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1 Introduction

We study the optimal control problem

1

(P) inf J(u) = -f (yu(x,t)—yd(x,t))zdxdt+,i/ u(x, )% dx dr,
uelUy,gNL®(Q) 2 0 2 0

where € > 0,

Ugd = {u € L0, T; LY(2)) : lu(®)ll 1) < y foraa.1 € (0,T)}

with 0 < y < 400, and y, is the solution of the semilinear parabolic equation

at (1.1)

0
—y+Ay+a(x,t,y):u in Q=8 x(0,T),
y=0on X =T x(0,T), y(0) = yg in £2.

with

n
Ay == 0y (aij(x)dyy).
i,j=1

We assume that £2 is a bounded, connected, and open subset of R”, n = 2 or 3, with
a Lipschitz boundary I", and that 0 < T < oo is fixed.

The precise conditions on the nonlinearity a will be given below. Suffice it to say
at this moment that strong nonlinearities such as exp(y), sin(y), or polynomial non-
linearities with positive leading term of odd degree will be admitted. A first difficulty
that arises in treating (P) relates to the proof of existence of an optimal control. The
reader could think of choosing L?(Q) as the convenient space to prove the existence of
a solution because of the coercivity of J on this space and since the constraint defines
a closed and convex subset of LZ(Q). However, the selection of controls in L2(Q) is
not appropriate to deal with the non-linearity in the sate equation. Indeed, even if we
can prove the existence of a solution of the state equation, its regularity is not enough
(it is not an element of L°°(Q), in general) to get the differentiability of the relation
control to state. Looking at the control constraint and the cost functional, a second
possibility is to consider L*°(0, T; L?(£2)) as control space. But this is not a reflexive
Banach space and, consequently, the proof of existence of a solution to (P) cannot
be done by standard techniques. Nevertheless, we can prove existence of solutions in
the spaces L" (0, T’; LZ(Q)) forall r > ﬁ. Moreover, all these solutions belong to
L°(Q). This leads us to formulate the control problem in L°°(Q); see Remark (4.2).
To deal with the non-linearity of the state equation in the proof of a solution to (P)
in L*°(Q), one approach consists in introducing artificial bound constraints on the
control and prove that they are inactive as the artificial constraint parameter is large
enough; see, for instance [7]. In our case, this would lead to two control constraints
with two Lagrange multipliers in the dual of L*°. This makes the proof of boundedness
of the optimal control very difficult. In this work we avoid such a technique and rather
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modify (truncate) the non-linear term of the state equation and prove that for a large
truncation parameter the cut off is not active on the optimal state.

A second difficulty results from the non-differentiability of the constraint on the
control in the definition of U,4. This is a natural constraint since it models a volumetric
restriction, which represents a limit to the total amount of control acting at any time
t. This technological constraint is an alternative to pointwise or to energy constraints
which have been considered previously in the literature. Moreover, the L!-norm in
space leads to a spatially sparsifying effect for the solutions. It is different from the
type of sparsification which results when considering such terms in the cost. While
for the former, sparsification takes place only after the control becomes active, for the
latter it takes place regardless of the norm of the control. For problem (P) the sparsity
effect is described by the level set characterized by the functional values of the adjoint
state at the height of the supremum norm of the multiplier associated to the control
constraint in (P); see Corollary 3.3. We point out that while the L? norm appearing
in the cost influences the optimal solution, it does not eliminate the sparsifying effect
of L!-terms, regardless of whether they appear in the cost or as a constraint. The
literature on problems with an L' or measure-valued norm in the cost is quite rich,
so we can only give selected references which consider evolutionary problems [1-5,
7-9, 11, 14-16, 18]. In all these papers, either there are no control constraints or they
are box constraints. In [13], the authors study a control problem for the evolutionary
Navier—Stokes system under the smooth control constraint ||u(z) ||%2 @ < 1, which is
smooth and not sparsifying. In [6], the control of the 2d evolutionary Navier—Stokes
system is analyzed, where the controls are measured valued functions subject to the
constraint [lu(®)lpm) < .

The structure of the paper is the following. The analysis of the state equation and its
first and second derivatives with respect to the controls is carried out in Sect. 2. Here
special attention is paid to the L°°(Q) regularity of the state variable. In Sect. 3 first
order optimality conditions are derived and the structural properties of the involved
functions are analyzed. In particular, the regularity of the optimal control is proved,
which is a crucial point for the numerical analysis of the control problem. The proof of
existence of an optimal control is given in Sect. 4. Section 5 is devoted to necessary and
sufficient second order optimality conditions. In the final section, as a consequence
of the second order condition, Holder and Lipschitz stability of local solutions with
respect to the control bound y is investigated.

