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Abstract: The statistics of the optical phase of the light emitted by a semiconductor laser diode1

when subject to periodic modulation of the applied bias current is theoretically analyzed. Numeri-2

cal simulations of the stochastic rate equations describing the previous system are performed for3

describing the temporal dependence of the phase statistics. These simulations are performed by4

considering two cases corresponding to random and deterministic initial conditions. In contrast5

to the Gaussian character of the phase that has been assumed in previous works, we show that6

the phase is not distributed as a Gaussian during the initial stages of evolution. We characterize7

the time it takes the phase to become Gaussian by calculating the dynamical evolution of the8

kurtosis coefficient of the phase. We show that under the typical gain-switching with square-wave9

modulation used for quantum random number generation, that quantity is in the ns time scale,10

that corresponds to the time it takes the system to lose the memory of the distribution of the initial11

conditions. We compare the standard deviation of the phase obtained with random and determin-12

istic initial conditions to show that their differences become more important as the modulation13

speed is increased.14

Keywords: semiconductor laser; optical phase; gain-switching; spontaneous emission noise;15

quantum random number generation.16

1. Introduction17

Experimental and theoretical understanding of the fluctuations of laser light began18

shortly after the invention of the laser [1–5]. Special attention has been devoted to19

fluctuations of the light emitted by semiconductor lasers [6–10] due to their vast variety20

of applications. The best available theoretical description of these fluctuations is based21

on the Fokker-Planck equation, or alternativelly on Langevin’s stochastic rate equations22

[3,6–8,11]. The phase of the laser electrical field is a random quantity, mainly due to the23

effect of the spontaneous emission noise. The random character of this phase is precisely24

the basis of some of the available methods for quantum random number generation25

(QRNG).26

Random numbers are a vital resource for numerous applications including crip-27

tography, statistical analysis, stochastic simulations, decission making in engineering28

processes, quantitative finance, gambling, massive data processing, etc. [12,13]. Random29

number generators (RNG) use software algorithms (pseudorandom number generators)30

or hardware physical devices. Typical physical processes used to generate random num-31

bers are radioactive decay, Johnson or Zener’s noise, chaos noise [13,14] and quantum32

phenomena [12,13]. QRNGs are a particular case of physical RNGs that can generate33

truly random numbers from the fundamentally probabilistic nature of quantum events34

[13]. The advantage of using QRNGs relies on its unpredictibility, which can be proven35

to be based on quantum physics laws. Typical QRNGs are based on quantum optics36

[13]. These generators can be divided in i) generators that use single-photon sources,37

and ii) generators that use multi-photon sources, typically semiconductor lasers or LEDs.38
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QRNGs based on single-photon detection methods include: branching path generators39

[15], generators measuring the time of arrival of photons[16], photon counting genera-40

tors [17], and attenuated pulse generators [18]. These methods have been experimentally41

compared in [19]. Multi-photon QRNGs include: generators based on quantum vacuum42

fluctuations [20], on amplified spontaneous emission (ASE) signals [21,22], and on phase43

noise in continuous wave [23–25] and in pulsed laser diodes [26–31].44

Spontaneous emission is a useful mechanism to generate quantum fluctuations, as45

it can be ascribed to the vacuum fluctuations of the optical field [26]. Randomness due to46

spontaneous emission is the basis of QRNGs based on pulsed single-mode laser diodes47

[26–28,30,31]. These generators have several advantages. They are made of commercially48

available components: for instance, standard photodetectors can be used due to the49

high signal levels. They are simple, low-cost, robust, and fast: generation rates up to 4350

Gbps quantum random bit generation have been experimentally demonstrated [27]. In51

these QRNGs the laser diode is periodically modulated from below to above threshold52

in such a way that gain-switching operation is obtained, typically at Gbps rates. While53

the laser is below threshold the optical phase becomes random due to the spontaneous54

emission noise. Gain-switching operation produces a periodic train of laser pulses with55

random phases. Phase fluctuations are then converted into amplitude fluctuations by56

using interferometric setups [27,31]. Detection and filtering of the amplitude fluctuations57

provides the generation of random values with an almost uniform distribution.58

The applications of QRNGs, for instance in cryptography [31,32], require that59

the physical processes underlying their operation must be properly understood and60

described. For QRNGs based on pulsed semiconductor lasers, it is essential an accurate61

description of the phase diffusion process, that is, laser phase fluctuations must be62

qualitatively and quantitatively characterized. Modelling of these fluctuations has been63

performed by numerical integration of the laser stochastic rate equations [27,30,31,33–36].64

