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Abstract: During the COVID-19 pandemic, many studies have been carried out to evaluate different 

immune system components to search for prognostic biomarkers of the disease. A broad multipar-

ametric antibody panel of cellular and humoral components of the innate and the adaptative im-

mune response in patients with active SARS-CoV-2 infection has been evaluated in this study. A 

total of 155 patients were studied at admission into our center and were categorized according to 

the requirement of oxygen therapy as mild or severe (the latter being those with the requirement). 

The patients with severe disease were older and had high ferritin, D-dimer, C-reactive protein, tro-

ponin, interleukin-6 (IL-6) levels, and neutrophilia with lymphopenia at admission. Moreover, the 

patients with mild symptoms had significantly increased circulating non-classical monocytes, in-

nate lymphoid cells, and regulatory NK cells. In contrast, severe patients had a low frequency of 

Th1 and regulatory T cells with increased activated and exhausted CD8 phenotype 

(CD8+CD38+HLADR+ and CD8+CD27-CD28-, respectively). The predictive model included age, fer-

ritin, D-dimer, lymph counts, C4, CD8+CD27-CD28-, and non-classical monocytes in the logistic re-

gression analysis. The model predicted severity with an area under the curve of 78%. Both innate 

and adaptive immune parameters could be considered potential predictive biomarkers of the prog-

nosis of COVID-19 disease. 

Keywords: SARS-CoV-2; flow cytometry; innate immunity; adaptive immunity; immunological 

profile; predictive model 

 

1. Introduction 

COVID-19 is an infectious disease induced by the novel coronavirus SARS-CoV-2 

first detected in December 2019, causing acute respiratory distress syndrome (ARDS). 

Due to its high rate of transmission, it has reached pandemic status. The clinical picture 

of the infection ranges from asymptomatic or mildly symptomatic to lethal, mainly affect-

ing the elderly population and those with associated comorbidities [1,2]. 

Early after COVID-19 breakout, different parameters were identified as prognostic 

markers of death, such as serum D-dimer, IL-6, troponin, ferritin, lactate dehydrogenase 
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(LDH), and lymph count [3]. Subsequently, several groups worldwide confirmed these 

parameters and proposed new factors at admission to identify those patients with poor 

outcomes [4–8]. 

The variability of the antiviral immune response in healthy subjects might underlie 

the diverse array of clinical manifestations. Moreover, therapeutic approaches, primarily 

based on previous SARS, MERS, and inflammatory disorders associated with the cytokine 

storm, demonstrate different efficacies. 

Considering that SARS-CoV-2 is a foreign invader in our organism, the immune re-

sponse seems vital in clearing the infection. Furthermore, a dysregulated immune re-

sponse appears to play a crucial role in the second phase of the disease, which manifests 

itself in intensive care units and might result in death [9]. 

Circulating immune cells and soluble immune components can be detected in pe-

ripheral blood and may be direct consequences of infection or biomarkers of tissue pa-

thology in COVID-19 [10,11]. 

The early identification of patients with poor prognoses would help clinicians to 

manage the clinical therapeutic options. Here, we propose a model including easily meas-

urable immunological parameters to predict the patients at risk of worse outcomes. 

2. Materials and Methods 

2.1. Patients and Blood Sampling 

The Regional Ethics Committee (CEIm, internal code 2020.167, 14 May 2020) ap-

proved the protocol for the patients included in the study. Patients at admission or, if not 

possible, a legal representative gave oral informed consent, which was expressed in the 

medical records. The inclusion criteria included subjects over the age of 18 years who 

demonstrated COVID-19 with positive RT-PCR for SARS-CoV-2. Disease severity was as-

sessed based on their clinical records. The cohort was divided based on oxygen therapy 

requirements during their follow-up into those with no requirement (mild) and those who 

required oxygen therapy or intensive care or were deceased (moderate–severe). Blood 

was collected in sodium heparin tubes for flow cytometry and functional studies or tubes 

without additives for serum parameters at admission into the hospital. 

2.2. Flow Cytometry for Main Peripheral Blood Lymphocytes 

Frequencies and absolute numbers of CD3+, CD4+, CD8+, CD19+, CD16+/56+, and 

CD3+/CD16+/56+ were estimated using AQUIOS CL. (Beckman Coulter, Brea, CA, USA) 

volumetric flow cytometer. The instrument employs a volumetric approach for enumer-

ating specific cell populations without the need for reference beads. Fifty microliters of 

whole blood from EDTA tubes was stained with CD45-fluorescein isothiocyanate (FITC), 

CD4-RD1, CD16-CD56-RD1, CD8-ECD, CD19-ECD, and CD3-phycoerythrin-cyanine 5 

(PC5) (Beckman Coulter). After lysis, the sample was acquired in the automated “load 

and go” flow cytometer. 