2 Analysis of the State Equation

In this section we establish the well posedness of the state equation, the regularity
of the solution, and the differentiable dependence of the solution with respect to the
control. To this end we make the following assumptions.

We assume that yg € L*°(£2), a;; € L°°(£2) forevery 1 < i, j <n, and

AAEP < ) aij(x)EE; YE €R" foraa. x € 2 2.1)

i,j=1
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for some A4 > 0. We also assume that a : Q x R — R is a Carathéodory function
of class C? with respect to the last variable satisfying the following properties:

3
IC, €R: 8—a(x, t,y) > CaVy € R, (2.2)
y

) A 1
a(-,-,0) e L7 (0, T; LP(2)), with#, p >2 and = + 21 <1, (2.3)
Poo2p

VM >03C, >0: <ComVly|<Mandj=12, (2.4)

Bja( [ )
— WX, 7,
ay’ Y

Vo > 0and VM > 0 3e > 0 such that
2 2

a d°a (2.5)
8_))2()6’ t,y1) — a—yz(X, t,y2)

< p Viyil, Iy2l £ M with |y} — | < e,

for almost all (x, ¢) € Q.
As usual W (0, T) denotes the Hilbert space

ad
WO.T) =y e LX0.T: H)(®)) : 5~ € L’O.T: H'(©@))).
We recall that W (0, T') is continuously embedded in C ([0, T]; L2(.Q)) and compactly

embedded in L2(Q).

Theorem 2.1 Under the previous assumptions, for every u € L" (0, T; LP(82)) with
% + 2’—’ < landr, p > 2 there exists a unique solution y, € L>*°(Q) N W, T) of
(1.1). Moreover, the following estimates hold

Ivulleocoy < n(lwllro,7:r 2y + lac, -, Ol i 7002y T Ivoll()), (2.6)
||YM||C([0,T];L2(_Q)) + ||yu||L2(0,T;H01(Q))
< K(llullz2cgy + laC. -, 0l z2c0) + 10l 22(2))- (2.7)

for a monotone non-decreasing function n : [0, c0) —> [0, 00) and some constant
K both independent of u.

Proof We decompose the state equation into two parts. First, we consider

90z .
{E—i-Az:qu, (2.8)
z=0on X, z(0) = ypin £2.

It is well known that it has a unique solution z € W (0, T) N L°°(Q). Moreover, we
have the estimates

lzllwo.r) < Cwllullz2c0) + IyollL2(2)), (2.9)
lzllLeo) < CoollluellLr,1:Lr(2)) + I YollLoo(2)): (2.10)
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see, for instance [17,Chapter III]. Now, we define b : O x R — R as follows
b(x,t,s) = e 1Callla(x, 1, el s + z(x, 1)) — a(x, 1, z(x, 1))] + |Cals,

where C, is as in (2.2). Then, b(x, t, 0) = 0 and according to (2.2)

ab 0
T = %(x, t,elClls 4 2(x, 1)) +1Cal > 0.

We consider the equation

dw ~|Calt :
o + Aw 4+ b(x,t,w) = —e "“Va(x,t,z(x,t)) in Q,

w=0o0nX, w(0)=0in £2.

2.11)

Due to the properties of b, the existence and uniqueness of a solution w € L>*(Q) N
W (0, T) is well known; see [20,Theorem 5.5]. Moreover, the following estimates hold

lwliwo.ry < Colllal, -, D2y + 116G, - w2y (2.12)
||w||L°°(Q) = Cé)o”a(’ ) Z)”L;(O,T;Lﬁ(ﬂ))' (213)

Denoting M = ||z|| . (@) and using (2.4) we infer with the mean value theorem
la(x,t,z(x, 1)) < la(x, 1, z(x, 1)) —a(x,t,0)] + |a(x, 1, 0)]
da
= 5()@t,9(x,t)z(x,t))z(x,t) +lax,1,0)] = CouM + la(x, 1, 0)].
Combining this with (2.10) and (2.13) we get

lwllee) < oUlullLro,r;er2)) + llaC, Ol i 7052y + IyollL(2)),

(2.14)
for a non-decreasing function o : [0, c0) —> [0, 00).
If we set w = e~ !Cl" and insert this in (2.11), we infer
oy A =0i
{E—i_ ‘ﬂ‘i‘a(x’f,Z(xJ)‘i‘w)— mn Q, (215)
Y =0on X, ¥(0)=0in £2.

