (a) Hopf bifurcation loci
in the plane defined by k and R2. Measurement points are superimposed. The
interval with experimental quasi-periodic behavior is indicated. (b) Solution
curves (N-A method) in the region with coexistence of oscillations. (c) Exper-
imental quasi-periodic solution obtained for R2 = 30 � and k = 0.4. (d) and
(e) Pole-zero identification demonstrating the existence of secondary Hopf
bifurcations in the periodic solution curve at ωh .

which present the variations of the power-transfer efficiency
and the oscillation frequency versus k for four distinct β val-
ues, each achieved by modifying R2 and by modifying the pair
L2, C2. The curves obtained for the same β are overlapped.
Results obtained with HB simulations in these two different
manners are superimposed and demonstrate the equivalence.
Note that in some k intervals, the HB oscillator analysis failed
to converge. We must emphasize that an identical response
versus k does not imply the same behavior when varying the
distance between the inductors. This is because the coupling
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Fig. 14. Steady-state oscillation surface. (a) Surface obtained in terms
of the power efficiency versus C2 and k. (b) Constant efficiency contours
in the plane defined by R2 and k. The results have been validated at
specific points with commercial HB, superimposed in the figure, and with
measurements. (c) Constant efficiency contours in the plane defined by C2
and k. HB simulations and measurements are also shown.

Fig. 15. Introduction of switch in the oscillator of Fig. 8 to implement a load
shift keying modulation. The switch is based on the same MOSFET used for
the oscillator design.

factor k depends on the geometry of L2, and, for the same
distance, one can expect a smaller k for a lower L2, as this
will imply a smaller diameter and/or number of turns [39].
Thus, for the same efficiency, the coils will have to be closer.
Nevertheless, the possibility to reduce L2 can have interest in
certain applications [5].

Fig. 16. Class-E oscillator under a load shift keying modulation. (a) Variation
of the oscillation amplitude versus k in the two cases R2 = 50 � and R2 =
R∞. (b) Oscillation amplitude under a rectangular modulation signal of period
T = 33.3 μs and different values of the coupling factor k. (c) Validation with
experimental results for two k values.

As seen in Fig. 12(a), the parameter β has a strong impact
on the coupled oscillator response versus k and can be opti-
mized to broaden the k interval with high efficiency. When
increasing β, there is a reduction of the variation of the oscil-
lation frequency versus k [see Fig. 12(b)]. Fig. 12(c) and (d)
present the experimental results obtained for R2 = 50 � and
R2 = 200 �. The k factor of the coils has been estimated ver-
sus the distance from the measurement of the scattering para-
meters under variations of this distance. Taking into account
the results of this characterization, in Fig. 12(c) and (d),
we have introduced a second horizontal axis with the distance
between the coils. The measurement points are displayed at
the distances at which they were carried out. For the larger R2,
the oscillation is preserved up to a larger distance. However,
a shorter distance is needed to get a high efficiency, in agree-
ment with the analytical study of Section II. For R2 = 200 �,
there is an excellent correspondence with the measurement
results. The discrepancies for R2 = 50 � are attributed to
modeling inaccuracies in the presence of a stronger frequency
variation.

C. Oscillation Boundaries

The oscillation boundaries in the plane defined by k and
R2 [or k and C2, under the condition L2 = 1/(C2ω

2
o2)] can

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 14,2022 at 12:13:47 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

be efficiently determined by tracing the Hopf-bifurcation loci.
At each Hopf bifurcation, the oscillation condition is fulfilled
at a small signal, so the calculation of the Hopf loci will be
carried out using the small-signal function YN (V = 0, ω),
extracted from the commercial simulation software. Due to
the equivalence of the results obtained when varying R2 or C2,
only one of the two (R2) will be considered in the calculation
of the loci. The resistor R2 will be swept solving, at each R2

step, the following system in terms of k and ω (23), as shown
at the bottom of the page:

In practice, the system (23) is solved by performing, for
each R2, a double sweep in k and ω [within the interval
considered in YN (V = 0, ω)] and obtaining the intersections
of the zero value contours of the two surfaces YT,r (0, ω, k)
and YT,i (0, ω, k). This provides the two distinct Hopf loci,
shown in Fig. 13(a), at which the higher-frequency and lower-
frequency oscillations are extinguished or generated when
varying k at a constant R2.