2.3. Flow Cytometry for B and T Cell Subsets and Monocyte Subpopulations 

Peripheral blood mononuclear cells (PBMCs) were obtained by Ficoll Histopaque 

1077 (Sigma Aldrich, St. Louis, MI, USA) gradient centrifugation. Briefly, PBMCs were 

freshly stained and processed following standard procedures. The following monoclonal 

antibodies were used to identify the different T lymphocyte subsets: anti-CD8-FITC clone 

B9.11 (Beckman Coulter), CD127-FITC clone R34.34, CD28-FITC clone CD28.2, CXCR3-

FITC clone G025H7 (BioLegend, San Diego, CA, USA), CD25-phycoerythrin (PE) clone 

B1.49.9 (Beckman Coulter, Brea, CA, USA), HLA-DR-PE clone Immu-357, CD62L-ECD 

clone DREG56, CD45RO-ECD clone UCHL1, CD4-phycoerythrin-cyanine 5.5 (PC5.5) 

clone 13B8.2, CD27-phycoerythrin-cyanine 7 (PC7) clone 1A4CD27, CD38-allophycocya-

nin (APC) clone LS198-4-3, CD45RA-Alexa fluor 700 (AF700) clone 2H4LDH11 LDB9, 

CD3-pacific blue (PB) clone UCHT1, and CD45-Krome orange (KrO) clone J33. 
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The different B-lymphocyte subsets were identified using the following monoclonal 

antibodies: anti-IgD-FITC clone IA6-2 (Beckman Coulter), CD27-PC5.5 clone 1A4CD27, 

CD19-PC7 clone J3-119, and CD45-KrO clone J33. 

The following monoclonal antibodies were used to identify the different monocyte 

subpopulations: anti-CD14-PE clone RMO52 (Beckman Coulter), CD16-APC clone 3G8, 

and CD45-KrO clone J33. 

2.4. TLR Protein Expression in PBMCs 

The cell-surface expression of TLR4 and the intracellular expression of TLR3, TLR7, 

and TLR8 were assessed in different PBMC subpopulations including T lymphocytes, B 

lymphocytes, and monocytes by flow cytometry, as previously shown [12]. PBMCs col-

lected into EDTA tubes were isolated by Ficoll Histopaque 1077 and stained with CD3-PB 

clone UCHT1 (Beckman Coulter), CD19-PC5.5 clone J3-119, and CD14 ECD clone RMO52 

to identify T lymphocytes, B lymphocytes, and monocytes, respectively, and with PE-con-

jugated anti-human TLR4 (eBioscience, San Diego, CA, USA) or PE mouse IgG2a isotype 

control for 20 min in the dark. To determine the intracellular expression of TLR3 (Mil-

tenyiBiotec, Bergisch Gladbach, Germany), TLR7 (Abcam, CA, USA), and TLR8, cells were 

permeabilized with FACS permeabilizing solution (BD Bioscience, San Jose, CA, USA) 

and stained with PE-conjugated anti-human TLR or mouse isotype control for 20 min in 

the dark. Expression of TLRs was assessed by flow cytometry (Navios, Beckman Coulter). 

2.5. SARS-Cov2 T-Specific Response Assessment by Flow Cytometry 

The procedure was validated by the Spanish Society of Immunology and based on 

activation-induced marker (AIM) expression after exposure to specific SARS-CoV-2 anti-

gens [13]. Briefly, the PBMCs from heparinized blood were isolated by Ficoll gradient and 

cultured at 106 cells/mL in TexMACS medium (MiltenyiBiotec) for 24 h at 37 °C in a flat-

bottom 96-well plate in 0.1% DMSO; PepTivator SARS-CoV-2 Prot S, Prot M, and Prot N 

(1 ug/mL); and Dynabeads Human T activator CD3/CD28 (Gibco Thermo Fisher Scientific 

Baltics UAB, Lithuania) as a polyclonal stimulus. After incubation, the PBMCs were 

washed and stained with the following monoclonal antibodies: anti-CD3 (FITC) clone 

UCHT 1 (Inmunotech SAS Beckman Coulter, Marseille, France), anti-CD134 (PE) clone 

134-1 (Cytognos, Salamanca, Spain), anti-CD8 (ECD) clone SFCI21Thy2D356,22,23 (Beck-

man Coulter), anti-CD25 (PE-CyTM7) clone 2A3, and anti-CD4 (APC-Vio 770) clone VIT4 

(MiltenyiBiotec, Bergisch Gladbach, Germany). The stained PBMC samples were washed 

with PBS 150 µL and centrifuged for 5 min at 1800 rpm. Finally, 2 µL of 7-Aminoactino-

mycin D (7-AAD) staining solution (Tonbo Biosciences, San Diego, CA, USA) and 90 µL 

of PBS were added before the samples were acquired on the CytoFLEX Flow Cytometer 

(Beckman Coulter). Results were expressed as the ratio of the frequency in the AIM ob-

tained after specific activation to negative non-stimulated control. A ratio >3 in one of the 

specific SARS-CoV-2 peptides was considered as a positive reaction. 

