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Santander 39005, Spain 5 

 6 

ABSTRACT 7 

Structural engineers usually make simple hand calculations to pre-design structures before 8 

performing further complex analysis. However, in the case of structures subjected to impact 9 

loads, the problem is quite difficult to cope with, due to a lack of knowledge about simplified 10 

methods of analysis that can reproduce with sufficient accuracy the structural behaviour, in 11 

order to establish an adequate pre-dimensioning, prior to a computer calculation. 12 

In this paper, a new formulation is presented to solve, the problem of large mass impact on any 13 

kind of structure in a simplified way. The method enables a force equivalent to impact load to 14 

be obtained that enables analysis as a static load case. 15 

 16 

KEYWORDS: Impact; Equivalent force; Mass ratio; Energy distribution; Modified frequency; 17 

Computational cost. 18 

 19 

HIGHLIGHTS 20 

The proposed formulation estimates the equivalent static force under impact loads 21 

This paper shows that the projectile mass behaves as a structural mass in impacts 22 

The mass ratio defines the energy distribution between the modes in impacts 23 

The proposed formulation enables FEM results to be verified and to structures to be pre-24 

designed 25 
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1. INTRODUCTION 27 

In the late XIX century, classical elastic impact theories [1][2] could be divided into two trends: 28 

Saint-Venant’s theory [3] and Hertz’s theory [4]. Saint-Venant’s theory considers only the 29 

effect of elastic vibration under an impact load and Hertz’s theory considers just the local 30 

deformation. Thimoshenko [5] proposed a combined method, which became the reference, 31 

resulting in a non-linear equation that is solved by step-by-step numerical integration. Although 32 

Timoshenko does not include the mass of the projectile as part of the mass of the structure (an 33 

important issue as authors show in this paper), his proposal was an accurate solution but was 34 

very tedious to solve. To avoid this problem, Lennertz's simplification [6], the Galerkin method 35 

and the Collation method by Eringen [7] assume a force function, but all of them obtain clear 36 

discrepancies compared with some real impact tests. 37 

Engineers need to understand the physical problem within the tedious mathematical solution to 38 

design with confidence and to take control of the solution to check the numerical results (the 39 

restitution coefficient is mainly used nowadays [8] due to its simplicity). For these reasons, 40 

previously, with Timoshenko’s solution and nowadays with FEM solutions (a long time is 41 

needed for calculations) simplified methods have been developed to check and to try to 42 

understand impact problems. 43 

In 1940, Lee  [9] proposed a simplified method based on the spring-mass model, with one 44 

degree-of-freedom (1-DoF), to solve impacts on beams. The spring idealizes the stiffness of the 45 

fundamental mode and the concentrated mass represents the effective mass of the beam 46 

corresponding with that mode. To solve the problem, Lee assumed a contact force function 47 

(here this is not assumed, but deduced) and presented a complex energetic method to know in 48 

which cases the proposed simplified model works. 49 

To extend the casuistry, in 1983, Lee, Hamilton and Sullivan [10] proposed a spring-mass 50 

model based on the previous energetic method, but it needed computational integration again. 51 
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In 1981, Suaris and Shah [11] suggested a model with 2-DoF to study the inertia effects on 52 

impact tests of cementitious composites. This model includes a spring for local contact rigidity 53 

and a striker mass in addition to the general spring and mass described in a 1-DoF model. 54 

Even though a complex model with 2-DoF was developed by Shivakumar [12] in 1985 to take 55 

into account shearing, and membrane forces, in addition to bending and local contact, until now 56 

2-DoF models have been developed [13][14] only to predict the elastic bending behaviour of 57 

structures, in order to maintain the simplicity while improving the accuracy and the 58 

applicability. 59 

The latest complex analytical [15] models developed, or even mixed models [16] (analytical + 60 

local FEM model), aim to find another way to solve impact problems, while reducing the time 61 

of calculation of any commercial software, but not to simplify the understanding of the physical 62 

concept, check FEM results (it is hard to define all the parameters properly) or facilitate the 63 

pre-design of structures. There is a specific disadvantage with these kinds of models, which are 64 

actually different models (not a general one) depending on the type of the structure, longitudinal 65 

bars [17][18][19], circular slabs [20], elliptic slabs [21], domes [22], etc. 66 

Thus, models with 2-DoF are currently the most useful tool to simplify impacts. However, these 67 

models display the following disadvantages. Although they are simple models with 2-DoF, they 68 

need a spreadsheet to calculate eigenvalues, eigenvectors and the matrix solution [23]. It is not 69 

clear when these models can be used to solve impacts with sufficient accuracy; some authors 70 

suggest that they can only be used when a high ratio exists between periods of projectile and 71 

structure (soft impacts), but with different limit values depending on whether it is a beam [14] 72 

or a slab [13]. Impact velocity [24] or mass ratios [15] are also parameters that authors limit on 73 

the use of their models. In addition, it is not always easy to establish the local stiffness [25] or 74 

the striker’s dynamic properties [26] to use the 2-DoF model with confidence. Even the general 75 

dynamic properties of the structure are not always clear, especially in the case of slabs [13]. 76 
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Impact problems are still under study, some of them with experimental tests in classical 77 

materials [27][28][29], but also with new materials [30][31][32][33] because they are important 78 

for structural design. However, structural design engineers still need an easy tool to deal with 79 

impact loads and to explain the structural behaviour under impact loads (such as mass striker 80 

influence [34] or support conditions influence [35]) in the same way as other structural areas 81 

