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Abstract
This work concentrates on a class of optimal control problems for semilinear parabolic
equations subject to control constraint of the form ‖u(t)‖L1(Ω) ≤ γ for t ∈ (0, T ).
This limits the total control that can be applied to the system at any instant of time.
The L1-norm of the constraint leads to sparsity of the control in space, for the time
instants when the constraint is active. Due to the non-smoothness of the constraint,
the analysis of the control problem requires new techniques. Existence of a solution,
first and second order optimality conditions, and regularity of the optimal control are
proved. Further, stability of the optimal controls with respect to γ is investigated on
the basis of different second order conditions.
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1 Introduction

We study the optimal control problem

(P) inf
u∈Uad∩L∞(Q)

J (u) := 1

2

∫
Q
(yu(x, t) − yd(x, t))2 dx dt + κ

2

∫
Q

u(x, t)2 dx dt,

where κ > 0,

Uad = {u ∈ L∞(0, T ; L1(Ω)) : ‖u(t)‖L1(Ω) ≤ γ for a.a. t ∈ (0, T )}

with 0 < γ < +∞, and yu is the solution of the semilinear parabolic equation

{
∂ y

∂t
+ Ay + a(x, t, y) = u in Q = Ω × (0, T ),

y = 0 on Σ = � × (0, T ), y(0) = y0 in Ω.
(1.1)

with

Ay = −
n∑

i, j=1

∂x j (ai j (x)∂xi y).

We assume that Ω is a bounded, connected, and open subset of Rn , n = 2 or 3, with
a Lipschitz boundary �, and that 0 < T < ∞ is fixed.

The precise conditions on the nonlinearity a will be given below. Suffice it to say
at this moment that strong nonlinearities such as exp(y), sin(y), or polynomial non-
linearities with positive leading term of odd degree will be admitted. A first difficulty
that arises in treating (P) relates to the proof of existence of an optimal control. The
reader could think of choosing L2(Q) as the convenient space to prove the existence of
a solution because of the coercivity of J on this space and since the constraint defines
a closed and convex subset of L2(Q). However, the selection of controls in L2(Q) is
not appropriate to deal with the non-linearity in the sate equation. Indeed, even if we
can prove the existence of a solution of the state equation, its regularity is not enough
(it is not an element of L∞(Q), in general) to get the differentiability of the relation
control to state. Looking at the control constraint and the cost functional, a second
possibility is to consider L∞(0, T ; L2(Ω)) as control space. But this is not a reflexive
Banach space and, consequently, the proof of existence of a solution to (P) cannot
be done by standard techniques. Nevertheless, we can prove existence of solutions in
the spaces Lr (0, T ; L2(Ω)) for all r > 4

4−n . Moreover, all these solutions belong to
L∞(Q). This leads us to formulate the control problem in L∞(Q); see Remark (4.2).
To deal with the non-linearity of the state equation in the proof of a solution to (P)
in L∞(Q), one approach consists in introducing artificial bound constraints on the
control and prove that they are inactive as the artificial constraint parameter is large
enough; see, for instance [7]. In our case, this would lead to two control constraints
with two Lagrangemultipliers in the dual of L∞. This makes the proof of boundedness
of the optimal control very difficult. In this work we avoid such a technique and rather
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modify (truncate) the non-linear term of the state equation and prove that for a large
truncation parameter the cut off is not active on the optimal state.

A second difficulty results from the non-differentiability of the constraint on the
control in the definition ofUad . This is a natural constraint since it models a volumetric
restriction, which represents a limit to the total amount of control acting at any time
t . This technological constraint is an alternative to pointwise or to energy constraints
which have been considered previously in the literature. Moreover, the L1-norm in
space leads to a spatially sparsifying effect for the solutions. It is different from the
type of sparsification which results when considering such terms in the cost. While
for the former, sparsification takes place only after the control becomes active, for the
latter it takes place regardless of the norm of the control. For problem (P) the sparsity
effect is described by the level set characterized by the functional values of the adjoint
state at the height of the supremum norm of the multiplier associated to the control
constraint in (P); see Corollary 3.3. We point out that while the L2 norm appearing
in the cost influences the optimal solution, it does not eliminate the sparsifying effect
of L1-terms, regardless of whether they appear in the cost or as a constraint. The
literature on problems with an L1 or measure-valued norm in the cost is quite rich,
so we can only give selected references which consider evolutionary problems [1–5,
7–9, 11, 14–16, 18]. In all these papers, either there are no control constraints or they
are box constraints. In [13], the authors study a control problem for the evolutionary
Navier–Stokes system under the smooth control constraint ‖u(t)‖2

L2(Ω)
≤ 1, which is

smooth and not sparsifying. In [6], the control of the 2d evolutionary Navier–Stokes
system is analyzed, where the controls are measured valued functions subject to the
constraint ‖u(t)‖M(Ω) ≤ γ .

The structure of the paper is the following. The analysis of the state equation and its
first and second derivatives with respect to the controls is carried out in Sect. 2. Here
special attention is paid to the L∞(Q) regularity of the state variable. In Sect. 3 first
order optimality conditions are derived and the structural properties of the involved
functions are analyzed. In particular, the regularity of the optimal control is proved,
which is a crucial point for the numerical analysis of the control problem. The proof of
existence of an optimal control is given in Sect. 4. Section 5 is devoted to necessary and
sufficient second order optimality conditions. In the final section, as a consequence
of the second order condition, Hölder and Lipschitz stability of local solutions with
respect to the control bound γ is investigated.

2 Analysis of the State Equation

In this section we establish the well posedness of the state equation, the regularity
of the solution, and the differentiable dependence of the solution with respect to the
control. To this end we make the following assumptions.

We assume that y0 ∈ L∞(Ω), ai j ∈ L∞(Ω) for every 1 ≤ i, j ≤ n, and

ΛA|ξ |2 ≤
n∑

i, j=1

ai j (x)ξiξ j ∀ξ ∈ R
n for a.a. x ∈ Ω (2.1)
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for some ΛA > 0. We also assume that a : Q × R → R is a Carathéodory function
of class C2 with respect to the last variable satisfying the following properties:

∃Ca ∈ R : ∂a

∂ y
(x, t, y) ≥ Ca ∀y ∈ R, (2.2)

a(·, ·, 0) ∈ Lr̂ (0, T ; L p̂(Ω)), with r̂ , p̂ ≥ 2 and
1

r̂
+ n

2 p̂
< 1, (2.3)

∀M > 0 ∃Ca,M > 0 :
∣∣∣∣∂

j a

∂ y j
(x, t, y)

∣∣∣∣ ≤ Ca,M ∀|y| ≤ M and j = 1, 2, (2.4)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂
2a

∂ y2
(x, t, y1) − ∂2a

∂ y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤ M with |y1 − y2| < ε,
(2.5)

for almost all (x, t) ∈ Q.
As usual W (0, T ) denotes the Hilbert space

W (0, T ) = {y ∈ L2(0, T ; H1
0 (Ω)) : ∂ y

∂t
∈ L2(0, T ; H−1(Ω))}.

We recall that W (0, T ) is continuously embedded inC([0, T ]; L2(Ω)) and compactly
embedded in L2(Q).

Theorem 2.1 Under the previous assumptions, for every u ∈ Lr (0, T ; L p(Ω)) with
1
r + n

2p < 1 and r , p ≥ 2 there exists a unique solution yu ∈ L∞(Q) ∩ W (0, T ) of
(1.1). Moreover, the following estimates hold

‖yu‖L∞(Q) ≤ η
(‖u‖Lr (0,T ;L p(Ω)) + ‖a(·, ·, 0)‖Lr̂ (0,T ;L p̂(Ω)) + ‖y0‖L∞(Ω)

)
, (2.6)

‖yu‖C([0,T ];L2(Ω)) + ‖yu‖L2(0,T ;H1
0 (Ω))

≤ K
(‖u‖L2(Q) + ‖a(·, ·, 0)‖L2(Q) + ‖y0‖L2(Ω)

)
, (2.7)

for a monotone non-decreasing function η : [0,∞) −→ [0,∞) and some constant
K both independent of u.

Proof We decompose the state equation into two parts. First, we consider

{
∂z

∂t
+ Az = u in Q,

z = 0 on Σ, z(0) = y0 in Ω.
(2.8)

It is well known that it has a unique solution z ∈ W (0, T ) ∩ L∞(Q). Moreover, we
have the estimates

‖z‖W (0,T ) ≤ CW (‖u‖L2(Q) + ‖y0‖L2(Ω)), (2.9)

‖z‖L∞(Q) ≤ C∞(‖u‖Lr (0,T ;L p(Ω)) + ‖y0‖L∞(Ω)); (2.10)
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see, for instance [17,Chapter III]. Now, we define b : Q × R −→ R as follows

b(x, t, s) = e−|Ca |t [a(x, t, e|Ca |t s + z(x, t)) − a(x, t, z(x, t))] + |Ca |s,

where Ca is as in (2.2). Then, b(x, t, 0) = 0 and according to (2.2)

∂b

∂s
(x, t, s) = ∂a

∂s
(x, t, e|Ca |t s + z(x, t)) + |Ca | ≥ 0.

We consider the equation

{
∂w

∂t
+ Aw + b(x, t, w) = −e−|Ca |t a(x, t, z(x, t)) in Q,

w = 0 on Σ, w(0) = 0 in Ω.
(2.11)

Due to the properties of b, the existence and uniqueness of a solution w ∈ L∞(Q) ∩
W (0, T ) is well known; see [20,Theorem 5.5]. Moreover, the following estimates hold

‖w‖W (0,T ) ≤ Cb(‖a(·, ·, z)‖L2(Q) + ‖b(·, ·, w)‖L2(Q)), (2.12)

‖w‖L∞(Q) ≤ C ′∞‖a(·, ·, z)‖Lr̂ (0,T ;L p̂(Ω)). (2.13)

Denoting M = ‖z‖L∞(Q) and using (2.4) we infer with the mean value theorem

|a(x, t, z(x, t))| ≤ |a(x, t, z(x, t)) − a(x, t, 0)| + |a(x, t, 0)|
=
∣∣∣∂a

∂ y
(x, t, θ(x, t)z(x, t))z(x, t)

∣∣∣+ |a(x, t, 0)| ≤ Ca,M M + |a(x, t, 0)|.

Combining this with (2.10) and (2.13) we get

‖w‖L∞(Q) ≤ σ(‖u‖Lr (0,T ;L p(Ω)) + ‖a(·, ·, 0)‖Lr̂ (0,T ;L p̂(Ω)) + ‖y0‖L∞(Ω)

)
,

(2.14)

for a non-decreasing function σ : [0,∞) −→ [0,∞).
If we set w = e−|Ca |tψ and insert this in (2.11), we infer

{
∂ψ

∂t
+ Aψ + a(x, t, z(x, t) + ψ) = 0 in Q,

ψ = 0 on Σ, ψ(0) = 0 in Ω.
(2.15)

Adding (2.8) and (2.15) we deduce that yu = z + ψ solves (1.1). Moreover, any
solution of (1.1) is the sum of the solutions of (2.8) and (2.15). Since these equations
have a unique solution, the uniqueness of yu follows. Furthermore, (2.10) and (2.14)
imply (2.6).

To prove (2.7), we take φ = e−|Ca |t yu and introduce the function f : Q ×R −→ R

defined by

f (x, t, s) = e−|Ca |t [a(x, t, e|Ca |t s) − a(x, t, 0)] + |Ca |s.
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Then, φ satisfies

{
∂φ

∂t
+ Aφ + f (x, t, φ) = e−|Ca |t [u − a(x, t, 0)] in Q,

φ = 0 on Σ, φ(0) = y0 in Ω.
(2.16)

Since f (x, t, 0) = 0 and ∂ f
∂s (x, t, s) ≥ 0, multiplying the above equation by φ,

integrating in Ω , and using (2.1) we get

1

2

d

dt
‖φ(t)‖2L2(Ω)

+ ΛA

∫
Ω

|∇φ(t)|2 dx

≤ 1

2

d

dt
‖φ(t)‖2L2(Ω)

+
n∑

i, j=1

∫
Ω

ai j∂xi φ(t)∂x j φ(t) dx +
∫

Ω

f (x, t, φ(t))φ(t) dx

=
∫

Ω

e−|Ca |t (u − a(x, t, 0))φ dx ≤ (‖u(t)‖L2(Ω) + ‖a(·, t, 0)‖L2(Ω)

)‖φ(t)‖L2(Ω).

Estimate (2.7) follows from this inequality as usual. 
�
We apply Theorem 2.1 with p = 2 and r ∈ ( 4

4−n ,∞]. Observe that 1
r + n

4 < 1 and
r > 2. Then, the mapping G : Lr (0, T ; L2(Ω)) −→ L∞(Q) ∩ W (0, T ) given by
G(u) = yu solution of (1.1) is well defined. We have the following differentiability
properties of G.