2.6. Determination of Circulating IL-6 

Human IL-6 was measured by ELISA (Enzo Life Sciences, Inc., Farmingdale, NY, 

USA) following the manufacturer’s instructions. The sensitivity of IL-6 serum levels was 

0.057 pg/mL. Intra- and interassay variability were 4.38% and 9.6%, respectively. 

2.7. Statistical Analysis 

Statistical analysis was performed using Graph Pad Prism software. The distribution 

of continuous variables was assessed using Kolmogorov–Smirnov/Shapiro–Wilk tests 

where indicated. Results were expressed as mean ± standard deviation or median + inter-

quartile range (IQR) for continuous variables and percentages for categorical data. Com-

parisons were based on the unpaired T-Student test or U-Mann–Whitney U test for para-

metric and nonparametric continuous data, respectively. Welch correction was applied 
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when appropriate. A two-sided p-value < 0.05 was considered statistically significant. In 

order to identify variables associated with moderate–severe clinical outcomes, logistic re-

gression analysis was performed. After univariate analysis with the potentially independ-

ent variables, the odds ratio was calculated with Wald’s statistic. In a further multivariate 

analysis, those with p < 0.25 value in the univariant analysis, following the proposed Hos-

mer and Lemeshow criteria [14], and supported by other reference authors [15] were in-

cluded in the analysis. For the model selection, the backward method procedure was used 

to perform automatically variable selection. To assess the predictive capability of the 

model, the area under the curve (AUC) was used. 

3. Results 

3.1. Patient Demographics and Baseline Characteristics at COVID-19 Onset 

One hundred and fifty-five COVID-19-positive patients recruited during the first 

days after hospital admission (mean of 1.0, interquartile range (IQR) (1–2) days of admis-

sion) were included in the study from April–October 2020. The median of days between 

the onset of symptoms and admission was 6 days (IQR 3–9). 

The cohort was divided according to their clinical progression after admission into 

two groups: patients without oxygen therapy (73 included in the mild disease group) and 

those with oxygen therapy requirements (82 included in the severe disease group). The 

patients with severe disease were significantly older and had lower oxygen saturation at 

admission than the mild-disease group. The levels of C-reactive protein (CRP), troponin, 

ferritin, lactate-dehydrogenase (LDH), C4, and IL-6 were significantly higher in severe 

patients. The D-dimer levels were also increased in the severe group, although not signif-

icantly. No changes in serum concentration of immunoglobulins (IgG, IgA, and IgM) at 

admission were observed between mild and severe groups, and the concentration re-

mained within the normal range values. Table 1 summarizes the main demographic, an-

alytical, and clinical parameters compared between groups. 

Table 1. Demographic, analytical, and clinical parameters. 

 Mild (n = 73) 
Moderate–Severe  

(n = 82) 
p-Value Reference Values 

Demographic     

Age (years) 59 (47–77) 72 (63–79) <0.001 NA 

Gender (% female) 43 (58.90%) 26 (31.71%) 0.001 NA 

Comorbidities     

Hypertension 30 (41.10%) 43 (52.44%) NS (0.158) NA 

Type II diabetes 11 (15.07%) 17 (20.73%) NS (0.360) NA 

Heart disease 12 (16.44) 20 (24.39%) NS (0.222) NA 

Respiratory disease 6 (8.22%) 8 (9.76%) NS (0.739) NA 

Obesity 12 (16.44) 11 (13.41%) NS (0.597) NA 

Biochemical parameters     

C-reactive protein (mg/dL) 2.9 (0.9–6.6) 6.5 (3.0–10.7) 0.001 0.1–0.5 

Ferritin (ng/mL) 203.5 (105.5–603) 535 (224–1135) <0.001 10–291 

D-dimer (ng/mL) 540 (313–992) 702 (389–1309) NS (0.199) 0–500 

Troponin (ng/mL) 5 (3–14) 11 (6–21) 0.006 0–40 

LDH (IU/L) 227 (173–277) 274 (223–362) <0.001 120–246 

O2 saturation at admission 

(%) 
97 (96–98) 95 (93–97) <0.001 NA 

Complete blood count     

Lymphocytes (%) 
23.40 (16.00–

32.75) 
16.65 (10.80–24.90) 0.001 20.0–50.0 
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Neutrophils (%) 
64.85 (54.35–

