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Abstract. In this article, we consider a non-local variant of the Kuramoto-
Sivashinsky equation in three dimensions (2D interface). Besides showing the

global wellposedness of this equation we also obtain some qualitative properties

of the solutions. In particular, we prove that the solutions become analytic in
the spatial variable for positive time, the existence of a compact global attractor

and an upper bound on the number of spatial oscillations of the solutions. We

observe that such a bound is particularly interesting due to the chaotic behavior
of the solutions.

1. Introduction. The present work is concerned with the full 3D dynamics of a
thin fluid film falling along with a flat inclined plate. Besides gravitational effects,
we consider the action of an electric field acting normal to the plate. In particular,
for the case where the fluid lies on top of the plate (overlying films), the following
equation was derived by Tomlin, Papageorgiou & Pavliotis [29]:

ηt + ηηx + (β − 1)ηxx − ηyy − γΛ3η + ∆2η = 0 (1)

where β > 0 is the Reynolds number, 0 ≤ γ ≤ 2 measures the electric field strength
and Λ is a non-local operator corresponding to the electric field effect given on the
Fourier variables as

Λ̂η = |ξ|η̂(ξ) = (ξ2
1 + ξ2

2)0.5η̂(ξ).

We observe that the term corresponding to the electric field, −γΛ3(η), always has
a destabilizing effect, while the term (β − 1)ηxx can be stabilizing or destabilizing
depending on the value of the Reynolds number. Namely, for subcritical Reynolds
numbers 0 < β < 1, (β−1)ηxx is a stabilizing term, while for supercritical Reynolds
numbers 1 < β, it has a destabilizing effect.

Since falling films have received much attention from many authors, a wide va-
riety of results about their nonlinear stability can be found. In particular, the 2D
case (1D interface) was first studied by González & Castellanos [11]. These authors
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identified a critical electric field strength for sub-critical Reynolds number flows
above which instability was found. Later on, Tseluiko & Papageorgiou also consid-
ered the 2D case (1D interface). In particular, Tseluiko & Papageorgiou performed
a numerical study of the 1D analog of (1) and found attractors for the dynamics
for certain values of the physical parameters [32]. The same authors provided an-
alytical bounds on the energy of the solutions and the dimension of the attractor
[33] (see also [31] for the case of vertical film flow). Compared with the case of 1D
interface, equation (1) generalizes previous works by taking transverse dynamics
into consideration.

Equation (1) is similar to the well-known Kuramoto-Sivashinsky equation in one
dimension,

ηt + ηηx = −ηxx − ηxxxx (KS)

which is a model appearing in several applications. For instance, LaQuey, Mahajan,
Rutherford & Tang [20] obtained (KS) as a model of collisional trapped-ion mode in
tokamak geometry (see also Cohen, Krommes, Tang & Rosenbluth [3]), Kuramoto
& Tsuzuki [19] considered the possible instabilities of a two components reaction-
diffusion system and also recovered (KS). Furthermore, Sivashinsky [26] (see also
the companion paper by Michelson & Sivashinsky [22]) derived (KS) as a model of
the evolution of a disturbed plane flame front. Later on, Sivashinsky & Michelson
[27] linked (KS) to the evolution of a film of viscous liquid flowing down a vertical
plane. Several equations sharing some similarities where obtained by Topper &
Kawahara [30], Lee & Chen [21], Coward & Hall [6], Frenkel & Indireshkumar [9]
and by James & Wilczek [17] when considering falling fluid films, plasma turbulence
and cellular suspensions.

Equation (KS) has rich dynamics. Indeed, applying the Fourier transformation
to the linear part of (KS),

∂tη̂(ξ) = (ξ2 − ξ4)η̂(ξ),

it results in the stability of high frequencies (|ξ| > 1) and instability of low frequen-
cies (0 < |ξ| < 1). Specifically, the term ηxx leads to instability at large scales; the
dissipative term ηxxxx is responsible for damping at small scales. Then we see that
for general initial data, the linear problem is unstable and leads to an exponential
growth of certain frequencies. When the nonlinear term ηηx is added, stabiliza-
tion occurs as this term transfers energy from the long wavelengths to the short
wavelengths and balances the exponential growth due to the linear parts. This in-
teraction between the unstable linear parts and a nonlinearity who carries energy
between frequencies makes the solution of (KS) to develop chaotic dynamics for
certain values of the parameters.

This nonlinear stabilization of the Kuramoto-Sivashinsky equation with L-periodic
boundary conditions,

η(x+ L, t) = η(x, t), for all x and t,

was considered mathematically by Nicolaenko, Scheurer & Temam in [23] under the
hypothesis that the initial data has odd symmetry: η0(x) = −η0(−x). After that,
Ilyashenko [15], Collet, Eckmann, Epstein & Stubbe [5] and Goodman [12] found
new bounds for the L2-norm of the solution of the KS equation without oddness
condition for the initial data. The fact that the solutions are uniformly bounded
leads us to the question of the optimal bound for the radius of the absorbing set in
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L2 for arbitrarily large periods L. In that regards, the known bounds are

lim sup
t→∞

(∫ L

0

η2dx

)0.5

≤ O(Lp)

where the original p = 5/2 [23] was later improved to p = 8/5 [5] and finally to
p = 3/2 [1]. The global bound has been upgraded recently by Giacomelli & Otto
[10], where they proved the bound

lim sup
t→∞

(∫ L

0

η2dx

)0.5

≤ o(L1.5).

We observe that the conjectured bound is O(L0.5).
The analyticity of solutions is of great interest not only for KS equation, but also

for other nonlinear partial differential equations. For instance, we refer the reader
to the seminar paper by Foias & Temam [8] where they show that solutions of the
Navier-Stokes equations are analytic in time with values in a Gevrey class of func-
tions (in space). This technique has been extended largely to other nonlinear para-
bolic equations and, in particular, Collet, Eckmann, Epstein & Stubbe [4] addressed
the spatial analyticity of solutions of one-dimensional Kuramoto-Sivashinsky equa-
tion. They showed that at large time the solutions are analytic in a strip around
the real axis and also gave a rigorous lower bound for its width, i.e. the radius of
analyticity is proportional to L−16/25. Grujić [14] used a Gevrey class technique to
obtain a neighborhood in the global attractor of the set of all stationary solutions
in which the radius of analyticity is independent of L. This latter result shed some
light on a conjecture in [4] that asks whether there is a α > 0, independent of L,
such that the solutions of the KS equation are analytic in space in the complex
strip {x+ is, s < α} for sufficiently large time. In higher dimensions, the literature
on estimating the radius of analyticity for the Kuramoto-Sivashinsky-type equa-
tions is more scarce. For example, we refer to the works by Pinto [24, 25] where,
among other properties, the author studied the time analyticity of a variant of the
two-dimensional KS equation. More recently, Ioakim & Smyrlis [16] also studied
the analyticity properties of solutions of Kuramoto-Sivashinsky type equations and
some related systems.

The goal of the present work is to mathematically study the initial value problem
for nonlocal two-dimensional Kuramoto-Sivashinsky-type equation with periodic
boundary conditions and initial data with zero mean∫ L

0

∫ L

0

η0(x, y)dxdy = 0.

Of course, the zero average condition is propagated by the PDE. We organize this
paper as follows. In section 2, we give some notations, definitions and classical
results. In section 3, we show the global existence of solutions to initial value
problem (1) and in section 4, we prove the existence of an absorbing set in L2 and
in higher Sobolev norms. In section 5, we prove that these solutions are analytic
in a strip based on a priori estimates in a Gevrey class. Finally, in section 6, we
establish a bound for the number of spatial oscillations which are a manifestation
of the spatial chaos that this PDE evidences.
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1.1. Notation. We will use C to denote a universal constant that can change from
one line to another. We will make frequent use of the usual homogeneous Sobolev
spaces Ḣs:

Ḣs(T2) =
{
η ∈ L2(T2) :

∑
ξ∈Z2

|ξ|2s|η̂(ξ)|2 <∞
}

where η̂(ξ) is the Fourier series of η :

η̂(ξ)
def
= (2π)−2

∫
T2

e−iξ1x−iξ2yη(x, y)dxdy, ξ = (ξ1, ξ2) ∈ Z2.