Theorem 2.2 The mapping G is of class C2. For u, v, v1, v2 ∈ Lr (0, T ; L2(Ω)) the
derivatives zv = G ′(u)v and zv1,v2 = G ′′(u)(v1, v2) are the solutions of the equations

⎧⎨
⎩

∂zv

∂t
+ Azv + ∂a

∂ y
(x, t, yu)zv = v in Q,

zv = 0 on Σ, zv(0) = 0 in Ω,

(2.17)

⎧⎨
⎩

∂zv1,v2

∂t
+ Azv1,v2 + ∂a

∂ y
(x, t, yu)zv1,v2 + ∂2a

∂ y2
(x, t, yu)zv1 zv2 = 0 in Q,

zv1,v2 = 0 on Σ, zv1,v2(0) = 0 in Ω.

(2.18)

Proof Let us consider the Banach space

Y = {y ∈ L∞(Q) ∩ W (0, T ) : ∂ y

∂t
+ Ay ∈ X},

where X = Lr̂ (0, T ; L p̂(Ω)) + Lr (0, T ; L2(Ω)), endowed with the norm

‖y‖Y = ‖y‖L∞(Q) + ‖y‖W (0,T ) + ‖∂ y

∂t
+ Ay‖X .
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Now, we define the mapping

F : Y × L∞(Ω) × Lr (0, T ; L2(Ω)) −→ X × L∞(Ω)

F(y, w, u) =
(∂ y

∂t
+ Ay + a(·, ·, y) − u, y(0) − w

)
.

We have that F is of class C2, F(yu, y0, u) = (0, 0) for every u ∈ Lr (0, T ; L2(Ω)),
and

∂F
∂ y

(yu, y0, u) : Y −→ X × L∞(Ω)

∂F
∂ y

(yu, y0, u)z =
(∂z

∂t
+ Az + ∂a

∂ y
(·, ·, yu)z, z(0)

)

is an isomorphism. Hence, an easy application of the implicit function theorem proves
the result. 
�

As a consequence of the above theorem and the chain rule we infer the differentia-
bility of the mapping J : Lr (0, T ; L2(Ω)) −→ R. From now on, we assume

yd ∈ Lr̂ (0, T ; L p̂(Ω)), (2.19)

where r̂ and p̂ are defined in (2.3).

Corollary 2.1 If r > 4
4−n , then J is of class C2 and its derivatives are given by the

expressions

J ′(u)v =
∫

Q
(ϕ + κu)v dx dt, (2.20)

J ′′(u)(v1, v2) =
∫

Q

[(
1 − ∂2a

∂ y2
(x, t, yu)ϕ

)
zv1 zv2 + κv1v2

]
dx dt, (2.21)

where zvi = G ′(u)vi , i = 1, 2, and ϕ ∈ C(Q̄) ∩ H1(Q) is the solution of the adjoint
state equation

⎧⎨
⎩

−∂ϕ

∂t
+ A∗ϕ + ∂a

∂ y
(x, t, yu)ϕ = yu − yd in Q,

ϕ = 0 on Σ, ϕ(T ) = 0 in Ω.

(2.22)

Above A∗ denotes the adjoint operator of A

A∗ϕ = −
n∑

i, j=1

∂x j (a ji (x)∂xi ϕ).
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The regularity ϕ̄ ∈ C(Q̄) ∩ H1(Q) follows from Theorems III-6.1 and III-10.1 of
[17]. Moreover, we observe that J ′(u) and J ′′(u) can be extended to continuous linear
and bilinear forms J ′(u) : L2(Q) −→ R and J ′′(u) : L2(Q) × L2(Q) −→ R for
every u ∈ Lr (0, T ; L2(Ω)).

Remark 2.1 Hypotheses (2.1)–(2.5) are satisfied, for instance, for the nonlinearity
a(y) = exp(y). They are also satisfied for a(y) = (y − z1)(y − z2)(y − z3) for
constants zi , with i ∈ {1, 2, 3}. This latter nonlinearity is known in neurology as
Nagumo equation and in physical chemistry as Schlögl model. Formulating the opti-
mal control problem with an L1(Ω) constraint implies that one looks for the action of
a controlling laser whose optimal support is small; see [12].

3 Existence of Optimal Controls and First Order Optimality
Conditions

Since the control problem (P) is not convex, we need to distinguish between local and
global minimizers. We call ū a local minimizer for (P) in the Lr (0, T ; L2(Ω)) sense
with r > 4

4−n if ū ∈ Uad ∩ L∞(Q) and there exists ε > 0 such that

J (ū) ≤ J (u) ∀u ∈ Bε ∩ Uad , (3.1)

where

Bε = {u ∈ Lr (0, T ; L2(Ω)) : ‖u − ū‖Lr (0,T ;L2(Ω)) ≤ ε}.

It is immediate to check that if ū is a local minimizer in the Lr (0, T ; L2(Ω)) sense,
then it is also a local minimizer in the Lr ′

(0, T ; L2(Ω)) sense for every r < r ′ ≤ ∞.

Theorem 3.1 There exists at least one solution of (P). Moreover, for every local
minimizer ū in the Lr (0, T ; L2(Ω)) sense with r > 4

4−n , there exist ȳ ∈
L2(0, T ; H1

0 (Ω)) ∩ L∞(Q), ϕ̄ ∈ C(Q̄) ∩ H1(Q), and μ̄ ∈ L∞(Q) such that

{
∂ ȳ

∂t
+ Aȳ + a(x, t, ȳ) = ū in Q,

ȳ = 0 on Σ, ȳ(0) = y0 in Ω,
(3.2)

⎧⎨
⎩

−∂ϕ̄

∂t
+ A∗ϕ̄ + ∂a

∂ y
(x, t, ȳ)ϕ̄ = ȳ − yd in Q,

ϕ̄ = 0 on Σ, ϕ̄(T ) = 0 in Ω,

(3.3)

∫
Q

μ̄(u − ū) dx dt ≤ 0 ∀u ∈ Uad , (3.4)

ϕ̄ + κ ū + μ̄ = 0. (3.5)
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Proof The proof of existence of a solution for (P) is postponed to the next section,
see Theorem 4.5. Given a local minimizer ū, we take ȳ and ϕ̄ as solutions of (3.2) and
(3.3), respectively. Using the convexity of Uad and (2.20) we get

0 ≤ J ′(ū)(u − ū) =
∫

Q
(ϕ̄ + κ ū)(u − ū) dx dt ∀u ∈ Uad ∩ L∞(Q).

Now, given u ∈ Uad arbitrary, we set uk(x, t) = Proj[−k,+k](u(x, t)) for k ≥ 1, thus
{uk}∞k=1 ⊂ L∞(Q)∩Uad and uk → u in L1(Q). Then, we can pass to the limit in the
inequality J ′(ū)(uk − ū) ≥ 0 and, hence, we obtain

∫
Q
(ϕ̄ + κ ū)(u − ū) dx dt ≥ 0 ∀u ∈ Uad .

This inequality is equivalent to the fact−(ϕ̄ +κ ū) ∈ ∂ IUad (ū) ⊂ L∞(Q). Here ∂ IUad

denotes the subdifferential of the indicator function IUad : L1(Q) −→ [0,+∞],
which takes the value IUad (u) = 0 if u ∈ Uad and +∞ otherwise. Therefore, there
exists μ̄ ∈ ∂ IUad such that (3.4) and (3.5) holds. 
�

Let us denote by ProjBγ
: L2(Ω) −→ Bγ ∩ L2(Ω) the L2(Ω) projection, where

Bγ = {v ∈ L1(Ω) : ‖v‖L1(Ω) ≤ γ }. Then, we have the following consequence of the
previous theorem.

Corollary 3.1 Let ū, ϕ̄, and μ̄ satisfy (3.2)–(3.5). Then, the following properties hold

∫
Ω

μ̄(t)(v − ū(t)) dx ≤ 0 ∀v ∈ Bγ and for a.a. t ∈ (0, T ), (3.6)

ū(t) = ProjBγ

(− 1

κ
ϕ̄(t)

)
for a.a. t ∈ (0, T ), (3.7)

⎧⎪⎪⎨
⎪⎪⎩

ū(x, t)μ̄(x, t) = |ū(x, t)||μ̄(x, t)| for a.a. (x, t) ∈ Q,

if ‖ū(t)‖L1(Ω) < γ then μ̄(t) ≡ 0 in Ω a.e. in (0, T ),

if ‖ū(t)‖L1(Ω) = γ and μ̄(t) �≡ 0 in Ω,

then supp(ū(t)) ⊂ {x ∈ Ω : |μ̄(x, t)| = ‖μ̄(t)‖L∞(Ω)}.
(3.8)

Proof Let us show that (3.4) and (3.6) are equivalent. Using Fubini’s theorem, it is
obvious that (3.6) implies (3.4). Let us prove the contrary implication. Let v ∈ Bγ be
arbitrary and set

Iv =
{

t ∈ (0, T ) :
∫

Ω

μ̄(x, t)(v(x) − ū(x, t)) dx > 0
}

and

u(x, t) =
{

v(x) if t ∈ Iv,
ū(x, t) otherwise.
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Then, u ∈ Uad and (3.4) yields

0 ≥
∫

Q
μ̄(x, t)(u − ū) dx dt =

∫
Iv

∫
Ω

μ̄(x, t)(v(x) − ū(x, t)) dx .

This is only possible if |Iv| = 0. In order to prove (3.7) we use (3.5) and (3.6) to get

∫
Ω

(
− 1

κ
ϕ̄(t) − ū(t)

)
(v − ū(t)) ≤ 0 ∀v ∈ Bγ ∩ L2(Ω) and for a.a. t ∈ (0, T ).

Since Bγ ∩ L2(Ω) is a convex and closed subset of L2(Ω), the above inequality is
the well known characterization of (3.7).

Let us prove the first statement of (3.8). Take u(x, t) = sign(μ̄(x, t))|ū(x, t)|.
Then, u ∈ Uad and with (3.4) we obtain

∫
Q

|μ̄(x, t)||ū(x, t)| dx dt =
∫

Q
μ̄(x, t)u(x, t) dx dt ≤

∫
Q

μ̄(x, t)ū(x, t) dx dt,

which proves the desired identity. We prove the second statement of (3.8). For every
ε > 0 we define

Iε = {t ∈ (0, T ) : ‖ū(t)‖L1(Ω) ≤ γ − ε}.

Denote Bε the closed ball of L1(Ω) centered at 0 and radius ε. Take v ∈ Bε arbitrary.
Then, we have that v + ū(t) ∈ Bγ for t ∈ Iε, and (3.6) yields

∫
Ω

μ̄(x, t)v(x) dx ≤ 0 ∀v ∈ Bε and t ∈ Iε,

which implies that μ̄(t) ≡ 0 in Ω for t ∈ Iε. Since ε > 0 is arbitrary, we infer the
second statement of (3.8). Let us prove the third statement. Under the assumption
‖ū(t)‖L1(Ω) = γ and μ̄(t) �≡ 0 in Ω . For every ε > 0 and t ∈ (0, T ) we consider the
sets

Ωε(t) = {x ∈ Ω : |ū(x, t)| > ε and |μ̄(x, t)| < ‖μ̄(t)‖L∞(Ω) − ε},
Ω̃ε(t) = {x ∈ Ω : |μ̄(x, t)| > ‖μ̄(t)‖L∞(Ω) − ε}.

We are going to prove that |Ωε(t)| = 0 for almost all t ∈ (0, T ). Assume that
|Ωε(t)| > 0 for some ε > 0 and t ∈ (0, T ). Since |Ω̃ε(t)| > 0 by definition of
the essential supremum, we can find two sets E ⊂ Ωε(t) and F ⊂ Ω̃ε(t) such that
|E | = |F | > 0. We define the control

v(x) =
⎧⎨
⎩

ū(x, t) − ε sign(ū(x, t)) if x ∈ E,

ū(x, t) + ε sign(ū(x, t)) if x ∈ F,

ū(x, t) otherwise.
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Since ‖ū(t)‖L1(Ω) = γ , we get

‖v‖L1(Ω) =
∫

E
|ū(x)| dx − ε|E | +

∫
F

|ū(x)| dx + ε|F | +
∫

Ω\(E∪F)

|ū(x)| dx = γ.

Moreover, we get with the first statement of (3.8)

∫
Ω

μ̄(x, t)(v(x) − ū(x, t)) dx = −ε

∫
E

|μ̄(x, t)| dx + ε

∫
F

|μ̄(x, t)| dx > 0,

which contradicts (3.6) unless it is satisfied for a set of points t of zero Lebesgue
measure. Taking

Ω(t) = {x ∈ Ω : |ū(x, t)| > 0 and |μ̄(x, t)| < ‖μ̄(t)‖L∞(Ω)},

since ε > 0 was arbitrary, we deduce that |Ω(t)| = 0 for almost all t ∈ (0, T ). This
implies that supp(ū(t)) ⊂ {x ∈ Ω : |μ̄(x, t)| = ‖μ̄(t)‖L∞(Ω)}. 
�
Remark 3.1 Let us observe that the first statement of (3.8) and (3.5) imply

|ϕ̄(x, t)| = κ|ū(x, t)| + |μ̄(x, t)|.

This yields

‖ϕ̄(t)‖L1(Ω) = κ‖ū(t)‖L1(Ω) + ‖μ̄(t)‖L1(Ω).

From this identity and the second statement of (3.8) we infer that μ̄(t) �≡ 0 in Ω if
and only if ‖ϕ̄(t)‖L1(Ω) > κγ .