Adding (2.8) and (2.15) we deduce that y, = z + i solves (1.1). Moreover, any
solution of (1.1) is the sum of the solutions of (2.8) and (2.15). Since these equations
have a unique solution, the uniqueness of y, follows. Furthermore, (2.10) and (2.14)
imply (2.6).

To prove (2.7), we take ¢ = e
defined by

~ICalty,  and introduce the function f : 0 x R — R

flx,t,s) = e 1Clla(x, 1, eIl s) —a(x, 1,001+ |Cqls.
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Then, ¢ satisfies

B_d) _ _—IC4lt _ .
{ Y +Ap+ fx,1,9)=e [u—a(x,t,0)]in Q, (2.16)
¢=0o0nX, ¢(0)=ygin 2.

Since f(x,7,0) = 0 and %—{(x, t,s) > 0, multiplying the above equation by ¢,
integrating in £2, and using (2.1) we get

Ld (]2, + A f Vo (1)>d
ld | .
2 dt L2 o

1d :
< IO+ D [ @t e0igewart [ finswen s

ij=1

= /Q e 1l —a(x, 1,009 dx < (U@l 22 + laC. 1,0l 2 o O 2(2)-

Estimate (2.7) follows from this inequality as usual. O

We apply Theorem 2.1 with p =2 and r € (ﬁ, oo] Observe that % +4% < land
r > 2. Then, the mapping G : L"(0, T; L*>(£2)) — L>®(Q) N W(0, T) given by
G(u) = y, solution of (1.1) is well defined. We have the following differentiability
properties of G.

Theorem 2.2 The mapping G is of class C2. Foru,v,vi,va € L"™(0, T; L3(2)) the
derivatives z, = G'(u)v and zy, v, = G”(u)(v1, v2) are the solutions of the equations

BZv da .
+AZU+—(x,t,yu)zv=v n Q’
at ay

zy=00n %, z,(0) =0in $2,

(2.17)

LT UL L Y L P 0inQ
— — W, 1, ——> X1, =V,
ar Zvy,vm ay Yu)Zvy,v;y ayz Yu)Zv; vy

Zop, = 00n X, zy,4,(0) =0in 2.
(2.18)

Proof Let us consider the Banach space

9
yz{yeLOO(Q)nW(o,T):a—f+AyeX},

where X = L7 (0, T; LP(£2)) + L" (0, T; L%(£2)), endowed with the norm

dy
Iylly = llyllLeecoy + lIyllwo, 1) + ”E + Ayllx.
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Now, we define the mapping

F:YxL®R2)x L' (0, T; L>(2)) — X x L®(2)

F(y,w,u) = (B_y

Ay FaCy) =1 y(0) — w).

We have that F is of class C2, FOu, yo, u) = (0,0) foreveryu € L"(0, T; L2(.Q)),
and

OF
E(yu, vo,u) : Y —> X x L=(2)

0z da
— t+Az+ —

= 5y (02 20)

oF
E(yuv Yo, u)z = (

is an isomorphism. Hence, an easy application of the implicit function theorem proves
the result. O

As a consequence of the above theorem and the chain rule we infer the differentia-
bility of the mapping J : L"(0, T'; L?(£2)) —> R. From now on, we assume

va € L* (0, T; LP(2)), (2.19)

where 7 and p are defined in (2.3).

Corollary 2.1 If r > ﬁ, then J is of class C* and its derivatives are given by the
expressions

J’(u)v:/((p—i—lcu)vdxdt, (2.20)

Q

/) 3%a

@) = | (1= 5500 we)ma, + e |dxdn @21
0

where z,, = G'(u)vi, i = 1,2, and ¢ € c(Q)n Hl(Q) is the solution of the adjoint
state equation

g " da .
—— + A%+ — X, £, ) =Yy — Ya inQ,
ot ay

¢o=00nX, o(T)=0inS2.

(2.22)

Above A* denotes the adjoint operator of A

n
At ==Y 0, (@ji (X))
i,j=1
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The regularity ¢ € C (Q) N H'(Q) follows from Theorems I11-6.1 and I11-10.1 of
[17]. Moreover, we observe that J' (1) and J” (1) can be extended to continuous linear
and bilinear forms J'(u) : L>(Q) — Rand J”(u) : L*(Q) x L*(Q) — R for
every u € L (0, T; L*>(£2)).

Remark 2.1 Hypotheses (2.1)-(2.5) are satisfied, for instance, for the nonlinearity
a(y) = exp(y). They are also satisfied for a(y) = (y — z1)(y — z2)(y — z3) for
constants z;, with i € {1, 2, 3}. This latter nonlinearity is known in neurology as
Nagumo equation and in physical chemistry as Schlogl model. Formulating the opti-
mal control problem with an L' (£2) constraint implies that one looks for the action of
a controlling laser whose optimal support is small; see [12].