2. Rescaling of the equation. We assume that η is L-periodic,

η(x+ L, y) = η(x, y), η(x, y + L) = η(x, y),

and define T2 = [0, 2π]2 and λ = 2π
L . We rescale our variables according to

x̃ = λx, ỹ = λy, η̃ = λ−1η, t̃ = λ2t,

which gives

λ3η̃t + λ3η̃η̃x + (β − 1)λ3η̃xx − λ3η̃yy − γλ4Λ3(η̃) + λ5∆2η̃ = 0.

Then we obtain

η̃t + η̃η̃x + (β − 1)η̃xx − η̃yy − γλΛ3(η̃) + λ2∆2η̃ = 0. (2)

Denoting δ = γλ and ε = λ2, we can equivalently consider the following initial-value
problem

ηt + ηηx + (β − 1)ηxx − ηyy − δΛ3(η) + ε∆2η = 0, (x, y) ∈ T2, t > 0 (3)

with initial data
η(x, y, 0) = η0(x, y), (x, y) ∈ T2.

In what follows, we will drop the tilde notation.

3. Global existence of strong solutions. In this section, we will state the global
well-posedness result of the initial-value problem (3):

Theorem 3.1. If η0 ∈ H2(T2), then for every 0 < T <∞ the initial value problem
(3) has a unique solution

η ∈ C([0, T ];H2(T2)) ∩ L2(0, T ;H4(T2)).

Proof. Step 1 : L2 estimate. We multiply (3) by η and integrate by parts to
obtain

1

2

d

dt
‖η‖2L2 = (β − 1)‖ηx‖2L2 − ‖ηy‖2L2 + δ‖Λ 3

2 η‖2L2 − ε‖∆η‖2L2

≤ C(β, δ)‖η‖2
H

3
2
− ε‖η‖2H2

≤ C(β, δ)‖η‖3/2H2 ‖η‖1/2L2 − ε‖η‖2H2

By Young’s inequality, we find that

d

dt
‖η‖2L2 ≤ −ε‖∆η‖2L2 + C(ε, β, δ)‖η‖2L2

where C(ε, β, δ) is a constant depending on ε, β, δ and may change line by line. An
application of Gronwall’s inequality leads us to

‖η‖2L2 + ε

∫ t

0

exp (C(ε, β, δ) (t− s)) ‖∆η‖2L2ds ≤ ‖η0‖2L2 exp(C(ε, β, δ)t).
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Hence,

‖η‖2L2 + ε

∫ t

0

‖η‖2H2ds ≤ ‖η0‖2L2 exp(C(ε, β, δ)t).

Step 2 : H1 estimate. Now we multiply (3) by −∆η and integrate by parts to
obtain that

1

2

d

dt
‖η‖2H1 ≤ (β − 1)‖ηx‖2H1 − ‖ηy‖2H1 + δ‖Λ 3

2 η‖2H1

− ε‖∆η‖2H1 + ‖η‖Lp‖∆η‖Lq‖η‖H1

where we used Hölder’s inequality and 1
p + 1

q = 1
2 . By Sobolev embedding and the

Gagliardo-Nirenberg-Sobolev inequality, we have

‖η‖Lp ≤ ‖η‖
H

1− 2
p
≤ C‖η‖1−aL2 ‖∆η‖aH1 , ‖∆η‖Lq ≤ ‖η‖

H
3− 2

q
≤ C‖η‖1−bL2 ‖∆η‖bH1

where a = 1
3 (1− 2

p ), b = 1
3 (3− 2

q ) and a+ b = 1, so we obtain that

‖η‖Lp‖∆η‖Lq‖η‖H1 ≤ C‖η‖L2‖∆η‖H1‖η‖H1

Using the same method as in step 1 and Young’s inequality, we get

1

2

d

dt
‖η‖2H1 ≤ −

3ε

4
‖∆η‖2H1 + C(ε, β, δ)‖η‖2H1 + C‖η‖L2‖η‖H1‖∆η‖H1

≤ −3ε

4
‖∆η‖2H1 + C(ε, β, δ)‖η‖2H1 +

1

2Cε
‖η‖2L2‖η‖2H1 +

ε

2
‖∆η‖2H1

≤ − ε
4
‖∆η‖2H1 +

(
C(ε, β, δ) +

1

2Cε
‖η‖2L2

)
‖η‖2H1 .

Notice that from step 1, we already get L2 estimate

‖η‖2L2 ≤ ‖η0‖2L2 exp(C(ε, β, δ)t) ≤ ‖η0‖2L2 exp(C(ε, β, δ)T ′), ∀t < T ′,

hence,

d

dt
‖η‖2H1 ≤ −

ε

2
‖∆η‖2H1 + C(ε, β, δ, ‖η0‖L2 , T ′)‖η‖2H1 .

Using Gronwall’s inequality, we find that

‖η‖2H1 +
ε

2

∫ t

0

exp (C(ε, β, δ, ‖η0‖L2 , T ′)(t− s)) ‖∆η‖2H1ds

≤ ‖η0‖2H1 exp (C(ε, β, δ, ‖η0‖L2 , T ′)t) .

In particular,

‖η‖2H1 +
ε

2

∫ t

0

‖∆η‖2H1ds ≤ ‖η0‖2H1 exp (C(ε, β, δ, ‖η0‖L2 , T ′)t) .

Step 3 : H2 estimate. We multiply (3) by ∆2η and integrate by parts to obtain
that

1

2

d

dt
‖η‖2H2≤(β − 1)‖ηx‖2H2 − ‖ηy‖2H2 + δ‖Λ 3

2 η‖2H2

− ε‖∆η‖2H2 + ‖η‖Lp‖∆η‖W 1,q‖η‖H2

where we used Hölder’s inequality and 1
p + 1

q = 1
2 . Using the same method as in

the above steps and H1 estimate obtained in Step 2, we can obtain

d

dt
‖η‖2H2 ≤ −

ε

2
‖∆η‖2H2 +

(
C(ε, β, δ) +

1

ε
‖η‖2H1

)
‖η‖2H2
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≤ − ε
2
‖∆η‖2H2 + C(ε, β, δ, ‖η0‖H1 , T ′)‖η‖2H2 .

Using Gronwall’s inequality again, we obtain that

‖η‖2H2 +
ε

2

∫ t

0

‖∆η‖2H2ds ≤ ‖η0‖2H2 exp (C(ε, β, δ, ‖η0‖H1 , T ′)t) . (4)

Step 4 : Uniqueness. This step is devoted to uniqueness and the global existence
will be given in step 5. Uniqueness of the solutions is proven by contradiction, i.e.
assuming that there exists two solutions of the problem (3), η1 and η2, corresponding
to the same initial data η0. We denote their difference by η. Then we have

η
t

+
1

2

(
η2

1 − η2
2

)
x

+ (β − 1)η
xx
− η

yy
− δΛ3(η) + ε∆2η = 0. (5)

As the proof of L2 estimate in step 1, we multiply (5) by η and integrate by parts:

1

2

d

dt
‖η‖2L2 = (β − 1)‖η

x
‖2L2 − ‖η

y
‖2L2 + δ‖Λ 3

2 (η)‖L2 − ε‖∆η‖2L2 −
∫
T2

1

2
(η2

1 − η2
2)xη

≤ C(ε, β, δ)‖η‖2L2 −
ε

4
‖∆η‖2L2 +

1

2
‖η1 + η2‖L∞‖η‖H1‖η‖L2

≤ C(ε, β, δ)‖η‖2L2 −
ε

4
‖∆η‖2L2 +

ε

4
‖η‖2H1 +

1

4ε
‖η1 + η2‖2L∞‖η‖2L2

≤
(
C(ε, β, δ) +

1

4ε
‖η1 + η2‖2L∞

)
‖η‖2L2

≤
(
C(ε, β, δ) +

1

2ε

(
‖η1‖2L∞ + ‖η2‖2L∞

))
‖η‖2L2

Using Gronwall’s inequality, we have that

‖η‖2L2 ≤ ‖η
0
‖2L2 exp

(
C(ε, β, δ)t+

1

ε

∫ t

0

‖η1‖2L∞ + ‖η2‖2L∞
)
.