[36][37]. Like in static analysis, “big numbers” are necessary to allow engineers to pre-design 82 

a structure accurately enough before making complex calculations and spending a long time 83 

waiting for results. 84 

In this regard, this article presents a simplified theory that is particularized in an analytical 85 

formulation applicable to solve the problem of impact of a mass on any structure as a static 86 

force. The objective is to enable the verification of the results from the structural software and 87 

pre-design structures subjected to impact by using pre-calculations with equivalent static force. 88 

To calculate a structure with this article’s formulation, it is necessary to transform the structure 89 

into a spring-mass system (1-DoF), corresponding to the fundamental mode of vibration. This 90 

system is specific for the point of impact. There are several ways to calculate the mass and the 91 

equivalent stiffness of a structure for one mode of vibration and a given point of contact. In this 92 

article, a simple method to calculate these values is presented. Assuming the projectile is 93 

infinitely rigid and the structure displays elastic behaviour, the formulation enables the 94 

calculation of the worst possible scenario from the structural collapse point of view, and hence 95 

provides results on the safe side. Plastic behaviour of the structure could also be predicted with 96 

the adequate parameters. The impacts analysed in this article are central impacts, that is, the 97 

point of contact and the centre of gravity of the impacting bodies are aligned. The results 98 

obtained by the proposed theory are compared to the results from the elastic and geometry non-99 

linear calculations by means of Midas NFX software. 100 
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This article is organised as follows: the introduction sets out the general background and the 101 

main objectives. In the material and methods section, firstly, the seven scenarios (case studies) 102 

analysed are presented. Secondly, FEM models are described to provide sufficient details to 103 

allow the seven cases to be reproduced by independent researchers. In the theory section the 104 

stiffness and equivalent mass parameters of the structure are obtained. After that a general 105 

impact case is proposed, obtaining the proposed formulation to calculate the impact force and 106 

the displacement produced in the structure. In the next section, the results are validated by 107 

means of finite element models and then discussed. Finally, the main conclusions reached in 108 

the investigation are highlighted. 109 

2. MATERIAL AND METHODS 110 

2.1. Case studies 111 

In order to confer the method a general character, the impact is analysed on three different 112 

structures (a simple supported steel beam, a steel cantilever, and a concrete slab) with different 113 

energy absorption mechanisms (flexural for structures 1 and 3, axial for structure 2). Fig. 1 114 

shows the definition of the structures. 115 

 116 

Fig. 1: Definition of the structures studied. (a) Structure 1: Simple supported steel (BS 355) beam of 117 

10m long and 0.1x0.1 m2 cross section, E=2.1·e11 N/m2, 𝜌=7,850 Kg/m3. (b) Structure 2: Steel (BS 118 

275) cantilever of 5m long and 0.01x0.01 m2 cross section, clamped at one end, E=2.1e11 N/m2, 𝜌=7,850 119 

Kg/m3. (c) Structure 3: Concrete slab C 45 of 10x10 m2 section, 0.10 m width and simply supported at 120 

its 4 corners, E=3.2·e10 N/m2, 𝜌=2,549 Kg/m3. 121 

In order to prove that the formulation adapts to different impacts on the same structure, five 122 

cases will be analysed on structure 1 (case 1 to 5), varying the projectile mass, keeping the 123 
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velocity prior to impact (Vp0) constant. In addition, to generalise for all kinds of structures and 124 

impact velocities, two more impacts are analysed on structure 2 and 3 respectively to show that 125 

the method works in any structure (case 6 and 7), Table 1. 126 

Case Structure 
Projectile mass 

(kg) 

Vp0 

(m/s) 

Type of 

impact 
Impact point 

1 1 3,869.0 2.0 Transversal Centre beam 

2 1 1,934.0 2.0 Transversal Centre beam 

3 1 1,161.0 2.0 Transversal Centre beam 

4 1 774.0 2.0 Transversal Centre beam 

5 1 387.0 2.0 Transversal Centre beam 

6 2 16.7 3.0 Longitudinal End cantilever 

7 3 103,665.0 0.5 Transversal Centre plate 

Table 1: Definition of analysed impacts 127 

2.2. Description of the FEM models  128 

The proposed formulation is compared with all the data obtained from the FE software Midas 129 

NFX. For each case, the structure was modelled through solid elements, defining a contact 130 

without friction between bodies and using a nonlinear explicit transient analysis type. All cases 131 

were calculated with the explicit method of Midas NFX, Fig. 2. 132 

 133 

Fig. 2: Initial velocity of each projectile to direct it towards each structure. (a) Structure 1 (simple 134 

supported beam). (b) Structure 2 (Cantilever beam). (c) Structure 3 (slab supported at 4 corners). 135 

 136 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The projectile was given small dimensions to act as a point mass. The mesh size and the total 137 

mass for each structure, the projectile dimensions and its density for each case, and the mass 138 

ratio 𝛼 are compiled in Table 2. 139 

Structure 
Length 

(m) 

Width 

(m) 

Height 

(m) 
Case 

Mass 

(kg) 
α 

Density 

(kg/m3) 

1 

Beam mesh size  0.05 0.05 0.05 
1 3,869.0 10 1,934,491 

2 1,934.0 5 967,246 

Projectile dimensions 0.10 0.10 0.10 

3 1,1610 3 580,347 

4 774.0 2 386,898 

5 387.0 1 193,449 

2 
Cantilever mesh size 0.01 0.01 0.01 

6 16.7 10 1,670,111 
Projectile dimensions 0.01 0.01 0.01 

3 
Slab mesh size 0.50 0.50 0.10 

7 103,665.0 8 1,036,653 
Projectile dimensions 1.00 1.00 0.10 

Table 2 Case definition 140 

In order to reproduce the hypothesis of an infinitely rigid projectile, its elastic modulus has been 141 

set to 5e15 N/m2. 142 

The time increment used for the numerical integration in Midas NFX is 5e.-4s in all cases for 143 

structure 1, 5e-6s for structure 2 and 2e-4s for structure 3. 144 

The initial velocity of the projectile was set to the corresponding values in each case (2m/s, 145 