3 Existence of Optimal Controls and First Order Optimality
Conditions
Since the control problem (P) is not convex, we need to distinguish between local and

global minimizers. We call # a local minimizer for (P) in the L” (0, T'; LZ(Q)) sense
with r > ﬁ if u € Uyg N L°°(Q) and there exists ¢ > 0 such that

J@) < Jw) Yu e B, NUyyy, 3.
where
Bg = {M € Lr(O, T, Lz(Q)) : ||M - ﬁ”Lr(O,T;LZ(.Q)) < 8}.

It is immediate to check that if & is a local minimizer in the L" (0, T’ Lz(.Q)) sense,
then it is also a local minimizer in the L” (0, T'; L%(£2)) sense for every r < r’ < oo.

Theorem 3.1 There exists at least one solution of (P). Moreover, for every local

minimizer i in the L'(0,T; L*(2)) sense with r > ﬁ, there exist y €

L?(0,T; H} (£2)) NL™®(Q), € C(Q) N H'(Q), and i € L>®(Q) such that

ay _ _ - .
:E—f—Ay—i—a(x,t,y):u in Q, (3.2)
y=0o0n X, y0)=ypinS2,
8<Z)+A*_+8a( LY)P =Yy n Q
—a. — WX, 7, = - in )
P @ 3y Y=Y —Yd (3.3)
p=00nX, ¢(T)=0in$2,
/ﬂ(u—ﬁ)dxdtfo Yu € Uyg, (3.4)
0
¢o+ku+p=0. 3.5
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Proof The proof of existence of a solution for (P) is postponed to the next section,
see Theorem 4.5. Given a local minimizer i, we take y and ¢ as solutions of (3.2) and
(3.3), respectively. Using the convexity of U,y and (2.20) we get

0 < J (i) (u —it) = / (@ + kit)(u — i) dx dt Yu € Ugg N L®(Q).
0

Now, given u € U,y arbitrary, we set uy(x,t) = Proj[fk,Jrk] (u(x,t)) for k > 1, thus
{ur}pe, € L*(Q)NUqq and ug — u in L'(Q). Then, we can pass to the limit in the
inequality J'(it)(ur — iz) > 0 and, hence, we obtain

/ (@ + ki) —i)dxdt >0 Yu € Uyy.
0]

This inequality is equivalent to the fact —(¢ +«it) € 31y, (u) C L*°(Q). Here a1y,
denotes the subdifferential of the indicator function Iy, : L'(Q) — [0, +o0],
which takes the value Iy, (u) = O if u € Uyg and 400 otherwise. Therefore, there
exists it € d1y,, such that (3.4) and (3.5) holds. m]

Let us denote by ProjBV LX) — B, N L2(£2) the L%(£2) projection, where
B, ={ve L'Y(£2): ||v||L1(_Q) < y}. Then, we have the following consequence of the
previous theorem.

Corollary 3.1 Let u, ¢, and v satisfy (3.2)—(3.5). Then, the following properties hold
/ n(@)(w —u))dx <0 Yv e B, andfora.a. t € (0,T), 3.6)
2

i(t) = Projg (- %@(t))for a.a.te(0,T), (3.7)

ulx,t)yp(x,t) = lulx, Hl|pn(x, t)| fora.a. (x,t) € Q,
ifllu@llpioy <y then i(t) =0in 2 a.e in(0,T),
ifllu®)llpio) = v and u(t) # 0in $2,
then supp(i(r)) C {x € 2 : [(x, )| = | L@l Lo(s2)}-

(3.8)

Proof Let us show that (3.4) and (3.6) are equivalent. Using Fubini’s theorem, it is
obvious that (3.6) implies (3.4). Let us prove the contrary implication. Let v € B, be
arbitrary and set

I, = {t €0,T): / i(x, 1) () —ii(x, 1)) dx > 0}
2

and

v(x) ifr e I,
u(x, t) otherwise.

ulx,t) = {

@ Springer
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Then, u € U,y and (3.4) yields
0> / alx, ) —u)dxdt = / / alx, ) (v(x) —u(x,t))dx.
0 I, /2
This is only possible if |I,| = 0. In order to prove (3.7) we use (3.5) and (3.6) to get
1
/ (— ~5@t) — L't(t))(v — (1)) <0 Yv e B, N L2(£2) and fora.a. 1 € (0, T).
k7] K

Since B, N L?(£2) is a convex and closed subset of L%(£2), the above inequality is
the well known characterization of (3.7).