From step 1, we already have that

ε

∫ t

0

‖η1‖2H2ds ≤ ‖η0‖2L2 exp (C(ε, β, δ)t) ,

and

ε

∫ t

0

‖η2‖2H2ds ≤ ‖η0‖2L2 exp (C(ε, β, δ)t) .

Thus, by Sobolev embedding, the uniqueness of solution in C(0, T ;H2(T2)) follows
from the inequality

‖η‖2L2 ≤ ‖η
0
‖2L2 exp (exp (C(δ, ε, β, ‖η0‖L2)t)) .

The uniqueness in L2(0, T ;H4(T2)) can be obtained by applying the same procedure
as above. Indeed, we can get a similar estimate as (4)

‖η‖2H2 +
ε

2

∫ t

0

‖∆η‖2H2ds ≤ ‖η0‖2H2 exp
(
C(ε, β, δ, ‖η0‖H1 , T ′)t

)
.

Therefore, the uniqueness holds on.
Step 5 : Existence of solution. The proof of local existence is standard. Let us
first consider a positive, symmetric mollifier Jε′ (such as the periodic heat kernel),
to approximate the initial data

ηε′(0) = Jε′ ∗ η0.
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We define the following operator:

Φε′ηε′(t) := Stηε′(0) +
1

2

∫ t

0

St−s∂x(η2
ε′(s))ds

with Stη=e−t((β−1)∂2
x−∂

2
y−δΛ

3+ε∆2)η=F−1
(ξ1,ξ2)→(x,y)

(
e−t((1−β)ξ21+ξ22−δ|ξ|

3+ε|ξ|4)
)
∗η.

By Duhamel’s formula, a fixed point of this operator is the solution of the equation
(3) with the regular initial data ηε′(0).

We shall prove that Φε′ is actually a contraction mapping on a closed ball. Define
a closed ball BTε′,∗ :

BTε′,∗ := {ηε′ ∈ C([0, Tε′,∗];H
4(T2)); ‖ηε′‖L∞(0,Tε′,∗;H

4) ≤ 2C‖ηε′(0)‖H4 + 1 ≤ R0}.

Let ηε′ ∈ BTε′,∗ , for the contractivity, the following two estimates are basically
needed:

‖Stηε′(0)‖H4 ≤ C‖ηε′(0)‖H4

and ∥∥∥∥∫ t

0

St−s∂x(η2
ε′(s))ds

∥∥∥∥
L∞(0,Tε′,∗;H

4(T2))

≤ CTαε′,∗‖ηε′‖2L∞(0,Tε′,∗;H
4) (6)

for some well chosen Tε′,∗ > 0 and certain α > 0 fixed. The first one estimate is
easy. Indeed, notice that the term (1− β)ξ2

1 + ξ2
2 − δ|ξ|3 + ε|ξ|4 has a lower bound

at some ξ, which implies that |e−t((1−β)ξ21+ξ22−δ|ξ|
3+ε|ξ|4)| ≤ C for t < Tε′,∗ and

moreover, we have∣∣∣e−t((1−β)ξ21+ξ22−δ|ξ|
3+ε|ξ|4) (t|ξ|4) 3

4

∣∣∣ ≤ C(ε, β, δ), for t < Tε′,∗.

For the second estimate involving the nonlinear term, using Plancherel theorem
twice and the estimate above, we get that∫ t

0

‖St−s∂x(η2
ε′(s))‖H4ds ≤ C

∫ t

0

‖e−(t−s)((1−β)ξ21+ξ22−δ|ξ|
3+ε|ξ|4)|ξ|5η̂2

ε′‖l2ds

≤ C
∫ t

0

‖e−(t−s)((1−β)ξ21+ξ22−δ|ξ|
3+ε|ξ|4)(t− s)3/4|ξ|3 |ξ|2

(t− s)3/4
η̂2
ε′‖l2 ds

≤ C(ε, β, δ)

∫ t

0

1

(t− s)3/4
‖|ξ|2η̂2

ε′‖l2 ds

≤ C(ε, δ, β)

∫ t

0

1

(t− s)3/4
‖η2
ε′‖H2 ds

≤ C(ε, δ, β)T
1/4
ε′,∗‖ηε′‖

2
L∞(0,Tε′,∗;H

4), for t < Tε′,∗

where we use the fact that H2(T2) is an algebra. Combining the estimates above,
we thus obtain that

‖Φε′ηε′(t)‖H4 ≤ C‖ηε′(0)‖H4 + C(ε, δ, β)T
1/4
ε′,∗‖ηε′‖

2
L∞(0,T∗;H4)

≤ R0

2
+ C(ε, δ, β)T

1/4
ε′,∗R

2
0

≤ R0
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provided that Tε′,∗ <
1

(2C(ε,δ,β)R0)4 . Now, let ηε′,1, ηε′,2 ∈ BTε′,∗ , we have

‖Φε′ηε′,1(t)− Φε′ηε′,2(t)‖H4 ≤
∫ t

0

‖St−s∂x(η2
ε′,1 − η2

ε′,2)‖H4ds

≤C(ε, δ, β)

∫ t

0

1

(t− s)3/4
‖η2
ε′,1 − η2

ε′,2‖H2 ds

≤C(ε, δ, β)T
1/4
ε′,∗‖ηε′,1 − ηε′,2‖L∞(0,Tε′,∗;H

2)(
‖ηε′,1‖L∞(0,Tε′,∗;H

2) + ‖ηε′,2‖L∞(0,Tε′,∗;H
2)

)
≤C(ε, δ, β)T

1/4
ε′,∗R0‖ηε′,1 − ηε′,2‖L∞(0,Tε′,∗;H

2),

and Φε′ is a contraction mapping on ball BTε′,∗ as soon as Tε′,∗ <
1

(2C(ε,δ,β)R0)4 .

Therefore, for ε′ fixed, there exists a unique solution ηε′ in C(0, Tε′,∗;H
4). Thus,

we get immediately a blow-up criterion: if Tε′,∗ < +∞, then lim sup
t→Tε′,∗

‖ηε′‖H4 = +∞.

Moreover, ηε′ verifies the same energy estimates as in step 1-3, and we can in fact
reach an H4 estimate for ηε′ , i.e.

‖ηε′(t)‖2H4 ≤ Cε′‖η0‖2H2 exp (C(ε, β, δ, ε′, ‖η0‖H2 , Tε′,∗)t) , for t < Tε′,∗,

which implies that Tε′,∗ = +∞ by the contrapositivity of the blow-up criterion.
Therefore, ηε′ is a global solution.

Now, using a priori estimates for ηε′ again, we have

‖ηε′‖L∞(0,T ′;H2)∩L2(0,T ′;H4) ≤ ‖η0‖2H2 exp (C(ε, β, δ, ‖η0‖H1 , T ′)) .

In addition, for any ε′, ε′′, we can do the same estimates as in the uniqueness step
to get

‖ηε′ − ηε′′‖L∞(0,T ′;H2)∩L2(0,T ′;H4)

≤ ‖ηε′(0)− ηε′′(0)‖2H2 exp (C(ε, β, δ, ‖ηε′(0)− ηε′′(0)‖H1 , T ′)) .

Thus ηε′ is a Cauchy sequence which converges to a limit η. It is easy to check that
η is a solution of equation (3). Therefore, we conclude the existence of solution in

η ∈ L∞(0, T ;H2) ∩ L2(0, T ;H4)

for arbitrary long time T .
Step 6 : Endpoint continuity in time. To conclude the endpoint continuity, we
can perform a standard argument using the parabolic gain of regularity L2(0, T ;H4).
Indeed, we can take 0 < σ � 1 as small as desired and there exists a 0 < σ′ < σ
such that u(σ′) ∈ H4. Repeating the same argument as before, we find a solution

ησ ∈ L∞(σ′, T ;H4) ∩ C([σ′, T ], H2).

