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The motion of the free surface of an incompressible fluid is a very active research
area. Most of these works examine the case of an inviscid fluid. However, in several
practical applications, there are instances where the viscous damping needs to be
considered. In this paper we derive and study a new asymptotic model for the
motion of unidirectional viscous water waves. In particular, we establish the global
well-posedness in Sobolev spaces. Furthermore, we also establish the global well-
posedness and decay of a fourth order partial differential equation (PDE) modelling
bidirectional water waves with viscosity moving in deep water with or without surface

tension effects.
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I. INTRODUCTION

The motion of waves in fluids has been a hot research topic since the XVIIIth century
with the works of Laplace and Lagrange. On the one hand there is a large number of
papers dealing with the free boundary Euler and Navier-Stokes equations®3°. These are free
boundary problems and as a consequence the domain of definition Q(¢) of the functions (the
bulk of the fluid) is an unknown of the system that has to be determined from the dynamics.

On the other hand the literature on asymptotic models of such free boundary problems is
even larger (cf.3!). These asymptotic models allow to have very good approximate descrip-
tion of the actual dynamics while simplifying the equations under study. In this direction
there are many papers dealing with the case of inviscid fluids and, in particular dealing with
asymptotic models for shallow water waves (see for instance®! and the references therein)
and models of water waves with small steepness (we refer to333335 for example). Similar
small steepness asymptotics models can be derived for other free boundary problems, such

5 see!®2038  Many of such asymptotic models are used in different

as the Muskat problem?®!
applications in Coastal Engineering and Physics.

Although it is a classical topic, the works studying the case of a viscous fluid are more
scarce. The first works studying the case of a viscous water wave date back to Boussinesq’,
Basset® and Lamb?. Since then there are many other papers studying damped water
waves. For instance, we refer to the manuscripts of Kakutani & Matsuuchi®®, Ruvinsky
& Freidman®”, Longuet-Higgins®?, Jiang, Ting, Perlin & Schultz?®, Joseph & Wang?*, Wang
& Joseph® and Wu, Liu & Yue.

According to the work by Dias, Dyachenko & Zakharov'?, the viscous damping of gravity

water waves can be described by the following free boundary problem:

Ap=0 in Q(t), (1a)
p (0 IVl + G ) = ~2ucto on (), (1b)
hy =V (—0h, 1) + 2%8;% on T(t), (1c)

where h denotes the height of the wave, ¢ is the velocity potential and G, p and p are the
gravity acceleration, density and viscosity of the fluid.
Since its appearance, this system was considered by several other authors (see!'™4). The

need for simplified asymptotic models for damped water-waves systems was highlighted at



first by Longuet-Higgins, which in®? stated that

For certain applications, however, viscous damping of the waves is important,
and it would be highly convenient to have equations and boundary conditions of

comparable simplicity as for undamped waves.

In this spirit, Kakleas & Nicholls®® derived a quadratic asymtotic model while Bae, Lin
& Shin* derived a cubic asymptotic model of (1). The well-posedness of this quadratic
model was studied by Ambrose, Bona & Nicholls? while the well-posedness of the full Dias-
Dyachenko-Zakharov was proved by Ngom & Nicholls in® in the case of a nonzero surface
tension and by Granero-Belinchén & Scrobogna®!' in the case in which the surface tension
can be zero.

In a series of works'®?2| the authors, starting with the Dias-Dyachenko-Zakharov (1) free

boundary problem, derived and studied the following bidirectional models of viscous water

waves
Fu+ 20A2f, + Af + A + 62N f = 5{ — A((HF))
+ 0u[H, FINS + BOH, FINf + 60, [H, HI]HOf
+ A (HfHOf) — 60, [02, FIH S + 6°0.[ 07, FAD.f @
f(fL’7 0) = fo(.’L')./
fi(w,0) = fi(w),
and

fuo + 2002, + Af + BAPf + 2N f = 5{ —A((H1)?)
+ 0, [H, FIAf + BO[H. FIN*f + 60.[H, HfJHO; f
+ 0N (HfHES) — 60,02, f]]Hft}v )
f(@,0) = fo(x),
f(@,0) = fix),

where ¢ is the steepness parameters that measures the ratio between the amplitude and the

wavelength, § > 0 is a dimensionless parameter reflecting the viscous effects, 5 > 0 is the

Bond number measuring the ratio between capillary and gravity forces. The operators H
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and A denote the Hilbert transform and the square root of the Laplacian
HI(k) = —isgn(k)f(k) . Af(k) = KIf(F), (4)
and
[A. Bl f = A(Bf) — B(Af),

is the commutator between two operators acting on the function f. In what follows we
consider (z,t) € St x [0,7] where S' denotes the interval [—, 7] with periodic boundary
conditions. Furthermore, we will consider zero-mean initial data fy and f;.