Let us prove the first statement of (3.8). Take u(x, ) = sign(i(x,t))|u(x, ).
Then, u € U,y and with (3.4) we obtain

f|ﬂ(x,t)||ﬁ(x,t)|dxdt=/ [L(x,t)u(x,t)dxdtf/ (x, Hu(x, t)dx de,
o o 0]

which proves the desired identity. We prove the second statement of (3.8). For every
& > 0 we define

le ={t € 0. 7): ullpe) <y —el

Denote B, the closed ball of L' (£2) centered at 0 and radius ¢. Take v € B, arbitrary.
Then, we have that v + u(t) € B, fort € I, and (3.6) yields

/ m(x,t)v(x)dx <0 Yv € Bsandt € I,
Q

which implies that () = 0 in §2 for r € I,. Since ¢ > 0 is arbitrary, we infer the
second statement of (3.8). Let us prove the third statement. Under the assumption
||12(t)||L1(_Q) =y and [1(¢) % 01in £2. For every ¢ > O and ¢ € (0, T) we consider the
sets

Q) ={xe:lulx,n|>eand [a(x, )| < [&@®)Lo2) — &},
Q6 = {x € 2 |ialx, Dl > @) lILe2) — &)

We are going to prove that |£2°(z)|] = O for almost all + € (0, T). Assume that
|£2¢(t)| > 0 for some ¢ > 0 and 1 € (0, T). Since [2(r)| > 0 by definition of
the essential supremum, we can find two sets E C £2°(¢) and F C Q2¢(1) such that
|E| = |F| > 0. We define the control

u(x,t) —esign(u(x,t)) ifx € E,
v(x) = § u(x,t) +esign(u(x,t))ifx € F,

u(x,t) otherwise.
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Since [[u(?)[lL1(o) = v, we get

Il =f |ﬁ(x>|dx—s|E|+f |zz<x>|dx+s|F|+/ ()] dx = 7.
E F 2\(EUF)

Moreover, we get with the first statement of (3.8)

/ wx, )(vx) —u(x,t))dx = —8/ [(x, t)|dx + 8/ |w(x, t)|dx > 0,
Q E F

which contradicts (3.6) unless it is satisfied for a set of points ¢ of zero Lebesgue
measure. Taking

20)={xe 2 :|ulx,0)| >0and |p(x, ) < [l Le2)}s

since ¢ > 0 was arbitrary, we deduce that |£2(¢)| = O for almost all ¢ € (0, T'). This
implies that supp(ie(#)) C {x € £ : |[u(x, )| = [|[L(@®) || Lo2)}- O

Remark 3.1 Let us observe that the first statement of (3.8) and (3.5) imply

lp(x, D] = «lulx, )] + |(x, 1)l
This yields

leOlp1o)y = cllulpig) + 1RO L)

From this identity and the second statement of (3.8) we infer that i(¢) % 0 in £2 if
and only if [[@() || 1) > kV.

Remark 3.2 From (3.8) we deduce that fi(x, t) € ||ft(t) | Lo () 9]-|(i#(x, t)) for almost
every point (x, 1) € Q.

Corollary3.2 Let u € Uyg N L*®(82) satisfy (3.5) and (3.8). Then, the following
identities are satisfied

_ L. _ _ n
i(x, 1) = —— sign(g(x, D) (100, D = IO |2(2))

e - - . + ;
=T {[QD(X, )+ ||M(l)||L°0(Q)] + [(p(x, ) — ||;L(t)||LOO(Q)] } . (3.9

Moreover, the regularity u € H! (Q)and i € H! (Q) hold.

Proof If ||fi(t)||L(2) = O, then u(x,t) = —%(ﬁ(x, t) follows from (3.5), which
coincides with the identity (3.9). Now, we assume that [|ft(¢)|[zo(2) > 0. Using
(3.8) we obtain that [|u(7)|[11(p) = v. Then, the third statement of (3.8) implies that
[(x, )| = ()]l Loy if li(x, t)| > 0. We distinguish three cases.
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(1) Ifu(x,t) > 0,(3.5)and the first statement of (3.8) leads tou(x, ) = — % (p(x, 1)+

()|l L (52)), which coincides with the expression (3.9).

(i) If u(x,r) = 0, using again (3.5) we get |p(x, )| = |u(x, )] = [[A@)llL>(g2).-
Then, the identity (3.9) holds.