Good quantitative agreement between experiments and theory is achieved when the65

complete set of parameters of the rate equations is known for the specific laser diode.66

Good agreement between experimental and theoretical phase fluctuations has been67

recently reported for a discrete mode laser (DML) [36] for which a complete extraction of68

the intrinsic parameters was performed [35,37]. This permits a quantitative description69

of the dependence of phase diffusion on the laser and modulation parameters. On the70

qualitative side, statistics of optical phase has been described as Gaussian in numerical71

simulations [27,33,34] since spontaneous emission noise has also Gaussian distribution.72

However, in these generators the bias current is periodically modulated in such a way73

that the evolution is mainly in a transient regime, specially when operating at fast bit74

rates. It is then expected that the choice of initial conditions in the simulations must75

have impact on the statistics of the optical phase and on the time it takes the phase to be76

distributed as a Gaussian. This is in fact the main objective of this work: the investigation77

of the conditions for which the phase becomes distributed as a Gaussian.78

In this paper we report a theoretical study of the phase diffusion in gain-switched79

semiconductor lasers. This is done by performing numerical simulations of the stochastic80

rate equations for the complex electrical field and carrier number. In our modelling we81

use the set of parameters recently extracted for a DML device. With these parameters82

we first analyze the impact of the carrier noise on the phase statistics. In the rest of the83

paper we focus on the calculation of the temporal dependence of the statistical moments84

and distribution of the phase. We first consider random initial conditions that contrast85

to previous analysis in which deterministic fixed initial conditions were chosen [34]. We86

compare the phase statistics obtained for both types of initial conditions. For both cases87

we show that the phase is not distributed as a Gaussian because of the non-Gaussianity88

of the initial conditions. This contrasts to the Gaussian character of the phase that has89

been assumed in previous works [27,33,34]. We characterize the time it takes the phase90

becomes approximately Gaussian by calculating the temporal evolution of the kurtosis91

coefficient of the phase. Our calculations indicate that under the typical gain-switching92
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with square-wave modulation used for QRNG, the time it takes to the phase to become93

Gaussian is in the ns scale. These are the typical times for which the memory of the94

distribution of the initial conditions is lost. The comparison between the variance of95

the phase obtained with random and fixed initial conditions show that their differences96

become more important as the modulation speed is increased.97

Our paper is organized as follows. In section 2, we present our theoretical model.98

Section 3 is devoted to analyze the dynamical evolution of the relevant variables. In99

section 4, we study the temporal evolution of the phase statistics. Finally, in section 5 we100

discuss and summarize our results.101

2. Theoretical model102

Gain-switched single-mode semiconductor laser dynamics can be modelled by103

using a set of stochastic rate-equations that read (in Ito’s sense) [6,37,38]104

dP
dt

=

[
GN(N − Nt)

1 + εP
− 1

τp

]
P + Rsp(N) +

√
2Rsp(N)PFp(t) (1)

dφ

dt
=

α

2

[
GN(N − Nt)−

1
τp

]
+

√
Rsp(N)

2P
Fφ(t) (2)

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt)P

1 + εP
(3)

where P(t) is the number of photons inside the laser, φ(t) is the optical phase,105

and N(t) is the number of carriers in the active region. The parameters appearing106

in these equations are the following: GN is the differential gain, Nt is the number of107

carriers at transparency, ε is the non-linear gain coefficient, τp is the photon lifetime,108

α is the linewidth enhancement factor, e is the electron charge, and A, B and C are109

the non-radiative, spontaneous, and Auger recombination coefficients, respectively. In110

these equations we consider a temporal dependence of the injected current, I(t), and111

a rate of the spontaneous emission given by Rsp(N) = βBN2 where β is the fraction of112

spontaneous emission coupled into the lasing mode. The Langevin terms FP(t) and Fφ(t)113

in Eqs. (1)-(2), represent fluctuations due to spontaneous emission, with the following114

correlation properties, < Fi(t)Fj(t′) >= δijδ(t− t′), where δ(t) is the Dirac delta function115

and δij the Kronecker delta function with the subindexes i and j referring to the variables116