The purpose of this work is twofold. First we prove that the system (3) is globally well

posed for initial data which are sufficiently small.

Second we derive a new asymptotic model of unidirectional viscous water waves. In

particular, we obtain the following nonlocal and nonlinear equation

2eu; = Ny + 26Nty + NHu — BNHO*u + >N 3u

- EN{Quuz + A[H A ] u+ BATH, A u] A
— 6A[H, ufu, + 60, (uuy) + SA 02, Aflu]]u}. (5)

where the operator
N = (-89 —-d0,)
is defined in Fourier variables as

1 —dik

N = e

A. Main results

We start this section introducing some notation that we will use along the paper. We
denote with C' any positive constant independent of any physical parameter of the problem.
The explicit value of C' may vary from line to line.

We recall the definition of the homogeneous Sobolev spaces of fractional order

o =n*(S")y={fel' |Afel’},
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for any s € R. It is well known that for zero mean function we have that H* = H*. As
both equations preserve the zero mean property from now on we will always use the non-
homogeneous notation in order to indicate a Sobolev space of regularity s. Similarly, we

define the homogeneous Wiener spaces
b=k () ={rer | Kfery,

where f denotes the Fourier series of f.

The first main result of this work is the following theorem:

Theorem 1. Let § > 0 and 3 > 0. There exists a co > 0 such that for any (fo, f1) € HSx H*
such that

I foll s + [1f1ll s < co,

then, there exist a unique global solution (f, f;) of (3) stemming from the initial data ( fo, f1)

which belongs to the energy space

feC®RHY),

fi € C(Ry; HY) N LA (Ry; HP).
Furthermore,

110 + | fell go < Ce™™,
£+ 1ol e < CeO0m, ¥ (r,s) €[0,6) x [0,4).

Once the local existence and uniqueness was obtained in??, we only need to provide with
appropriate energy estimates. In order to do that we will consider a space of low regularity
X and a space of high regularity Y, which will be explicitly defined below. Next we are

going to define an energy having the form

ICEs follr = o {e ICF (o) fe (o)l } + ICF fo)lly for a> 0.

Equipped with this definition of energy, the rest of the proof is focused on obtaining an

inequality of the form

ICEs )l < Co (fo, f1) + P IS Folll) s
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for certain polynomial P and constant Cy (fy, f1) that depends on the initial data. The

previous inequality implies that for small enough Cy (fo, f1), the solution satisfies

ll(fo, f)lllz < 2Co (fo, f1)
for all 7' > 0, then a standard continuation argument allow us to extend the solution to
arbitrary long time intervals.
Next, we derive a new asymptotic model of unidirectional viscous water waves. This new

model takes the form (5). Our second main result is

Theorem 2. Let 6§ > 0 and 8 > 0. Then given and arbitrary zero mean uy € H?, there

exists a unique local strong solution to (5)
u € C([0,T%], H*) n L*([0, T*]; H?),

for a small enough T* depending only on ||ug|| g2 and the physical parameters of the problem.

Furthermore, there exists a cg > 0 such that for any ug € H? satisfying
l[uoll 72 < co,

then, there exist a unique global solution u of (5) stemming from the initial data uy which

belongs to the energy space
ue C(Ry; H?) NL*(Ry; HY).
Moreover,

ull o < Ce™2,

e < Cem €Nt Vrelo,2).

[[ul

In order to prove the local existence part of this theorem we use Picard’s theorem together
with energy estimates in H? and the commutator structure of part of the nonlinearity. Once
the local existence and uniqueness has been obtained, to ensure the global existence and
decay we only need to provide with appropriate energy estimates. To do that we are going
to define a modified energy || f|| that has two different contributions. On the one hand we

consider the low regularity space X where the solution will decay while on the other hand
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we will also regard a high regularity space Y where the solution will only remain bounded.