One Hopf locus (H1) is composed of the points at which
the higher frequency oscillation at ωh is extinguished when
increasing k. The second Hopf locus (H2) is composed of
the points at which the lower frequency oscillation at ωl is
generated when increasing k. Above the intersection point
between the two loci [see Fig. 13(a)], at k = 0.505 and
R2 = 42 �, there is a k interval in which the dc solution is
stable. Below the intersection point, the solution curve at ωl

is generated before the curve at ωh is extinguished, as seen in
Fig. 13(b), obtained with (20). Below the intersection point,
the oscillation at ωl arises from an unstable dc solution, so at
least the initial section of the periodic oscillation curve at ωl

should be unstable [29], [40]–[42]. However, and because the
oscillation at ωl is stable in the upper k interval, this curve
at ωl must undergo a secondary-inverse Hopf bifurcation [40]
at a particular k. This implies the existence of a stable
quasi-periodic solution with two incommensurate fundamental
frequencies, corresponding to those of the two detected oscil-
lations [30]. That quasi-periodic solution is generated from the
curve at ωh , as shown in Fig. 13(d) and (e), corresponding to
R2 = 30 �. The two-pole loci, obtained by applying pole-zero
identification to the solution at ωh , imply a crossing through
the imaginary axis (when increasing k) of a pair of complex
conjugate poles at a frequency close to ωl .

The waveform measured for k = 0.4 is shown in Fig. 13(c).
Even above the intersection point, in the R2 interval for which
there are two Hopf bifurcations H1 and H2, the observation
of the stable dc solutions might be difficult if secondary Hopf
bifurcations keep taking place in the periodic oscillation curve
at ωh . This quasi-periodic solution would be extinguished
in a secondary-inverse Hopf bifurcation in the curve at ωl .

Thus, the quasi-periodic curve (not calculated here, due to
its lack of interest) constitutes a “bridge” between the two
distinct periodic solutions. The discussed complex dynamics
is a result of the multi-resonance behavior of the coupled
oscillator under a low R2 shown in Fig. 9. The investigation
presented here warns about several undesired phenomena that
may be encountered in these conditions.

D. Constant Efficiency Contours

One advantage of the efficient calculation of the steady-state
oscillation curves through the numerical-analytical formulation
in (20) is the possibility to obtain a steady-state oscillation
surface in the plane defined by k and an arbitrary parameter
η, belonging to the external resonator. As gathered from the
previous comparisons with HB (under NH = 7 harmonic
terms), the surface will be accurate unless there is a significant
reduction of the oscillation frequency when increasing k,
leading to a reduction of the filtering effects of the output
capacitor of the Class-E oscillator (and thus to a higher impact
of the second harmonic term). Even in the worst cases, this will
only occur from a relatively large k, as shown in the previous
analyses. On the other hand, this strong frequency variation is
undesired and should be avoided in the system design.

The oscillation surface will be obtained by performing a
double sweep in η and k and calculating, at each sweep
step, the steady-state oscillatory solution and its efficiency
through (19) and (20). The oscillation surface traced in terms
of the power efficiency versus k and η = C2 is shown in
Fig. 14(a). Obtaining this surface took 3 min and 21 s in an
Intel1 Core i7 6700 (sixth generation) Quad-Core CPU (16
GB RAM). To the best of our knowledge, this is the first
time that such an oscillation surface is calculated; moreover,
it has been obtained for a circuit of significant complexity. The
examination of this surface is very meaningful and reveals that
for the lower C2 values, the oscillation persists for all k, but
the resulting efficiency is much lower than the one achieved in
Fig. 12. Thus, the new procedure enables a global evaluation
of the behavior of the coupled-oscillator circuit versus the
coupling factor.

Once the oscillation surface is available, one can easily
obtain constant-efficiency contours in the plane defined by k
and the chosen parameter η. This will allow a straightforward
determination of the variation of the transfer efficiency versus
k for any η value. Fig. 14(b) and (c) present the constant
efficiency contours traced in the planes defined by R2 and
k and C2 and k, respectively. In the two cases, the results

1Registered trademark.
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have been validated at specific points with commercial HB,
superimposed in the figure, and with measurements.