3m/s and 0.5m/s for structures 1, 2 and 3 respectively) at the nodes of the element. 146 

 147 

3. THEORY 148 

3.1. Structure as spring-mass system 149 

To use the formulation suggested in this article, it is necessary to transform the structure into a 150 

spring-mass system, enabling the dynamic behaviour of the structure’s fundamental mode to be 151 

reproduced. 152 

There are several ways to perform this transformation [38][39]. Given that this is not the main 153 

objective of the article, a sufficiently precise but simple approximation will be used to 154 

determine the equivalent stiffness and equivalent mass of the structure’s associated system. 155 
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This approximation can only be applied when the displacement shape of a punctual static load 156 

at the point of impact and the displacement shape of the mode of vibration are similar, so that 157 

the projectile mass is included as part of the structure’s mass at the point of impact. The more 158 

similar the two displacement shapes are, the less error in the values of mass and stiffness will 159 

be produced, being correct in the case of matching displacement shape. 160 

In order to calculate the Equivalent Stiffness (𝐾𝑠) at the contact point, a generic single static 161 

load must be applied at the point of contact with the structure, and the equivalent stiffness will 162 

be the ratio between the load and the displacement produced at that point. So, in general, the 163 

point at which the equivalent stiffness must be calculated differs for each structure. Equivalent 164 

Stiffness should be calculated considering the dynamic properties of the material and that 165 

concrete’s elastic modulus is usually stiffer in dynamic behavior. In concrete, the dynamic 166 

modulus of elasticity is often considered as the initial tangent modulus of the static test, and 167 

this is a good approximation. However, the origin of the difference between static and dynamic 168 

modulus is more to do with the nature of material than strain level [40]. In fact, the relationship 169 

of these parameters could be considered almost linear [41], independently of the strain level. 170 

There are many tests used to estimate the dynamic modulus of elasticity of concrete, Ed, but 171 

with different results depending on the kind of the test [42]. There are also some expressions to 172 

relate the static and dynamic moduli of concrete [43][44] but in this paper, in order to continue 173 

with the aim of simple calculations, the relation proposed by Lyndon is recommended [45]; that 174 

is to say the dynamic modulus of elasticity could be considered 20% higher than the static one. 175 

The dynamic modulus of concrete in case 7 is shown in the caption of Fig.1 and it is used both 176 

in the proposed formulation and the FEM model. Equivalent stiffness values are shown in Table 177 

3. 178 

From the equation  𝑀𝑠 = 𝐾𝑠(𝑇/2𝛱)2 related to the single degree of freedom systems, the 179 

Equivalent Mass (𝑀𝑠) is estimated. 𝑀𝑠 might be calculated directly without using the FEM 180 
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model but it is not the aim of this paper. A modal analysis by finite elements is performed for 181 

each of the aforementioned structures to obtain the natural period of vibration values, Fig. 3. 182 

Structure Type 
Impact point 

location 

Static load 

location 

Fundamental 

mode 

Equivalent stiffness (𝑲𝒔) 

(N/m) 

1 

Simple 

supported steel 

beam 

Central point 

Centred on the 

central span of 

the beam 

Flexural 𝐾𝑠 =
𝑃

𝑓
=

48𝐸𝐼

𝐿3
 84,000 

2 Steel cantilever Extreme point 
At the end of the 

cantilever 
Axial 𝐾𝑠 =

𝑃

𝑓
=

𝐸𝐴

𝐿
 4.2e6 

3 Concrete slab* Central point 
Centred at the 

centre of the slab 
Flexural 𝐾𝑠 =

𝑃

𝑓
=

100,000

0.141
 709,894.5 

*Since there is no analytical formula to calculate stiffness as in the previous structures, a specific case will be 183 

applied in this particular one. A generic static force (100 KN) is applied at the centre of the plate and the deflection 184 

is calculated at the same point (0.141 m) by means of a finite element model. 185 

Table 3: Impact point and static load location to estimate equivalent stiffness (𝐾𝑠)   in each structure 186 

 187 

Fig. 3: Fundamental modes. (a) Fundamental mode for flexural load in structure 1 (simple supported 188 

beam). Frequency 2.345 Hz. (b) Fundamental mode for axial load in structure 2 (Cantilever beam). 189 

Frequency 252.390 Hz. (c) Fundamental mode for flexural load in structure 3 (slab simply supported at 190 

4 corners). Frequency 1.178 Hz. 191 

From the frequencies obtained, and the equivalent stiffness, Table 3, the equivalent mass (𝑀𝑠) 192 

is inferred by considering the previous equation. In all three cases, the equivalent mass accounts 193 

for approximately 50% of the total mass of the structure, Table 4. 194 

Structure Frequency 

(Hz) 

Period 

(sec) 

Stiffness Ks 

(N/m) 

Ms (kg) Ms/ Mtotal (%) 