Remark 3.2 From (3.8)we deduce that μ̄(x, t) ∈ ‖μ̄(t)‖L∞(Ω) ∂|·|(ū(x, t)) for almost
every point (x, t) ∈ Q.

Corollary 3.2 Let ū ∈ Uad ∩ L∞(Ω) satisfy (3.5) and (3.8). Then, the following
identities are satisfied

ū(x, t) = − 1

κ
sign(ϕ̄(x, t))

(|ϕ̄(x, t)| − ‖μ̄(t)‖L∞(Ω)

)+

= − 1

κ

{[
ϕ̄(x, t) + ‖μ̄(t)‖L∞(Ω)

]− +
[
ϕ̄(x, t) − ‖μ̄(t)‖L∞(Ω)

]+}
. (3.9)

Moreover, the regularity ū ∈ H1(Q) and μ̄ ∈ H1(Q) hold.

Proof If ‖μ̄(t)‖L∞(Ω) = 0, then ū(x, t) = − 1
κ
ϕ̄(x, t) follows from (3.5), which

coincides with the identity (3.9). Now, we assume that ‖μ̄(t)‖L∞(Ω) > 0. Using
(3.8) we obtain that ‖ū(t)‖L1(Ω) = γ . Then, the third statement of (3.8) implies that
|μ̄(x, t)| = ‖μ̄(t)‖L∞(Ω) if |ū(x, t)| > 0. We distinguish three cases.

123



   12 Page 12 of 40 Applied Mathematics & Optimization            (2022) 85:12 

(i) If ū(x, t) > 0, (3.5) and the first statement of (3.8) leads to ū(x, t) = − 1
κ
(ϕ̄(x, t)+

‖μ̄(t)‖L∞(Ω)), which coincides with the expression (3.9).
(ii) If ū(x, t) = 0, using again (3.5) we get |ϕ̄(x, t)| = |μ̄(x, t)| ≤ ‖μ̄(t)‖L∞(Ω).

Then, the identity (3.9) holds.
(iii) If ū(x, t) < 0, from the first statement of (3.8) and (3.5) we infer that ū(x, t) =

− 1
κ
(ϕ̄(x, t) − ‖μ̄(t)‖L∞(Ω)). Then, (3.9) holds too.

The spatial regularity ū ∈ L2(0, T ; H1
0 (Ω)) is an immediate consequence of (3.9)

and the fact that ϕ̄ ∈ H1(Q). For the temporal regularity of ū, we first observe

‖ū(t) − ū(t ′)‖L2(Ω)

= ‖ProjBγ
(− 1

κ
ϕ̄(t)) − ProjBγ

(− 1

κ
ϕ̄(t ′))‖L2(Ω) ≤ 1

κ
‖ϕ̄(t) − ϕ̄(t ′)‖L2(Ω).

Since ϕ̄ : [0, T ] −→ L2(Ω) is absolutely continuous, using the above
inequality we infer that ū : [0, T ] −→ L2(Ω) is also absolutely continu-
ous. Moreover, the same inequality yields ‖ū′(t)‖L2(Ω) ≤ 1

κ
‖ϕ̄′(t)‖L2(Ω) and

ū ∈ W 1,2(0, T ; L2(Ω)). All together, this implies that ū ∈ H1(Q). The regular-
ity of μ̄ follows from (3.5). 
�

Corollary 3.3 Let ū be as in Corollary 3.2. Then, we have the following property

ū(x, t) = 0 if and only if |ϕ̄(x, t)| ≤ ‖μ̄(t)‖L∞(Ω). (3.10)

This corollary is a straightforward consequence of (3.9).

Theorem 3.2 There exists a constant K∞ > 0 independent of γ such that ‖ū‖L∞(Q) ≤
K∞ for every global minimizer ū of (P). In addition, if we set γ0 = K∞|Ω|, then for
every γ > γ0 and every solution ū of (P) we have ‖ū(t)‖L1(Ω) < γ for almost every

t and ū = − 1
κ
ϕ̄.

To prove this theorem, we can argue as in the proof of Theorem 4.4 below to
deduce the existence of K∞ > 0 independent of γ such that ‖ū‖L∞(Q) ≤ K∞. The
last statement is a straightforward consequence of this estimate and the definition of
γ0.

4 Proof of Existence of a Solution for (P)

The proof of existence of a solution of (P) can not be performed by the classical
method of calculus of variations due to the lack of boundedness of Uad in L∞(Ω) and
the non coercivity of J on this space. One can try to prove the existence of a solution ū
of (P) in L2(Q) and then to deduce that ū ∈ L∞(Q) from the optimality conditions.
However, the differentiability of J in L2(Q) can fail due to the nonlinearity of the
state equation. To overcome this difficulty we are going to truncate the nonlinear term
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a(x, t, y) as follows. For every M > 0 we define the function fM : R −→ R by

fM (s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M + 1 if s > M + 1,
s + (M − s)2 + (M − s)3 if M ≤ s ≤ M + 1,

s if − M < s < +M,

s − (M + s)2 − (M + s)3 if − M − 1 ≤ s ≤ −M,

−M − 1 if s < −M − 1.

It can be easily checked that fM ∈ C1(R) and 0 ≤ f ′
M (s) ≤ 1 for every s ∈ R. Now,

we set aM (x, t, s) = a(x, t, fM (s)). It is obvious that aM is of class C1 with respect
to the last variable and (2.2)–(2.4) imply

∂aM

∂ y
(x, t, y) = ∂a

∂ y
(x, t, fM (y)) f ′

M (y) ≥ min(0, Ca) ∀y ∈ R, (4.1)

aM (·, ·, 0) = a(·, ·, 0) ∈ Lr̂ (0, T ; L p̂(Ω)), (4.2)∣∣∣∣∂aM

∂ y
(x, t, y)

∣∣∣∣ ≤ Ca,M+1 ∀y ∈ R, (4.3)

for almost all (x, t) ∈ Q.

Theorem 4.1 For any M > 0 and all u ∈ L2(Q) the equation

{
∂ y

∂t
+ Ay + aM (x, t, y) = u in Q,

y = 0 on Σ, y(0) = y0 in Ω,
(4.4)

has a unique solution yM
u ∈ W (0, T ). Moreover, yM

u satisfies the inequalities

‖yM
u ‖C(0,T ;L2(Ω)) + ‖yM

u ‖L2(0,T ;H1
0 (Ω))

≤ K
(‖u‖L2(Q) + ‖a(·, ·, 0)‖L2(Q) + ‖y0‖L2(Ω)

)
, (4.5)

‖yM
u ‖W (0,T )

≤ K ′(‖u‖L2(Q) + ‖y0‖L2(Ω) + ‖a(·, ·, 0)‖L2(Q) + Ca,M+1(M + 1)|Q| 12 ), (4.6)

where K is the same constant as in (2.7) and K ′ is independent of M and u.

Proof From (4.3) and themean value theoremwe infer that |aM (·, ·, s)−aM (·, ·, 0)| ≤
Ca,M+1(M + 1) for all s ∈ R. Consequently, the estimate

‖aM (·, ·, y) − aM (·, ·, 0)‖L2(Q) ≤ Ca,M+1(M + 1)|Q| 12

holds. Hence, an easy application of fixed point Schauder’s theorem yields the exis-
tence of a solution yM

u in W (0, T ). The uniqueness follows in the standard way noting
that
∫

Ω

[aM (x, t, y2) − aM (x, t, y1)](y2 − y1) dx ≥ min{0, Ca}‖y2 − y1‖2L2(Ω)
.
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The proof of the estimate (4.5) is the same as the one of (2.7). Inequality (4.6) follows
from (4.5) and the fact that

‖aM (·, ·, y)‖L2(Q) ≤ ‖aM (·, ·, 0)‖L2(Q) + Ca,M+1(M + 1)|Q| 12 .


�
Let us define the mapping G M : L2(Q) −→ W (0, T ) associating to every u the

corresponding solution yM
u of (4.4).

Theorem 4.2 The mapping G M is of class C1. For all u, v ∈ L2(Q) the derivative
zv = G ′

M (u)v is the solution of the linearized equation

⎧⎨
⎩

∂z

∂t
+ Az + ∂aM

∂ y
(x, t, yM

u )z = v in Q,

z = 0 on Σ, z(0) = 0 in Ω,

(4.7)

where yM
u = G M (u).

Proof Let us introduce the space

Y =
{

y ∈ W (0, T ) : ∂ y

∂t
+ Ay ∈ L2(Q)

}
.

This is a Banach space when it is endowed with the graph norm

‖y‖Y = ‖y‖W (0,T ) + ‖∂ y

∂t
+ Ay‖L2(Q).

Now, we define the mapping

FM : Y × L2(Ω) × L2(Q) −→ L2(Q) × L2(Ω)

FM (y, w, u) =
(∂ y

∂t
+ Ay + aM (·, ·, y) − u, y(0) − w

)
.

Let us prove that the mapping

FM : W (0, T ) −→ L2(Q), FM (y) = aM (·, ·, y)

is of class C1 with

DFM : W (0, T ) −→ L(W (0, T ), L2(Q)), DFM (y)z = ∂aM

∂s
(·, ·, y)z.

First, we observe that a standard application of aGagliardo–Nirenberg inequality leads
to

‖z‖
L

8
3 (0,T ;L4(Ω))

≤ C‖z‖
1
4
L∞(0,T ;L2(Ω))

‖z‖
3
4

L2(0,T ;H1
0 (Ω))

≤ C ′‖z‖W (0,T )
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for every z ∈ W (0, T ). Using this inequality, (4.3), and the mean value theorem we
infer

‖FM (y + z) − FM (y) − DFM (y)z‖2L2(Q)

=
∫

Q

∣∣∣aM (x, t, y(x, t) + z(x, t)) − aM (x, t, y(x, t)) − ∂aM

∂s
(x, t, y(x, t))z(x, t)

∣∣∣2 dx dt

=
∫

Q

∣∣∣∂aM

∂s
(x, t, y(x, t) + θ(x, t)z(x, t)) − ∂aM

∂s
(x, t, y(x, t))

∣∣∣2z2(x, t) dx dt

≤
∫ T

0

∥∥∥∂aM

∂s
(·, t, y(t) + θ(t)z(t)) − ∂aM

∂s
(·, t, y(t))

∥∥∥2
L4(Ω)

‖z(t)‖2L4(Ω)
dt

≤
∥∥∥∂aM

∂s
(·, ·, y + θ z) − ∂aM

∂s
(·, ·, y)

∥∥∥2
L8(0,T ;L4(Ω))

‖z‖2
L

8
3 (0,T ;L4(Ω))

.

From here we deduce

lim‖z‖W (0,T )→0

‖FM (y + z) − FM (y) − DFM (y)z‖L2(Q)

‖z‖W (0,T )

= 0.

Hence, FM is Fréchet differentiable. The continuity of DFM is immediate and,
consequently, FM is of class C1. Using this and the continuity of the embedding
Y ⊂ W (0, T ) ⊂ C([0, T ]; L2(Ω)), we conclude that FM is of class C1. Moreover,
we haveFM (yM

u , y0, u) = (0, 0). An easy application of the implicit function theorem
proves Theorem 4.2. 
�

For every M > 0 we consider the control problems

(PM ) inf
u∈Uad∩L2(Q)

JM (u) := 1

2

∫
Q
(yM

u (x, t) − yd(x, t))2 dx dt

+κ

2

∫
Q

u(x, t)2 dx dt,

where yM
u denotes the solution of (4.4). Problem (PM ) has at least a solution uM . This

is consequence of the coercivity of JM on L2(Q), the fact that Uad ∩ L2(Q) is closed
and convex in L2(Q), and the lower semicontinuity of JM with respect to the weak
topology of L2(Q). The last statement follows easily from the estimate (4.6) and the
compactness of the embedding W (0, T ) ⊂ L2(Q).

From the chain rule and Theorem 4.2 we infer that JM : L2(Q) −→ R is of class
C1 and its derivative is given by the expression

J ′
M (u)v =

∫
Q
(ϕ + κu)v dx dt, (4.8)
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where ϕ ∈ W (0, T ) is the solution of the adjoint state equation

⎧⎨
⎩

−∂ϕ

∂t
+ A∗ϕ + ∂aM

∂ y
(x, t, yM

u )ϕ = yM
u − yd in Q,

ϕ = 0 on Σ, ϕ(T ) = 0 in Ω.

(4.9)

Theorem 4.3 Let uM be a solution of (PM ). Then, there exist functions yM , ϕM ∈
W (0, T ) and μM ∈ L2(Q) such that

{
∂ yM

∂t
+ AyM + aM (x, t, yM ) = uM in Q,

yM = 0 on Σ, yM (0) = y0 in Ω,
(4.10)

⎧⎨
⎩

−∂ϕM

∂t
+ A∗ϕM + ∂aM

∂ y
(x, t, yM )ϕM = yM − yd in Q,

ϕM = 0 on Σ, ϕM (T ) = 0 in Ω,

(4.11)

∫
Q

μM (x, t)(u(x, t) − uM (x, t)) dx dt ≤ 0 ∀u ∈ Uad ∩ L2(Q), (4.12)

ϕM + κuM + μM = 0. (4.13)

The proof of this theorem is the same as the one of Theorem 3.1.