The particular choice of X and Y will be clear below. Then the energy will take the form

£l = sup {e*[If (o, t)lIx} + I flly for o> 0.
te(0,T7]

Equipped with this definition of energy, the rest of the proof will be devoted to obtain an

inequality of the form
llully < Co (fo) + P(lllullz),

for certain polynomial P of degree larger than 1, constant Co (uo) that depends on the initial

data. The previous inequality implies that for small enough Cy (ug), the solution satisfies
lleelly < 2Co (uo) ,
for all T > 0, then a standard continuation argument allow us to extend the solution to

arbitrary long time intervals.

II. PROOF OF THEOREM 1

Without loss of generality, we consider € = 1 in (3). According to the result in?2, there

is a local in time solution (f, f;) for the problem (3). Let us define the modified energy

ICE fll = e max {I(F (&), fe (D) lao} + maxt {lLfe ()]s + 11F )z}

t'e[0,T) t'€[0,7)
The estimates of?? assures us moreover that the solution exists at least in a time interval

[0, Thax) where Thax = Tnax (fo, f1) s the maximal lifespan of the solution.

A. The linear semigroup

We consider the linear nonhomogeneous problem
Ju +20A%f, + Af + BAPf + 02N f = F, (6)
where F' is a zero mean forcing. Let us denote with

flz.t) fol)
u(x,t) = R Up(T) = )
R O b



so that (6) becomes
0 0 —1
u; + Lu = , L=
F A+ BA3 + §2A* 2002

Applying Duhamel principle we write u = ug, + uny, where
t ’
ur, () = ey, un, () = / e (=1L dr’.
0
The eigenvalues of L are the Fourier multipliers

Ae (n) = 5| £3y/In| (1 + 8In),

so we see that the linear operator L induces both parabolic smoothing effects and oscillating
behavior of the solution. Since the solution has zero mean, we have that Ay(n) # 0. The

two ortonormal eigenvectors associated to Ay (n) are

1 1
es (n) = ————
T+ s () \ e (n)
so that, if we denote
Ao 0
D= ,
1 1
S = ;
A =
1 1 A —1

A=Al 1 )
we have that

et =5t tPg.

With the above considerations we write uy, and uyr, in terms of fy, fi and F as

() = 1 A_e M — Apemt i
W)= A LA (e — e 0
1 Ay (e — et .
vl B M)
— = Ap e tA- — )\+6—L/\+
by A (==t _ p=t=22) )
iy, (1) = / L (M ) F(t)dr.
0 Ae = Ap |\ e—=tr- _ /\+6—(t—t’))\+
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We want to obtain now the decay rates of the linear semigroup. Let us at first check the

<%(1+5 1|”|ﬁ>7 (7)

since |n| > 1 due to conservation of average. We deduce that, for j = 0,1
—t
(& "I’L| A
L ‘ - ‘
=7 ( o 1+ﬂ> £ ()]

e max] ”uL(t/)”Ao <C H(fmfl)”m/z : (8)

t'e(0,T

time-decay of ur,. We can compute that

At
A

‘ )\i (n)
A= (n) = Ay (n)

e—tAi (n) fj (n)

which in turn implies that

Equivalently, we have that

le™ N a1/20s 40 < Ce™. 9)

B. Decay in the low regularity space

If we write the equation in its mild formulation using Duhamel’s principle, we have that

the nonlinear forcing is given by

£,
1

F=

6
j=

where

F=—A(1f)?),

Fy = 0.[H, fIAS,

Fy = Bo,[H, fIN*f,

Fy = §0,[H, HfiJHOf,
Fy = 6N (HfHOS),
Fy = 00,02, f]Hf:.

The goal of the present computations is to provide a control of the form

IE ()l < Ce™ YIS, fo)ll7 te[0,77, ¢>0.



We are going to use the Sobolev embedding

llallas < Csllal|gsr1/2es < Clla|| gs+1,

together with interpolation between Sobolev spaces and the fractional product rule

lad]

bl

As T+ ||a|

bl| a0) < Cllal

a0 < Cy([lallao ]

As As Asy

to estimate I;. We compute

[E1]l ave < Cllfell aoll fell asr
< Cllfell ao [l fell sy

el A i [FA o

Using linear interpolation in Wiener spaces

/T

s 1-s/r
Ar

ae < Cllallf Nl

lal

we find that

[Foll sz < ITH FINS a2
< CU S asrzl fllar + 11f [Lasz2]l f|].ao)
< Ol flasrll f 1l a0
< Clfllarrel| £l a0

T7/12 1+5/12
< ClIFIGE 1A,
Similarly,

[Fsllarz < CIIH, FIA a2
S O asrell Fllas + 11f asearall £ 40)
S Cllflasrzll 1l a0