74.40) 
74.00 (65.30–81.40) <0.001 42.0–75.0 

Monocytes (%) 8.70 (6.85–11.85) 7.05 (4.70–10.00) 0.003 2.0–13.0 

Lymphocytes count (×103) 1.20 (0.80–1.80) 0.90 (0.70–1.20) 0.001 1.2–5.0 

Neutrophils (×103) 3.45 (2.30–4.90) 4.15 (2.70–5.90) NS (0.077) 1.4–7.5 

Monocytes (×103) 0.53 ± 0.27 0.45 ± 0.26 0.051 0.2–1.0 

Serum immune factors     

IgG (mg/dL) 1094.91 ± 351.20 1096.39 ± 344.30 NS (0.979) 734–1486 

IgM (mg/dL) 
98.18 (73.85–

134.31) 
82.68 (51.42–133.88) NS (0.078) 41–201 

IgA (mg/dL) 262.36 ± 155.21 279.47 ± 135.86 NS (0.454) 49–401 

C3 (mg/dL) 131.50 ± 33.02 133.32 ± 30.60 NS (0.724) 77–203 

C4 (mg/dL) 
31.04 (25.26–

37.02) 
35.44 (27.86–40.22) 0.019 7.7–50.5 

IL-6 (ng/dL) 26.68 (8.12–54.20) 33.88 (7.46–125.0) 0.048 0–30 

Abbreviations: LDH: lactate dehydrogenase; NA: not applicable; NS: not significant. For parametric and nonparametric 

variables, mean ± SD and median (interquartile range) are shown. For comparison, T-Student and U-Mann–Whitney test, 

respectively, were used. The comparison of frequencies was addressed by the Chi-square test. 

3.2. Innate-Immune Compartment Assessment at Admission 

The innate immune system is involved in the first stage of any viral infection, includ-

ing COVID-19 disease [16]. The main cellular components of the innate immunity to be 

measured in peripheral blood are neutrophils, monocytes, NK, and innate lymphoid cells 

(ILC). In patients with active COVID-19 disease, different innate immune signatures have 

been identified from mild to severe disease [16,17]. Those patients with a more severe 

phenotype had increased neutrophil and reduced monocyte frequency at admission 

[18,19]. In our cohort, these data are confirmed (Table 1, Figure 1A). Moreover, a signifi-

cant increase in the percentage of non-classical monocytes in the mild group was observed 

(p = 0.01; Figure 2A). In addition, within the innate lymphoid cells (ILC), a significant in-

crease in both the frequency of regulatory NK (CD3-CD56highCD16-/low) cells (p = 0.016, Fig-

ure 2B) and the absolute number of ILC type-3 (p < 0.001) in the mild group was observed 

(Figure 2C). 

 

Figure 1. Absolute count of neutrophils (A) and lymphocytes (B) in mild and severe patients. U Mann–Whitney test was 

used to compare medians in A and B. ***: p < 0.001. ns: not significant. 
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Figure 2. Frequency of non-classical monocytes (A) and regulatory NK cells (B), and absolute count of innate lymphoid 

cells type-3 (C) in mild and severe patients. U-Mann–Whitney test was used to compare medians in A, B, and C, * p < 0.05, 

** p < 0.01, and *** p < 0.001. 

Toll-like receptors (TLRs) are important innate immune receptors in recognizing vi-

ral particles and play an essential role in the induction of the first line of immune re-

sponses. Among the TLRs described in humans, TLR3 and TLR7 have been involved in 

the immune response against SARS-CoV-2 [20,21]. Therefore, the expression of TLR3, 

TLR7, and TLR4, as control, was measured. However, no differences in TLR expression 

between the two groups of patients were found (Table 2). 

Table 2. Comparison of innate immunity parameters in mild and moderate–severe COVID-19 patients. 