P and φ.117

QRNG systems based on gain-switching of single-mode laser diodes are such that118

a large signal modulation of the bias current is applied to the device. We consider119

an injected current following a square-wave modulation of period T with I(t) = Ion120

during T/2, and I(t) = Io f f during the rest of the period. This modulation is such121

that Io f f < Ith, where Ith is the threshold current of the laser, for obtaining a random122

evolution of the optical phase induced by the spontaneous emission noise. Numerical123

integration of the previous stochastic rate equations by usual Euler-Maruyama [3,39] or124

Heun’s predictor-corrector algorithms [37] present instabilities when the photon number125

is very small, a situation always present in this type of QRNGs: some spontaneous noise126

events cause negative values of P that lead to numerical instabilities due to the square127

root factor multipliying the noise term in Eqs. (1)-(2). Very recently a set of rate equations128

for the complex electrical field, E(t), instead of equations for P and φ has been proposed129

to solve this problem [35]. These equations are the following:130

dE
dt

=

[(
1

1 + ε | E |2 + iα
)

GN(N − Nt)−
1 + iα

τp

]
E
2
+
√

βBNξ(t) (4)

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ε | E |2 (5)
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where E(t) = E1(t) + iE2(t) is the complex electrical field and ξ(t) = ξ1(t) + iξ2(t)131

is the complex Gaussian white noise with zero average and correlation given by <132

ξ(t)ξ∗(t′) >= δ(t− t′) that represents the spontaneous emission noise, and where we133

have considered that Rsp(N) = βBN2. These equations exactly correspond to our initial134

model because the application of the rules for the change of variables in the Ito’s calculus135

[11] to P =| E |2= E2
1 + E2

2 and φ = arctan (E2/E1) in Eqs. (4)-(5) gives Eqs. (1)-(3).136

Instabilities do not appear because P is not inside the square root factor that multiplies137

the noise term.138

Up to now we have considered an equation for N that has not any noise term.139

Carrier noise can also be important for describing statistics in semiconductor laser140

dynamics [6]. These fluctuations can be taken into account if we substitute Eq. (5) by141

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ε | E |2

+

√
2
(

AN + BN2 + CN3 +
I(t)

e

)
ξN − 2

√
βBN

(
E1ξ1 + E2ξ2

)
(6)

where ξN is a real Gaussian white noise of zero average and correlation given by142

< ξN(t)ξN(t′) >= δ(t− t′) and statistically independent of ξ(t) [6,10,37,40].143

In this work we will numerically solve Eq. (4) and Eq. (6) by using the Euler-144

Maruyama algorithm [3,39] with an integration time step of 0.001 ps. We will use the145

numerical values of the parameters that have been extracted for a discrete mode laser146

(DML) [35,37]. This device is a single longitudinal mode semiconductor laser emitting147

close to 1550 nm wavelength and Ith = 14.14 mA at a temperature of 25oC. The values148

of the parameters are GN = 1.48× 104s−1, Nt = 1.93× 107, ε = 7.73× 10−8, τp = 2.17149

ps, α = 3, β = 5.3× 10−6, A = 2.8× 108 s−1, B = 9.8 s−1, and C = 3.84× 10−7 s−1
150

[35,37]. Simulation and experimental results have shown not only qualitative but also a151

remarkable quantitative agreement for a very wide range of gain-switching conditions152

[35,37,41].153

3. Analysis of the dynamics154

We first analyze the dynamical evolution of relevant variables when the laser is155

modulated with Ion = 30 mA, Io f f = 7 mA, and T = 1 ns. The laser is switched-off with156

a current close to Ith/2, for obtaining a significant effect of the spontaneous emission157

noise on the randomness of the phase. Fig. 1(a), Fig.1(b), and Fig. 1(c) show the photon158

number, carrier number, and optical phase, respectively, as a function of time. We159

integrate the equations for consecutive bias current pulses in such a way that the initial160

conditions for one period correspond to the final values of the variables at the end of the161

previous period. Fig. 1(a) shows P for three consecutive pulses. The laser is switched-on162

with Ion at t = 1 ns After this time P begins to build-up from very small random values163

determined by the spontaneous emission noise events. After the emission of the pulse164

with the corresponding relaxation oscillations, P begins to decrease at t = 1.5 ns (when165