Because of the uniqueness of solution we obtain the continuity of the original solu-
tion

η ∈ C((0, T ], H2).

Finally, the continuity at the origin is a consequence of the energy estimates.
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4. Large time dynamics. The goal of this section is to prove uniform bounded-
ness of solutions η ∈ L∞([0,∞);L2(T2)). In other words, we establish the existence
of an absorbing ball in L2 by collecting global bounds showing the dissipative char-
acter of the equation. We start by proving the following two Gagliardo-Nirenberg
inequalities.

Lemma 4.1. For smooth enough periodic functions with zero mean, we have that
the following two inequalities hold true

‖∇η‖2L4(T2) ≤ C‖η‖L∞(T2)‖∆η‖L2(T2),

‖∆η2‖L2(T2) ≤ C‖η‖L∞(T2)‖∆η‖L2(T2).

Proof. We start proving the first inequality:

‖∇η‖4L4(T2) =

∫
T2

(∇η · ∇η)
2

= −
∫
T2

η∇ ·
(
∇η|∇η|2

)
= −

∫
T2

η∆η|∇η|2 + η∇η · ∇|∇η|2

≤ C‖η‖L∞(T2)‖∆η‖L2(T2)‖|∇η|2‖L2(T2)

≤ C‖η‖L∞(T2)‖∆η‖L2(T2)‖∇η‖2L4(T2).

Therefore, we conclude our result by noticing that

‖∆η2‖L2(T2) ≤ C‖η∆η + |∇η|2‖L2(T2)

≤ C‖η∆η‖L2(T2) + ‖|∇η|2‖L2(T2)

≤ C‖η‖L∞(T2)‖∆η‖L2(T2) + ‖∇η‖2L4(T2)

≤ C‖η‖L∞(T2)‖∆η‖L2(T2).

Remark 1. We observe that the previous constants C can be computed explicitly.

The rest of this section is devoted to prove that the solutions of problem (3)
remain uniformly bounded in L2. The following background flow method was first
used by Nicolaenko, Scheurer, & Temam [23] and then improved by Collet, Eck-
mann, Epstein & Stubbe [5], Goodman [12] and Bronski & Gambill [1]. Before
stating the main result of this section, let us first define the following subspace of
H2(T2) :

H2
od(T2) = {η ∈ H2(T2) : −η(−x, y) = η(x, y),∀(x, y) ∈ T2}

In terms of the rigorous results, a global bound on the solution is given by the
following theorem :

Theorem 4.2. Let η0 ∈ H2
od(T2). Then the solution η of the initial-value problem

(3) satisfies

lim sup
t→∞

‖η(t)‖L2(T2) ≤ Rε,δ,β . (7)

where Rε,δ,β depends on ε, δ, β.
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Proof. The proof is based on the construction of a Lyapunov functional, F(t), such
that

d

dt
F(t) ≤ 0,

if

F(t) ≥ Rε,δ,β ,
i.e. implying the existence of an absorbing set in L2. We first let φ be a smooth, 2π-
periodic time independent function, which we will choose later. Then, we multiply
equation (3) by η − φ, and integrate by parts:∫ ∫ (

(η − φ)t + ηηx + (β − 1)ηxx − ηyy − δΛ3(η) + ε∆2η
)

(η − φ) = 0,

thus,

1

2

d

dt
‖η − φ‖2L2 +

1

2

∫
T2

φxη
2 − (β − 1)‖ηx‖2L2 + ‖ηy‖2L2 + ε‖∆η‖2L2

−
∫
T2

(β − 1)ηxxφ+

∫
T2

ηyyφ− δ
∫
T2

Λ3η(η − φ)−
∫
T2

ε∆η∆φ = 0.

For the term corresponding to the nonlocal self-adjoint operator Λ, we have that∫
T2

Ληφ =

∫
T2

ηΛφ.

Hence, by the Young’s inequality and the Hölder inequality, we have that,

1

2

d

dt
‖η − φ‖2L2

=−
∫
T2

φx
2
η2 + (β − 1)‖ηx‖2L2 − ‖ηy‖2L2 − ε‖∆η‖2L2 + δ

∫
T2

Λ3ηη

+ (1− β)

∫
T2

ηxφx +

∫
T2

ηyφy − δ
∫
T2

Λ3ηφ+

∫
T2

ε∆η∆φ

≤−
∫
T2

φx
2
η2 + 2|β − 1|‖ηx‖2L2 −

1

2
‖ηy‖2L2 −

ε

2
‖∆η‖2L2 + δ‖Λ 3

2 η‖2L2

+
1

2
‖η‖2L2 + |β − 1|‖φx‖2L2 +

1

2
‖φy‖2L2 +

ε

2
‖∆φ‖2L2 +

δ2

2
‖φ‖2H3

(8)

Now, in order to estimate the right-hand side of (8), let us first define the following
function

f(z) :=
1

2
+ 2(β + 2)z2 + δz3 − ε

4
z4, z ≥ 0.

Observe that f(z) has at most three zeros. Since ε > 0, we find that f(z) is bounded
and has global maximum 1

2 + (8(β+ 2)ε+ 4δ2)δ2/ε3 at point z0 = 2δ/ε. Then using
twice Plancherel theorem, we get that

1

2
‖η‖2L2 + 2|β − 1|‖ηx‖2L2 −

1

2
‖ηy‖2L2 −

ε

4
‖∆η‖2L2 + δ‖Λ 3

2 η‖2L2

=

(
1

2
+ 2|β − 1||ξ1|2 −

1

2
|ξ2|2 + δ|ξ|3 − ε

4
|ξ|4
)
‖η̂(ξ)‖2L2

ξ

≤f(z0)‖η‖2L2 =

(
1

2
+ (8(β + 2)ε+ 4δ2)δ2/ε3

)
‖η‖2L2 := C(β, δ, ε)‖η‖2L2 .
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where η̂(ξ) is the Fourier series of η and ξ = (ξ1, ξ2) ∈ Z2. Inserting this relation
into (8), we obtain that

1

2

d

dt
‖η − φ‖2L2(T2)

≤−
∫
T2

φx
2
η2 + C(β, δ, ε)‖η‖2L2 −

ε

4
‖∆η‖2L2(T2)

+ |β − 1|‖φx‖2L2 +
1

2
‖φy‖2L2 +

ε

2
‖∆φ‖2L2 +

δ2

2
‖φ‖2H3

=− ε

4
‖∆η‖2L2(T2) − ‖η‖

2
L2 +

∫
T2

(
C(β, δ, ε) + 1− φx

2

)
η2 + F (φ)

=− ε

4
‖∆η‖2L2(T2) − ‖η‖

2
L2 +

∫
T2

(
λ− φx

2

)
η2 + F (φ),

(9)

where

λ = C(β, δ, ε) + 1,

and

F (φ) = |β − 1|‖φx‖2L2 +
1

2
‖φy‖2L2 +

ε

2
‖∆φ‖2L2 +

δ2

2
‖φ‖2H3 .

Now, we choose φ(x, y) such that

φx
2

= −λ
∑

0<|ξ1|≤A/ε

e−ixξ1 ,

which is possible since the right-hand side has zero horizontal mean value. Here, A
is a constant independent of ε, which will be determined later.

Then, we claim that

|
∫
T2

(
λ− φx

2

)
η2| ≤ ε

8
‖∆η‖2L2(T2). (10)

Indeed, with the choice of φ, we have that∫
T2

(
λ− φx

2

)
η2 =

∫
T2

λ
(
1 +

∑
0<|ξ1|≤A/ε

e−ixξ1
)
η2

= λ
∑

|ξ1|≤A/ε

∫
T2

e−ixξ1η2

= λ
∑

|ξ1|≤A/ε

η̂2(ξ1, 0).