 Mild (n = 73) Moderate–Severe (n = 82) p-Value 

Monocytes    

Classic (% CD14+CD16-) 70.34 (55.9–79.6) 71.1 (49.5–82.2) NS (0.896) 

Intermediate (%CD14+CD16+) 27.9 (17.4–39.9) 27.0 (15.2–42.9) NS (0.677) 

Non-classic (% CD14-CD16+) 3.4 (1.2–6.6) 1.5 (0.6–3.5) 0.010 

TLR expression    

TLR3  1.1 (0.8–1.7) 1.1 (0.9–1.6) NS (0.956) 

TLR4  2.1 (1.0–3.1) 1.7 (1.1–2.6) NS (0.593) 

TLR7  1.4 (1.0–2.3) 1.3 (1.0–2.1) NS (0.631) 

NK cells    

%CD16/56 13.77 (10.71–23.1) 17.25 (11.7–25.9) NS (0.097) 

%NKT 5.05 (3.205–10.945) 4.52 (3.76–9.25) NS (0.746) 

#CD16/56 169 (114–277) 159 (98–230) NS (0.205) 

#NKT 59 (32.5–130) 44 (30–71) 0.019 

CD56+CD16- 4.2 (2.5–9.7) 3.2 (1.6–5.1) 0.014 

CD56+CD16+ 95.8 (90.3–97.5) 96.8 (94.8–98.3) 0.014 

ILCs    

ILC1 (Lin-CD127+CD117−CD294−) 2.33 (1.33–4.64) 1.66 (0.94–3.88) NS (0.198) 

ILC2 (Lin-CD127+CD117+CD294+) 0.32 (0.13–0.73) 0.25 (0.11–0.44) NS (0.497) 

ILC3 (Lin-CD127+CD117+CD294−) 0.28 (0.14-0.60) 0.11 (0.06-0.21) 0.00028 

Abbreviations: TLR: Toll-like receptor; NK: natural killer; NKT: natural killer T cells; #: absolute count (cells/µL); ILC: 

innate lymphoid cells; NS: not significant. For parametric and non-parametric variables, mean ± SD and median (inter-

quartile range) are shown. For comparison, T-Student and U-Mann–Whitney tests, respectively, were used. All TLR ex-

pression was calculated as the ratio of MFI of specific TLR monoclonal Ab/isotype control. See Materials and Methods for 

details. 

3.3. Adaptive Immune Compartment Assessment at Admission 

As previously described [22,23], marked lymphopenia in severe patients was con-

firmed (Table 1). To avoid skew interpretation in absolute counts, only relative frequen-

cies were evaluated. In the main lymphocyte subsets, a significantly higher percentage of 
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T lymphocytes at admission with a reduction of B and NK cells in mild patients was ob-

served compared with the severe group. No differences were observed in the frequency 

of CD4 and CD8 T cell subsets (Table S1). Within the CD4 T cell compartment, an increase 

in the frequencies of both total Th1 (CD4+CXCR3+CCR6-) and memory Th1 

(CD4+CD45RO+CXCR3+CCR6-) T cells in the mild group was observed (p = 0.057 and p = 

0.030, respectively, Table 3, Figure 3A). Notably, the frequency of peripheral blood T cells 

with a regulatory phenotype (Tregs) in mild patients was slightly higher than in severe 

patients (p = 0.063) (Table 3). 

Conversely, the CD8+ T cells are cytotoxic antiviral lymphocytes, and an increased 

proportion of activated and exhausted CD8+ T cells has been described in COVID-19 [24]. 

Accordingly, we found a significantly increased frequency of CD8+CD38+HLA-DR+ (Fig-

ure 3B) and CD8+CD27-CD28- in the severe group compared with the mild group (Table 

3, Figure 3C). On the other hand, the frequency of naïve CD8 populations 

CD8+CD62L+CD45RA+ and CD8+CD27+CD28+ increased in the mild group. Finally, the fre-

quency of effector population CD8+CXCR3+CCR6+ and memory CD8+CD45RO+CXCR3-

CCR6+ were increased in the mild group at admission (Table 3). 

In addition, as previously described [19], a significantly high proportion of plas-

mablasts (CD19+CD20-CD27highCD38high) in the severe group was confirmed (Table 3, Fig-

ure 3D). 

Table 3. Comparison of frequencies of T and B lymphocyte functional subsets between groups. 

 Mild (n = 73) 
Moderate–Severe (n = 

82) 
p-Value 

T helper subsets (CD4+)    

CD4+CD27+CD28+ 
86.7 (73.9–

93.9) 
87.1 (75.2–93.6) NS (0.782) 

CD4+CD27−CD28+ 4.8 (3.1–8.1) 4.3 (2.5–7.2) NS (0.695) 

CD4+CD27+CD28− 0.6 (0.3–1.0) 0.8 (0.3–1.2) NS (0.724) 

CD4+CD27−CD28− 6.5 (1.0–16.8) 6.7 (2.0–13.6) NS (0.927) 

CD4+CXCR3+CCR6− (Th1) 
23.9 (18.3–

34.8) 
20.1 (15.3–30.0) 0.057 

CD4+CXCR3+ (Th1/Th17) 12.6 (8.7–16.0) 9.6 (7.1–14.0) 0.039 

CD4+CXCR3−CCR6+ (Th17) 12.3 ± 5.0 12.4 ± 5.2 NS (0.907) 