E. Modulated Behavior

Modulation of the oscillation signal can be carried out
through the time variation of R2 [19], which would demand
a rectifier and baseband circuitry that have not been imple-
mented in this work. For the modulation, we have considered
two values: a 50 � load and a large resistance R∞, which
is achieved with the aid of the switch shown in Fig. 15,
implemented with the same MOSFET used for the oscillator
design. Fig. 16(a) presents the (static) variation of the oscilla-
tion amplitude versus k obtained in the two cases: R2 = 50 �
and R2 = R∞. In agreement with the results of Section II,
the sensitivity to R2 decreases with k. The effect of the R2

modulation on the oscillatory solution has been analyzed with
envelope transient [21]–[23]. To initialize the oscillation of
the homogeneous system, we have connected a small-signal
current source, which is disconnected from the circuit with
the aid of an ideal filter after a few time steps. The frequency
of this source agrees with the one obtained in unmodulated
conditions for R2 = 50 �. Fig. 16(b) presents the envelope
of the oscillation signal under a rectangular modulation with
the period T = 33.3 μs and different values of the coupling
factor k. In Fig. 16(c), the results are successfully compared
with experimental measurements for two k values. Because
R2 switches between 50 � and a large value, the modulation
frequency cannot be too high. Note that this is just a proof
of concept, since the main contribution of the work is the
investigation of the system performance and the variety of
analysis tools, which can be applied to oscillators with differ-
ent topologies and goals.

IV. CONCLUSION

An in-depth analytical study of the behavior of an oscillator
coupled to an external resonator has been presented. The
investigation departs from the case of a cubic-nonlinearity
oscillator and focuses on the effect of the coupled resonator on
the oscillation amplitude and frequency. Criteria to minimize
the variation of the oscillation frequency, which may lead
to operating outside the regulated bands, and maximize the
interval with a high-power transfer efficiency are provided.
The results of this initial investigation have been extended
to a practical Class-E power oscillator. A new insightful and
easy-to-use graphical method has been presented to detect the
evolution of the resonance frequencies versus the coupling
factor. It allows predicting the regions of oscillation startup
as well as their variation with the external resonator quality
factor. The steady-state oscillation analysis has been carried
out through an analytical-numerical methodology based on the
extraction of the nonlinear admittance function that describes
the active core from the resonator. It enables a versatile analy-
sis under variations in the coupling factor and any element
value of the coupled resonator. Several phenomena have been
demonstrated such as the oscillation extinction and new onset
when increasing the coupling factor and the possible existence
of stable quasi-periodic solutions.

REFERENCES

[1] J. Garnica, R. A. Chinga, and J. Lin, “Wireless power transmission:
From far field to near field,” Proc. IEEE, vol. 101, no. 6, pp. 1321–1331,
Jun. 2013.

[2] S. R. Khan, S. K. Pavuluri, and M. P. Y. Desmulliez, “Accurate modeling
of coil inductance for near-field wireless power transfer,” IEEE Trans.
Microw. Theory Techn., vol. 66, no. 9, pp. 4158–4169, Sep. 2018.

[3] S. Liu, M. Liu, S. Yang, C. Ma, and X. Zhu, “A novel design
methodology for high-efficiency current-mode and voltage-mode class-
E power amplifiers in wireless power transfer systems,” IEEE Trans.
Power Electron., vol. 32, no. 6, pp. 4514–4523, Jun. 2017.

[4] M. Liu, S. Liu, and C. Ma, “A high-efficiency/output power and low-
noise megahertz wireless power transfer system over a wide range of
mutual inductance,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11,
pp. 4317–4325, Nov. 2017.

[5] M. O. Abouzeid and A. Tekin, “Adaptive 6.78-MHz ISM band wireless
charging for small form factor receivers,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[6] Q. Ma, M. R. Haider, S. Yuan, and S. K. Islam, “Power-oscillator
based high efficiency inductive power-link for transcutaneous power
transmission,” in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst.,
Aug. 2010, pp. 537–540.

[7] A. Jarndal and T. Petrovic, “GaN-based oscillators for wireless power
transfer applications,” in Proc. Int. Conf. Adv. Comput. Telecommun.
(ICACAT), Dec. 2018, pp. 1–5.