S Clf el £l a0

11/12 1+1/12
< ORI,
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Similarly, we have that

|Eullave < CNIH, HATHO S|
< C U fllaollf Lo + 1l 17 L)
C (Wllao 7 s + LENEIANEN IS 1012

(Hn Laollfllas + WAL IR LA 113 )

2 1/2 3/5 2/5
1BslLave < © (Ifllaoll il + IR LA LAEE IS )

Using the commutator structure together with the product rule in Wiener spaces, we esti-

mate
| Fsllare < CNBfHS: + 302 fOHfr + O fOZHfil] a1
< C(\IfI\A:s+1/2||fz|\Ao + 1 s 1 fell ars
F 1 azerrall fellar + 11 f a2 ([ fell arsrrz
1A ezl fell a2 + ||f\|A1\|fz\|A2+1/2>-
Using interpolation in Wiener spaces and then the Sobolev embedding
[fllas+2rs < Cllf 1o and [ fell as2rs < Cllfell s,
we compute that
| Follasz < c(||f||13!°4||f||35/54||ft||Ao LI A A Al

29/54 25/54 12/17 5/17
S e e e A el (WA 2%

17/27 10/27 19/34 15/34
o 2 it A e [W A 0

~1113/18 5 18 7/10 10/17
N Ve el IR A e A A

22/27 27 9/34 25/34
A A A A )

Let us recall that using Duhamel formulation the solution then can be written as
¢ ’
u(z,t) = e g +/ e~ (=)L dt’
0 F

11
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and satifies,
t
0] < Ce 1+ VD[ fim| + ¢ [ Ral | )] ar.
0

Using
—({t—t)onP<—(t—t)5<0,

we can estimate
t 6
llu()|la0 < Ce || (fo, f1)|| arz + ce*&/ e F ()] ar2dt
0 N
j=1

Recalling the previous estimates for ||F;(t')|| 4172 and the definition of the norm ||(f, fi)|lz

we have that
I () a2 < Ce B 1(F, )l 0<t'<t<T

We conclude that

e o {1/ (¢ i ()]}

t
< Cll(fo, f)llarrz + CII(f, ft)m;/ o~ (1319185t 37
0

< Cll(fo, f)llarz + Cl(L foll7 (10)

C. Boundedness in the high regularity space

Similarly as in??, we test the equation against A%f;, integrate in S' and integrate by parts

obtaining the energy balance

1d ,
5E@(zﬁ)+®(1¢):ZI,-,(75)7 (11)

with

€(t) = fy () s + BIS ) zrasare + 8 IF )0 + 1 @) Fgasrre
D(t) = 20 |1£: ()5 »

12
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and
R0 == [ A NS
B(0) = [ 0.[H JIASAS do
st

B0 =5 [ O.0HSININ S do

I (t) = 5/ Ou[H, HfJHO? fASf, dx
S]

I;(t)=6 / A (HfHOLF) AP S, da
S]

o(0) = =5 [ 0,02 f]HAa%S, d.

st

Using the self-adjointness of the operator A together with Hélder’s inequality and the
Sobolev embedding
lgllzs < Cliglmos,

we find that

Lty=— [ (Hf)})Af, dz

((Hf)?) 2N, da

(ML) )N f, da

(QH [ ADL f, + 6(AD, f1)* + 8AfLO2A f) A f, da

T~ —a— g

Sl
< Cllfillas (Mfellae 1M fell e + 1 fell Frazs + N fell o | A Sl 2= )
< Ol fellws I fell sl fell s
< ol fillis + Cllfellpa L fell s (12)

for o > 0 to be fixed below.

Furthermore, using interpolation between Sobolev spaces, the embedding
H°C H ,r <s,
we obtain the estimate

L (1) < ollfillzs + CUICF, follze 2", (13)

13
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We recall the following commutator estimate (see equation (1.13) in?)

Haﬁ[[ﬂv U]]afth”Lp < C ||6fr+mUHLoo HVHva pe (1700)7 va eN.