Theorem 4.4 Let (uM , yM , ϕM , μM ) be as in Theorem 4.3. Then, there exists a con-
stant K∞ > 0 such that

‖(uM , yM , ϕM , μM )‖L∞(Q)4 ≤ K∞ ∀M > 0. (4.14)

Proof As in the proof for the first statement of (3.8), we have that (4.12) and (4.13)
yield |μM (x, t)||uM (x, t)| = μM (x, t)uM (x, t) for almost all (x, t) ∈ Q.

We denote by y0M the solution of (4.4) associated with the control identically zero.
Then, according to Theorem 4.1, inequality (4.5) implies that

‖y0M‖C(0,T ;L2(Ω)) ≤ K
(‖a(·, ·, 0)‖L2(Q) + ‖y0‖L2(Ω)

) ∀M > 0.

From this inequality we infer

‖y0M‖L2(Q) ≤ C1 = √
T K
(‖a(·, ·, 0)‖L2(Q) + ‖y0‖L2(Ω)

) ∀M > 0.

Since uM is solution of (PM ) and u ≡ 0 is an admissible control for (PM ) we get

κ

2
‖uM‖2L2(Q)

≤ JM (uM ) ≤ JM (0) = 1

2
‖y0M − yd‖2L2(Q)

.

This leads to

‖uM‖L2(Q) ≤ 1√
κ

‖y0M − yd‖L2(Q) ≤ C2 = 1√
κ

(C1 + ‖yd‖L2(Q)) ∀M > 0.
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Using again (4.5) and this estimate we deduce

‖yM‖L∞(0,T ;L2(Ω)) ≤ C3 = K2
(
C2 + ‖a(·, ·, 0)‖L2(Q)

+‖b(·, ·, 0)‖L2(Σ) + ‖y0‖L2(Ω)

) ∀M > 0.

Using this estimate we can infer the boundedness of ϕM by a constant independent
of M . The idea of the proof is to make the substitution ϕM (x, t) = e−|Ca |tψM (x, t),
where Ca is given in (2.2). Then, ψ satisfies the equation

⎧⎨
⎩

−∂ψM

∂t
+ A∗ψM + (∂aM

∂ y
(x, t, yM ) + |Ca |)ψM = e|Ca |t (yM − yd) in Q,

ψM = 0 on Σ, ψM (T ) = 0 in Ω.

Since (4.1) implies that ∂aM
∂ y (x, t, yM

u ) + |Ca | ≥ 0, we apply [17,Theorem III-7.1] to
deduce the existence of a constant C > 0 independent of M such that

‖ψM‖L∞(Q) ≤ C
(
e|Ca |T [‖yM‖L∞(0,T ;L2(Ω)) + ‖yd‖Lr̂ (0,T ;L p̂(Ω))

])
≤ C4 = C

(
e|Ca |T [C3 + ‖yd‖Lr̂ (0,T ;L p̂(Ω))

]) ∀M > 0.

From here we infer the estimate ‖ϕM‖L∞(Q) ≤ ‖ψM‖L∞(Q) ≤ C4 for every M > 0.
Now, using that uM and μM have the same sign almost everywhere in Q, we deduce
from (4.13)

κ|uM (x, t)| ≤ |κuM (x, t) + μM (x, t)| = |ϕM (x, t)| ≤ C4,

which proves that ‖uM‖L∞(Q) ≤ C4
κ

for every M > 0. Moreover, the bounds from
uM and ϕM along with (4.13) imply that ‖μM‖L∞(Q) ≤ 2C4. Finally, the estimate of
yM in L∞(Q) independently of M follows from (4.10), Theorem 2.1, and the estimate
for uM . 
�
Remark 4.1 The assumption κ > 0 was used in an essential manner in the above proof.

Theorem 4.5 Let M ≥ K∞ be arbitrary, where K∞ satisfies (4.14). Let uM be a
solution of (PM ). Then, uM is a solution of (P).

Proof First we observe that ‖yM‖L∞(Q) ≤ M and hence aM (x, t, yM ) = a(x, t, yM ).
Therefore, yM is the solution of (1.1) corresponding to uM and, consequently,
JM (uM ) = J (uM ).

Given u ∈ Uad ∩ L∞(Q) arbitrary, let yu be the associated solution of (1.1) and set
M0 = ‖yu‖L∞(Q). If M0 ≤ M , then it is obvious that aM (x, t, yu) = a(x, t, yu) and,
hence, JM (u) = J (u). Therefore, the optimality of uM implies J (uM ) = JM (uM ) ≤
JM (u) = J (u).

If M0 > M , we take a solution uM0 of (PM0 ). Then, Theorem 4.4 implies that
the solution yM0 of (4.10) with M replaced by M0 satisfies ‖yM0‖L∞(Q) ≤ M
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and, consequently, aM0(x, t, yM0) = aM (x, t, yM0) = a(x, t, yM0) and JM0(uM0) =
JM (uM0) = J (uM0). These facts along with the optimality of uM and uM0 lead to

J (uM ) = JM (uM ) ≤ JM (uM0) = JM0(uM0) ≤ JM0(u) = J (u),

which proves that uM is a solution of (P). 
�
Remark 4.2 Let us compare problem (P) with the control problems

(Pr ) inf
u∈Uad∩Lr (0,T ;L2(Ω))

J (u) := 1

2

∫
Q
(yu(x, t) − yd(x))2 dx dt

+κ

2

∫
Q

u(x, t)2 dx dt,

where r ∈ ( 4
4−n ,∞). We observe that Theorems 2.1 and 2.2 , and Corollary 2.1

are applicable to deduce that any solution of (Pr ) satisfies the optimality conditions
(3.2)–(3.5). Then, the arguments of Theorem 4.4 apply to deduce that any solution of
(Pr ) belongs to L∞(Q). Let us check that problems (P) and (Pr ) are equivalent in
the sense that both have the same solutions. Indeed, since Uad ∩ Lr (0, T ; L2(Ω)) ⊃
Uad ∩L∞(Q), it is obvious that every solution of (Pr ) is a solution of (P). Conversely,
let ū be a solution of (P) and take u ∈ Uad ∩ Lr (0, T ; L2(Ω)) arbitrarily. For every
integer k ≥ 1 we set uk = Proj[−k,+k](u). Then, it is obvious that uk ∈ Uad ∩ L∞(Q)

and uk → u in Lr (0, T ; L2(Ω)). Using the optimality of ū we have J (ū) ≤ J (uk)

for all k, and passing to the limit we infer that J (ū) ≤ J (u). Since u was arbitrary,
this implies that ū is a solution of (Pr ).

5 Second Order Optimality Conditions

We consider the Lipschitz and convex mapping j : L1(Ω) −→ R defined by j(v) =
‖v‖L1(Ω). Its directional derivative is given by the expression

j ′(u; v) =
∫

Ω+
u

v(x) dx −
∫

Ω−
u

v(x) dx +
∫

Ω0
u

|v(x)| dx ∀u, v ∈ L1(Ω), (5.1)

where

Ω+
u = {x ∈ Ω : u(x) > 0}, Ω−

u = {x ∈ Ω : u(x) < 0} and Ω0
u = Ω \ (Ω+

u ∪ Ω−
u ).

In order to derive the second order optimality conditions for (P), we define the
cone of critical directions. For a control ū ∈ Uad ∩ L∞(Q) satisfying the first order
optimality conditions (3.2)–(3.5) we set

Cū =
{
v ∈ L2(Q) : J ′(ū)v = 0 and j ′(ū(t); v(t))

{= 0 if t ∈ I +
γ ,

≤ 0 if t ∈ Iγ \ I +
γ ,

}
,

123



Applied Mathematics & Optimization            (2022) 85:12 Page 19 of 40    12 

where

Iγ = {t ∈ (0, T ) : j(ū(t)) = γ } and I +
γ = {t ∈ Iγ : μ̄(t) �≡ 0 in Ω}.

We first prove the second order necessary conditions. Given an element v ∈ Cū ,
the classical approach to prove these second order conditions consists of taking a
sequence {vk}∞k=1 converging to v such that ū + ρvk is a feasible control for (P) for
every ρ > 0 small enough. The way of taking this sequence is different from the case
where box control constraints are considered. The main reason for this difference is
that the functional j , defining the constraint, is not differentiable and that it is non-
local in space. Even the approach followed in the case where j is involved in the cost
functional cannot be used in our framework; see [3]. The proof makes an essential use
of the following lemma.

Lemma 5.1 Let v ∈ L2(Q) satisfy j ′(ū(t); v(t)) = 0 for almost all t ∈ I +
γ . Then,

J ′(ū)v = 0 holds if and only if

‖μ̄(t)‖L∞(Ω)|v(x, t)| = μ̄(x, t)v(x, t) for a.a. (x, t) ∈ Ω0
ū(t) × I +

γ . (5.2)

As a consequence, every element v of Cū satisfies (5.2).

Proof From (2.20), (3.5), and (3.8) we infer

J ′(ū)v =
∫

Q
(ϕ̄ + κ ū)v dx dt = −

∫
Q

μ̄v dx dt = −
∫

I +
γ

∫
Ω

μ̄v dx dt

= −
∫

I +
γ

‖μ̄(t)‖L∞(Ω)

{∫
Ω+

ū(t)

v dx −
∫

Ω−
ū(t)

v dx

}
−
∫

I +
γ

∫
Ω0

ū(t)

μ̄v dx dt .

Using that j ′(ū(t); v(t)) = 0 for almost all t ∈ I +
γ and (5.1) we get

∫
Ω+

ū(t)

v dx −
∫

Ω−
ū(t)

v dx = −
∫

Ω0
ū(t)

|v|dx .

Inserting this in the previous identity we obtain

J ′(ū)v =
∫

I +
γ

∫
Ω0

ū(t)

[‖μ(t)‖L∞(Ω)|v| − μ̄v] dx dt .

Since μ̄v ≤ ‖μ(t)‖L∞(Ω)|v|, we deduce from the above equality that J ′(ū)v = 0 if
and only if (5.2) holds. 
�
Theorem 5.1 Let ū be a local solution of (P) in the Lr (0, T ; L2(Ω)) sense with
r > 4

4−n . Then, the inequality J ′′(ū)v2 ≥ 0 holds for all v ∈ Cū.
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Proof Let v be an element ofCū ∩L∞(0, T ; L2(Ω)).Wewill prove that J ′′(ū)v2 ≥ 0.
Later, we will remove the assumption v ∈ L∞(0, T ; L2(Ω)). Set

g(x, t) =
⎧⎨
⎩

v(x, t)

|ū(x, t)| if x /∈ Ω0
ū(t),

0 otherwise,
and a(t) =

∫
Ω

g(x, t)ū(x, t) dx .

From (5.1) we infer

j ′(ū(t); v(t)) = a(t) +
∫

Ω0
ū(t)

|v(x, t)| dx .

For every integer k ≥ 1 we put

ak(t) =
∫

Ω

Proj[−k,+k](g(x, t))ū(x, t) dx,

gk(x, t) = Proj[−k,+k](g(x, t))|ū(x, t)| + a(t) − ak(t)

γ
ū(x, t),

vk(x, t) =

⎧⎪⎨
⎪⎩

0 if γ − 1
k < ‖ū(t)‖L1(Ω) < γ,

gk(x, t) + v(x, t)χΩ0
ū(t)

(x) if ‖ū(t)‖L1(Ω) = γ,

v(x, t) otherwise,

where χΩ0
ū(t)

(x) takes the value 1 if x ∈ Ω0
ū(t) and 0 otherwise.

Using that |Proj[−k,+k](g(x, t))ū(x, t)| ≤ |v(x, t)| and the pointwise convergence
Proj[−k,+k](g(x, t))ū(x, t) → g(x, t)ū(x, t) almost everywhere in Q, we deducewith
Lebesgue’s Theorem that limk→∞ ak(t) = a(t) for almost all t ∈ (0, T ). Therefore,
we have that vk(x, t) → v(x, t) for almost all (x, t) ∈ Q. Moreover, we have

|gk(x, t)| ≤ |v(x, t)| + 2

γ
‖v‖L∞(0,T ;L1(Ω))‖ū‖L∞(Q)

and

|vk(x, t)| ≤ |v(x, t)| + 2

γ
‖v‖L∞(0,T ;L1(Ω))‖ū‖L∞(Q) for a.a. (x, t) ∈ Q.

Once again, with Lebesgue’s Theorem we get vk → v in Lr (0, T ; L2(Ω)) for every
r < ∞.