Since the odd symmetry in the x-direction is preserved by the equation and η0 ∈
H2

od(T2), we have the fact that η2(0, y, t) = 0 for any y ∈ T and t ≥ 0, so that∑
ξ1∈Z

η̂2(ξ1, 0) = 0,

which implies ∑
|ξ1|≤A/ε

η̂2(ξ1, 0) = −
∑

|ξ1|>A/ε

η̂2(ξ1, 0).
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Then, by Cauchy-Schwartz, we bound∣∣∣∣∣∣
∑

|ξ1|≤A/ε

η̂2(ξ1, 0)

∣∣∣∣∣∣ ≤
∑

|ξ1|>A/ε

|ξ1|2
∣∣∣η̂2(ξ1, 0)

∣∣∣ 1

|ξ1|2

≤ ε

A

∑
|ξ1|>A/ε

|ξ1|2
∣∣∣η̂2(ξ1, 0)

∣∣∣ 1

|ξ1|

≤ ε

A

( ∑
|ξ1|>A/ε

|ξ1|4
∣∣∣η̂2(ξ1, 0)

∣∣∣2 ) 1
2
( ∑
ξ1>A/ε

1

|ξ1|2
) 1

2

≤ Cε

A

( ∑
ξ2∈Z

∑
ξ1∈Z

(
|ξ1|2 + |ξ2|2

)2 ∣∣∣η̂2(ξ1, ξ2)
∣∣∣2 ) 1

2

≤ Cε

A
‖∆(η2)‖L2(T2) ≤

Cε

A
‖∆η‖2L2(T2),

where we have used Lemma 4.1 in the last step as well as the Sobolev embedding
H2(T2) into L∞(T2). Hence,

|
∫
T2

(
λ− φx

2

)
η2| ≤ λCε

A
‖∆η‖2L2(T2)

The choice A > 8Cλ justifes the claim (10).

We consider the functional

F(t) = ‖η − φ‖2L2(T2).

Inserting this into (9), we obtain

1

2

d

dt
‖η − φ‖2L2(T2) ≤ −

ε

8
‖∆η‖2L2(T2) − ‖η‖

2
L2 + F (φ)

Hence
1

2

d

dt
‖η − φ‖2L2(T2) ≤ −‖η − φ‖

2
L2(T2) + ‖φ‖2L2 + F (φ), (11)

or, equivalently,
1

2

d

dt
F ≤ −F + ‖φ‖2L2 + F (φ),

which allows us to conclude the uniform boundedness of F . Indeed, using Gronwall
inequality, we immediately obtain

‖η − φ‖2L2(T2) ≤
(
‖η0 − φ‖2L2(T2) − ‖φ‖

2
L2 − F (φ)

)
e−2t + ‖φ‖2L2 + F (φ).

where

F (φ) = |β − 1|‖φx‖2L2 +
1

2
‖φy‖2L2 +

ε

2
‖∆φ‖2L2 +

δ2

2
‖φ‖2H3 .

Thus, if 1� ‖η(t)‖L2 , we conclude that

‖η‖L2(T2) ≤ ‖η − φ‖L2(T2) + ‖φ‖L2(T2)

≤
(
‖η0 − φ‖2L2(T2) + ‖φ‖2L2 + F (φ)

) 1
2

e−t + 2‖φ‖L2 + F (φ)
1
2

≤
(
‖η0‖L2 + 2‖φ‖L2 + (β + 2)‖φ‖H1 +

√
ε‖φ‖H2 + δ‖φ‖H3

)
e−t

+ 2‖φ‖L2 + (β + 2)‖φ‖H1 +
√
ε‖φ‖H2 + δ‖φ‖H3

:= Rε,δ,β .
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This completes the proof of Theorem 4.2.

Similarly as we have obtained that there exists an absorbing set in L2, we can
conclude the existence of an absorbing set in higher Sobolev norms.

Theorem 4.3. Let η0 ∈ H2
od(T2). Then the solution η of the initial-value problem

(3) satisfies

lim sup
t→∞

‖η(t)‖H2(T2) ≤ R′ε,δ,β .

where R′ε,δ,β is a constant depending on ε, δ, β.

Proof. Recalling the existence of an absorbing set in the L2-norm and the regu-
larity results in Theorem 3.1, so the proof is straightforword by using a bootstrap
argument.

We first show that there exists an absorbing set in the H1-norm. Inequality (7)
implies that for a T > 0 large enough, we have

‖η(t)‖L2(T2) ≤ Rε,β,δ + 1, ∀t > T.

Combining this inequality with the L2 energy estimate in the proof of Theorem 3.1,
we obtain that

‖η‖2L∞([0,T ];L2) ≤ ‖η0‖2L2 exp (C(ε, β, δ)T ) ,

which results in that there exists a constant depending on initial data, δ and ε such
that

max
0≤t<∞

‖η(t)‖2L2(T2) ≤ C(‖η0‖L2 , ε, β, δ).

We multiply (3) by −∆η and integrate by parts to obtain that

1

2

d

dt
‖η‖2H1 ≤ (β − 1)‖ηx‖2H1 − ‖ηy‖2H1 + δ‖Λ 3

2 η‖2H1 − ε‖∆η‖2H1 + ‖η‖2L4‖∆ηx‖L2

≤ cε‖η‖4L4 −
ε

2
‖η‖2H3 + |β − 1|‖ηx‖2H1 − ‖ηy‖2H1 + δ‖Λ 3

2 η‖2H1

≤ Cε,δ,η0‖η‖2H1 −
ε

2
‖η‖2H3 + |β − 1|‖ηx‖2H1 − ‖ηy‖2H1 + δ‖Λ 3

2 η‖2H1 ,

≤ Cε,β,δ,η0‖η‖2H1 −
ε

4
‖η‖2H3 + Cε,δ‖η‖2L2

≤ − ε
8
‖η‖2H3 + Cε,β,δ,η0

≤ − ε

16
‖η‖2H1 −

ε

16
‖η‖2H3 + Cε,β,δ,η0 .

where we used the Plancherel Theorem, the Poincaré inequality and the Sobolev
inequality

‖η‖L4 ≤ C‖η‖H1/2 ≤ C‖η‖1/2L2 ‖η‖1/2H1 .

It follows that

d

dt
‖η‖2H1 +

ε

8
‖η‖2H1 ≤ C(‖η0‖L2 , ε, β, δ).

Using the Gronwall inequality, we immediately obtain the uniform bound

‖η(t)‖2H1 ≤ C(‖η0‖H1 , ε, β, δ).

Recall that the H2 energy estimate is

d

dt
‖η‖2H2 +

ε

2
‖η‖2H4 ≤

(
C(ε, β, δ) +

1

ε
‖η‖2L∞

)
‖η‖2H1 ,
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so we can mimic the previous proof to obtain that there exists an absorbing set in
H2. The proof is completed.

Remark 2. It is worth to point out that in the two theorems above, we show the
large time dynamic of the equation for initial data belonging to H2

od(T2), which
requires an odd symmetry condition in x-direction. Since the odd symmetry in x-
direction is preserved by equation (3), working in H2

od(T2) is reasonable. To remove
this condition, we require more regularity on the test function φ and this causes the
case to become more delicate to handle. This case will be shown in our upcoming
work.

5. Analyticity. The aim of this section is to show instant analyticity for the solu-
tions of (3). We shall prove that the solutions of (3) are analytic in a strip. In order
to do this, we use the method developed by Collet, Eckmann, Epstein & Stubbe
in [4] (see also [8]). Roughly speaking, our proof is based on a priori estimates for
functions in certain Gevrey class.

Given a function σ(t) positive (see its formula explicit below), we consider the
weighted exponential operators

eσ(t)Λη =
∑
ξ∈T2

η̂(ξ)eσ(t)|ξ|eiξ·x

for functions in the space

G := {η ∈ L2(T2) :
∑
ξ∈Z2

e2σ(t)|ξ||η̂(ξ)|2 <∞}.

We observe that the functions in G are analytic. We also define the inner product
and norm on this Hilbert space by

〈µ, η〉σ(t) =

∫
T2

eσ(t)Λµeσ(t)Λη = 4π2
∑
`∈Z2

e2σ(t)|`|µ̂(`)η̂(`),

‖η‖2σ(t) = ‖eσ(t)Λη‖2L2 .