Io f f is applied), reaching the small random values at which spontaneous emission noise166

dominates the device dynamics. N begins at t = 1 ns from a value well below the167

threshold carrier number, Nth = Nt + 1/(GNτp) = 5.045× 107, as it can be seen in Fig.168

1(b). The characteristics relaxation oscillations of N associated to the pulse emission169

are followed by a monotonous decrease from t = 1.5 ns to 2 ns due to the value below170

threshold of Io f f .171

The optical phase is calculated at each integration step from E1 and E2 in such a172

way that it is a continuous function of t. The dynamical evolution of φ is shown in173

Fig. 1(c). When P is large (small) the noise term in Eq. (2) is much smaller (larger)174

than the other term in that equation and φ mainly evolves in a deterministic (random)175

way. The deterministic decrease of φ is due to the value below threshold of the current176
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Figure 1. (a) Photon number, (b) carrier number, and (c) optical phase as a function of time for
three consecutive pulses when T = 1 ns.

when switching-off the laser: GN(N − Nt)− 1
τp

< 0 because N < Nth, and therefore φ177

decreases (see Eq. (2)).178
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Figure 2. (a) Photon number, (b) phase, and (c) carrier number dynamical evolution for three
different realizations are shown with black, red, and green lines in a temporal window of duration
T. (d) Variance of the phase as a function of t. In this figure T = 1 ns and the three realizations are
extracted from the time traces of Fig. 1

Visualization of different random trajectories and calculation of statistical mo-179

ments of the phase, specially its standard deviation, σφ(t), have been usually done180

by overlaying them in a temporal window with a duration of a few periods [33–35].181

For instance just one period is considered in Refs. [34,35] to calculate the value of182

σφ(t) =
√
< φ2 > (t)− < φ >2 (t) with 0 ≤ t ≤ T. To obtain well defined averages,183

< φ > (t) and < φ2 > (t), it is necessary to make a choice of the initial conditions at the184

beginning of each period because φ is an unbounded quantity, as shown in Fig. 1. One185

choice is to take P(0) =< P(0) >, N(0) =< N(0) >, and φ(0) =< φ(0) > [34], that is186
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fixed initial conditions. A second choice is to take random initial conditions [35]. Photon187

and carrier numbers at t = 0 are those obtained at the end of the previous period, like in188

Fig. 1. The change with respect to Fig. 1 is related to the phase and it is based on the189

cyclic nature of angles: we consider that φ at the beginning of the period, φ(0), is that190

corresponding to φ at the end of the previous period, φ(T), but converted into the [0, 2π)191

range, that is we consider that φ(0) is given by φ(T)− int
( φ(T)

2π

)
2π.192

Figure 2 shows the temporal evolution of P, N and φ, plotted in a window of193

duration T, corresponding to the three consecutive pulses of Fig. 1 and using the194

previous choice of random initial conditions. Fig. 2(a) and Fig. 2(c) show that laser195

pulses that have a larger switch-on time, defined as the time at which P crosses a fixed196

level, have also a larger value of the maximum of N and P [9]. Fig. 2(b) shows that197

φ takes values in a range of several multiples of 2π during one period. Fig. 2(b) also198

shows, in a more clear way than in Fig. 1, that the phase fluctuations are more important199

at the beginning and at the end of the pulse. Comparison between Fig. 2(a) and Fig. 2(b)200

shows that pulses with a similar evolution of P can have a very different phase evolution201

