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ABSTRACT   

This paper proposes the characterization of speckle patterns of multimode fibers in view of sensing applications and 
particularly for detection of vibration or seismic activity. Plastic optical fibers are used in this work due to its excellent 
flexibility and adaptability to build sensor heads. We are interested in the response to vibration, for which we use a short 
cylindrical piezoelectric transducer (PZT) vibrating in radial direction. The multimode fiber was coiled as tightly as 
possible around the mandrel of the PZT and periodic stretching effect was caused by the radial oscillations of the actuator. 
The PZT is modulated with a frequency generator by applying a sinusoidal signal in the range of 0 to 20 Hz, so the 
speckle patterns can be time averaged. The fiber extreme is attached to a high speed camera with a plastic adaptor, 
centering the speckle pattern into the CCD. Maintaining the fiber position, a region of interest is selected to capture the 
video sequence and it is captured to detect the variations in the speckle pattern. Once having the video sequence, it is 
processed by averaging the pixel differences between two consecutive frames. This processed sequence is also filtered in 
order to reduce the high frequency noise component. In this work we report the results of the characterization of 3 types 
of multimode fibers, with core diameters of 50 μm, 240 μm and 980 μm. 
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1. INTRODUCTION  
Since optical fibers have been proposed as an alternative transmission medium to radio systems, there have been two 
types of fibers:  single mode fibers and multimode fibers. In single mode fiber, the core diameter is small (≈ 10 μm) and 
the optical signal has a phase velocity almost constant. In the multimode fiber, the diameter is much larger (≥ 50 μm) and 
the guided modes have different phase velocities. In the first case, the projection of the beam at the output of the fiber, is 
a uniform spot of light, while in the second case it is observed a granulated pattern of light. The latter is the speckle 
pattern which is produced by an interference phenomenon between modes propagated inside of the fiber. These 
particular characteristics of the speckle phenomenon obtained in multimode fibers are used in sensing technology. In 
recent years several studies have been reported in vibration sensing [1], displacement [2], distance [3], cracks in concrete 
structures [4], and blood flow [5]. In all these cases, they have used multimode optical fibers with core diameters from 
50 to 100 μm and, usually, being glass fibers. Currently there are other multimode optical fibers, commercially available, 
and other materials such as Polymeric Optical Fiber (POF) with diameters of core 50 μm to 3 mm [6-7]. The POF have 
numerous advantages in short-haul applications over glass.  

This paper proposes the characterization of speckle patterns of multimode fibers in view of sensing applications and 
particularly for detection of vibration or seismic activity. POF are used in this work due to its excellent flexibility and 
adaptability to build sensor heads such as smaller curvature radius than the glass fiber or simplicity to connect. We are 
interested in the response to vibration, for which we use a short cylindrical piezoelectric transducer (PZT) vibrating in 
radial direction to characterize the POF response. The multimode fiber was coiled as tightly as possible around the 
mandrel of the PZT and periodic stretching effect was caused by the radial oscillations of the actuator. The PZT is 
modulated with a frequency generator by applying a sinusoidal signal in the range of 0 to 20 Hz, so the speckle patterns 
can be time averaged. The POF extreme is attached to a 1394 high speed camera with a plastic adaptor, centering the 
speckle pattern into the CCD. Maintaining the POF position, a region of interest is selected to capture the video sequence 
and it is captured to detect the variations in the speckle pattern.  Once having the video sequence, it is processed by 
averaging the pixel differences between two consecutive frames. This processed sequence is also filtered in order to 
reduce the high frequency noise component. In this work we report the results of the characterization of 3 types of 
multimode fibers, with core diameters of 50 μm, 240 μm and 980 μm. 
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Figure 3. Example of the speckle processed data. The differential process of the video sequence causes a signal 

proportional to the speckle pattern variation (solid line). This signal is low pass filtered (dashed line) and the peak are 
detected (diamonds and circles) to get the averaged peak to peak ratio for each case. 