With these previous definitions, we can state the main result of this section.

Theorem 5.1. Let η0 be given in H2
od(T2). Then, there exists T0 depending on

η0, ε, β, δ such that the solution of (3) satisfies

‖eσ(t)Λη(t)‖2L2 ≤ 1 + 2C2
ε,β,δ,η0 , ∀ t > 0

where σ(t) = min{tanh(t), tanh
(
T0

2

)
}. In particular, it becomes analytic for t > 0.

Before proving theorem 5.1, we first state some auxiliary lemmas:

Lemma 5.2. For every b > a ≥ 0,

‖Λ a
2 η‖2σ(t) ≤ ‖Λ

b
2 η‖

2a
b

σ(t)‖η‖
2− 2a

b

σ(t) .

Proof.

‖Λ a
2 η‖2σ(t)

=‖eσ(t)ΛΛ
a
2 η‖2L2

=
∑
ξ∈Z2

e2σ(t)|ξ||ξ|a|η̂(ξ)|2
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=
∑
ξ∈Z2

eσ(t)|ξ| 2ab |ξ|a|η̂(ξ)| 2ab eσ(t)|ξ|(2− 2a
b )|η̂(ξ)|2− 2a

b

≤

∑
ξ∈Z2

(
eσ(t)|ξ| 2ab |ξ|a|η̂(ξ)| 2ab

) b
a

 a
b
∑
ξ∈Z2

(
eσ(t)|ξ|(2− 2a

b )|η̂(ξ)|2− 2a
b

) b
b−a


b−a
b

≤

∑
ξ∈Z2

e2σ(t)|ξ||ξ|b|η̂(ξ)|2
 a

b
∑
ξ∈Z2

e2σ(t)|ξ||η̂(ξ)|2


b−a
b

≤‖Λ b
2 η‖

2a
b

σ(t)‖η‖
2− 2a

b

σ(t) .

And an auxiliary lemma estimating the nonlinear term:

Lemma 5.3. |〈ηηx, η〉σ(t)| ≤ c‖Λη‖σ(t)‖Λ
1
2 η‖2σ(t).

Proof. We first denote η∗ = eσ(t)Λη, then

η̂∗(j) = eσ(t)|j|η̂(j).

By the definition of Fourier series, we have

η =
∑
j∈Z2

η̂(j)eij·x, eσ(t)Λη =
∑
j∈Z2

η̂(j)eij·xeσ(t)|j|.

In fact,

〈ηηx, η〉σ(t) = (2π)2i
∑
`∈Z2

∑
j∈Z2

(η̂(j)η̂(`− j)j1η̂(`)e2σ(t)|`|

= (2π)2i
∑
`∈Z2

∑
j∈Z2

(
η̂∗(j)η̂∗(`− j)

)
j1η̂∗(`)e

σ(t)(|`|−|j|−|`−j|).

Since |`| ≤ |j|+ |`− j| leads to |`| − |j| − |`− j| ≤ 0, we have that

eσ(t)(|`|−|j|−|`−j|) ≤ 1.

Moreover,∣∣〈ηηx, η〉σ(t)

∣∣ ≤ (2π)2

∣∣∣∣i∑
`∈Z2

∑
j∈Z2

(
η̂∗(j)η̂∗(`− j)

)
j1η̂∗(`)e

σ(t)(|`|−|j|−|`−j|)
∣∣∣∣

≤ (2π)2
∑
`∈Z2

∑
j∈Z2

|η̂∗(j)||η̂∗(`− j)||j||η̂∗(`)|

= (2π)2
∑
k+j=`

|η̂∗(j)||j||η̂∗(k)||η̂∗(`)|

=

∫
T2

φ(x)θ(x)ψ(x)dx

where

φ(x) =
∑
j∈Z2

|η̂∗(j)||j|eijx, θ(x) =
∑
k∈Z2

|η̂∗(k)|eikx, ψ(x) =
∑
`∈Z2

|η̂∗(`)|ei`x.
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Notice that |φ̂(j)| = |j||η̂∗(j)| and |θ̂(k)| = |η̂∗(k)|. We now bound the last integral
by the Hölder inequality,∫

T2

φ(x)θ(x)ψ(x)dx ≤ ‖φ(x)‖L2‖θ(x)‖L4‖ψ(x)‖L4

≤ c‖φ(x)‖L2‖θ(x)‖2
H

1
2

= c

∑
j∈Z2

|φ̂(j)|2
 1

2 ∑
j∈Z2

(
|k| 12 |θ̂(k)|

)2

= c

∑
j∈Z2

|j|2|η̂∗(j)|2
 1

2 ∑
j∈Z2

(
|k| 12 |η̂∗(k)|

)2

= c‖Λη∗‖L2‖Λ 1
2 η∗‖2L2

≤ c‖Λ 1
2 η‖2σ(t)‖Λη‖σ(t)

where we used the Sobolev embedding H
1
2 (T2) ↪→ L4(T2) and the Plancherel the-

orem in the computation above.

We begin now the proof of theorem 5.1:

Proof of Theorem 5.1. We first take inner product of (3) with η(t) in Gevrey class
G,

〈ηt, η〉σ(t) + 〈ηηx, η〉σ(t) + 〈(β − 1)ηxx − ηyy − δΛ3(η) + ε∆2η, η〉σ(t) = 0 (12)

Note that
1

2

d

dt
〈η, η〉σ(t) = σ′(t)Λ〈η, η〉σ(t) + 〈ηt, η〉σ(t)

then we have

〈ηt, η〉σ(t) =
1

2

d

dt
〈η, η〉σ(t) − σ′(t)Λ〈η, η〉σ(t).

Substituting this into (12),

1

2

d

dt
〈η, η〉σ(t)

=σ′(t)〈Λη, η〉σ(t) − 〈(β − 1)ηxx − ηyy − δΛ3(η) + ε∆2η, η〉σ(t) − 〈ηηx, η〉σ(t)

≤σ′(t)‖Λ 1
2 η‖2σ(t) + β‖Λη‖2σ(t) + δ‖Λ 3

2 η‖2σ(t) − ε‖Λ
2η‖2σ(t) + c‖Λη‖σ(t)‖Λ

1
2 η‖2σ(t)

≤σ′(t)‖Λ2η‖
1
2

σ(t)‖η‖
3
2

σ(t) + β‖Λ2η‖σ(t)‖η‖σ(t) + δ‖Λ2η‖
3
2

σ(t)‖η‖
1
2

σ(t)

− ε‖Λ2η‖2σ(t) + c‖Λ2η‖σ(t)‖η‖2σ(t).

By the Young inequality, we have

d

dt
‖η‖2σ(t) ≤

(
D1 (σ′(t))

4
3 +D2 +D3

)
‖η‖2σ(t) +D4‖η‖4σ(t) (13)

where D1 = ( 3
2ε )

1/3, D2 = 9
4εβ

2, D3 = ( 27
4ε )3δ4, D4 = 9

4εc
2.

By the definition of σ(t) = min{tanh(t), tanh
(
T0

2

)
}, we have

σ′(t) ≤ 1.

Inserting this into (13), we obtain

d

dt

(
1 + ‖η‖2σ(t)

)
≤ K

(
1 + ‖η‖2σ(t)

)2
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with

K = D1 +D2 +D3 +D4.

Define y1(t) = 1 + ‖η‖2σ(t), it turns out to deal with the following ordinary

differential inequality {
y′1(t) ≤ Ky1(t)2

y1(0) = 1 + ‖η0‖2L2 .

After solving this ODI, we obtain

‖η(t)‖2σ(t) ≤ 1 + 2‖η0‖2L2 for t ∈ (0, T0],

where

T0 =
1

2K
(
1 + ‖η0‖2L2

) .
Moreover, according to theorem 3.1 and theorem 4.2, we know that the solution

is unique, global in time and stays in a ball of Radius Rε,β,δ once it has entered it,
that is to say, ‖η(t)‖L2 remains bounded for all time,

lim sup
t→∞

‖η(t)‖L2(T2) ≤ Rε,β,δ.