[8] R. L. O. Pinto, R. M. Duarte, F. R. Sousa, I. Müller, and
V. J. Brusamarello, “Efficiency modeling of class-E power oscillators
for wireless energy transfer,” in Proc. IEEE Int. Instrum. Meas. Technol.
Conf. (I2MTC), May 2013, pp. 271–275.

[9] D. Rattanarungngam, K. Phaebua, and T. Lertwiriyaprapa, “Power
control unit for E-class power oscillator of 6.78 MHz wireless power
transfer,” in Proc. Int. Symp. Antennas Propag. (ISAP), Oct. 2017,
pp. 1–2.

[10] Y. Yamashita and K. Wada, “Wireless power transmitter using parallel-
tuned class-E power oscillator,” in Proc. Int. Symp. Electron. Smart
Devices (ISESD), Oct. 2017, pp. 287–290.

[11] S. Liu, M. Liu, M. Fu, C. Ma, and X. Zhu, “A high-efficiency class-E
power amplifier with wide-range load in WPT systems,” in Proc. IEEE
Wireless Power Transf. Conf. (WPTC), May 2015, pp. 1–3.

[12] H.-M. Hsu and J.-K. Liao, “An extensive load resistor operation of
wireless power transfer system in 13.56 MHz resonant mode,” in Proc.
Asia–Pacific Microw. Conf. (APMC), Nov. 2018, pp. 1411–1413.

[13] A. N. Laskovski and M. R. Yuce, “Class-E oscillators as wireless power
transmitters for biomedical implants,” in Proc. 3rd Int. Symp. Appl.
Sci. Biomed. Commun. Technol. (ISABEL), Nov. 2010, pp. 1–5, doi:
10.1109/ISABEL.2010.5702913.

[14] A. Costanzo, M. Dionigi, F. Mastri, and M. Mongiardo, “Rigorous
modeling of mid-range wireless power transfer systems based on royer
oscillators,” in Proc. IEEE Wireless Power Transf. (WPT), May 2013,
pp. 69–72.

[15] V. Ardila, F. Ramirez, and A. Suarez, “Nonlinear analysis of a high-
power oscillator inductively coupled to an external resonator,” IEEE
Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 737–740, Jun. 2021.

[16] O. Abdelatty, X. Wang, and A. Mortazawi, “Position-insensitive wireless
power transfer based on nonlinear resonant circuits,” IEEE Trans.
Microw. Theory Techn., vol. 67, no. 9, pp. 3844–3855, Sep. 2019.

[17] P. R. Troyk and G. A. DeMichele, “Inductively-coupled power and
data link for neural prostheses using a class-E oscillator and FSK
modulation,” in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
vol. 4, Sep. 2003, pp. 3376–3379.

[18] Q. Ma, M. R. Haider, and S. K. Islam, “A high efficiency inductive power
link and backward telemetry for biomedical applications,” in Proc. IEEE
Sensors, Nov. 2010, pp. 89–93.

[19] A. Yousefi, A. A. Abidi, and D. Markovic, “Analysis and design of a
robust, low-power, inductively coupled LSK data link,” IEEE J. Solid-
State Circuits, vol. 55, no. 9, pp. 2583–2596, Sep. 2020.

[20] T.-C. Yu and C.-L. Yang, “Design and analysis of dual-frequency power
amplifier for wireless power and data transfer application,” in Proc. IEEE
Wireless Power Transf. Conf. (WPTC), May 2017, pp. 1–4.

[21] J. Roychowdhury, “Efficient methods for simulating highly nonlin-
ear multi-rate circuits,” in Proc. 34th Annu. Conf. Design Autom.
Conf. (DAC), Jun. 1997, pp. 269–274, doi: 10.1145/266021.266092.

[22] E. Ngoya and R. Larcheveque, “Envelop transient analysis: A new
method for the transient and steady state analysis of microwave commu-
nication circuits and systems,” in IEEE MTT-S Int. Microw. Symp. Dig.,
vol. 3, Jun. 1996, pp. 1365–1368, doi: 10.1109/MWSYM.1996.512189.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 14,2022 at 12:13:47 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/ISABEL.2010.5702913
http://dx.doi.org/10.1145/266021.266092
http://dx.doi.org/10.1109/MWSYM.1996.512189


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

[23] H. G. Brachtendorf, G. Welsch, and R. Laur, “A time-frequency algo-
rithm for the simulation of the initial transient response of oscillators,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 6, May/Jun. 1998,
pp. 236–238, doi: 10.1109/ISCAS.1998.705255.