4. RESULTS AND DISCUSSION 
The deformation of the PZT actuator is proportional to the control voltage. The obtained data with the 3 multimode 
fibers is plotted against the deformation measured by the FBG on the Figure 4. There are shown each of the 6 PZT 
voltage steps causing a specific peak to peak deformation measured at 25 Hz for being the most sensitive case. Due to 
the proposed differential processing scheme, the setup is most sensitive for higher frequencies but always far from the 
camera sampling rate. The two tested fibers with a higher number of modes have a very good linear response with the 
deformation, having a  coefficient above 0.99 at the best case with the higher tested frequency. On the contrary, the 
less sensitive tested fiber (50 um) fits worse the linear response even for the best case. 

According to the Figure 1, the amount of contained light granules in the speckle pattern is function of the core diameter 
of the multimode fiber. The larger core diameter, the greater the amount of speckle, but the smaller the size of speckle. 
The sensitivity of the speckle pattern to changes by the vibrations effect can be caused by the amount and size of the 
speckle generated by multimode fibers. If all the fibers are characterized in the same conditions and a factor to be 
considered is the mass of the fiber. In fact, Fig. 4 shows that among the three characterized fibers, multimode fiber 
diameter of 240 μm is more sensitive to variations of the vibration. One explanation for this result may be due to the 
difference in weight compared with the fiber of 980 μm diameter. As shown in Table 1, the fiber of 240 μm has a mass 
100 times less than the fiber of 980 μm, so it is much lighter and more sensitive. Low responsiveness of the fiber 
diameter of 50 μm may be due to the lesser amount of modes and the size of each speckle.  

 
Figure 4. Response of the 3 multimode fibers against the PZT peak to peak deformation at 25 Hz. 
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Figure 5. Response of the 2 multimode fibers with a higher number of modes 980 μm (left) and 240 μm (right). As the 

PZT modulation frequency is increased the sensitivity of the setup also increased. 

 

 

 
Figure 6. Response of the multimode fiber with less number of modes 50um. The overall response of the setup is poor in 

comparison with the other tested fibers. 

 

In Figure 5 and 6 there are plotted the mean value of the pixel difference depending on the voltage applied to the PZT for 
different frequencies of 1 Hz, 2 Hz, 5 Hz, 10 Hz and 25 Hz. Using the same scale, it can be seen that the sensitivity of 
the speckle pattern increases linearly with the voltage applied to the PZT and the number of modes. But also influences 
the fiber mass. When the fiber diameter decreases, the size of the speckle is getting larger, so the variations are smaller 
and smaller (in the case of Figure 6). In the latter case it may be useful to measure vibrations in compact structures such 
as buildings. 

As an application example of the multimode fiber speckle pattern and the described signal processing method, the Figure 
7 is included. On the Figure 7 (a) there is shown the speckle processed sequence captured from a POF attached to a 
cylindrical PZT that is modulated with a sinusoidal wave. On the Fig. 1 (b) it is also shown the representation of a human 
heart beating measured by surrounding a finger with a loop of POF. The sequence is filtered with a low pas filter in order 
to isolate the heart signal. In this case we used a GI-POF of 50 μm diameter. 
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(a)                                                                 (b) 
 

Figure 7. Results obtained on a multimode fiber with gradient index of 50 μm core diameter. 

5. CONCLUSION 
It has been performed the characterization of the speckle pattern using several types of multimode optical fibers. The 
speckle pattern has been subjected to vibration by a PZT and an FBG interrogation unit in the frequency range from 1 to 
25 Hz. The influence of the size and number of speckle dots in function of frequency has also been studied. 

The method of processing speckle signal captured by the CCD camera is simple and can be integrated in a sensing 
system. To obtain the speckle pattern using multimode fibers introduces numerous advantages in sensor systems due to 
the versatility of the fibers. They are easy to use, have flexibility and low cost and particularly, polymer optical fibers are 
easy to handle. 
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