CD4+CD45RO+ (Memory Th) 
62.8 (50.4–

71.9) 
58.1 (40.2–72.0) NS (0.064) 

CD4+CD45RO−CD62L+ (Naïve) 
19.7 (12.7–

29.3) 
18.5 (9.9–31.3) NS (0.290) 

CD4+CD45RO+CD62L+ (TCM) 46.4 ± 13.9 48.3 ± 15.8 NS (0.234) 

CD4+CD45RO+CD62L− (TEM) 
24.5 (17.8–

38.5) 
21.3(11.5–42.8) NS (0.252) 

CD4+CD45RO−CD62L− (TEMRA) 1.4 (0.5–3.8) 1.3 (0.6–3.9) NS (0.957) 

CD4+CD45RO+CXCR3+CCR6-(Memory Th1) 
32.2 (26.9–

44.4) 
28.7 (24.0–38.0) NS (0.030) 

CD4+CD45RO+CXCR3+ (Memory Th1/Th17) 
19.4 (16.1–

25.2) 
23.2 (17.5–26.0) NS (0.137) 

CD4+CD45RO+CXCR3-CCR6+ (Memory Th17) 21.1 ± 8.7 18.5 ± 7.9 NS (0.098) 

CD4+ CXCR3-CCR6-CD294+ (Th2) 1.0 (0.7–1.7) 0.8 (0.4–1.3) NS (0.830) 

CD4+CD45RO+CXCR5+PD1+ (Tfh) 0.2 (0.1–0.4) 0.3 (0.1–0.5) NS (0.153) 

CD4+CD127-CD25+ (Tregs) 6.4 (5.5–7.5) 5.7 (4.3–7.2) NS (0.063) 

T cytotoxic subsets (CD8+)    

CD8+CD27+CD28+ 
57.1 (31.4–

71.1) 
37.6 (21.5–53.2) 0.004 
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CD8+CD27−CD28+ 2.1 (1.2–3.7) 2.2 (1.1–3.7) NS (0.580) 

CD8+CD27+CD28- 10.2 (7.4–16.2) 12.0 (6.5–19.0) NS (0.219) 

CD8+CD27−CD28- 
27.7 (15.8–

53.1) 
44.5 (24.4–63.2) 0.019 

CD8+CXCR3+ (Tc1/Tc17) 4.9 (3.2–9.5) 3.0 (1.8–4.6) 0.0003 

CD8+CD45RO+ (Memory Tc) 
42.9 (34.9–

57.7) 
42.2 (35.2–57.6) NS (0.749) 

CD8+CD45RO−CD62L+ (Naïve) 
25.9 (14.8–

40.8) 
19.2 (10.3–28.8) 0.026 

CD8+CD45RO+CD62L+ (TCM) 
15.0 (10.0–

19.2) 
14.1 (8.8–21.7) NS (0.942) 

CD8+CD45RO+CD62L− (TEM) 
30.9 (23.9–

38.7) 
31.6 (22.6–44.6) NS (0.780) 

CD8+CD45RO−CD62L− (TEMRA) 
21.0 (11.8–

34.4) 
26.1 (14.3–38.1) NS (0.125) 

CD8+CD45RO+CXCR3+ (Memory Tc1/Tc17) 2.5 (1.4–6.6) 2.8 (1.2–5.1) 0.0002 

CD8+DR+CD38+ 11.2 (5.3–20.5) 13.8 (8.8–25.6) 0.028 

B lymphocytes    

B naïve (CD27−IgD+) 
65.3 (47.8–

75.5) 
63.8 (48.3–75.0) NS (0.656) 

B unswitched (CD27+IgD+) 15.4 (9.0–23.4) 11.5 (8.3–21.5) NS (0.196) 

B switched (CD27+IgD−) 15.9 (8.5–24.1) 17.0 (9.8–25.5) NS (0.478) 

Plasmablasts (CD19+ CD20lowCD27hi CD38hi) 1.9 (0.8–5.8) 5.3 (1.6–9.7) 0.002 

Abbreviations: Th: helper T cell; TCM: central memory T cells; TEM: effector memory T cells; TEMRA: terminally differ-

entiated T cells; Tregs: regulatory T cells; Tc: cytotoxic T cells; Tfh: T follicular helper cells; NS: not significant. For para-

metric and non-parametric variables, mean ± SD and median (interquartile range) are shown. For comparison, T-Student 

and U-Mann–Whitney tests, respectively, were used. 
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Figure 3. Frequency of memory Th1 cells (A), cytotoxic T lymphocytes HLADR+CD38+ (B), cytotoxic T lymphocytes CD27-

CD28- (C), and plasmablasts (D) in mild and severe patients. U-Mann–Whitney test was used to compare medians in A, 

B, C, and D. * p < 0.05 and ** p < 0.01. 