1 2.345 4.26e-01 8.40e+04 386.9 49.3 

2 252.390 3.96e-03 4.20e+08 167.0 42.6 

3 1.178 8.49e-01 7.10e+05 12,958.2 50.8 

Table 4. Equivalent mass (𝑀𝑒) calculation through approximate method. 195 
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At this point it is worth mentioning that an important parameter to determine the structure’s 196 

behaviour under impact loads is the ratio 𝛼 =
𝑀𝑝

𝑀𝑠
⁄ , 𝑀𝑝 being the projectile mass and 𝑀𝑠 the 197 

structure’s equivalent mass. This will be addressed later in the article and its influence will be 198 

analysed. 199 

3.2. Problem statement and resolution 200 

3.2.1. Initial hypotheses 201 

Initially, some assumptions must be defined in order to state and solve the problem of impact 202 

on structures. The closer the initial assumptions are to the actual impact conditions, the closer 203 

the results of the formulation are to the exact ones. The following is a description of the 204 

assumptions adopted: 205 

The structure is initially in idle state, i.e. has no movement. Gravity influence, shear and 206 

membrane forces and local deformation have not been considered in the simplified model 207 

(however, they have been considered in the FEM carried out). Membrane forces could only 208 

have an influence with big displacements but this is not expected in this kind of structures. 209 

Shear forces and local deformation increase the total displacement, so they have some influence 210 

depending on the case. However, the aim of the paper is to analyse the impact to facilitate pre-211 

design of structures and to check FEM results. Thus, it does not make sense to include them in 212 

the formulation if the contribution is limited and they do not modify the general behaviour of 213 

structures under impact loads. Local and shear deformation are not important from a pre-design 214 

or checking point of view. In any case, if these hypotheses are adequate, they will be analysed 215 

later. 216 

The initial velocity of the projectile is perpendicular to the structure. The projectile is made of 217 

an infinitely stiff material and has no dimensions; it is assumed to be punctual. The mass of the 218 

projectile is heavier than the effective mass of the structure. 219 
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The impact is considered of low velocity, that is, viscous behaviour of the materials are 220 

excluded. Structural damping has not been considered due to the fact that impact duration is too 221 

short to allow its development. There are no energy losses by heat, noise or structural damping 222 

during the impact. The impact is centred, that is, the point of contact and the centre of gravity 223 

are aligned. The impact begins when the projectile contacts the structure (𝑡0), and ends when 224 

the projectile stops (𝑡𝑓). This contact is continuous throughout the impact. Although this 225 

assumption will be discussed later, the fact that the mass of the projectile is greater than the 226 

effective mass of the structure means the assumption is reasonable, since, according to classical 227 

impact equations, a light mass cannot stop a heavy one, Fig. 4. 228 

 229 

Fig. 4: Classic impact of co-linear masses. 230 

 231 

3.2.2. Problem description 232 

A projectile mass Mp is assumed with velocity Vp(t) in a perpendicular direction to the structure. 233 

The fundamental mode of the structure has an effective mass 𝑀𝑠 and an effective stiffness 𝐾𝑠. 234 

Note that dissipative forces, represented as a viscous damper in Fig. 5 (constant 𝐶 is the viscous 235 

damping coefficient), are neglected due to the fact that impact occurs so fast than structural 236 

damping has no time to develop significantly. 237 
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(b) 

 

 

 

 

 

(c) 

Fig. 5: Idealized impact sequence. (a) Situation before the impact between the structure and the 238 

projectile. (b) Instant of impact (𝑡 = 𝑡0). (c) Situation between the beginning and the end of the impact 239 

(𝑡0 < 𝑡 < 𝑡𝑓). 240 

The structure is initially in idle state (𝑡 < 𝑡0), Fig. 5(a). When the impact between the structure 241 

and the projectile begins (𝑡 = 𝑡0), the projectile has a previous impact velocity 𝑉𝑝,0, the 242 

structure remains idle, and the contact force between the bodies F(t) has not been developed 243 

yet, and hence its value is null, Fig. 5(b). From this point on (𝑡 > 𝑡0), as a consequence of the 244 

impact, the structure deforms at the same time as the projectile’s velocity gets reduced. At any 245 

moment between the beginning and the end of the impact (𝑡0 < 𝑡 < 𝑡𝑓), the displacement of 246 

the projectile Dp(t) and the structure Ds(t) are the same as a consequence of the initial 247 

hypotheses, Fig. 5(c). Equations (1) and (2) express, respectively, these displacements at time 248 

𝑡. 249 

 𝐷𝑝(𝑡) = 𝑉𝑝,0𝑡 − ∬
𝐹(𝑡)

𝑀𝑝
𝑑𝜏 𝑑𝑡

𝑡

0
 (1) 250 

 𝐷𝑠(𝑡) = ∬
𝐹(𝑡)−𝐾𝑠(𝐷𝑠(𝑡))

𝑀𝑠
 𝑑𝜏 𝑑𝑡

𝑡

0
 (2) 251 
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By developing the following change of variable, 
𝑑4𝑦

𝑑𝑡4 = 𝐹(𝑡), and operating in equations (1) and 252 

(2), as can be verified in [46], equation (3) is obtained. 253 

 �̈� + 𝑊𝑠𝑝
2 𝑦 =

𝑀𝑠𝑀𝑝

𝑀𝑠+𝑀𝑝

𝐾𝑠 𝑉𝑝,0

6𝑀𝑠
𝑡3 +

𝑀𝑠 𝑀𝑝

𝑀𝑠+𝑀𝑝
𝑉𝑝,0𝑡 (3) 254 

Where Wsp is the vibration frequency during impact, which is related to the effective stiffness, 255 