Equipped with (14), we, taking m =0, £ =5, U = f and V = Af, have that

o.f

[AD.[H. FIAF]] . = | | A S22

M, fIAf|] . < C|

Then we can estimate I, as follows

Lt) = / A0, [H, FIAFAf, dz
Sl
< || 203 SIAS o 1A%
< NEF | o Il A o] -

As a consequence, by interpolation in Wiener and Sobolev spaces, we have that
L (t) < CII(f, folllze /",
Analogously, we find that

I3 () < ||0pf ] poe 1A% 2 1072 2
< |02 £ 115 1A 1[50 + o A ] 7
<O Flle " + o A 7

We can decompose I;(t) as follows
Li(t)y=9¢ 8 [A(HftAaxf) + Bx(?{ftaff)] A%f, dx
=0 [ [NHAADLS) - u(HAN] A, dr
=Ji+ T3,
with

t
Ji=5 / AHFAD, NS, da dt
0 Jst

t
Jh = —5/ / Op(HLAF)AR S, da dt.
0 St

We will use the fractional Leibniz rule (see¢:2":28):
[A*(uv)l|e < C (Al o V]l ez + [|A*0]| Los [|ull o4 ) ,

14
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which holds whenever

1 1 1 1 1
—=—F—=—4— where 1/2 < p < 00,1 < p; < 00,
p Pt P2 P3 P4

and s > max{0,1/p — 1}. Using the fractional Leibniz rule and the self-adjointness of the

operator A, we compute
Jit) =4 / A KM )N f, da
St
< OIAHF A ) 22| A fill 2
S SO fell e 1A s + 1 Fell ez LF o)L fell s

S SCUIFNG N s + IElall 1) + oIl £2]
< Cllfllize " + ol fill3s-

2
H5

The terms J; and I5 = J{ can be estimated in a similar way and we find that
Iy (t) + L5 (t) < ClIfllize™ " + ol fullZs. (17)

Now we are left with Is. We remark that

Is(t) = -0 s Oy [Zﬁf?’-{ft + 28zfAft] A f, da.
Integrating by parts, we find that

Io(t) =5 [ 0 [RHf+20,7AL] 0N S do.
Hence, using the same ideas as before, we have that

I(t) < N(f, Flllpe™" + o fillfs +2 /S O fN [0 A i A
The term
JS = 2/1 Ou [P 10, A" f, da

is the highest order term. However, it hass an inner commutator structure that we can exploit

as follows:
JS(t) = / H(O fAP fONS f, Ao — / O fANSFHASf, da
s1 s1
— [ pron s .
sl

Then, recalling (14), we conclude that

Is(t) < N(F, F)llze™ " + ol follFs. (18)

15
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D. Finishing the proof of Theorem 1

Collecting (13), (15), (16), (17) and (18) and taking o small enough, we conclude

%Q(t) +9 () < OIS f)llze " + CUIS flllze " (19)

Integrating in time and using (10), we conclude the polynomial bound

WU%WT+Z;©W)&'SCMhﬂNMw+ﬂm+CWU%N@+WﬂMM%

thus, there exists a (fixed, positive) constant 1 < C* such that

WCE £l < C* [l foll s + L filla) + (NCE Sz + NCE flllz)] - (20)

We observe that, in the previous estimates, we have not used any hypothesis on the size of
the initial data and the previous bound is valid for every solution and T' € (0, Trpax)-
We want to prove that, there exists a ¢y > 0 such that for any solution of (3) stemming
from an initial data
I foll s + [1f1ll s < co, (21)
the inequality
IICEs Folllz < C (Il oll s + [[f1ll ) »

holds true for any 7" > 0 and thus the solution is global by a standard continuation argument.

There are two possible behaviours for the solution. On the one hand, the solution could
possibly stay bounded in

fec (R+§ H 0) )
with
fre C (R HY) NLA(Ry; HY)

for all times. If that happens the theorem holds and we conclude the proof. On the other
hand, the solution could grow unboundedly in the previously mentioned space. Let us
assume that we are in this second scenario as it is the one that must be discarded, .e. let
us assume the solution does not stay bounded for all times, the contrary being true would
imply that the solution is global by a continuation argument. If the initial data is small

enough, we can find 7" such that

WﬁﬁmT:§<L

16
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The above inequality allow us to deduce the polynomial bound

ICE, £l < 207 [ ollgs + 1 fall o) + G SOIIZ] (22)

or equivalently,

20 (S )l < @O (follgs + 1 lle) + [2CF I S)ll) (23)

Then, without loss of generality we can restrict our analysis to a polynomial of the form

IICE fllr < Co (fou 1) + (L £ (24)
Now we observe that if
Co <1

is small enough, the polynomial
Qy) =Co—y+y*

has two positive real roots
14++/1—4Cy
Y= ———F—
2
moreover if 0 < Cy < 1

1—vI=14C,

< 2C,.
2 = 0

y- =min{y,y } =

Furthermore, analogously as in in*?, we know that the application ¢ — ||(f, f)||, is contin-

uous for ¢ € [0, Tyax). This, together with the smallness in the initial data, implies that

IICF fllr € 10,y

We combine the above deduction with the estimate y_ < 2Cy and we deduce that

3
ICE Flllz < 260 < 7

if we take Cy small enough. This is a contradiction with the definition of 7" and implies that

the solution is global.