3.4. SARS-CoV-2 Specific T Cells Response in Active COVID-19 Disease 

Phenotypic characterization of immune cells may not reflect their function and spec-

ificity. The specific T cell response against overlapping peptide pools of the nucleocapsid 

phosphoprotein (“N”), the membrane glycoprotein (“M”), and the surface glycoprotein 

(“S”) of SARS-CoV-2 through activation of PBMC in both mild and severe groups was 

assessed. The response was evaluated by expressing activation-induced markers (CD134 

and CD25) after 24 h of stimulation, as previously shown [13]. Anti-CD3/CD28 monoclo-

nal antibody stimulation was used as a positive control, while medium without additives 

was used as a negative control. The global stimulation index with any SARS-CoV-2 anti-

gen was comparable between groups at admission (Table S2). 

3.5. Assessment of the Immune Parameters as a Prognosis Factor 

Within all the evaluated immune parameters included in this study, those with sig-

nificant differences at admission were selected in order to investigate their independent 

role in the prognosis of the patients. The univariate and multivariate analyses are summa-

rized in Table 4. The logistic regression model was performed as described in Materials 

and Methods, and the parameters finally included in the model were: age, ferritin, D-di-

mer, absolute counts of lymphocytes, C4, CD8+CD27-CD28- ,and non-classical monocytes. 

The area under the curve was 78.2%, with a sensitivity and specificity of 71.4 and 72.2, 

respectively (Figure 4). 
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Table 4. Univariate and Multivariate analysis of the parameters included in the logistic regression model. 

Parameter  Univariate   Multivariate  

 p Odds CI p Odds CI 

Age <0.001 1.033 1.013–1.053 0.015 1.038 1.007–1.069 

Ferritin <0.001 1.001 1.001–1.002 0.021 1.001 1.001–1.002 

D-dimer 0.226 1.000 1.000–1.000 0.01 1.000 1.000–1.001 

Absolute lymphocyte count 0.002 0.999 0.999–1.000 0.023 0.999 0.998–1.000 

C4 0.016 1.041 1.007–1.075 0.110 1.036 0.992–1.082 

% of CD8+CD27−CD28− 0.023 1.017 1.002–1.031 0.701 1.004 0.985–1.023 

% of non-classical monocytes 0.288 0.18 0.000–29.826 0.908 1.712 0.000–0.000149 

Abbreviations: CI: confidence interval. 

 

Figure 4. ROC curve analysis of the logistic regression model for prediction of moderate–severe outcomes. Superposed 

and independent AUC analyses of the variables included in the logistic regression model are depicted. The AUC of the 
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merged probability is calculated from the predictive model in bold blue line as shown in the Materials and Methods 

section. 

4. Discussion 

The COVID-19 disease has been divided into two well-differentiated stages, firstly 

an inflammatory step and subsequently a hyper-inflammatory step. The inflammatory 

response is conducted by innate immune components early after SARS-CoV-2 infection. 

An average of 10 days has been estimated for this response, followed by the induction of 

an efficient adaptive specific response in mild disease. However, if this immune response 

is overcome, a further hyper-inflammatory response is mounted. This hyper-inflamma-

tory response has been associated with severe and poor clinical outcomes [25–27]. 

Different immune profiles at admission have been associated with clinical outcomes, 

underlining the presence of lymphopenia [10], neutrophilia [11], and an increase in mon-

ocyte subsets [28]. Furthermore, alterations in adaptive immune system components, in-

cluding activated and exhausted phenotypes in cytotoxic T cells, have been confirmed 

[29]. Moreover, increased levels of plasmablasts in severe patients have been observed 

[19]. 

A comprehensive immune profile was created in the present work, and the obtained 

results were comparable with those described in previous studies [28,29] (Tables 2 and 3). 

Among differential features in the innate immune system in severe versus mild COVID-

19 patients, a dysfunctional neutrophil skew was observed in severe cases [30]. This emer-

gency myelopoiesis could be associated with an increased frequency of neutrophils and 

lymphopenia, as observed in our cohort. Moreover, non-classical monocytes were ex-

panded within the monocyte compartment in the mild group compared with severe cases 

[31]. This monocyte subset has been involved in inflammation restoration and tissue re-

covery [32], whereas its increased frequency in mild patients could be related to virus 

clearance [33]. 