𝐾𝑠, equivalent mass, Ms, and projectile mass, Mp, as equation (4) expresses. 256 

 𝑊𝑠𝑝
2 =

𝐾𝑠

𝑀𝑠+𝑀𝑝
 (4) 257 

Equation (5) shows the natural vibration frequency of the structure Ws before the impact. 258 

 𝑊𝑠
2 =

𝐾𝑠

𝑀𝑠
 (5) 259 

Meaning that, based on equation (4), the frequency of vibration during the impact includes the 260 

projectile mass as part of the structure mass. 261 

 262 

3.2.3. Problem resolution 263 

The general solution of equation (3) is defined as the sum of the particular solution and the 264 

homogeneous solution (solution details in [46]), applying the corresponding boundary 265 

conditions. 266 

The first boundary condition results from making the impact force null at 𝑡 = 𝑡0. 267 

The second boundary condition results from attributing an initial velocity VI, of value initially 268 

unknown, to the projectile (and structure) immediately after the impact, equation (6). 269 

 𝑉𝑝(𝑡 = 0) = 𝑉𝐼 (6) 270 

The displacement of the structure and projectile, equation (7), the contact force, equation (8), 271 

and, based on that, the equivalent static force, equation (9), can be calculated after applying the 272 

boundary conditions (the whole development can be consulted in [46]). 273 

 𝐷𝑝(𝑡) = 𝐷𝑠(𝑡) =
𝑉𝐼  𝑠𝑖𝑛(𝑊𝑠𝑝 𝑡)

𝑊𝑠𝑝
;  𝐷𝑠,𝑚𝑎𝑥 =

𝑉𝐼

𝑊𝑠𝑝
 (7) 274 
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 𝐹(𝑡) = 𝑀𝑝𝑊𝑠𝑝𝑉𝐼 𝑠𝑖𝑛(𝑊𝑠𝑝 𝑡) (8) 275 

 𝐹𝑒𝑞,𝑠𝑡 = 𝐾𝑠
𝑉𝐼

𝑊𝑠𝑝
 (9) 276 

Both the displacement and the contact forces, as a function of the velocity just after the impact 277 

contact 𝑉𝐼, are still unknown. 278 

The duration of the impact 𝑡𝑓 is obtained estimating the time it takes to make the velocity of the 279 

projectile null, equation (10). 280 

 𝑉𝑝(𝑡 = 𝑡𝑓) = 𝑉𝐼 𝑐𝑜𝑠(𝑊𝑠𝑝 𝑡𝑓) = 0 →  𝑊𝑠𝑝𝑡𝑓 =
𝛱

2
    →    𝑡𝑓 =

𝛱

2 𝑊𝑠𝑝
=

𝑇𝑠𝑝

4
 (10) 281 

Where 𝑇𝑠𝑝 is the vibration period during impact associated with the frequency Wsp. 282 

At t >tf, the movement of the structure changes to the opposite direction and the recovery phase 283 

begins, returning to its initial position. As for the projectile, either the contact with the structure 284 

remains or it does not. If the former happens, that means the recovery movement of the structure 285 

is quick enough to maintain the contact, pushing the projectile in the opposite direction to the 286 

one the system had until tf. The latter though, would occur if the recovery movement is not 287 

quick enough, or if the projectile falls laterally or breaks, losing contact with the structure. 288 

Equations (7) and (8) remain valid only during the impact t >tf in the scenario in which the 289 

projectile and the structure remain in contact during recovery time. Otherwise, the assumptions 290 

about the impact would be different. 291 

In general, the time for impact analysis is restricted to t ≤ tf, as the maximum displacement and 292 

force on the structure are given within this time period. 293 

3.2.4. Additional hypotheses 294 

The resulting statement of the impact problem expressed in equations (7), (8) and (9) requires 295 

two additional assumptions to obtain a general solution. 296 
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H.1.: The initial velocity in compression phase. Given the displacement of the projectile and 297 

the structure are identical at time t, the velocity must also be so. Since prior to the impact the 298 

velocities of the projectile and the structure are different, this means there is a previous phase 299 

(which will be called initial phase from now on) in which the velocities of the bodies pass from 300 

being different to equal. After that initial phase, the expressions deduced previously, equations 301 

(7), (8) and (9), will then be valid. Assuming the initial phase occurs almost instantaneously, 302 

there is no time for the spring Ks to be displaced. If Ks is not displaced, then the force produced 303 

by the spring is null. This consideration enables the initial contact to be treated as a classic 304 

impact of two free stiff masses, Fig. 6. 305 

 306 

Fig. 6: Initial impact of the bodies without the influence of the spring 307 

In classic impact of stiff masses, Fig. 4, the moment at which the velocities of the two masses 308 

become equal during impact is always when the compression phase (compression of the bodies) 309 

changes to the restitution phase (decompression of the bodies). At that particular instant in time, 310 

the velocities of both masses are the same and the value matches with the final velocity of a 311 

perfectly plastic impact. After that instant, the projectile keeps moving forward for as long its 312 

mass is greater than the equivalent mass of the structure (α > 1). The energy expended in this 313 

initial phase is considered negligible (this assumption will be analysed later in the article). 314 

The classic formulation enables the final impact velocities of two bodies 1 and 2 to be obtained, 315 