(iii) If u(x,t) < 0, from the first statement of (3.8) and (3.5) we infer that u(x,t) =
—%((ﬁ(x, 1) — [l (®) |l L)) Then, (3.9) holds too.
The spatial regularity u € L%, T: HOl (£2)) is an immediate consequence of (3.9)
and the fact that € H'(Q). For the temporal regularity of it, we first observe

la(r) — a(t)l 22

. 1_ . 1_ I _ _
= [ Projp, (=—¢(0) = Projg (=—¢()l12(2) = ZN19(1) = )ll12(2)-

Since ¢ : [0,T] — L%(2) is absolutely continuous, using the above
inequality we infer that u : [0,T] — L%(2) is also absolutely continu-
ous. Moreover, the same inequality yields ||ﬁ’(t)||Lz(_Q) < %HQZJ/U)HLZ(Q) and

i e Wh2(0, T; L2(£2)). All together, this implies that i € H'(Q). The regular-
ity of i follows from (3.5). O

Corollary 3.3 Let u be as in Corollary 3.2. Then, we have the following property

ix, 1) = 0 if and only if |§(x. )] < ()] L(2). (3.10)

This corollary is a straightforward consequence of (3.9).

Theorem 3.2 There exists a constant K, > 0 independent of y such that ||it|| p~(g) <
Koo for every global minimizer u of (P). In addition, if we set yo = K~ |$2|, then for
every y > yg and every solution u of (P)we have |[u(?)| 1oy < y for almost every

- 1~
tandi = —+¢.

To prove this theorem, we can argue as in the proof of Theorem 4.4 below to
deduce the existence of Ko, > 0 independent of y such that [|u|| x(g) < K. The
last statement is a straightforward consequence of this estimate and the definition of

Y0-

4 Proof of Existence of a Solution for (P)

The proof of existence of a solution of (P) can not be performed by the classical
method of calculus of variations due to the lack of boundedness of U,y in L°°(£2) and
the non coercivity of J on this space. One can try to prove the existence of a solution u
of (P)in L?(Q) and then to deduce that it € L>°(Q) from the optimality conditions.
However, the differentiability of J in L?(Q) can fail due to the nonlinearity of the
state equation. To overcome this difficulty we are going to truncate the nonlinear term
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a(x,t,y) as follows. For every M > 0 we define the function fj; : R — R by

M+1 ifs>M+1,
S+M—5)>+M—s)PifM<s<M+1,
fu(s) = s if —M<s<+M,
S—M4+s) —M+s)Pif —-M—-1<s<-M,
-M -1 ifs < —M—1.

It can be easily checked that f); € C 1(]R) and 0 < fI{,[(s) < 1 for every s € R. Now,
we setay (x,t,5) = a(x,t, fa(s)). Itis obvious that ayy is of class C! with respect
to the last variable and (2.2)—(2.4) imply

0 0

%mWLw=£WLMOWMmeW£wWGR (4.1)
y ay

am(-,-0) =a(,-,0) € L (0, T; LP(2)), (4.2)

< Camt1Vy €R, 4.3)

3(1M
— ., 1, y)
dy

for almost all (x, t) € Q.

Theorem 4.1 Forany M > 0 and all u € L*(Q) the equation

ay .
{E + Ay +ap(x,t,y) =u in Q, (4.4)
y=00nX, y(0)=ygin$2,

has a unique solution y,i” e W(, T). Moreover, y,i” satisfies the inequalities

M M
Iyi e, 22y + 1 l20.7:11 (2))
< K(llull2g) + llat, - 0l 20y + Iy0ll2(2))- 4.5)
Iy llwo.r)
1
< K'(lullz2¢0) + ol 2@y + llaC, - O)lir2¢g) + Camr1(M +1)|Q[2),  (4.6)
where K is the same constant as in (2.7) and K' is independent of M and u.

Proof From (4.3) and the mean value theorem we infer that |ay (-, -, ) —ap (-, -, 0)] <
Cu.m+1(M + 1) for all s € R. Consequently, the estimate

1
lam (s y) —am(, - Ollp2g) = Camr1(M + 1)|Q]2

holds. Hence, an easy application of fixed point Schauder’s theorem yields the exis-
tence of a solution y in W (0, T). The uniqueness follows in the standard way noting
that

/ lan (x, 1, y2) = ap (., yD1(y2 = y) dx = min{0, Ca}lly2 = yil7 )
2
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The proof of the estimate (4.5) is the same as the one of (2.7). Inequality (4.6) follows
from (4.5) and the fact that

1
lam G, Wiz < llam (- 020y + Cam+1(M + 1D]Q]2.
Q Q
O

Let us define the mapping Gy : L>(Q) —> W(0, T) associating to every u the
corresponding solution yM of (4.4).