17



III. DERIVATION OF (5)
Our starting point in this section is (2):
fu==200%fy — Af = BN’ — 6°A*f
#e N (HAF) + 0ul S0+ 0T TS
+ 00, [H, HFJHOf + SA (HFHIf) + 620,02, f] MO f
Let us introduce the 'far-field” variables,
X=xz—1, T=c¢t.

Then, we have that
0
&f(X(x, t)v T(t)) = _fX + Ef‘”
and
82
o2
After neglecting terms of O(g?), (25) reads

f(X(l’,t),T(t)) = fxx - QEfTX + EQfTT'

(fy = 2efs), = —260*(—fy +efs) = Af = BAPf — 8°A*f
+ 5{ — A ((H1)?) + O [H, JIAS + BOIH, [INPf
— 6O [H. HEJHOf — SN (HLHO2f) + 6%, [02, FAD,f

160,02 F]H, — 520, [, 3] 8§f}-

Integrating in x and using our previous notation for the space and time variables we find

the equation
Fo— 2ef, = 200,(—fu + £f,) — Hf + FHOS — %%
n s{ CH((HE) + [, FIAS + BIH, FINS
— O[H, AFIHOP S — 6H (AFHORS) + 0202, F] A, f
T S[0, f]H, — 82[H. 3] azf}.

18
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Regrouping terms we can equivalently write
(1460,)2efy = fo +20fou +Hf — BHOLf + 6°03f
— e (L) + AT+ 5 A1
— O[H, AfIHOLf — M (AfHOZf) + 6° [ 05, F]AD.f
T 5[ ], — [ 221 Bif}. (26)
We observe that, taking the operator
N =(1-0%92)""(1-00,),
we find that
% fy = N fo + 20N fru + NS — GNHES + PN
~en () + AT+ 0 1
— O[H, AFTHOf — 6H (AFHOES) + 0202, F]AD, f
+ole2 s - 2 [r.eris . (20)

As in'", we now define

u=Af.
This new unknown solves the following equation
2eu; = Nty + 26Nty + NHu — BNHO* u 4 >N O3u
- aAN{ —H (u?) + [H, A u]u+ B[H, A u] A%
+ 6[H, u]HAu + 0H (uHAuw) + 6°[92, A u]u,
+6[02, A u]u — 8°[H, Au]]Au}.
The previous equation can be written equivalently as
2ty = Ny + 20Nty + NHu — BNHO?u + SN u
— e./\/'{2uuz + A[H, A ] u+ BATH, A u] A
— SA[H, ulug + 60, (uuy) + 6*A[02, A u]u,
+ 602, A u]u — °A[H, Au]]Au}. (28)
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Neglecting now the nonlinear terms that are O(e6%) we conclude (5).

IV. PROOF OF THEOREM 2
A. Local well-posedness

First, we observe that (5) can be written as

26y = Ntg + 20N Ugy + NHu — BPHO?u + BIPAu + §*PIPu — §*Potu

— EN{Zuux + A[H A ] u+ BATH, AT u] A
— OA[H, ulug + 60, (uuy) + GA[O2, A_lu]]u}, (29)

where the operator
P=(1-89)"

is defined in Fourier variables as
1

P=1ome
Then, using

P=1d+ 776283
we can observe that the terms

BOPAG u = —?Au + ?PAu

and

—8*POiu = 60%u — PO u

are of parabolic type.

To simplify the notation, in the course of this proof we take ¢ = 1. Now we obtain the
a priori estimates in the H? Sobolev space. These estimates implies the local existence of
solution after a standard regularization approach using the periodic heat kernel as mollifier.

We start noticing that

/Sl u(z,t)de = /S1 u(z,0)dz = 0.