(see black and red realizations). In the next section we will focus on the description of202

the temporal evolution of the phase statistics.203

4. Analysis of the phase statistics204

The dynamical evolution of the variance of the phase, σ2
φ, is shown in Fig 2(d) for205

the case of random initial conditions and a temporal window of duration T = 1 ns. σ2
φ(t)206

has been calculated by averaging over 2 ×104 temporal windows. σ2
φ(0) > 0 because of207

our choice of random initial conditions. Large increases of σ2
φ(t) occur while P is small208

and dominated by the spontaneous emission noise, that is at the beginning and at the209

end of the period. While the evolutions of P and φ are deterministic and I > Ith (0.15 ns <210

t < 0.5 ns) σ2
φ(t) oscillates with the frequency of the relaxation oscillations around a value211

that increases linearly with time, similarly to what was observed by Henry [8]. These212

oscillations and the linear increase are barely seen in Fig. 2(d) because of the vertical213

scale determined by the large values of the variance when the laser is switched-off. From214

0.5 ns < t < 0.65 ns, while φ still has a deterministic evolution, there is a slight decrease215

of σ2
φ(t). After that time, both φ and P become determined by the spontaneous emission216

noise. In this way the linear increase of σ2
φ(t) with t, characteristic of phase diffusion, is217

observed until the end of the period, as it is seen in Fig. 2(d).218

We now analyze the effect of carrier noise on the statistics of the phase. Fig. 3 shows219

the probability density function (pdf) of φ at three different times when the carrier noise220

is considered (that is, integrating Eq. (6)) and when it is neglected (considering instead221

Eq. (5)). This figure has been obtained using the same conditions of Fig. 2.222

Fig. 3 shows that the effect of carrier noise on the statistics of φ is very small. In223

fact, it has been shown that the consideration of noise in the carrier equation is not224

important during transient regimes [9,33], being only essential in the stationary regime225

for calculating quantities like the relative intensity noise [6]. Fig. 3 also shows the226

Gaussian distributions of average and standard deviation given by the simulation with227

carrier noise. It is clear that the Gaussian distribution does not describe well the phase228

satististics, specially for short times (t = 0.1 and t = 0.5 ns). The Gaussian approximation229

becomes better at longer times (t = 0.9 ns).230

A way of quantifying if the Gaussian distribution is suitable for describing the231

phase statistics is by calculating moments of φ of order higher than 2. Asymmetry and232

kurtosis coefficient of the simulated data are shown in Fig. 4 as a function of time. Both233

coefficients must vanish if the distribution is Gaussian. Fig. 4(a) shows with black lines234

the asymmetry, γr, and kurtosis, κr, coefficients obtained under the same conditions235

of Fig. 2, that is with random initial conditions. Although the phase distribution is236

symmetric (γr ∼ 0), κr is significantly larger than zero. κr decreases fast until it develops237

a small peak close to the time at which the first relaxation oscillation appears. After that238

peak it reaches a plateau that finishes when P reaches the spontaneous emission noise239
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Figure 3. Probability density function of the phase at three different times in (a) linear, and (b)
logarithmic vertical scale. Pdfs obtained with and without noise in the carrier number equation
are plotted with red and black solid lines. Gaussian approximations are plotted with blue dashed
lines.
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Figure 4. Asymmetry and kurtosis coefficients of the phase as a function of time for (a) T=1 ns,
and (b) T=2 ns. Asymmetry and kurtosis coefficients are plotted with solid and dashed lines,
respectively. Results for random and fixed initial conditions are plotted with black and red lines,
respectively.

level (around t = 0.7 ns). From that time φ diffuses and κr monotonously decreases240

reaching values that are closer to zero at the end of the period (κr =0.65 at t = 0.9 ns).241

Fig. 4(b) shows γr and κr when T = 2 ns. In this case φ has more time to diffuse when242

the laser is switched-off and then the Gaussian approximation is better at the end of the243

period (κr =0.14 at t = 2 ns).244

The reason why φ is not Gaussian can be understood by plotting the pdf of φ245

at t = 0. Fig. 5 shows that distribution for the case of T = 1 ns. The distribution246

corresponds to a uniform random variable in [0, 2π). This is because of the way random247

initial conditions are chosen: doing the operation φ(0) = φ(T)− int
( φ(T)

2π

)
2π from a248

broad nearly Gaussian distribution for φ(T) makes φ(0) a uniform random variable,249