Let us prove that J ′(ū)vk = 0. To this end, we apply Lemma 5.1. Actually, we are
going to prove that vk ∈ Cū . Given t ∈ Iγ , taking into account (5.1) and the fact that
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j(ū(t)) = ‖ū(t)‖L1(Ω) = γ we get

j ′(ū(t); vk(t))

=
∫

Ω+
ū(t)

Proj[−k,+k](g(x, t))|ū(x, t)| dx −
∫

Ω−
ū(t)

Proj[−k,+k](g(x, t))|ū(x, t)| dx

+ a(t) − ak(t)

γ

[ ∫
Ω+

ū(t)

ū(x, t) dx −
∫

Ω−
ū(t)

ū(x, t) dx
]

+
∫

Ω0
ū(t)

|v(x, t)| dx

=
∫

Ω

Proj[−k,+k](g(x, t))ū(x, t) dx + a(t) − ak(t)

γ
j(ū(t)) +

∫
Ω0

ū(t)

|v(x, t)| dx

= a(t) +
∫

Ω0
ū(t)

|v(x, t)| dx = j ′(ū(t), v(t))

{= 0 if t ∈ I +
γ ,

≤ 0 if t ∈ Iγ \ I +
γ ,

where we used that v ∈ Cū in the last step.
In the case where ‖ū(t)‖L1(Ω) < γ , according to the definition of vk , we have that

vk(x, t) is equal to 0 or to v(x, t). Since v satisfies (5.2) due to the fact that v ∈ Cū ,
we deduce that vk also satisfies (5.2). Then, Lemma 5.1 implies that J ′(ū)vk = 0.
Therefore, vk ∈ Cū holds.

Take ρk > 0 such that

ρk

(
k + 2

γ
‖v‖L∞(0,T ;L1(Ω))

)
<

1

k max{1, γ } .

Then, we have for each fixed k and ∀ρ ∈ (0, ρk)

ρ
(
|Proj[−k,+k](g(x, t))| + ∣∣ |a(t) − ak(t)|

γ

∣∣) ≤ ρ
(

k + 2

γ
‖v‖L∞(0,T ;L1(Ω))

)
<

1

k
.

Using this estimate we have that ‖ū(t)+ρvk(t)‖ ≤ γ if j(ū(t)) = γ and 0 < ρ < ρk :

‖ū(t) + ρvk(t)‖L1(Ω)

=
∫

Ω\Ω0
ū(t)

∣∣∣ū(t)[1 + ρ
[
Proj[−k,+k](g(x, t)) sign(ū(x, t)) + a(t) − ak(t)

γ

]∣∣∣ dx

+ ρ

∫
Ω0

ū(t)

|v(x, t)| dx

=
∫

Ω\Ω0
ū(t)

|ū(t)|[1 + ρ
[
Proj[−k,+k](g(x, t)) sign(ū(x, t)) + a(t) − ak(t)

γ

]
dx

+ ρ

∫
Ω0

ū(t)

|v(x, t)| dx

=
∫

Ω

|ū(t)| dx + ρ

{∫
Ω

[
Proj[−k,+k](g(x, t))ū(x, t) + a(t) − ak(t)

γ
|ū(x, t)|] dx
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+
∫

Ω0
ū(t)

|v(x, t)| dx

}

= ‖ū(t)‖L1(Ω) + ρ

{
a(t) +

∫
Ω0

ū(t)

|v(x, t)| dx

}
= γ + ρ j ′(ū(t); v(t)) ≤ γ.

In the case γ − 1
k < ‖ū(t)‖L1(Ω) < γ , we have that vk(t) = 0 and, consequently

‖ū(t) + ρvk(t)‖L1(Ω) = ‖ū(t)‖L1(Ω) < γ.

If ‖ū(t)‖L1(Ω) < γ − 1
k , then we get

‖ū(t) + ρvk(t)‖L1(Ω) ≤ γ − 1

k
+ ρ‖v‖L∞(0,T ;L1(Ω)) < γ.

Using the local optimality of ū, the fact that ū + ρvk ∈ Uad , J ′(ū)vk = 0, and
making a Taylor expansion we get for every ρ < ρk small enough

0 ≤ J (ū + ρvk) − J (ū) = ρ J ′(ū)vk + ρ2

2
J ′′(ū + θρvk)v

2
k = ρ2

2
J ′′(ū + θρvk)v

2
k .

Dividing the above inequality byρ2/2 andmakingρ → 0weobtainwithCorollary 2.1
that J ′′(ū)v2k ≥ 0. Since vk → v in L2(Q), we pass to the limit when k → ∞ and
conclude that J ′′(ū)v2 ≥ 0.

Finally, we take v ∈ Cū arbitrary and for every k ≥ 1 set

vk(x, t) = v(x, t)

1 + 1
k ‖v(t)‖L1(Ω)

.

Then, we have

J ′(ū)vk = 1

1 + 1
k ‖v(t)‖L1(Ω)

J ′(ū)v = 0 and

j ′(ū(t); vk(t)) = 1

1 + 1
k ‖v(t)‖L1(Ω)

j ′(ū(t); v(t))

{= 0 if t ∈ I +
γ ,

≤ 0 if t ∈ Iγ \ I +
γ .

Therefore, vk ∈ Cū ∩ L∞(0, T ; L1(Ω)) and vk → v in L2(Q) is satisfied. Hence, we
get J ′′(ū)v2 = limk→∞ J ′′(ū)v2k ≥ 0, which concludes the proof. 
�
Theorem 5.2 Let ū ∈ Uad ∩ L∞(Q) satisfy the first order optimality conditions (3.2)–
(3.5). If J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0} holds, then for each r ∈ ( 4

4−n ,∞] there exist
δ > 0 and ε > 0 such that

J (ū) + δ

2
‖u − ū‖2L2(Q)

≤ J (u) ∀u ∈ Uad ∩ Bε(ū), (5.3)
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where Bε(ū) = {u ∈ Lr (0, T ; L2(Ω)) : ‖u − ū‖Lr (0,T ;L2(Ω)) ≤ ε}.
Proof We proceed by contradiction. If (5.3) is false for every δ > 0 and ε > 0, then
for every integer k ≥ 1 there exists an element uk ∈ Uad such that

‖uk − ū‖Lr (0,T ;L2(Ω)) <
1

k
and J (uk) < J (ū) + 1

2k
‖uk − ū‖2L2(Q)

. (5.4)

Let us set ρk = ‖uk − ū‖L2(Q) and vk = (uk − ū)/ρk . Then, we have ‖vk‖L2(Q) = 1
and, taking a subsequence that we denote in the same way, we have vk⇀v in L2(Q).
We divide the proof in several steps.

Step I - J ′(ū)v = 0. From (3.4) and (3.5) we infer that J ′(ū)(uk − ū) ≥ 0 for every
k ≥ 1. Therefore, J ′(ū)vk ≥ 0 and passing to the limit we obtain J ′(ū)v ≥ 0. Now,
using (5.4) along with the mean value theorem we get for some θk ∈ (0, 1)

J (uk) − J (ū) = J ′(ū + θk(uk − ū))(uk − ū) <
1

2k
‖uk − ū‖2L2(Q)

.

Dividing this inequality by ρk we obtain

J ′(ū + θk(uk − ū))vk <
1

2k
‖uk − ū‖L2(Q).

Then, passing to the limit when k → ∞ it follows J ′(ū)v ≤ 0.

Step II - v ∈ Cū . Since ū(t) + λvk(t) = ū(t) + λ
ρk

(uk(t) − ū(t)) ∈ Uad for every
0 < λ < ρk , we get for almost every t ∈ Iγ

j ′(ū(t); vk(t)) = lim
λ↘0

‖ū(t) + λvk(t)‖L1(Ω) − ‖ū(t)‖L1(Ω)

λ

= lim
λ↘0

‖ū(t) + λvk(t)‖L1(Ω) − γ

λ
≤ 0.

Take a measurable subset J ⊂ Iγ . Since the functional

u ∈ L2(Q) −→
∫

J
j ′(ū(t); u(t)) dt ∈ R

is continuous and convex, recall (5.1), the weak convergence vk⇀v in L2(Q) implies

∫
J

j ′(ū(t); v(t)) dt ≤ lim inf
k→∞

∫
J

j ′(ū(t); vk(t)) dt ≤ 0.

Since J ⊂ Iγ is an arbitrary measurable set, we infer for almost all t ∈ Iγ

∫
Ω+

ū(t)

v(t) dx −
∫

Ω−
ū(t)

v(t) dx +
∫

Ω0
ū(t)

|v(t)| dx = j ′(ū(t); v(t)) ≤ 0. (5.5)
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Identities (3.5) and J ′(ū)v = 0, and (3.8) imply

0 =
∫

Q
μ̄(x, t)v(x, t) dx dt =

∫
I +
γ

∫
Ω

μ̄(x, t)v(x, t) dx dt

=
∫

I +
γ

{
‖μ̄(t)‖L∞(Ω)

[ ∫
Ω+

ū(t)

v(t) dx −
∫

Ω−
ū(t)

v(t) dx
]

+
∫

Ω0
ū(t)

μ̄(t)v(t) dx

}
dt .

(5.6)

From (5.5) we deduce

∫
I +
γ

{
‖μ̄(t)‖L∞(Ω)

[ ∫
Ω+

ū(t)

v(t) dx −
∫

Ω−
ū(t)

v(t) dx +
∫

Ω0
ū(t)

|v(t)| dx
]}

dt ≤ 0.

The last two relations lead to

∫
I +
γ

{∫
Ω0

ū(t)

[
‖μ̄(t)‖L∞(Ω)|v(t)| − μ̄(t)v(t)

]
dx

}
dt ≤ 0.

This is possible if and only if ‖μ̄(t)‖L∞(Ω)|v(x, t)| = μ̄(x, t)v(x, t) for almost all
t ∈ I +

γ and x ∈ Ω0
ū(t). Inserting this identity in (5.6) we get

0 =
∫

Q
μ̄(x, t)v(x, t) dx dt =

∫
I +
γ

‖μ̄(t)‖L∞(Ω) j ′(ū(t); v(t)) dt .

Finally, this identity and (5.5) yield j ′(ū(t); v(t)) = 0 for almost all t ∈ I +
γ . Therefore,

we conclude with Step I that v ∈ Cū .

Step III - J ′′(ū)v2 ≤ 0. From (5.4) and a Taylor expansion we infer

ρk J ′(ū)vk + ρ2
k

2
J ′′(ū + θkρkvk)v

2
k = J (uk) − J (ū) <

1

2k
‖uk − ū‖2L2(Q)

.

Since J ′(ū)vk = 1
ρk

J ′(ū)(uk − ū) ≥ 0, we deduce from the above inequality

J ′′(ū + θk(uk − ū))v2k = J ′′(ū + θkρkvk)v
2
k <

1

k
. (5.7)

The strong convergence ū + θk(uk − ū) → ū in Lr (0, T ; L2(Ω)) yields the uniform
convergences yθk → ȳ and ϕθk → ϕ̄ in L∞(Q), where yθk and ϕθk are the state and
adjoint state associated with ū+θk(uk −ū). This also implies that zθk ,vk → zv strongly
in L2(Q), where zv is the solution of (2.20) for yu = ȳ and z2θk ,vk

is the solution of
(2.20) with v = vk and yu = yθk . Then, we can pass to the limit in (5.7) when k → ∞
and deduce that J ′′(ū)v2 ≤ 0.
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Step IV - Final contradiction. Since v ∈ Cū and J ′′(ū)v2 ≤ 0, according to the
assumptions of the theorem, this is only possible if v = 0. Therefore, we have that
vk⇀0 in L2(Q) and, consequently, z2θk ,vk

→ 0 strongly in L2(Q). Now, using that
‖vk‖L2(Q) = 1 and (2.21), we infer from (5.7)

0 ≥ lim inf
k→∞ J ′′(ū + θk(uk − ū))v2k

= lim inf
k→∞

∫
Q

[(
1 − ∂2a

∂ y2
(x, t, yθk )ϕθk

)
z2θk ,vk

+ κv2k

]
dx dt

lim
k→∞

∫
Q

(
1 − ∂2a

∂ y2
(x, t, yθk )ϕθk

)
z2θk ,vk

dx dt + κ = κ,

which contradicts our assumption κ > 0. 
�
The next theorem establishes that the sufficient condition for local optimality,

J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}, provides a useful tool for the numerical analysis
of the control problem. Given τ > 0 we define the extended cone

Cτ
ū =

{
v ∈ L2(Q) : |J ′(ū)v| ≤ τ‖v‖L2(Q) and

{ | j ′(ū(t); v(t))| ≤ τ‖v‖L2(Q) if t ∈ I +
γ ,

j ′(ū(t); v(t)) ≤ τ‖v‖L2(Q) if t ∈ Iγ \ I +
γ ,

}
.

Theorem 5.3 Let ū ∈ Uad satisfy the first order optimality conditions (3.2)–(3.5) and
the second order condition J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. Then, for every r ∈ ( 4

4−n ,∞]
there exist strictly positive numbers ε, τ, ν such that

J ′′(u)v2 ≥ ν‖v‖2L2(Q)
∀v ∈ Cτ

ū and ∀u ∈ Bε(ū), (5.8)

where Bε(ū) denotes the Lr (0, T ; L2(Ω)) closed ball.

Proof First we prove the existence of τ > 0 and ν > 0 such that

J ′′(ū)v2 ≥ 2ν‖v‖2L2(Q)
∀v ∈ Cτ

ū . (5.9)

We proceed by contradiction. If (5.9) fails for all strictly positive numbers τ, ν, then for

every integer k ≥ 1 there exists a function vk ∈ C
1
k
ū such that J ′′(ū)v2k < 1

k ‖vk‖2L2(Q)
.