𝑒 being the so-called restitution coefficient, equation (11). 316 

 𝑣1 =  
(𝑚1−𝑚2𝑒)𝑢1+𝑚2(1+𝑒)𝑢2

𝑚1+𝑚2
;  𝑣2 =  

(𝑚2−𝑚1𝑒)𝑢2+𝑚1(1+𝑒)𝑢1

𝑚1+𝑚2
 (11) 317 
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If equation (11) is applied for a perfectly plastic impact (restitution coefficient e=0), the initial 318 

impact velocity 𝑉𝐼 for both masses can be calculated, considering u1=Vp0; u2=0; m1=Mp; 319 

m2=Ms, equation (12). 320 

 𝑣1 = 𝑣2 = 𝑉𝐼 = 𝑉𝑝𝑜𝐶𝑚 (12) 321 

Where 𝐶𝑚 is the mass coefficient, 𝐶𝑚 =
𝑀𝑝

𝑀𝑝+𝑀𝑠
=

𝛼

𝛼+1
 322 

Then, finally, bearing in mind equations (9) and (12), the equivalent static force, equation (13), 323 

and structural displacement, equation (14), can be written based on initial parameters. 324 

 𝐹𝑒𝑞,𝑠𝑡 = 𝑀𝑝𝑉𝑝𝑜√
𝐾𝑠

𝑀𝑝+𝑀𝑠
 (13) 325 

 𝐷𝑠(𝑡) =
𝑉𝑝𝑜·

𝑀𝑝

𝑀𝑝+𝑀𝑠
  𝑠𝑖𝑛(√

𝐾𝑠
𝑀𝑝+𝑀𝑠

 𝑡)

√
𝐾𝑠

𝑀𝑝+𝑀𝑠

 (14) 326 

H.2.: The stiffness of the fundamental vibration mode at the impact point 𝐾𝑠. The second 327 

hypothesis is made based on equation (4), that is, the mass of the projectile becomes part of the 328 

structure. Due to limitations of the spring-mass model which lead to the given expression, the 329 

mass of the projectile cannot change the spring stiffness. In a real structure, given the deflection 330 

of the mode would change when absorbing the mass of the projectile, the stiffness of the mode 331 

could be modified. From this statement, the hypothesis can be defined as follows; the spring 332 

stiffness must be calculated from the deflection of the structure with an added mass equal to the 333 

mass of the projectile at the point of impact. These two hypotheses, together with equations 334 

(13) and (14), represent the solution to the impact problem due to a large mass for any given 335 

structure. 336 

4. RESULTS 337 

From the values of equivalent stiffness and equivalent masses previously calculated, and 338 

through equations (13) and (14), the equivalent static force 𝐹𝑒𝑞,𝑠𝑡 and the displacement of the 339 

structure 𝐷𝑠(𝑡) are obtained for the seven impact cases studied, Table 5. 340 
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Case Struct. α 
Wsp 

(rad/s) 

𝑽𝑰 

(m/s) 

𝑽𝑰 /𝑽𝒑,𝒐 

(%) 

𝑫𝒔(𝒕)𝒎𝒂𝒙 

(m) 

𝒕𝒇 = 𝒕(𝑇𝑠𝑝/𝟒) 

(s) 

𝑭𝒆𝒒,𝒔𝒕 

(kN) 

Stress 

(MPa) 

Error 

(%) 

1 1 10 4.443 1.818 90.9% 0.4090 0.35400 34.4 515 1.3 

2 1 5 6.015 1.667 83.4% 0.2770 0.26100 23.3 349 1.4 

3 1 3 7.367 1.500 75.0% 0.2040 0.21300 17.1 257 6.9 

4 1 2 8.507 1.333 66.7% 0.1570 0.18500 13.2 198 3.2 

5 1 1 10.419 1.000 50.0% 0.0960 0.15100 8.1 120 21.7 

6 2 10 478.141 2.727 90.9% 0.0057 0.00329 23.9 239 0.3 

7 3 8 2.467 0.444 
88.8% 

0.1800 0.63700 
127.8 36 

 

3.7 

* Relative error in equivalent static force has been calculated based on the ratio between maximum displacement 341 

as per FEM model and the proposed formulation. 342 

Table 5: Main results per case. 343 

In Fig. 7, the results given by the proposed methodology (red line) and those obtained from 344 

Midas NFX (blue line) for the different cases studied in structure 1 are depicted. 345 

 346 

Fig. 7: Comparison of results between the proposed method (red) and Midas NFX (blue) for cases 1-5 347 

(structure 1).  348 

It can be observed that the hypothesis referring to the initial velocity of the impact VI adapts 349 

perfectly in all cases regardless of the conditions. In all cases, the velocity of the projectile prior 350 

to contact is the same (2m/s), yet the initial velocity of the impact, dependent on the mass 351 

coefficient 𝐶𝑚, is different in each case, Table 5. This initial velocity of the impact is shown on 352 

Fig. 7 as the initial tangent (at 𝑡 = 0) of the displacement, and it can be observed how well it 353 
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approximates the initial behaviour of the structure. It must be pointed out that the formulation 354 

proposed in this paper only covers the fundamental mode, and thus, it does not capture all the 355 

small displacement variations added by the rest of the vibration modes. 356 

It can also be observed that the match between the results obtained by means of the proposed 357 

formulation and FEM becomes better as the coefficient α becomes greater. For α values equal 358 

to or less than 2, the differences might be only slightly significant, whereas for α values greater 359 

than 5 the match proves to be quite good. 360 

Fig. 8 represents the values obtained from Midas NFX (solid blue) and the results from the 361 

proposed formulation (solid red, coinciding with the blue line) for structure 2 (impact case 6). 362 

 363 

Fig. 8: Comparison of results between the proposed formulation (red) and Midas NFX (blue), and the 364 

proposed formulation with natural frequency (dashed line) for case 6 (structure 2).  365 