U(0, 2π). The kurtosis of U(0, 2π) is 354/5 ∼ 70.8. Diffusion of φ at the beginning of the250
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period (see Fig. 2) makes κr to decrease quickly, but not enough for becoming strictly251

Gaussian, even at the end of the period.252

Of course these results depend on the way initial conditions are chosen. Another253

way of choosing these values is by considering fixed initial values for E(0), and N(0).254

Fig. 4 shows, with red lines, asymmetry and kurtosis coefficients, γ f and κ f , when255

fixed initial conditions are used. We choose these values in the following way. We first256

integrate Eq. (4) and Eq. (6) from arbitrary initial conditions corresponding to below257

threshold operation in order to find the averaged < P(t) >,< N(t) >, and < φ(t) > for258

0 ≤ t ≤ T. Then we choose N(0) =< N(T) >, and E(0) =
√
< P(T) >(cos < φ(T) >259

+i sin < φ(T) >). This election is similar to that considered in [34]. Fig. 4 shows that the260

evolution of γ f and κ f is very similar to that of γr and κr, respectively. κ f > κr because261

the initial delta-like distribution of φ(0) produce larger values of the kurtosis. These262

differences decrease with t, specially when spontaneous emission dominates the phase263

evolution: in Fig. 4(a) (Fig. 4(b)) when t > 0.7 ns (t > 1.2 ns).264

0 . 0 0 . 5 1 . 0
0

5

1 0

1 5

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
0

2

4

6

8

σ φ (r
ad

)

T i m e  ( n s )

 r a n d o m  i n i t i a l  c o n d i t i o s
 f i x e d  i n i t i a l  c o n d i t i o n s

T  =  1  n s

( a )

T  =  0 . 4  n s

( b )

T i m e  ( n s )

Figure 6. Standard deviation of the phase as a function of time for (a) T =1 ns, and (b) T =0.4 ns.
Results for random and fixed initial conditions are plotted with black and red lines, respectively.

The choice of initial conditions also impacts on the values of the standard deviation265

as a function of t. In Fig. 6 (a) the dynamical evolution of σφ for both, random and266

fixed initial conditions, is shown when T = 1 ns. Again both standard deviations have267

similar trends but the value for random initial conditions is larger than that obtained268

for the fixed ones. This is due to the non-zero value of σφ(0) obtained with the uniform269

distribution of φ(0) in contrast to the zero value obtained for fixed initial conditions.270

Relative differences between both quantities enhance if the speed of QRNG increases as271

it can be seen in Fig. 6(b) where results obtained for T = 0.4 ns have been plotted. For272

instance, σφ at 0.2 ns is around 20 % smaller for the case of fixed initial conditions.273

The dependence of the phase statistics on the way initial conditions are chosen274

suggests that averages must be done in a different way in order to lose the memory of275

those initial conditions. We have been considering averages performed in a temporal276
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window with the same duration than the period of the current, T. From now on we will277

consider longer temporal windows for calculating statistical averages. Fig. 7 illustrates278

the situation found when averages are calculated over a window of duration 2T. Random279

initial conditions are considered such that φ(0) = φ(2T)− int
( φ(2T)

2π

)
2π. Averages have280

been done over 2×104 2T-windows, where T= 1 ns, in order to compare with situations281

illustrated in previous figures. Fig 7(a) shows the averaged phase vs t. The drift towards282

decreasing values of the phase is similar to that shown in Fig. 1(c). Standard deviation283

and variance of the phase are shown in Fig. 7(b) and Fig. 7(c), respectively. < φ(t) >,284

σφ(t) and σ2
φ(t) during the second half of the 2T−window are basically replicas of what285

was found in the first half. The continuity of φ along the 2T−window makes that σφ(t)286

and σ2
φ(t) monotonously increase. However the situation is different when considering287

the kurtosis coefficient as Fig. 7(d) shows. In this case, during the second half of the288

window κr keeps on decreasing towards the zero value. This means that the distribution289

of the phase keeps on approaching to the Gaussian shape. In fact κr= 0.22 when t= 2 ns.290
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Figure 7. (a) Average, (b) standard deviation, (c) variance, and (d) kurtosis coefficient of the phase
as a function of time for a 2-period window with T =1 ns.
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Figure 8. Probability density function of the phase at (a) t=0 ns, and (b) t = 1.1 ns for a 2-period
window with T =1 ns. The Gaussian approximation is plotted with a blue dashed line.