Dividing vk by its L2(Q) norm and taking a subsequence we get

‖vk‖L2(Q) = 1, vk⇀v in L2(Q), J ′′(ū)v2k <
1

k
, (5.10)

|J ′(ū)vk | ≤ 1

k
,

{
| j ′(ū(t); vk(t))| ≤ 1

k if t ∈ I +
γ ,

j ′(ū(t); vk(t)) ≤ 1
k if t ∈ Iγ \ I +

γ .
(5.11)
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We prove that v ∈ Cū . First, from (5.10) and (5.11) we get

|J ′(ū)v| ≤ lim inf
k→∞ |J ′(ū)vk | ≤ 0.

Thus, we have J ′(ū)v = 0. Let us set

I = {t ∈ Iγ : j ′(ū(t); v(t)) > 0}.

Then, we obtain with (5.10) and (5.11)

∫
I

j ′(ū(t); v(t)) dt ≤ lim inf
k→∞

∫
I

j ′(ū(t); vk(t)) dt ≤ 0.

This is not possible unless |I | = 0. Hence, we have that j ′(ū(t); v(t)) ≤ 0 for almost
all t ∈ Iγ . Now, from the identity J ′(ū)v = 0, (5.1), and (3.8) it follows

0 =
∫

Q
(ϕ̄ + κ ū)v dx dt = −

∫
Q

μ̄v dx dt

= −
∫

I +
γ

[∫
Ω+

ū(t)

‖μ̄(t)‖L∞(Ω)v dx −
∫

Ω−
ū(t)

‖μ̄(t)‖L∞(Ω)v dx +
∫

Ω0
ū(t)

μv dx

]
dt .

This implies

∫
I +
γ

[∫
Ω+

ū(t)

‖μ̄(t)‖L∞(Ω)v dx −
∫

Ω−
ū(t)

‖μ̄(t)‖L∞(Ω)v dx

]
dt

= −
∫

I +
γ

∫
Ω0

ū(t)

μv dx dt . (5.12)

Now we have

∫
I +
γ

‖μ̄(t)‖L∞(Ω) j ′(ū(t); v(t)) dt

=
∫

I +
γ

‖μ̄(t)‖L∞(Ω)

[∫
Ω+

ū(t)

v dx −
∫

Ω−
ū(t)

v dx +
∫

Ω0
ū(t)

|v| dx

]
dt .

From this identity and (5.12) we infer

∫
I +
γ

‖μ̄(t)‖L∞(Ω) j ′(ū(t); v(t)) dt =
∫

I +
γ

∫
Ω0

ū(t)

[‖μ̄(t)‖L∞(Ω)|v| − μ̄(t)v
]
dx dt ≥ 0.

123



Applied Mathematics & Optimization            (2022) 85:12 Page 27 of 40    12 

This inequality alongwith j ′(ū(t); v(t)) ≤ 0 for t ∈ Iγ implies that j ′(ū(t); v(t)) = 0
for almost all t ∈ I +

γ . We have proved that v ∈ Cū . From (5.10) we infer

J ′′(ū)v2 ≤ lim inf
k→∞ J ′′(ū)v2k ≤ 0.

Since ū satisfies the second order condition, the above inequality is only possible if
v = 0. Therefore, we have that vk⇀0 in L2(Q). Using (2.21) and the fact that zvk → 0
strongly in L2(Q) this yields

κ = lim inf
k→∞ κ‖vk‖2L2(Q)

= lim inf
k→∞ J ′′(ū)v2k ≤ 0,

which is a contradiction. Therefore, (5.9) holds.
Let us conclude the proof showing that (5.9) implies (5.8). Given ρ > 0 arbitrarily

small, from Theorem 2.2 we deduce the existence of ε > 0 such that

‖yu − ȳ‖L∞(Q) = ‖G(u) − G(ū)‖L∞(Q) < ρ ∀u ∈ Bε(ū).

Using this estimate, we get from (2.17) and (2.22), and taking a smaller ε if necessary

‖ϕu − ϕ̄‖L∞(Q) + ‖zu,v − zv‖L2(Q) < ρ ∀u ∈ Bε(ū) and ∀v ∈ L2(Q),

where zu,v = G ′(u)v, zv = G ′(ū)v, and ϕu and ϕ̄ are the adjoint states corresponding
to u and ū, respectively. Therefore, selecting ρ small enough we obtain with (2.21)
for some ε > 0

|[J ′′(u) − J ′′(ū)]v2| ≤ ν‖v‖2L2(Q)
∀u ∈ Bε(ū) and ∀v ∈ L2(Q).

Combining this with (5.9) we infer (5.8). 
�

6 Stability of the Optimal Controls with Respect to �

The aim of this section is to prove some stability of the local or global solutions of
(P) with respect to γ . For every γ > 0 we consider the control problems

(Pγ ) inf
u∈Uγ ∩L∞(Q)

J (u),

where

Uγ = {u ∈ L∞(0, T ; L1(Ω)) : ‖u(t)‖L1(Ω) ≤ γ for a.a. t ∈ (0, T )}.

First, we prove some continuity of the solutions of (Pγ ) with respect to γ .
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Theorem 6.1 Let {γk}∞k=1 ⊂ (0,∞) be a sequence converging to some γ > 0. For
every k let uγk be a global minimizer of the problem (Pγk

). Then, the sequence {uγk }∞k=1
is bounded in L∞(Q). Moreover, if uγ is a weak∗ limit in L∞(Q) of a subsequence
of {uγk }∞k=1, then uγ is a global minimizer of (Pγ ) and the convergence is strong in
L p(Q) for every p < ∞. Reciprocally, for every strict local minimizer uγ of (Pγ )

in the Lr (0, T ; L2(Ω)) sense with 4
4−n < r < ∞, there exists a sequence {uγk }∞k=1

such that uγk is a Lr (0, T ; L2(Ω)) local minimizer of (Pγk
) and uγk → uγ strongly

in L p(Q) for every p < ∞.

Proof The boundedness of {uγk }∞k=1 in L∞(Q) follows from Theorem 3.2. Therefore,
we can take subsequences converging weakly∗ in L∞(Q). Let us take one of these

subsequences, that we denote in the same form, such that uγk

∗
⇀ û in L∞(Q). Let uγ

be a solution of (Pγ ). For every k we define

uk =
{

uγ if γ ≤ γk,
γk
γ

uγ if γ > γk,
and ûk =

{
uγk if γk ≤ γ,
γ
γk

uγk if γk > γ.
(6.1)

Then, it is immediate that uk → uγ and ûk
∗
⇀ û in L∞(Q), {ûk}∞k=1 ⊂ Uγ and

uk ∈ Uγk ∩ Uγ for every k. Since Uγ ∩ L2(Q) is a closed and convex subset of
L2(Q) and ûk⇀û in L2(Q), we deduce that û ∈ Uγ . With the compactness of the
embedding W (0, T ) ⊂ L2(Q) we can easily prove that yûk → yû in L2(Q). Using
these convergences and the optimality of uγk and uγ we get

J (uγ ) ≤ J (û) ≤ lim inf
k→∞ J (uγk ) ≤ lim sup

k→∞
J (uγk ) ≤ lim sup

k→∞
J (uk) = J (uγ ).

This implies that J (uγ ) = J (û) = limk→∞ J (uγk ). This identity proves that û
is a solution of (Pγ ). Moreover, the convergence yuγk

→ yuγ in L2(Q) leads to
limk→∞ ‖uγk ‖L2(Q) = ‖û‖L2(Q). From this fact and the weak convergence uγk ⇀uγ

in L2(Q), we obtain that uγk → û in L2(Q). This along with the boundedness of
{uγk }∞k=1 in L∞(Q) implies the strong convergence in L p(Q) for every p < ∞.

Let us prove the second part of the theorem. Let uγ be an Lr (0, T ; L2(Ω)) strict
local minimizer to (Pγ ). This means that there exists ε > 0 such that

J (uγ ) < J (u) ∀u ∈ Uγ ∩ Bε(uγ ) with u �= uγ ,

where Bε(uγ ) is the closed ball in Lr (0, T ; L2(Ω)) of radius ε and center uγ . Now,
we consider the problems

(P Bγ ) min
u∈Uγ ∩Bε(uγ )

J (u) and (P Bγk ) min
u∈Uγk ∩Bε(uγ )

J (u)

It is immediate that uγ is the unique solution of (P Bγ ). Observe that the controls uk

defined in (6.1) are elements of Uγk ∩ Bε(uγ ) for all k large enough. Hence, Uγk ∩
Bε(uγ ) is non-empty, closed, convex, and bounded in Lr (0, T ; L2(Ω)). Therefore,
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problem (P Bγk ) has at least one solution uγk . Let us prove that uγk → uγ in L p(Q)

for every p < ∞. Denote yγk and ϕγk the state and adjoint state associated with
uγk . Since {uγk }∞k=1 is bounded in Lr (0, T ; L2(Ω)) we infer from Theorem 2.1 the
boundedness of {yγk }∞k=1 in L∞(Q). Hence, from the adjoint state equation and the
classical estimates for linear equations we deduce that {ϕγk }∞k=1 is also bounded in
L∞(Q). Due to the optimality of uγk for (P Bγk ) we obtain

∫
Q
(ϕγk + κuγk )(u − uγk ) dx dt = J ′(uγk )(u − uγk ) ≥ 0 ∀u ∈ Uγk ∩ Bε(uγ ).

Setting S = Uγk ∩ Bε(uγ ) we get from the above inequalities

uγk = ProjS
(

− 1

κ
ϕγk

)
,

where ProjS denotes the L2(Q) projection on S. Let us prove that

‖uγk ‖L∞(Q) ≤ 2
( 1
κ

‖ϕγk ‖L∞(Q) + ‖uγ ‖L∞(Q)

)
. (6.2)

For this purpose we define

Q0 =
{
(x, t) ∈ Q : |uγk (x, t)| > 2

( 1
κ

|ϕγk (x, t)| + |uγ (x, t)|
)}

.

Put

u(x, t) =
{− 1

κ
ϕγk (x, t) + uγ (x, t) if (x, t) ∈ Q0,

uγk (x, t) otherwise.

Then, it is obvious that

‖u(t)‖L1(Ω) ≤ ‖uγk (t)‖L1(Ω) ≤ γk,

‖u − uγ ‖Lr (0,T ;L2(Ω)) ≤ ‖uγk − uγ ‖Lr (0,T ;L2(Ω)) ≤ ε,

∥∥u + 1

κ
ϕγk

∥∥
L2(Q)

<
∥∥uγk + 1

κ
ϕγk

∥∥
L2(Q)

if |Q0| �= 0,

The first two inequalities show that u ∈ S and, consequently, the third one contra-
dicts the fact that uγk is the L2(Q) projection of − 1

κ
ϕγk unless |Q0| = 0. Now, the

boundedness of {ϕγk }∞k=1 in L∞(Q) and (6.2) imply the boundedness of {uγk }∞k=1.

Therefore, there exists a subsequence, denoted in the same way, such that uγk

∗
⇀ û

in L∞(Q). Using the functions {ûk}∞k=1 defined in (6.1) and arguing as above, we
deduce that û ∈ Uγ . Moreover, is is also immediate that û ∈ Bε(uγ ). Let us consider
the functions {uk}∞k=1 defined in (6.1). Since

‖uk − uγ ‖L∞(Q) =
{

0 if γ ≤ γk,
γ−γk

γ
‖uγ ‖L∞(Q) otherwise,
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we have that uk → uγ in L∞(Q) as k → ∞ and uk ∈ Uγk ∩ Bε(uγ ) for every k
large enough. Then, using the optimality of uγ and uγk , and the fact that uk and û are
feasible controls for (P Bγk ) and (P Bγ ), respectively, we infer

J (uγ ) ≤ J (û) ≤ lim inf
k→∞ J (uγk ) ≤ lim sup

k→∞
J (uγk ) ≤ lim sup

k→∞
J (uk) = J (uγ ).

This implies that J (uγ ) = J (û) and, hence, û is also a solution of (P Bγ ). Due to the
uniqueness of solution of (P Bγ ) we conclude that uγ = û. The strong convergence
uγk → uγ in L p(Q) follows as above. We have proved that every subsequence con-
verge to uγ , then the whole sequence does. In particular, the convergence uγk → uγ

in Lr (0, T ; L2(Ω)) implies that uγk is in the interior of the ball Bε(uγ ) for all k
sufficiently large. Hence, uγk is an Lr (0, T ; L2(Ω)) local minimizer of (P Bγk ). 
�
Remark 6.1 Given an Lr (0, T ; L2(Ω)) strict local minimizer of (Pγ ), from the above
theorem we deduce the existence of a family {uγ ′ }γ ′>0 of Lr (0, T ; L2(Ω)) local
minimizers of problems (Pγ ′) such that uγ ′ → uγ in L p(Q) as γ ′ → γ for every
p < ∞. Looking at the definition of the elements uγk in the previous proof we have
that

J (uγ ′) ≤ J (u) ∀u ∈ Uγ ′ ∩ Bε(uγ ) and J (uγ ) ≤ J (u) ∀u ∈ Uγ ∩ Bε(uγ ).