[24] L. Gustafsson, G. H. B. Hansson, and K. I. Lundstrom, “On the use of
describing functions in the study of nonlinear active microwave circuits,”
IEEE Trans. Microw. Theory Techn., vol. 20, no. 6, pp. 402–409,
Jun. 1972.

[25] A. De Angelis et al., “Resonant inductive wireless power transfer links
operating in a coupling-independent regime: Theory and experiments,”
in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), May 2017,
pp. 1–6.

[26] J. C. F. A. de Casaleiro, L. A. B. G. Oliveira, and I. M. Filanovsky,
“Active coupling RC-oscillator,” in Quadrature RC–Oscillators (Analog
Circuits and Signal Processing). Cham, Switzerland: Springer, 2019,
pp. 69–90.

[27] I. Dumitrescu, S. Bachir, D. Cordeau, J.-M. Paillot, and M. Iordache,
“Modeling and characterization of oscillator circuits by van der pol
model using parameter estimation,” J. Circuits, Syst. Comput., vol. 21,
no. 5, Aug. 2012, Art. no. 1250043.

[28] J.-M. Collantes et al., “Pole-zero identification: Unveiling the criti-
cal dynamics of microwave circuits beyond stability analysis,” IEEE
Microw. Mag., vol. 20, no. 7, pp. 36–54, Jul. 2019.

[29] F. Ramirez, M. Ponton, S. Sancho, and A. Suarez, “Stability analy-
sis of oscillation modes in quadruple-push and Rucker’s oscillators,”
IEEE Trans. Microw. Theory Techn., vol. 56, no. 11, pp. 2648–2661,
Nov. 2008.

[30] F. Ramírez, S. Sancho, and A. Suárez, “Oscillation modes in multires-
onant oscillator circuits,” IEEE Trans. Microw. Theory Techn., vol. 64,
no. 12, pp. 4660–4675, Dec. 2016.

[31] A. Suarez, F. Ramirez, and S. Sancho, “Generalized stability criteria for
power amplifiers under mismatch effects,” IEEE Trans. Microw. Theory
Techn., vol. 63, no. 12, pp. 4415–4428, Dec. 2015.

[32] A. Suarez and F. Ramirez, “Stability and bifurcation analysis of multi-
element non-foster networks,” IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 4, pp. 1817–1830, Apr. 2018.

[33] A. Suarez, F. Ramirez, and S. Sancho, “Stability analysis of power
amplifiers under output mismatch effects,” IEEE Trans. Microw. Theory
Techn., vol. 62, no. 10, pp. 2273–2289, Oct. 2014.

[34] K. O. Gurov, “Study of a class e power amplifier tuning effect on output
power and efficiency of an inductive wireless power transfer system,”
in Proc. IEEE Conf. Russian Young Researchers Electr. Electron. Eng.
(ElConRus), Jan. 2021, pp. 2803–2807.

[35] E. V. Selyutina and E. A. Mindubaev, “Effects of class e power amplifier
parameters on output power of inductive wireless power transfer system
with capacitive tuning,” in Proc. IEEE Conf. Russian Young Researchers
Electr. Electron. Eng. (ElConRus), Jan. 2021, pp. 2874–2878.

[36] W.-T. Chen, R. A. Chinga, S. Yoshida, J. Lin, and C.-K. Hsu,
“A 36 W wireless power transfer system with 82% efficiency for LED
lighting applications,” Trans. Jpn. Inst. Electron. Packag., vol. 6, no. 1,
pp. 32–37, 2013.

[37] A. Suarez, R. Melville, and F. Ramirez, “Analysis and synthesis of
hysteresis loops in an oscillator frequency characteristic,” IEEE Trans.
Microw. Theory Techn., vol. 67, no. 12, pp. 4890–4904, Dec. 2019.