In order to understand how correct the hypothesis of the projectile mass as a structural mass is 366 

(as equation (6) says), an additional dashed red curve is shown in Fig. 8. This curve is obtained 367 

from the proposed formulation without projectile mass as a structural mass. So, the latter curve 368 

is obtained from equation (7), changing 𝑠𝑖𝑛(𝑊𝑠𝑝 𝑡) for 𝑠𝑖𝑛(𝑊𝑠 𝑡), and it is shown to identify 369 

the variation in vibration frequency produced by the projectile (dashed red). 370 
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The results show that the hypothesis referring to the vibration frequency during impact 371 

(changing as if the projectile was part of the structure itself, with the corresponding changes in 372 

mass and stiffness), approximates very well to the values provided by Midas NFX (almost 373 

coincident). 374 

As for the validity of the formulas when t > tf, more difference is observed between the curves 375 

from Midas NFX and the proposed formulation for that period than when t < tf. This can be 376 

clearly seen in Fig. 9 where the displacement of the structure described by Midas NFX and the 377 

proposed formulation coincides before the maximum is reached at 𝑡 = 0.637. From this 378 

moment, the contact between the projectile and the structure is not continuous, giving rise to 379 

additional vibrations and slightly changing the vibration frequency during the strain recovery 380 

process. 381 

 382 

Fig. 9: Comparison of results between the proposed formulation (red) and Midas NFX (blue), and 383 

proposed formulation with natural frequency (dashed line) for case 7 (structure 3). 384 

The dashed red curve is obtained in the same way as was explained for structure 2 in Fig. 9. 385 

Moreover, in such cases the projectile mass has a clear influence on the vibration frequency 386 

during impact, as can be seen in the difference between the solid red curve and dashed red one. 387 
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5.  DISCUSSION 388 

The match in the displacement of the structure at the point of contact between the proposed 389 

formulation and Midas NFX depends on the mass ratio (α). Regardless of the type of structure 390 

and energy absorption mechanism, when α is greater than 5, the proposed formulation returns 391 

very similar results in all cases. Even though the displacement is similar, when α is lower than 392 

2, the vibration created by the other vibration modes is larger and introduces more error. 393 

Increasing vibrations from other modes of vibration when α is small can be explained by the 394 

initial hypothesis about the continuous contact between projectile and structure until t = tf. 395 

When the participation of high vibration modes increases, this hypothesis is not fulfilled, and 396 

gives rise to multiple point contacts between the bodies. This is supported by the following 397 

energetic approach: at t = tf, the structure, represented by its fundamental mode, reaches the 398 

maximum displacement and loses all the velocity exerted by the projectile leading to the 399 

initiation of the recovery process to its initial position. Therefore, at t = tf, the maximum amount 400 

of energy absorbed is reached and translated into deformation energy (𝐸1𝑠𝑡 𝑚𝑜𝑑𝑒), equation (15). 401 

 𝐸1𝑠𝑡 𝑚𝑜𝑑𝑒 =
1

2
𝐾𝑒(𝐷𝑒,𝑚𝑎𝑥)2 =

1

2
𝐾𝑒(

𝑉𝐼

𝑊𝑒𝑝
)2 = 𝐸𝑜

𝛼

𝛼+1
 (15) 402 

Given that the projectile stops at a given instant t = tf, and assuming it is non-deformable, all 403 

the initial kinetic energy from the impact has been conveyed to the structure. Nonetheless, based 404 

on equation (15), the fundamental mode only absorbs a portion of the total initial energy, E0, 405 

depending on the mass coefficient, 𝛼, and hence, the rest is absorbed by the other modes of 406 

vibration. This means that if the mass of the projectile is infinite with respect to the structure 407 

(𝛼 = ∞), all the energy will be absorbed by the fundamental mode. When α < 1 more than 50% 408 

of the initial energy will be absorbed by other modes of vibration. In this way, the lower 409 

precision in the proposed formulation when α is small is explained, as this represents a small 410 

portion with respect to the total energy. The rest of the energy is held in other distinct modes of 411 
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vibration, not the fundamental one (transferred to the structure in the so-called initial phase), 412 

making the contact between the projectile and the structure become discontinuous. 413 

From the results presented in Table 6, the energy can be accounted for in the proposed 414 

formulation for the seven cases analysed.  415 

𝑪𝒂𝒔𝒆 𝜶 𝑪𝒎 
𝑬𝟏𝒔𝒕𝒎𝒐𝒅𝒆/𝑬𝟎 

(%) 

𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒑𝒉𝒂𝒔𝒆 

(%) 

1 10 0.909 90.9 9.1 

2 5 0.833 83.3 16.7 

3 3 0.750 75.0 25.0 

4 2 0.667 66.7 33.3 

5 1 0.500 50.0 50.0 

6 10 0.909 90.9 9.1 

7 8 0.889 88.9 11.1 

Table 6: Energy ratio between the fundamental mode and the total impact. 416 

As shown on Table 6, the energy consumed in the initial phase of the impact is the non-absorbed 417 

energy by the fundamental mode, and released by the projectile in a short period of time. In 418 

other words, the additional hypothesis where initial phase energy consumed in the impact is 419 

considered negligible will be fulfilled when the mass of the projectile is large compared to the 420 

equivalent mass of the structure (α >> 1). In that case, the fundamental mode will absorb most 421 

of the energy of the impact, and hence, the contact force calculated in equation (8) will be 422 

representative. A lot of real situations like a truck crashing into a slender pier of a bridge, a big 423 

piece ejected towards a near wall from a mechanical machine due to a failure, or any large load 424 

dropped by error from a crane are good examples where normally α >> 1. Thus, this kind of 425 

situations can be analysed with the proposed formulation in two scenarios: as a pre-design of a 426 

new structure (avoiding unnecessary iterations with FEM models), or to consider easily whether 427 

an accident may cause integrity or operational problems in an existing structure.  428 