(6.3)

Theorem 6.2 Let {uγ ′ }γ ′ be a family of local minimizers of problems (Pγ ′) such that
uγ ′ → uγ in Lr (0, T ; L2(Ω)) as γ ′ → γ with uγ a local minimizer of (Pγ ) satisfying
(5.3). We also assume that (6.3) holds. Then, there exists a constant L such that

‖uγ ′ − uγ ‖L2(Q) ≤ L|γ ′ − γ | 12 . (6.4)

Proof The first part of the theorem follows from Remark 6.1. We only have to prove
(6.4). For every γ ′ we define

ûγ ′ =
{

uγ if γ < γ ′,
γ ′
γ

uγ if γ > γ ′, and v̂γ ′ =
{

uγ ′ if γ ′ < γ,
γ
γ ′ uγ ′ if γ ′ > γ.

(6.5)

Then we have

ûγ ′ , v̂γ ′ ∈ Uγ ∩ Uγ ′ , ûγ ′ → uγ in L∞(Q) and v̂γ ′ → uγ in Lr (0, T ; L2(Ω)).

(6.6)

From here we infer that vγ ′ ∈ Uγ ∩ Bε(uγ ) for γ ′ close enough to γ with Bε(uγ )

defined in (5.3). Therefore, we get

δ

2
‖v̂γ ′ − uγ ‖2L2(Q)

≤ J (v̂γ ′) − J (uγ ). (6.7)
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In the case γ ′ < γ , using (6.7), the optimality of uγ ′ , and the definition of v̂γ ′ we
obtain with the mean value theorem

‖uγ ′ − uγ ‖2L2(Q)
≤ 2

δ

[
(J (uγ ′) − J (ûγ ′)) + (J (ûγ ′) − J (uγ ))

]

≤ 2

δ
(J (ûγ ′) − J (uγ )) ≤ C1‖ûγ ′ − uγ ‖L∞(Q) = C1

γ
‖uγ ‖L∞(Q)|γ ′ − γ |.

In the case γ ′ > γ we proceed as follows

‖v̂γ ′ − uγ ‖2L2(Q)
≤ 2

δ

[
(J (v̂γ ′) − J (uγ ′)) + (J (uγ ′) − J (uγ ))

]

≤ 2

δ

(
J (v̂γ ′) − J (uγ ′)

) ≤ C2‖v̂γ ′ − uγ ′ ‖Lr (0,T ;L2(Ω))

= C2

γ ′ ‖uγ ′ ‖Lr (0,T ;L2(Ω))|γ ′ − γ | ≤ C3|γ ′ − γ |.

From here we get

‖uγ ′ − uγ ‖L2(Q) ≤ ‖uγ ′ − v̂γ ′ ‖L2(Q) + ‖v̂γ ′ − uγ ‖L2(Q)

≤ |γ ′ − γ |
γ ′ ‖uγ ′ ‖L2(Q) +√C3|γ ′ − γ | 12 ≤ C4|γ ′ − γ | 12 ,

which concludes the proof. 
�
Theorems5.2 and6.2 implyHölder stabilitywith respect toγ of the optimal controls

if the sufficient second order condition J ′′(uγ )v2 > 0 ∀v ∈ Cū \ {0} holds. Now, we
are interested in proving Lipschitz stability. To this end we need to make a stronger
assumption, namely

J ′′(uγ̄ )v2 > 0 ∀v ∈ L2(Q) \ {0}, y0 ∈ C0(Ω), and r̂ >
4

4 − n
, (6.8)

where γ̄ > 0 is fixed andC0(Ω) denotes the space of continuous real valued functions
on Ω̄ vanishing on �. From the first assumption in (6.8) we deduce the existence of
strictly positive numbers ρ and ν such that

J ′′(u)v2 ≥ ν‖v‖2L2(Q)
∀v ∈ L2(Q) and ∀u ∈ Bρ(uγ̄ ), (6.9)

where Bρ(uγ̄ ) denotes the Lr̂ (0, T ; L2(Ω)) closed ball. Indeed, if (6.9) does not
hold, then we can take sequences {uk}∞k=1 ⊂ Lr̂ (0, T ; L2(Ω)) and {vk}∞k=1 ⊂ L2(Q)

satisfying

lim
k→∞ ‖uk − uγ̄ ‖Lr̂ (0,T ;L2(Ω)) = 0, ‖vk‖L2(Q) = 1, vk⇀v in L2(Q), J ′′(uk)v

2
k ≤ 1

k
.
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It is easy to pass to the limit and to deduce

J ′′(uγ̄ )v2 ≤ lim inf
k→∞ J ′′(uk)v

2
k ≤ 0.

This inequality and (6.8) yield v = 0. But, arguing as in the proof of Theorem 5.3 we
infer

κ = lim inf
k→∞ κ‖vk‖2L2(Q)

= lim inf
k→∞ J ′′(uk)v

2
k ≤ 0,

which contradicts our assumption κ > 0.
We finish this section by proving the next theorem.

Theorem 6.3 Let uγ̄ be a local minimizer of (Pγ̄ ). We assume that (6.8)holds and that ρ
satisfies (6.9). Then, there exists ε̄ ∈ (0, γ̄ ) such that (Pγ )has a unique local minimizer

uγ in the interior of the Lr̂ (0, T ; L2(Ω)) ball Bρ(uγ̄ ) for every γ ∈ (γ̄ − ε̄, γ̄ + ε̄).
Moreover, there exists a constant L such that

‖uγ − uγ̄ ‖Lr̂ (0,T ;L2(Ω)) ≤ L|γ − γ̄ | ∀γ ∈ (γ̄ − ε̄, γ̄ + ε̄). (6.10)

Proof Let us take ρ > 0 such that (6.9) holds. Then, J has at most one local (and
global) minimizer uγ in the closed set Bρ(uγ̄ )∩Uad . This is a consequence of the strict
convexity of J in the ball Bρ(uγ̄ ); see (6.9). We will prove that this local minimizer
belongs to the interior of the Lr̂ (0, T ; L2(Ω)) ball Bρ(uγ̄ ) if γ is close enough to γ̄ ,
and consequently it is a local minimizer of (Pγ ). In order to prove this, as well as
(6.10), we reformulate the control problem (Pγ ) as follows

(Qγ ) inf
u∈Kad

Jγ (u) := 1

2

∫
Q
(yγ,u(x, t) − yd(x))2 dx dt + κγ 2

2

∫
Q

u(x, t)2 dx dt,

where

Kad = {u ∈ Lr̂ (0, T ; L2(Ω)) : ‖u(t)‖L1(Ω) ≤ 1 for a.a. t ∈ (0, T )}

and yγ,u is the solution of the semilinear parabolic equation

{
∂ y

∂t
+ Ay + a(x, t, y) = γ u in Q = Ω × (0, T ),

y = 0 on Σ = � × (0, T ), y(0) = y0 in Ω.
(6.11)

It is obvious that the problems (Pγ ) and (Qγ ) are equivalent for every γ . This equiv-
alence is understood in the sense that u is a local (global) minimizer of (Qγ ) if and
only if uγ = γ u is a local (global) minimizer of (Pγ ), and J (uγ ) = Jγ (u); recall
Remark 4.2.
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Take ε ∈ (0, γ̄ ) and ρ̄ ∈ (0, ρ] such that (γ̄ + ε)ρ̄ + ε‖ū‖Lr̂ (0,T ;L2(Ω)) < ρ. Then,
we have with the notation uγ̄ = γ̄ ū and uγ = γ u

‖uγ − uγ̄ ‖Lr̂ (0,T ;L2(Ω) ≤ γ ‖u − ū‖Lr̂ (0,T ;L2(Ω)) + |γ − γ̄ |‖ū‖Lr̂ (0,T ;L2(Ω))

≤ (γ̄ + ε)ρ̄ + ε‖uγ̄ ‖Lr̂ (0,T ;L2(Ω)) < ρ ∀u ∈ Bρ̄ (ū) and ∀γ ∈ (γ̄ − ε, γ̄ + ε).

Due to (6.9) and the fact that J ′′
γ (u)v2 = γ 2 J ′′(uγ )v2, we deduce that

J ′′
γ (u)v2 ≥ γ 2ν‖v‖2

Lr̂ (0,T ;L2(Ω))
≥ (γ̄ − ε)2ν‖v‖2

Lr̂ (0,T ;L2(Ω))
∀u ∈ Bρ̄ (ū).

Therefore, Jγ is strictly convex on the ball Bρ̄ (ū). Hence, a control u is a local solution
of (Qγ ) in the interior of Bρ̄ (ū) if and only if u satisfies the optimality system

{
∂ y

∂t
+ Ay + a(x, t, y) = γ u in Q,

y = 0 on Σ, y(0) = y0 in Ω,
(6.12)

⎧⎨
⎩

−∂ϕ

∂t
+ A∗ϕ + ∂a

∂ y
(x, t, y)ϕ = y − yd in Q,

ϕ = 0 on Σ, ϕ(T ) = 0 in Ω,

(6.13)

∫
Q

μ(v − u) dx dt ≤ 0 ∀v ∈ Kad , (6.14)

γ ϕ + κγ 2u + μ = 0. (6.15)

Denote by ȳ and ϕ̄ the state and adjoint state associated to ū. Our goal is to apply
[10,Theorem 2.4] to the previous optimality system. To this end we define the spaces:

Y = {y ∈ W (0, T ) ∩ C(Q̄) : ∂ y

∂t
+ Ay ∈ Lr̂ (0, T ; L2(Ω))},

Φ = {ϕ ∈ H1(Q) ∩ C(Q̄) : −∂ϕ

∂t
+ A∗ϕ ∈ Lr̂ (0, T ; L2(Ω)) and ϕ(T ) = 0},

X = Y × Φ × Lr̂ (0, T ; L2(Ω)), Y = R, Z = C0(Ω) × Lr̂ (0, T ; L2(Ω))3.

On Y and Φ we consider the graph norms

‖y‖Y = ‖y‖W (0,T ) + ‖y‖C(Q̄) +
∥∥∥∂ y

∂t
+ Ay

∥∥∥
Lr̂ (0,T ;L2(Ω))

,

‖ϕ‖Φ = ‖ϕ‖H1(Q) + ‖ϕ‖C(Q̄) +
∥∥∥− ∂ϕ

∂t
+ A∗ϕ

∥∥∥
Lr̂ (0,T ;L2(Ω))

.
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Thus, X is a Banach space. Moreover, we introduce the mapping f : X × Y −→ Z
and the multivalued function F : X −→ Z

f ((y, ϕ, u), γ ) =

⎛
⎜⎜⎜⎜⎜⎝

y(0) − y0
∂ y

∂t
+ Ay + a(·, ·, y) − γ u

−∂ϕ

∂t
+ A∗ϕ + ∂a

∂ y
(·, ·, y)ϕ − y + yd

γ ϕ + γ 2κu

⎞
⎟⎟⎟⎟⎟⎠

,

F(y, ϕ, u) =

⎛
⎜⎜⎝

0
0
0

F0(u)

⎞
⎟⎟⎠ ,

where the multivalued function F0 : Lr̂ (0, T ; L2(Ω)) −→ Lr̂ (0, T ; L2(Ω)) is
defined by

F0(u) =
⎧⎨
⎩

∅ if u /∈ Kad ,{
μ ∈ Lr̂ (0, T ; L2(Ω)) :

∫
Q

μ(v − u) dx dt ≤ 0 ∀v ∈ Kad

}
, otherwise.

Due to the regularity y0 ∈ C0(Ω), see assumption (6.8), we deduce from (6.12)
that ȳ ∈ Y . Therefore, we have that (ȳ, ϕ̄, ū) ∈ X . Moreover, (ȳ, ϕ̄, ū) satisfies the
optimality system (6.12)–(6.15), which implies that 0 ∈ f ((ȳ, ϕ̄, ū), γ̄ )+ F(ȳ, ϕ̄, ū).
Using our assumptions on a and the continuous embedding Y ⊂ C(Q̄) we deduce
that the function f is of class C1. Then, the function g : X −→ Z , defined by

g(y, ϕ, u) = f ((ȳ, ϕ̄, ū), γ̄ ) + D(y,ϕ,u) f ((ȳ, ϕ̄, ū), γ̄ )(y − ȳ, ϕ − ϕ̄, u − ū),

strongly approximates f at ((ȳ, ϕ̄, ū), γ̄ ), and g(ȳ, ϕ̄, ū) = f ((ȳ, ϕ̄, ū), γ̄ ); see [19]
for the definition of a strong approximation.

Wewill apply [10,Theorem 2.4] to deduce the existence of ε̄ ∈ (0, ε] and ρ̃ ∈ (0, ρ̄]
such that (6.12)–(6.15) has a unique solution u in the interior of the ball Bρ̃ (ū) for
every γ ∈ (γ̄ − ε̄, γ̄ + ε̄). Moreover, these solutions satisfy

‖u − ū‖Lr̂ (0,T ;L2(Ω)) ≤ λ|γ − γ̄ |. (6.16)

for some λ > 0. For this purpose it is enough to prove that the equation

β ∈ g(y, ϕ, u) + F(y, ϕ, u) (6.17)

has a unique solution (yβ, ϕβ, uβ) ∈ X for every β = (βi )
4
i=1 ∈ Z and the Lipschitz

property

‖(y
β̂
, ϕ

β̂
, u

β̂
) − (yβ, ϕβ, uβ)‖X ≤ λ‖β̂ − β‖Z (6.18)

123



Applied Mathematics & Optimization            (2022) 85:12 Page 35 of 40    12 

holds for some λ > 0 and all β̂, β ∈ Z . First, we prove the existence of a unique
solution. To this end we consider the optimal control problem

(Pβ) inf
u∈Kad

Jβ(u),

where

Jβ(u) :=1

2

∫
Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
y2 dx dt + κγ̄ 2

2

∫
Q

u(x, t)2 dx dt

+
∫

Q
β3y dx dt +

∫
Q
(γ̄ ϕ̄ + γ̄ 2κ ū − β4)u dx dt,

and y satisfies the equation

⎧⎨
⎩

∂ y

∂t
+ Ay + ∂a

∂ y
(x, t, ȳ)y = γ̄ u + β2 in Q,

y = 0 on Σ, y(0) = β1 in Ω.