[38] K. Kurokawa, “Some basic characteristics of broadband negative
resistance oscillator circuits,” Bell Syst. Tech. J., vol. 48, no. 6,
pp. 1937–1955, Jul. 1969.

[39] S. Raju, R. Wu, M. Chan, and C. P. Yue, “Modeling of mutual coupling
between planar inductors in wireless power applications,” IEEE Trans.
Power Electron., vol. 29, no. 1, pp. 481–490, Jan. 2014.

[40] H. Kawakami, “Bifurcation of periodic responses in forced dynamic
nonlinear circuits: Computation of bifurcation values of the system
parameters,” IEEE Trans. Circuits Syst., vol. 31, no. 3, pp. 248–260,
Mar. 1984.

[41] A. Suárez, Analysis and Design of Autonomous Microwave Circuits.
Hoboken, NJ, USA: Wiley, 2008.

[42] A. Suarez, “Check the stability: Stability analysis methods for
microwave circuits,” IEEE Microw. Mag., vol. 16, no. 5, pp. 69–90,
Jun. 2015.

Víctor Ardila (Student Member, IEEE) was born
in Bucaramanga, Santander, Colombia. He received
the professional career degree in mechatronic engi-
neering from the Autonomous University of Bucara-
manga (UNAB), Santander, in 2013, and the M.E.
degree from the University of Málaga (UMA),
Andalucía, Spain, in 2017. He is currently pursuing
the Ph.D. degree in information technology and
communications in mobile networks at the Univer-
sity of Cantabria (UC), Santander, Spain.

His research interests include the design and
analysis of non-linear circuits and RF/microwave systems.

Franco Ramírez (Senior Member, IEEE) received
the Licentiate degree in electronic systems engineer-
ing from the Military School of Engineering (EMI),
La Paz, Bolivia, in 2000, and the Ph.D. degree in
communications engineering from the University of
Cantabria, Santander, Spain, in 2005.

From 1999 to 2000, he worked with Ericsson
de Bolivia Telecomunicaciones, La Paz, where he
was involved in projects related to global sys-
tem for mobile communications (GSM) and time
division multiple access (TDMA) technologies.

From 2009 to 2013, he was a Research Fellow of the “Ramón y Cajal”
Program, funded by the Spanish Ministry of Science and Innovation, at the
Communications Engineering Department, University of Cantabria, where he
is currently an Associate Professor. His research interests include phase noise,
stability, and the development of nonlinear techniques for the analysis and
design of autonomous microwave circuits.

Almudena Suárez (Fellow, IEEE) was born in
Santander, Spain. She received the Licentiate degree
in electronic physics and the Ph.D. degree from
the University of Cantabria, Santander, Spain, in
1987 and 1992, respectively, and the Ph.D. degree
in electronics from the University of Limoges,
Limoges, France, in 1993.

She is currently a Full Professor at the University
of Cantabria and the Head of the Microwave Engi-
neering and Radiocommunication Systems Research
Group. She has authored the book Analysis and

Design of Autonomous Microwave Circuits (IEEE-Wiley, 2009) and coau-
thored the book Stability Analysis of Nonlinear Microwave Circuits (Artech
House, 2003).

Prof. Suárez is a member of the Technical Committee of the IEEE Interna-
tional Microwave Symposium (IEEE MTT-S) and the European Microwave
Week. She was a member of the Board of Directors of the European
Microwave Association from 2012 to 2020, where she is also the Publi-
cation Officer. She was the Coordinator of the Communications and Elec-
tronic Technology Area for the Spanish National Evaluation and Foresight
Agency (ANEP) from 2009 to 2013. She was the Chair of the 2014 and 2015
Editions of IEEE Topical Conference on RF/Microwave Power Amplifiers
(PAWR), Newport Beach and San Diego. She was the General TPC Chair of
European Microwave Week 2018. She was the Chair of the IEEE Microwave
Magazine Best Paper Award Committee from 2017 to 2020. She was the
Editor-in-Chief of the International Journal of Microwave and Wireless
Technologies (Cambridge University Press journals) from 2013 to 2018. She
is currently an Associate Editor of IEEE Microwave Magazine and IEEE
TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. She was an
IEEE Distinguished Microwave Lecturer from 2006 to 2008.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 14,2022 at 12:13:47 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/ISCAS.1998.705255