Theorem 4.2 The mapping Gy is of class C'. For all u,v € L*(Q) the derivative

Zy = Gﬁw(u)v is the solution of the linearized equation

0z day M .
5+Az+w(x,t,yu )z=v in Q,

z=0o0n X, z(0)=0in$2,

“4.7)

where y,ﬁw = Gy (u).
Proof Let us introduce the space
— 9y 2
Y = yeW(O,T).E—i—AyeL (O)t.

This is a Banach space when it is endowed with the graph norm

Il = Iylwon + 12 + Ayl
Now, we define the mapping
Fu i Y x L*(2) x L*(Q) — L*(Q) x L*(22)
Furoww) = (2 4 Ay +au )~ y© — w).
Let us prove that the mapping
Fy :W(00,T) — L*(Q), Fu(y) =am(.-y)

is of class C! with

0
DFy : W(0,T) — LW, T), L*(Q)), DFu(y)z= %(', %Yz

First, we observe that a standard application of a Gagliardo—Nirenberg inequality leads
to

1

3
< 74 1 <
12,3 0 7. poon = C1e i 7222000 19020 7oy ey = € MEIW.T)
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for every z € W(0, T). Using this inequality, (4.3), and the mean value theorem we
infer

IFM (v +2) = Fu () = DFu 0zl 2 )

day 2
= / ‘aM(x, t,y(x,t)+z(x, 1) —apy(x, t, y(x,1)) — —(x, t,y(x,1))z(x,t)| dxdr

/ ‘—(x 1y, 1) +6(x, Nz(x, z))—a—(x y(x, z))} 2(x, 1) dx dr

<[ 15

H—u o]

)||z<t)||i4(9) dr

2
L8(0.T; L4(.Q))” ”Lg(O,T;L“(-Q)).

From here we deduce

1 Fm(y +2) — Fu(y) — DFm(y)zll 20y
llzllwo,7)—>0 lzllw,7)

=0.

Hence, F); is Fréchet differentiable. The continuity of D F); is immediate and,
consequently, Fy; is of class C!. Using this and the continuity of the embedding
Y C W(,T) c C([0, T]; L3(£2)), we conclude that F; is of class C!. Moreover,
we have Fy (yM | yo, u) = (0, 0). Aneasy application of the implicit function theorem
proves Theorem 4.2. O

For every M > 0 we consider the control problems

. 1
(P) inf  Jyu) == f OM(x, 1) = ya(x, 1)) dx drt
ueUq,aNL2(Q) 2Jo

+£/ u(x,t)zdxdt,
2Jo

where y,ﬁ” denotes the solution of (4.4). Problem (P,,) has atleast a solution u ;. This
is consequence of the coercivity of Jjs on L2(Q), the fact that Uz N L2(Q) is closed
and convex in L2(Q), and the lower semicontinuity of Jjs with respect to the weak
topology of L2(Q). The last statement follows easily from the estimate (4.6) and the
compactness of the embedding W(0, T) C LZ(Q).

From the chain rule and Theorem 4.2 we infer that Jy; : LQ(Q) —> R is of class
C! and its derivative is given by the expression

Jy v = / (¢ + ku)vdx dt, (4.8)
0
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where ¢ € W(0, T) is the solution of the adjoint state equation

dg dam M M .
—— + Ao+ ——(x,t, = — yq in Q,
o @ 3y (x, 8,9, )=y, —ya inQ

¢ =0on%X, ¢(T)=0in$2.

4.9)

Theorem 4.3 Let uy be a solution of (Py). Then, there exist functions yy, oy €

WO, T)and up € LZ(Q) such that

ot

0
ﬂ—i_AyM +aM(x7t9yM) =Uupy ln Q,
ym =00n X, yu(0)=yin$2,

" day .
——— 4+ Ao+ — O, t, ym)om = ym — Ya in Q,
ot ay

om =0o0n X, oyu(T)=0inS$2,

/ paa G, D@ Ce, ) — upg (6, 1) dxdf <0 Y € Uag N L2(Q),
Q

oM +kupy + puy = 0.

The proof of this theorem is the same as the one of Theorem 3.1.

(4.10)

A.11)

(4.12)

(4.13)

Theorem 4.4 Let (upr, ypr, m, ym) be as in Theorem 4.3. Then, there exists a con-

stant Koo > 0 such that

s, ym, om, wa)ll Loyt < Koo YM > 0.

(4.14)

Proof As in the proof for the first statement of (3.8), we have that (4.12) and (4.13)

yield |up (x, O up(x, 1) = ppr (x, t)up(x, t) for almost all (x, 7) € Q.