So up to now, we already prove local analyticity of η(t)

‖η(t)‖2σ(t) ≤ 1 + 2C2
ε,β,δ,η0 for t ∈ (0, T0]. (14)

In order to obtain global analyticity, we follow the previous idea and repeat the
argument above starting at T0

2 . We consider time t ∈ [T0

2 ,
3T0

2 ], and let y2(t) =

1+‖η(t)‖2
σ(t−T02 )

, so y2

(
T0

2

)
= 1+‖η

(
T0

2

)
‖2L2 . Thus, solving the following ordinary

differential inequality 
y′2(t) ≤ Ky2(t)2

y2

(
T0

2

)
= 1 +

∥∥∥∥η(T0

2

)∥∥∥∥2

L2

,

we have that,

‖η(t)‖2
σ(t−T02 )

≤ 1 + 2

∥∥∥∥η(T0

2

)∥∥∥∥2

L2

≤ 1 + 2C2
ε,β,δ,η0 ,

for time t ∈ [T0

2 ,
3T0

2 ].
By the definition of σ(t) and observe that tanh(t) is strictly increasing, we know

that σ(t) remains being a constant after time T0

2 , and this constant is σ
(
T0

2

)
=

tanh
(
T0

2

)
, so we choose t = T0 in the inequality above, then

‖η(t)‖2
σ(T02 )

≤ 1 + 2C2
ε,β,δ,η0 for t ∈ [T0,

3T0

2
].

We mimic this argument by adding T0

2 each time, so we obtain that η(t) is analytic in

the time invervals [ 3T0

2 , 2T0], [2T0,
5T0

2 ]... Recalling local analyticity (14), we finally
obtain

‖η(t)‖2σ(t) ≤ 1 + 2C2
ε,β,δ,η0 for any t > 0.

This completes our proof.
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Remark 3. It is of interest to point out that the global analyticity of the solution
which we show here is better than the result in [13], where the argument given
by the authors can be extended to prove the global analyticity of solutions of the
Kuramoto-Sivashinsky equation, outside a set of time instants with zero measure.

6. Existence of attractor and the number of peaks. In this section, we are
interested in the existence of the attractor and its properties. By applying the
Theorem 1.1 in [28], we can prove that the initial value problem (3) possesses a
compact global attractor in H2(T2). First, we denote by S(t) the solution operator,
where S(t)η0 = η(x, y, t).

Definition 6.1. The solution operator S(t)η0 = η(x, y, t) defines a compact semi-
flow in H2, if for every initial data η0 ∈ H2, the following four statements holds:
(i) S(0)η0 = η0;
(ii) S(t+ s)η0 = S(t)S(s)η0, for all t, s;
(iii) For every t > 0,

S(t)(·) : H2 → H2

is continuous;
(iv) There exists T ∗ > 0 such that S(T ∗) is a compact operator, i.e. for every
bounded set B ⊂ H2, S(T ∗)B ⊂ H2 is a compact set.

Definition 6.2. A nonempty set A ⊂ H2 is called an attractor if the following
properties hold:
(i) A is an invariant set, i.e., S(t)A = A,∀t ≥ 0;
(ii) there is an open neighborhood B ⊂ H2 of A such that, for every η0 in B, S(t)η0

converges to A as t→∞ :

dist (S(t)η0,A)→ 0 as t→∞.

We shall need the following lemma:

Lemma 6.3. Let η0 ∈ H2
od(T2) be the initial data. Then S(·)η0 ∈ C([0, T ];H2

od(T2))
defines a compact semiflow in H2

od(T2).

Proof. In order to show that S(t)η0 = η(·, ·, t) defines a compact semiflow, we must
verify (i)-(iv) in definition 6.1. If we fix a t0, the continuity of S(t0)(·) from H2

od to
H2

od is strightforward by energy estimates. Then, as in Theorem 4.3, we have the
existence of an absorbing set in H2

od-norm, so there exists T ∗ such that

‖η(t)‖H2
od
≤ R′ε,δ,β,η0 , ∀t ≥ T

∗ .

Since (i) and (ii) are obvious, we conclude our proof by invoking the analyticity of
solutions.

Theorem 6.4. The system (3) has a maximal, connected, compact attractor in the
space H2

od(T2).

Proof. By applying Theorem 1.1 in [28] and Lemma 6.3.

The rest of this section is devoted to studying a particular feature of the chaotic
behavior of (3), namely, the number of spatial oscillations. We shall need the lemma
proved by Grujić in [14], which gives us an effective method to study the number of
peaks (see also [13, 2]). We cannot use directly the method in [14], mainly because
Lemma 8.1 in [14] is quite suitable to bound the number of peaks in one space
dimension, but not appropriate for our two-dimensional model.
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We first let η(x, y) = fy(x), where fy(x) depends on both x and y. Then our
original problem (3) deduces to

∂tfy + fy∂xfy + (β − 1)∂2
xfy + Fy(x) = 0, (15)

where Fy(x) = −ηyy(x, y)−δΛ3(η)(x, y)+ ε∆2η(x, y) can be seen as a forcing term.
In the previous section, we have shown that η(x, y, t) is analytic in a growing

complex strip

Sσ(t) = {(x, y) + i(x̃, ỹ) : (x, y) ∈ T2, |(x̃, ỹ)| < σ(t)}.

Recalling that η(x, y, t) = fy(x, t), then fy(x, t) is analytic in

S′σ(t) = {x+ ix̃ : x ∈ T, |x̃| < σ(t)}.

Now we use the following Lemma (from [14]):

Lemma 6.5. Fix y in problem (15). Let σ > 0, and let fy(x) be analytic in the
neighbourhood of {z = x + ix̃ : |=z| ≤ σ} and be 2π-periodic in x-direction. Then,
for any µ > 0, T = Iµ ∪ Rµ, where Iµ is a union of at most [ 4π

σ ] intervals open in
T, and

• |∂xfy(x)| ≤ µ, for all x ∈ Iµ;

• card {x ∈ Rµ : ∂xfy(x) = 0} ≤ 2
log 2

2π
σ log

(
max|=z|≤σ |∂xfy(z)|

µ

)
.

With the help of the lemma above, we have our main result.

Theorem 6.6. Let η be a solution of system (3) for initial data η0 ∈ H2
od(T2) and

define T0 as in Theorem 5.1. Then, T = I ∪ R, where I is a union of at most
[ 4π

tanh(
T0
2 )

] open intervals in T and the following estimates hold for t ≥ T0

2 ,

|∂xη(x, y, t)| ≤ 1, for all x ∈ I, y ∈ T

and

card{x ∈ R : |∇η(x, y, t)| = 0} ≤ 4π

log 2

logCε,β,δ,η0
tanh

(
T0

2

) .
where Cε,β,δ,η0 is a constant depending on ε, β, δ, η0.

Proof. From the results of Theorem 5.1 and Theorem 6.4, we know that the system
has an attractor and the solution η is analytic at least in the strip of width σ(t).

Now, we can apply Lemma 6.5 with µ = 1 and bound

card{x ∈ R : |∇η(x, y, t)| = 0} ≤ card{x ∈ R : ∂xη = 0}

≤ 2

log 2

2π

σ
log

(
max|=z|≤σ |∂xη(z, y, t)|

µ

)
≤ 4π

log 2

1

σ
log
(
C‖eσ(t)Λη‖L2

)
.