20



Now we test (29) against A*u. Then we obtain that
%nuuiﬂ =L+ NL +NLy+ NL3 + NL; + NLs + NLg,
where
L= s {Nug + 26Nty + NHu — BPHOu
+ BEPAD?u + §*POPu — $*Potu} A udz,
NL, = -2 8 N (uug)Atudz,
NLy = — s NA[H, A u]urtude,
NL3;=-p él NA [[H, Aflu]] AuAtude,
NL, = 6/81 NATH, u]Opur*ude,
NL;=—§ 8 NO, (uuy) AMudz,
NLg=—6 [ NAJOZ, A u]uh*udz.

st

After a number of integrations by parts, we find that
L— / (6Pusy — OPAu + fIP Ay, — 5°POu) Auds
Sl
= —0||P Y ugys |32 — 8[| PN 2|2y — 0B||PVEAY 2|22 — 03| P2 A |2
Furthermore, using the parabolic character of some of the terms in L, we find that
1 2 EY A3 2 2
L < —5llusellz — 0l A%ullZ2 + Cllullze.

For the first nonlinear term NL,, we integrate by parts and use that A can absorb one

derivative to find the estimate
NLy < lullgsllv?|l e < CllullgsllullFn < ollullzs + Cllullz,

for o > 0 that will be fixed later.
Using (14) and the Sobolev embedding

10,4 ]| < CIA " ullie < Clluln,
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we find that
NLy < Cllulms|lullfp < ollullfs + Cllulf.

Similarly,

NL; < Cllullgs [ullgzllullm < ollullfs + Cllulle,
NLy < Cllullgsllulla=llulla < ollullfs + Cllullze.
Integrating by parts in VL5 and using the regularizing effect from N, we can obtain that
NLs < Cllullgs (105ullZs + llull ool =) -
Using the Sobolev embeddings

lgllzs < Cliglmos,

and

9l < Cllgllar

we find that
NLs < ollull3s + Cllul 3.

Integrating by parts and using the previous ideas we can estimate the last nonlinear contri-
bution as

NLg < Cllullmsllullfpe < ollullis + Cllulle-
Taking now 0 < ¢ < small enough we can ensure that
d, o 0\ 2 2 4
qe lellzr + S8l < Cllulle + Cllullze, (30)
which ensures the existence of a uniform time 7* such that
u € C([0,T%), H*) N L*(0,T*; H®).

We observe that H? regularity is enough to give a pointwise meaning to the nonlinearity in
(29) is a consequence of the fact that A is able to absorb one derivative and the the highest
order terms are

N, (uu,) and NA [[(92, A_luﬂ U

and they map
H? — H'C C.
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On the other hand, the linear terms have at least an L? meaning. The local existence of
solution will follow now from a standard application of Picard’s theorem to a sequence of
approximate problems (see the work? for further detail).

At this level of regularity, the uniqueness of such local strong solution can be easily

obtained from a standard contradiction argument that we skip for the sake of brevity.

The rest of this section is devoted to the global existence of solution for small initial data.
In order to do that, we define the modified energy
lully = /> max {[lu ()| g0} + [l ()]l 72 -

t'el0,T

Then, our goal is to conclude the polynomial inequality

el < Co(fo) + Plllullly)-

B. The linear semigroup
We consider the linear nonhomogeneous problem
2f = N (fu + 2602 f + Hf) + BPH fow — BOPAfrw — °POf + 5*POLf = F, (31)
where F'is the forcing. This linear equation can then be written as
2up + Lu = F, u=Af,

with

and

1—dik .

- e BiklE|  BOlKPP 1% k|
Ak) = T (1k — 20|k|* — isgn(k)) +

1+0%K 11 0%2  1+0°%K2 ' 1+ 0°K2

Then, we have that the homogeneous problem satisfies

ik, t) = g (k)e ",

do(k)e MW < e Jag (k)| ,

23



AlP

Publishing

which in turn implies that

6T !
t < . 2
T ma [t < ol (52)
Equivalently, we have that
le™ [l a0 a0 < €. (33)

C. Decay in the low regularity space

Using Duhamel’s principle, we can write the mild formulation of our problem as

¢
a(k,t) = e AP0, (k) + e_’\(k)tﬂ/ AES2E (K, 5)ds
0

with
_ N -1 ~1, T A2
F= 5 22U, +A[['H,A u]]u+[J’A[[H,A u]]A U
— SA[H, uu, + 60, (uuy) 4+ SA[O2, Aflu]]u}.

We observe that

([H.allb) (n) =" ~i (sguk — sgn (k —n)) a(n)b(k — n), (34)

n

from where
0< [k < nl,

so that this commutator does not vanish. A consequence of the above monotonicity relation
is that

[n— k| <|n|.