(6.19)

Let us consider the solution ξβ ∈ Y of the equation

⎧⎨
⎩

∂ξ

∂t
+ Aξ + ∂a

∂ y
(x, t, ȳ)ξ = β2 in Q,

ξ = 0 on Σ, ξ(0) = β1 in Ω.

(6.20)

According to (2.17) we have that y = γ̄ G ′(uγ̄ )u + ξβ = γ̄ zu + ξβ . Inserting this
identity in the cost functional we get

Jβ(u) = γ̄ 2

2

{∫
Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
z2u dx dt + κ

∫
Q

u2 dx dt

}

+ γ̄

∫
Q

([
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
ξβ + β3

)
zu dx dt

+
∫

Q
(γ̄ ϕ̄ + γ̄ 2κuγ̄ − β4)u dx dt

+
∫

Q

(1
2

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
ξ2β + β3ξβ

)
dx dt .

From (2.21), (6.9), and the continuity of the mapping u → zu in L2(Q) we deduce
the existence of two constants C1 and C2 such that

Jβ(u) ≥ γ̄ 2

2
ν‖u‖2L2(Q)

+ C1‖u‖L2(Q) + C2.

Therefore, Jβ is a coercive, continuous, and strictly convex quadratic functional on
L2(Q). As a consequence, we infer the existence and uniqueness of a minimizer ũβ
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of Jβ on the set

K̃ad = {u ∈ L2(Q) : ‖u(t)‖L1(Ω) ≤ 1 for a.a. t ∈ (0, T )}.

Similarly as in Theorem 3.1, we deduce the existence of elements ỹβ ∈ W (0, T ),
ϕ̃β ∈ H1(Q), and μ̃β ∈ L2(Q) satisfying

⎧⎨
⎩

∂ ỹβ

∂t
+ Aỹβ + ∂a

∂ y
(x, t, ȳ)ỹβ = γ̄ ũβ + β2 in Q,

ỹβ = 0 on Σ, ỹβ(0) = β1 in Ω,

(6.21)

⎧⎨
⎩

−∂ϕ̃β

∂t
+ A∗ϕ̃β + ∂a

∂ y
(x, t, ȳ)ϕ̃β = [1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
ỹβ + β3 in Q,

ϕ̃β = 0 on Σ, ϕ̃β(T ) = 0 in Ω,

(6.22)

∫
Q

μ̃β(u − ũβ) dx dt ≤ 0 ∀u ∈ K̃ad , (6.23)

γ̄ ϕ̃β + γ̄ 2κ ũβ + γ̄ ϕ̄ + γ̄ 2κ ū − β4 + μ̃β = 0. (6.24)

Arguing similarly as in the proof of Theorem 4.4 we deduce that ũβ and μ̃β belong to
the space Lr̂ (0, T ; L2(Ω)). Thus, ũβ is the unique solution of (Pβ ). Moreover, from
(6.21) and (6.22) along with (6.8) we infer that ỹβ ∈ Y and ϕ̃β ∈ Φ. Hence, we have
that (ỹβ, ϕ̃β, ũβ) ∈ X and (6.23) holds for every u ∈ Kad . Due to the convexity of (Pβ ),
we know that (6.21)–(6.24) are necessary and sufficient conditions of optimality for
(Pβ ). This fact and the strict convexity of Jβ imply that the system (6.21)–(6.24) has a
unique solution (ỹβ, ϕ̃β, ũβ, μ̃β). If we set yβ = ỹβ + ȳ, ϕβ = ϕ̃β + ϕ̄, uβ = ũβ + ū,
and μβ = μ̃β , (6.21)–(6.24) yields that (yβ, ϕβ, uβ) is the unique element of X
satisfying (6.17).

Now, we prove that this solution is Lipschitz with respect to β. First, we observe
that (6.24) can be written as

γ̄ ϕβ + γ̄ 2κuβ − β4 + μβ = 0. (6.25)

Given β, β̂ ∈ Z , we infer from (6.23)-(6.24) and (6.25) for β and β̂

∫
Ω

(γ̄ ϕβ(t) + γ̄ 2κuβ(t) − β4(t))(uβ̂
(t) − uβ(t)) dx dt ≤ 0,

∫
Ω

(γ̄ ϕ
β̂
(t) + γ̄ 2κu

β̂
(t) − β̂4(t))(uβ(t) − u

β̂
(t)) dx dt ≤ 0.

Adding these inequalities we get

γ̄ 2κ‖u
β̂
(t) − uβ(t)‖2L2(Ω)

≤ γ̄

∫
Ω

(ϕβ(t) − ϕ
β̂
(t))(u

β̂
(t) − uβ(t)) dx

+ ‖β̂4(t) − β4(t)‖L2(Ω)‖u
β̂
(t) − uβ(t)‖L2(Ω) (6.26)
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for almost every t ∈ (0, T ). Now, taking into account that y
β̂

− yβ = ỹ
β̂

− ỹβ ,
ϕ

β̂
− ϕβ = ϕ̃

β̂
− ϕ̃β , and u

β̂
− uβ = ũ

β̂
− ũβ , subtracting the equations (6.21)

satisfied by y
β̂
and yβ , and the equations (6.22) for ϕ

β̂
and ϕβ , respectively, we obtain

γ̄

∫
Q
(ϕβ(t) − ϕ

β̂
(t))(u

β̂
(t) − uβ(t)) dx

=
∫

Q

{( ∂

∂t
+ A + ∂a

∂ y
(x, t, ȳ)

)
(y

β̂
− yβ)(ϕβ − ϕ

β̂
) − (β̂2 − β2)(ϕβ − ϕ

β̂
)

}
dx dt

=
∫

Q

{(
− ∂

∂t
+ A∗ + ∂a

∂ y
(x, t, ȳ)

)
(ϕβ − ϕ

β̂
)(y

β̂
− yβ) − (β̂2 − β2)(ϕβ − ϕ

β̂
)

}
dx dt

−
∫

Ω

(β̂1 − β1)(ϕβ(0) − ϕ
β̂
(0)) dx

= −
∫

Q

{[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
(y

β̂
− yβ)2 + (β̂2 − β2)(ϕβ − ϕ

β̂
)
}
dx dt

−
∫

Q
(β̂3 − β3)(y

β̂
− yβ) dx dt −

∫
Ω

(β̂1 − β1)(ϕβ(0) − ϕ
β̂
(0)) dx .

Let us denote by ξβ and ξ
β̂
the solutions of (6.20) corresponding to (β1, β2) and

(β̂1, β̂2), respectively. Then, we have that y
β̂

− yβ = γ̄ G ′(ū)(u
β̂

− uβ) + ξ
β̂

− ξβ =
γ̄ zu

β̂
−uβ + (ξ

β̂
− ξβ). Inserting this identity in the above equality we infer

γ̄

∫
Q
(ϕβ(t) − ϕ

β̂
(t))(u

β̂
(t) − uβ(t)) dx

= −γ̄ 2
∫

Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
z2u

β̂
−uβ

dx dt

−
∫

Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

][(ξ
β̂

− ξβ)2 + 2zu
β̂
−uβ (ξ

β̂
− ξβ)] dx dt

−
∫

Q

{
(β̂2 − β2)(ϕβ̂

− ϕβ) + (β̂3 − β3)(y
β̂

− yβ)
}
dx dt

−
∫

Ω

(β̂1 − β1)(ϕβ(0) − ϕ
β̂
(0)) dx

≤ −γ̄ 2
∫

Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
z2u

β̂
−uβ

dx dt

+ C3

{
‖β̂1 − β1‖2L2(Ω)

+ ‖β̂2 − β2‖2L2(Q)

+ ‖u
β̂

− uβ‖L2(Q)

[‖β̂1 − β1‖L2(Ω) + ‖β̂2 − β2‖L2(Q)

]
+ ‖β̂2 − β2‖L2(Q)‖ϕβ̂

− ϕβ‖L2(Q) + ‖β̂3 − β3‖L2(Q)‖y
β̂

− yβ‖L2(Q)

+ ‖β̂1 − β1‖L2(Ω)‖ϕβ(0) − ϕ
β̂
(0)‖L2(Ω)

}
.
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Now, from the equations satisfied by y
β̂

− yβ and ϕ
β̂

− ϕβ we get

‖y
β̂

− yβ‖W (0,T ) ≤ C4

(
‖u

β̂
− uβ‖L2(Q) + ‖β̂2 − β2‖L2(Q) + ‖β̂1 − β1‖L2(Ω)

)
,

(6.27)

‖ϕ
β̂

− ϕβ‖H1(Q) ≤ C5

(
‖y

β̂
− yβ‖L2(Q) + ‖β̂3 − β3‖L2(Q)

)
. (6.28)

Using the continuous embeddings W (0, T ) ⊂ L2(Q) and H1(Q) ⊂ C([0, T ];
L2(Ω)), and the estimates (6.27) and (6.28), we infer

γ̄

∫
Q
(ϕβ(t) − ϕ

β̂
(t))(u

β̂
(t) − uβ(t)) dx

≤ −γ̄ 2
∫

Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
z2u

β̂
−uβ

dx dt

+ C6

{
‖u

β̂
− uβ‖L2(Q)

[‖β̂1 − β1‖L2(Ω) + ‖β̂2 − β2‖L2(Q) + ‖β̂3 − β3‖L2(Q)

]

+ ‖β̂1 − β1‖2L2(Ω)
+ ‖β̂2 − β2‖2L2(Q)

+ ‖β̂3 − β3‖2L2(Q)

}
.

Combining this inequality with (6.26) and using (6.9) we deduce

γ̄ 2ν‖u
β̂

− uβ‖2L2(Q)
≤ γ̄ 2 J ′′(ū)(u

β̂
− uβ)2

= γ̄ 2
{ ∫

Q

[
1 − ∂2a

∂ y2
(x, t, ȳ)ϕ̄

]
z2u

β̂
−uβ

dx dt + κ‖u
β̂

− uβ‖2L2(Q)

}

≤ C7

{
‖u

β̂
− uβ‖L2(Q)

(
‖β̂1 − β1‖L2(Ω) +

4∑
j=2

‖β̂ j − β j‖L2(Q)

)

+ ‖β̂1 − β1‖2L2(Ω)
+

3∑
j=2

‖β̂ j − β j‖2L2(Q)

}
.

This yields

‖u
β̂

− uβ‖L2(Q) ≤ C8‖β̂ − β‖Z . (6.29)

Using (6.27) and (6.29) it follows that

‖y
β̂

− yβ‖W (0,T ) ≤ C9‖β̂ − β‖Z . (6.30)

Now, (6.28) and (6.30) lead to

‖ϕ
β̂

− ϕβ‖H1(Q) + ‖ϕ
β̂

− ϕβ‖C(Q̄) ≤ C10‖β̂ − β‖Z . (6.31)
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Getting back to (6.26), and using (6.31), we get

‖u
β̂

− uβ‖Lr̂ (0,T ;L2(Ω)) ≤ C11‖β̂ − β‖Z . (6.32)

Using this in the equation satisfied by y
β̂

− yβ we also obtain

‖y
β̂

− yβ‖C(Q̄) ≤ C12‖β̂ − β‖Z . (6.33)

Now, (6.30)–(6.33) imply (6.18). Hence, we apply [10,Theorem 2.4] to deduce the
existence of ε̄ ∈ (0, ε] and ρ̃ ∈ (0, ρ̄] such that for every γ ∈ (γ̄ − ε̄, γ̄ + ε̄) the system
(6.12)–(6.15) has a solution (y, ϕ, u)with u in the interior of the ball Bρ̃ (ū) satisfying
(6.16). Since ε̄ ≤ ε and ρ̃ ≤ ρ̄, we know that Jγ is strictly convex on Bρ̃ (ū), hence u
is the unique local minimizer of (Qγ ) in this ball. Moreover, uγ = γ u belongs to the
interior of the ball Bρ(uγ̄ ) and uγ is the unique local minimizer of (Pγ ) in Bρ(uγ̄ ).
Moreover, from (6.16) we infer

‖uγ − uγ̄ ‖Lr̂ (0,T ;L2(Ω)) ≤ γ ‖u − ū‖Lr̂ (0,T ;L2(Ω)) + |γ − γ̄ |‖ū‖Lr̂ (0,T ;L2(Ω))

< (γ̄ + ε̄)λ|γ − γ̄ | + |γ − γ̄ |‖ū‖Lr̂ (0,T ;L2(Ω)) = L|γ − γ̄ |

for L = (γ̄ + ε̄)λ + ‖ū‖Lr̂ (0,T ;L2(Ω)). This ends the proof. 
�
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