In the last inequality above, we used the following estimate∥∥∂xη(z, y, t)
∥∥
L∞(|=z|≤σ2 )

=
∥∥∂xη(x+ ix̃, y, t)

∥∥
L∞(|=z|≤σ2 )

≤
∥∥ ∑

(ξ1,ξ2)∈Z2

|ξ1|η̂(ξ1, ξ2, t)e
i(xξ1+yξ2)e−x̃ξ1

∥∥
L∞(|=z|≤σ2 )

≤
∥∥ ∑

(ξ1,ξ2)∈Z2

|ξ||η̂(ξ1, ξ2, t)|e|x̃||ξ|
∥∥
L∞(|=z|≤σ2 )
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≤
∑

(ξ1,ξ2)∈Z2

|ξ||η̂(ξ1, ξ2, t)|e
σ(t)
2 |ξ|

≤
∑

(ξ1,ξ2)∈Z2

|ξ|3|η̂(ξ1, ξ2, t)|e
σ(t)
2 |ξ|

1

|ξ|2

≤
∑

(ξ1,ξ2)∈Z2

η̂(ξ1, ξ2, t)|eσ(t)|ξ| 1

|ξ|2

≤ ‖eσ(t)Λη‖L2

 ∑
(ξ1,ξ2)∈Z2

1

|ξ|4

 1
2

≤ C‖eσ(t)Λη‖L2

where we used the fact that

|ξ|3e
σ(t)
2 |ξ| ≤ Ceσ(t)|ξ|.

Since η has global analyticity

‖eσ(t)Λη(t)‖L2 ≤ 1 + 2Cε,β,δ,η0 , ∀ t ≥ 0,

we can conclude that for t ≥ T0

2

card{x ∈ R : |∇η(x, y, t)| = 0} ≤ 4π

log 2

logCε,β,δ,η0
tanh

(
T0

2

) .
where CRε,β,δ,η0 depends on Rε,δ,β and η0.

Theorem 6.6 gives us a bound of the number of wild spatial oscillations of the
solution, then the following corollary is a direct result of it.

Corollary 1. Let η be a solution corresponding to the initial data η0 ∈ H2
od(T2),

then for t ≥ T0

2 , the number of peaks for η can be bounded as

card {peaks for η} ≤ 4π

log 2

logCε,β,δ,η0
tanh

(
T0

2

) .
where Cε,β,δ,η0 depends on ε, β, δ, η0 and T0 is defined as before.

7. Numerical simulations. In this section, we show some numerical solutions of
the initial-value problem (3) with the following initial condition

η0(x, y) = − sinx
(

sin y + e−y
2

cos y
)
. (16)

As the equation is periodic, we discretize the spatial part by means of a Fourier
spectral method. Namely, taking the Fourier transformation of equation (3), we get

η̂t +
iξ1
2
η̂2 +

(
−(β − 1)ξ2

1 + ξ2
2 − δ|ξ|3 + ε|ξ|4

)
η̂ = 0

where |ξ| =
√
ξ2
1 + ξ2

2 . Once we discretize the spatial part of the PDE we get a
system of ODE :

η̂t = L η̂ + N η̂ (17)

with
(L η̂)(ξ1, ξ2) =

(
(β − 1)ξ2

1 − ξ2
2 + δ|ξ|3 − ε|ξ|4

)
η̂

and

(N η̂)(ξ1, ξ2) = − iξ1
2
F
((
F−1(η̂)

)2)



ON THE DYNAMICS OF 3D ELECTRIFIED FALLING FILMS 21

Figure 1. Initial data (16)

We then compute the numerical solution by using a fourth-order exponential time
differencing (ETD-RK4) method that was first derived by Cox and Mathews in [7]
and then was improved by Kassam and Trefethen in [18].

In the following figures, we show a numerical solution of (17) with parameters
β = 2, δ = 0.5, ε = 1 and initial condition (16). We can see that the equation (3)
is very interesting from a dynamical systems point of view, as it is a PDE that can
exhibit chaotic solutions.

Figure 2. Numerical solution of (17) for β = 2, δ = 0.5, ε = 1 at
t = 40.
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Figure 3. Numerical solution profile along x-direction for y = 0
of (17) with β = 2, δ = 0.5, ε = 1 and the same initial data as in
Figure 2 at t = 0, 20, 40.

Figure 4. Numerical solution profile along y-direction for x = π/2
of (17) with β = 2, δ = 0.5, ε = 1 and the same initial data as in
Figure 2 at t = 0, 20, 40.
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[23] B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the
Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Physica D: Nonlinear

Phenomena, 16 (1985), 155–183.

[24] F. C. Pinto, Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equa-
tion in space dimension two, Discrete and Continuous Dynamical Systems - A, 5 (1999),

117–136.
[25] F. C. Pinto, Analyticity and Gevrey class regularity for a Kuramoto-Sivashinsky equation in

space dimension two, Applied mathematics letters, 14 (2001), 253–260.

[26] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I. deriva-
tion of basic equations, Acta astronautica, 4 (1977), 1177–1206.

[27] G. I. Sivashinsky and D. M. Michelson, On irregular wavy flow of a liquid film down a vertical

plane, Progress of Theoretical Physics, 63 (1980), 2112–2114.
[28] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition,

Applied Mathematical Sciences, Springer-Verlag, 1997.

[29] R. Tomlin, D. Papageorgiou, and G. Pavliotis, Three-dimensional wave evolution on electrified
falling films, Journal of Fluid Mechanics, 822 (2017), 54–79.

[30] J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous

fluid, Journal of the Physical society of Japan, 44 (1978), 663–666.
[31] D. Tseluiko and D. Papageorgiou, Dynamics of an electrostatically modified Kuramoto-

Sivashinsky–Korteweg–de Vries equation arising in falling film flows, Physical Review E ,
82 (2010), 016322, 22 pp.

[32] D. Tseluiko and D. T. Papageorgiou, A global attracting set for nonlocal Kuramoto-

Sivashinsky equations arising in interfacial electrohydrodynamics, European Journal of Ap-
plied Mathematics, 17 (2006), 677–703.

[33] D. Tseluiko and D. T. Papageorgiou, Wave evolution on electrified falling films, Journal of

Fluid Mechanics, 556 (2006), 361–386.

Received August 2020; revised December 2020.

E-mail address: jiao.he@math.univ-lyon1.fr; jiao.he@univ-evry.fr

E-mail address: rafael.granero@unican.es

http://www.ams.org/mathscinet-getitem?mr=MR796268&return=pdf
http://dx.doi.org/10.1016/0167-2789(85)90056-9
http://dx.doi.org/10.1016/0167-2789(85)90056-9
http://www.ams.org/mathscinet-getitem?mr=MR1664493&return=pdf
http://dx.doi.org/10.3934/dcds.1999.5.117
http://dx.doi.org/10.3934/dcds.1999.5.117
http://www.ams.org/mathscinet-getitem?mr=MR1808274&return=pdf
http://dx.doi.org/10.1016/S0893-9659(00)00145-2
http://dx.doi.org/10.1016/S0893-9659(00)00145-2
http://www.ams.org/mathscinet-getitem?mr=MR0502829&return=pdf
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1143/PTP.63.2112
http://dx.doi.org/10.1143/PTP.63.2112
http://www.ams.org/mathscinet-getitem?mr=MR1441312&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0645-3
http://www.ams.org/mathscinet-getitem?mr=MR3666386&return=pdf
http://dx.doi.org/10.1017/jfm.2017.250
http://dx.doi.org/10.1017/jfm.2017.250
http://www.ams.org/mathscinet-getitem?mr=MR489338&return=pdf
http://dx.doi.org/10.1143/JPSJ.44.663
http://dx.doi.org/10.1143/JPSJ.44.663
http://www.ams.org/mathscinet-getitem?mr=MR2736388&return=pdf
http://dx.doi.org/10.1103/PhysRevE.82.016322
http://dx.doi.org/10.1103/PhysRevE.82.016322
http://www.ams.org/mathscinet-getitem?mr=MR2293064&return=pdf
http://dx.doi.org/10.1017/S0956792506006760
http://dx.doi.org/10.1017/S0956792506006760
http://www.ams.org/mathscinet-getitem?mr=MR2263449&return=pdf
http://dx.doi.org/10.1017/S0022112006009712
mailto:jiao.he@math.univ-lyon1.fr; jiao.he@univ-evry.fr
mailto:rafael.granero@unican.es

	1. Introduction
	1.1. Notation

	2. Rescaling of the equation
	3. Global existence of strong solutions
	4. Large time dynamics
	5. Analyticity
	6. Existence of attractor and the number of peaks
	7. Numerical simulations
	Acknowledgments
	REFERENCES