That approach can be illustrated by plotting the phase pdf at two different times.291

Fig. 8 shows those distributions at times t = 0 and t = 1.1 ns. The phase at t = 0 is a292
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U(0, 2π) random variable, similarly to Fig. 5. The phase at t = 1.1 ns is approximately293

Gaussian as it can be seen when comparing with the Gaussian of average and standard294

deviation obtained from simulations. The kurtosis coefficient in Fig. 8(b) is 0.4. Fig.295

8(b) can also be compared with the pdf obtained at t=0.1 ns in Fig. 3(b) because both296

distributions correspond to 0.1 ns after switching-on the bias current. The pdf in Fig.297

3(b) is not Gaussian while the pdf in Fig 8(c) is approximately Gaussian. This indicates298

that in order to have a phase distributed as a Gaussian it is necessary to calculate and299

average the phase in windows with durations of several modulation periods. In this300

way the memory of the initial conditions and their distribution is lost.301

5. Discussion and summary302

In our study we have considered two types of initial conditions, corresponding303

to deterministic and random values of the variables. Fixed initial conditions have304

considered because they have been used in previous studies of QRNG. They are not the305

best choice for simulation of these systems because the spontaneous emission noise, that306

is always present in the system, causes fluctuations in the variables of the system at all307

times. These include the times at which each period begins, and so initial conditions308

must be also random, as it is also expected in an experimental realization of the system.309

We have chosen these random initial values by calculating the phase angle in the [0, 2π)310

range that corresponds to the final value in the previous averaging window. Note that311

the conversion to the [0, 2π) range is necessary if a calculation of well defined statistical312

moments of the phase is required. If no conversion is done, not even < φ(t) > could be313

calculated because φ decreases in each averaging window in a magnitude of more than314

several 2π, as illustrated for instance in Fig. 1(c).315

Deterministic initial conditions and phase averages over windows of T-duration316

have been recently used for describing the phase statistics [34]. Although these condi-317

tions can give an approximation to the phase distribution and their statistical moments,318

our results show that it is necessary to consider averages over windows of several319

T−duration and random initial conditions for obtaining Gaussian statistics for the phase320

at the end of the averaging period.321

We now briefly discuss the effect of two laser parameters, the non-linear gain and322

the Auger coefficients, on the standard deviation of the phase. The number of relaxation323

oscillation peaks increases when the non-linear gain coefficient decreases. The standard324

deviation of the phase at the end of the modulation period oscillates when changing325

Ion [35]. The number of these oscillations is directly related to the number of relaxation326

oscillation peaks that are excited. In this way, the main effect of having a small nonlinear327

gain coefficient is to observe more oscillations of the standard deviation of the phase as328

a function of Ion. The effect of the Auger coefficient is also important for describing the329

standard deviation of the phase. In fact we have shown that the Auger term must be330

considered in the carrier recombination term for achieving good agreement between331

experiments and theory [36].332

Summarizing, we have theoretically analyzed the phase diffusion in gain-switched333

semiconductor lasers by performing numerical simulations of the corresponding stochas-334

tic rate equations. We have focused on the calculation of the temporal dependence of335

the statistical moments and distribution of the phase. We have considered several types336

of initial conditions for the phase. By using the temporal dependence of the kurtosis337

coefficient we have shown that the phase pdf becomes Gaussian only after the memory338

of the statistical distribution of the initial conditions is lost. We show that under the339

typical gain-switching with square-wave modulation used in QRNGs, the time it takes340

to the phase to become Gaussian is in the ns scale. We have finally compared the vari-341

ance of the phase obtained with random and fixed initial conditions to show that their342

differences are more important as the modulation speed is increased. This is precisely343

the situation in which faster generation bit rates are achieved when using QRNGs based344

on gain-switched laser diodes.345
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The following abbreviations are used in this manuscript:350

351

QRNG Quantum random number generation
DML Discrete mode laser
PDF Probability density function
ASE Amplified spontaneous emission
RNG Random number generation
LED Light emitting diode
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