This implies that the above bilinear form presents a nontrivial commutation which allows to
commute any derivative acting on the entire bilinear form as a differential operator acting

onto a only. In a similar fashion, we find that

[H, A-Tu] A%u (k)‘ _ -

S - )it — n) (sgk — sgn (k= n)

<O Inlla(m)| Ja(k —n)]. (35)
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Using that A° is an algebra, the fact that N gains one derivative, (35) and Sobolev

embedding, we find the estimate
[Flla0 < C (IlullZo + 1A ullaolullao + [[ullao[| Aullao) -

In particular using

4/5 1/5 4/5 1/5
lullar < Cllull{Pasllull s < Cllullys el s,

we find that
6/5 4/5 4/5 — 2
1Fllao < Cllullfs (lull % + ulifs) < Ce/ ull;.

As a consequence, we conclude that

t
GO e ()]0} < Clu(t) Lo+ () | e ar

< Ol (t') [Lao + Cllu ()17, (36)

this concludes the low-regularity estimates.

D. Boundedness in the high regularity space

To achieve the required estimate, we have to perform a finer analysis of the nonlinearity.

In particular, we need to remove the term
l[ull
from the right hand side of (30). In order to do that, we compute
NL, = -2 [ N(uu,)dtudz,

st
=2 s 02N (uuy)PPudz,
=2 ; Dn(1 = 60,)PY? (uu,) P2 0Pudz,
< Cllullm lullal|P*28}ull 2.

Similarly, invoking (14), we find that

NLy = [ 0,(1—30,)P'2A[H, fluP?Pudz,
Sl

< Ollull gz llull s PY20%u] e,
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NLs— 3 / 8,(1 — 50,)P"2A[H, fIA2uP" 2B udz,
Sl
< C||A%ul| g2 ||u]| grows | P2 03| o
For the term N L, we compute as follows
NL; =06 [ (1—68,)PY2A[H, u]d,uP*Audz,
S]
< C|0pul g2 |uf mrzs | P2 A w2

Similarly, since P20, (uu,) = mq (D) 9, (u?) with mq a Fourier multiplier of order zero

and using the classical fact that the space H*NL*, s € R is a Banach algebra we can argue

that
NLs=—6 [ (1 —60,)P20, (uu,) P*Atudz,
st
< Clllullm=llullao + 10:ullZ0) P2 A ull 2,
< Cllullgzllullao [P A" 2,
and

NLg=—6 [ (1—30,)P2A[02, f]uP'*Atudz,
S]

< Cllullgzllull ao [ P2 A% 12,
where we have used the inequality

[0zull7s < Cllullazlullao.

As a consequence, using Young’s inequality, we can find the inequality

d

5 5 o
&HUH%Q + §H7’”2A4UII%Z < Olllu (@)l llull 21" (37)

E. Finishing the proof of Theorem 2

Collecting (36), (37) we conclude the polynomial bound
el < Co (o) + ez

From here we can finish the argument as in the proof of Theorem 1 and we obtain that that

the solution is global.
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V. DISCUSSION OF THE MODELS UNDER CONSIDERATION

In this section we are going to study the applicability of the models by considering
some typical values of the dimensionless parameters and the dispersion relation that can be

inferred. Let’s consider the typical values in Granero-Belinchén & Scrobogna!®. The value

of the physical parameters are (see the book by Lannes®!):

gravity forces = 9.8m/s?,
surface tension = 72 - 107%kg/s?,
density = 1029kg/m?.
We consider a typical surface wave having
amplitude = 0.02m,

wavelength = 0.6m.

As stated in Granero-Belinchén & Scrobogna!®, this wave follows the scenario in Jiang, Ting,

Perlin & Schultz?®. In this case, the dimensionless parameters are
€~ 0.03, Ba2-1075.

According to Dias, Dyachenko & Zakharov'?, the viscosity used when modelling viscous

water waves is the eddy viscosity with value
v 1075
In this situation
§=6.8-107%

Then, we see that viscous effects appear to be slightly more relevant than surface tension
effects in this scenario. The dispersion relation for the bidirectional model was approximated

in Granero-Belinchén & Scrobogna!®. Finally, inserting the plane wave ansatz
U(LL‘, t) _ 6ﬁkx7ﬁwt7

into the linear problem for the unidirectional model (5), we find the following dispersion

relation
1 1-96ik . 9 . . 25273
w= e 11 0k (ik — 20k* — i(k/|k|) — Bik|k| — 16%k%) .
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