The role of total ILCs and specifically ILC1 in antiviral immune response has been 

previously shown [34,35]. A reduction of ILC1 in severe COVID-19 patients has been re-

cently described by García et al. [35]. Our results confirmed the reduction of this cell sub-

set in severe COVID-19 patients, although no significant differences were observed. 

In contrast, the role of ILC3 in respiratory viral infections has not been described yet. 

ILC3 exist mainly in the intestinal mucosal tissue, playing an important function in mu-

cosal homeostasis and inflammatory responses. Nevertheless, we observed a significant 

reduction of this subpopulation in severe COVID-19 patients at admission. The function 

of ILC3 in the intestinal mucosa is well described [36]. Their role in respiratory mucosa 

remains to be elucidated. Nonetheless, our finding was in peripheral blood, and the rela-

tionship between circulating and tissue ILC3 is not established yet. 

TLR signaling in viral infections has been thoroughly studied. Specifically, TLR-3, 

TLR-7, and TLR-8 exert a key role in infections by RNA viruses, such as SARS-CoV-2. 

Functional studies have identified rare loss-of-function variants of the X-chromosomal 

TLR7 in severe COVID-19 patients [37]. In our cohort, the patients with severe disease 

were older and had several comorbidities that could go unnoticed, such as a loss-of-func-

tion effect, since no significant differences in the expression of TLR-3 and TLR-7 consider-

ing the severity of COVID-19 patients were observed. 

The potential role of regulatory subsets in COVID-19 prognosis was studied by 

Meckiff et al. [38]. They observed a skew towards a reactive gene expression pattern of 

SARS-CoV-2-specific CD4+ T cells with impairment of Tregs in severe patients. In our co-

hort at admission, the severe patients had reduced Treg frequency and CD3-CD56++CD16lo 

NK cells compared with the mild group [39]. 

The Th1 response is involved in cellular immunity throughout IFN-γ production. In 

our cohort, an increase in Th1 and memory Th1 cells was observed in the mild group. This 
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observation points to an early activation compared with the severe group. Previous stud-

ies on Th subsets in COVID-19 have shown poor outcomes related to undifferentiated Th 

subsets in patients [40] or with a skew towards Th2 cells [41]. 

The cytotoxic T cell is the main subset in adaptive antiviral response. After immuno-

phenotype analysis, the CD8 compartment has been classified in detail not only by matu-

ration stage but also activation status. The early activation phenotype in CD8 is defined 

by CD38 and HLA-DR expression [42]. Recently, an increase in the frequency of 

CD8+CD38+HLADR+ cells in patients with COVID-19 disease and fatal outcomes has been 

confirmed [43,44]. In the present work, the severe group presented an increased frequency 

of CD8+CD38+HLADR+ cells at admission. In terms of the functional status of CD8 cells, 

severe patients had an exhausted or immunosenescence phenotype [45]. We used CD27 

and CD28 to identify a CD8 exhausted phenotype [29], and accordingly, a significant in-

crease in the CD8+CD27−CD28- exhausted phenotype in the severe group was found. 

This exhausted phenotype of CD8+ T cells was included in the predictive model to 

establish the risk of severe disease. Together with age, IL-6, ferritin, D-dimer, IgM, C4, 

absolute lymphocyte count, ILC type-3 count, and percentage of plasmablasts, Th1, 

memory Th1, Treg, CD8+CD38+HLA-DR+, non-classical monocytes, and CD3-

CD56++CD16lo NK cells, the predictive model showed an AUC of 78%. Several predictive 

models have been published based on demographic, biochemical, and immunological pa-

rameters [39,46–49]. The main prognostic factors were neutrophil and lymphocyte counts, 

whereas NK subsets and CD4 levels were only partially confirmed. Notably, other asso-

ciated parameters with poor prognosis in COVID-19 patients such as SARS-CoV-2 viral 

load have been demonstrated [50]. A limitation of the study was the absence of the viral 

load or the cycle threshold (Ct) data in our model. 

Easily measurable immune parameters, such as CD8+CD27-CD28- and non-classical 

monocytes, improve the predictive value of our model. However, the cross-sectional de-

sign is a limitation of the study, and further validation cohorts should be assessed to con-

firm the model’s predictive capability. 

Although our model was not developed to predict fatal outcomes, both innate and 

adaptive immune parameters could help determine the oxygen therapy requirement of 

78% of the patients and could be helpful in improving the therapeutic management of the 

patients at admission. 

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/bi-

omedicines9080917/s1: Table S1: Comparison of main lymphocyte subsets expressed as frequencies 

and absolute numbers in peripheral blood. Table S2: CD134 and CD25 expression after stimulation 

with N-, M-, and S-specific SARS-CoV-2 antigens. 
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