When it comes to the displacement of the structure at the point of contact, even at small values 429 

of α, the proposed formulation provides reasonably good results. In order to achieve greater 430 

accuracy in results at small values of α, the rest of the non-fundamental vibration modes should 431 

be considered. It must be considered that contact force is more influenced by the energy 432 
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expended in the initial phase than structural displacement (and equivalent static force). The 433 

influence of the rest of the modes is currently under investigation, as well as the possible 434 

influence of other issues such as gravity, projectile stiffness, and membrane force. 435 

After this energy analysis, it is clear that the errors shown in Table 5 are related essentially with 436 

the α parameter. When α is close to 1, the error increases due to influence of higher modes of 437 

vibration, equation (15), and if α increases, this error decreases and the curves are well matched. 438 

This fact confirms that the hypothesis of considering the influence of shear and local 439 

deformation negligible (which are considered in FEM results) is appropriate for the aim of the 440 

investigation. 441 

Lastly, regarding the maximum stresses calculated from equivalent static force, Table 5, it 442 

shows that the first case of impact on structure 1 would produce plastic behaviour. The stress 443 

calculated based on elastic parameters exceeds the yield strength (515 MPa > 355 MPa), and a 444 

plastic analysis would be required to refine the results, if necessary. The rest of the cases are 445 

under the yield strength so results are totally correct. It must be pointed out that in case 7, impact 446 

on the concrete slab, the strees is quite high although lower than maximum compressive stress 447 

(36 MPa < 45 MPa), so it would require a prestressed solution to avoid tension. Otherwise the 448 

elastic parameters must be replaced by cracking parameters. 449 

6. CONCLUSIONS 450 

The proposed formulation (1 DoF) to solve impacts on any kind of structure, by means of a 451 

transformation into a spring-mass system in a simple way, is able to reproduce the fundamental 452 

mode of vibration, and provides results close to those offered by FEM. Note that the proposed 453 

formulation works without considering any local stiffness, which is one of the issues of 2 DoF 454 

models.  455 
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The proposed formulation’s displacements are well-matched with the FEM ones; thus, the 456 

equivalent static force equation is justified. Results demonstrated that, during the impact, 457 

projectile mass behaves as a structural mass, the vibration frequency varying as per the new 458 

theory and proposed formulation.  459 

The precision of the proposed formulation depends on the ratio between the mass of the 460 

projectile and the equivalent mass of the structure (α), as this parameter governs the amount of 461 

energy that the fundamental mode of vibration of the structure absorbs with respect to the total 462 

in the impact. This means that the energy criteria developed to establish when the formulation 463 

can be used is simple and clear in every structure (if α >2, the error remains under 5% in all 464 

cases. Only when α is around 1 does the error start to grow to about 20%, establishing the limit 465 

of the formulation). 466 

Given the proposed formulation is only based on the fundamental mode of vibration, it does 467 

not manage to account for the vibrations from the rest of the modes. It is more important when 468 

the value of α is small. To ensure sufficient precision, the formulation is recommended for use 469 

when: 470 

 α ≥ 1 to apply in bending moments due to equivalent static force and displacements. 471 

 α > 3 to apply in shear forces due to equivalent static force and contact force. 472 

What is important for structural design is the equivalent static force, because this is the force 473 

that produces the same shear forces and bending moments in the structure as the impact load, 474 

but with static analysis. Contact force, in some cases, can be extremely high but in a very short 475 

time and it does not produce any internal force in the structure. Thus, the static equivalent force 476 

is the only important parameter from a structural designer’s point of view. 477 

It is possible to analyse impacts for any value of α with this formulation considering more than 478 

one mode of vibration. This issue is currently being studied and it will be addressed in future 479 

research. 480 
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The seven impact cases analysed in this paper contain different structures (simple supported 481 

beams, cantilever and slabs), impacts (transverse and longitudinal), materials (steel, concrete) 482 

etc. Moreover, displacement and impact time results vary from nearly 400 mm and 350 μs (case 483 

1) to 5 mm and 3μs (case 6). Therefore, it can be concluded that the proposed formulation is 484 

suitable for any elastic impact, or plastic one if equivalent parameters are used. With minor 485 

differences, the proposed formulation demonstrates that there is a general pattern governing 486 

impacts regardless of the type of structure. 487 

The investigation also shows that some considerations like shear and local deformations are not 488 

necessary to approach the general behaviour of the structure under impact load. The proposed 489 

formulation enables structural engineers to pre-design or perform FEM checks under impact 490 

loads without considering these effects, in the same way that engineers do in static cases. 491 

The proposed formulation is also useful to establish the integration parameters in a FEM model, 492 

greatly reducing computational cost, in which it is not always easy to achieve convergence; 493 

because impact duration, equation (10), and maximum displacement, equation (14), are already 494 

well-known from the proposed formulation. 495 

Finally, as a summary of the previous comments, since in some cases the FEM analysis needs 496 

hours to obtain the exact solution for the impact, by using the simple equation suggested, 497 

equation (13), it is possible to calculate the equivalent static force (𝐹𝑒𝑞,𝑠𝑡) and perform a pre-498 

design of the structure prior to performing the FEM analysis, and thus to be more time efficient.  499 
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