We denote by yl?,, the solution of (4.4) associated with the control identically zero.

Then, according to Theorem 4.1, inequality (4.5) implies that

Iy lco.r: 2y < K(laC, - 0l20) + 1ol 2¢2) YM > 0.

From this inequality we infer

I1y8 200y < C1 = VTK (llaC, -, 0)ll2(g) + 1ol 2(2)) VM > 0.

Since uy is solution of (P,,) and u = 0 is an admissible control for (P,;) we get

Eluml2s, < Iaupn) < J (0)—1” O —vall?
) M L2(Q) = mM\UpM) = IM _2 Ym Yd L2(0)"

This leads to

1 0 1
u < — — <Cr=—(C;+ YM > 0.
l M||L2(Q) = Ry, yd||L2(Q) =02 \/E( 1 ||yd||L2(Q))
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Using again (4.5) and this estimate we deduce

Iymllpeco,1;02(02)) = C3 = Kz(Cz +llaC, -, 0)||L2(Q)
HIBC. - Ollzcs) + 1yollz2i2) ¥M > 0.

Using this estimate we can infer the boundedness of s by a constant independent
of M. The idea of the proof is to make the substitution ¢/ (x, t) = e"ca“lpM(x, 1),
where C, is given in (2.2). Then, v satisfies the equation

Y da .
T A (G + Iy = € O — ) in @,

Yy =0on X, Yy (T)=0in 2.

Since (4.1) implies that 3;;” (x,t, y,f”) 4+ |Cq| = 0, we apply [17,Theorem III-7.1] to

deduce the existence of a constant C > 0 independent of M such that

W
Wiy < C(e‘c ! [||yM||L0<>(0,T;L2(_Q)) + ||)’d||Lf(o,T;Lﬁ(g))])
< Cy = C([Cs + Iyall o1 Li2y)]) YM > 0.

From here we infer the estimate [|@a|lz~(0) < l[¥mllLx0) < C4 for every M > 0.
Now, using that u; and s have the same sign almost everywhere in Q, we deduce
from (4.13)

klup e, )] < lcup(x, 1) + pp (x, )| = lom(x, )| < Cy,

which proves that |[up L) < % for every M > 0. Moreover, the bounds from
upy and @y along with (4.13) imply that [|p ]l L0 (0) < 2C4. Finally, the estimate of
yup in L*°(Q) independently of M follows from (4.10), Theorem 2.1, and the estimate
for uyy,. O

Remark 4.1 The assumption « > 0 was used in an essential manner in the above proof.

Theorem 4.5 Let M > Koo be arbitrary, where K, satisfies (4.14). Let upy be a
solution of (Pyy). Then, uy is a solution of (P).

Proof First we observe that ||y ||z gy < M and hence ay (x, t, yp) = a(x,t, yu).
Therefore, yys is the solution of (1.1) corresponding to uy; and, consequently,
Iu(up) = Jup).

Givenu € Uyy N L°°(Q) arbitrary, let y, be the associated solution of (1.1) and set
Mo = |lyullLe(g)- If My < M, then it is obvious that apy (x, ¢, y,) = a(x, t, y,) and,
hence, Jys () = J (u). Therefore, the optimality of u s implies J (up) = Jy(upy) <
Iy ) = J(u).

If My > M, we take a solution u g, of (Pyy,). Then, Theorem 4.4 implies that
the solution yus, of (4.10) with M replaced by My satisfies ||y, llrog) < M

@ Springer



12 Page 18 of 40 Applied Mathematics & Optimization (2022) 85:12

and, consequently, ay, (X, t, ym,) = am(x, t, ymy) = a(x,t, ym,) and Jp (upgy) =
Jym (upy) = J(up,). These facts along with the optimality of u s and u y, lead to

Jpy) = Inup) < In(upmy) = Iny(umy) < Ipy() = J (),

which proves that u; is a solution of (P). O

Remark 4.2 Let us compare problem (P) with the control problems

. 1
®,) inf Jw) = - / (e 1) — ya(x)) dx dr
ueUygNL (0,T;L2(R2)) 2 Jo

+£/ u(x,t)2dxdt,
2Jo

where r € (ﬁ, 00). We observe that Theorems 2.1 and 2.2 , and Corollary 2.1
are applicable to deduce that any solution of (P,) satisfies the optimality conditions
(3.2)—(3.5). Then, the arguments of Theorem 4.4 apply to deduce that any solution of
(P,) belongs to L°°(Q). Let us check that problems (P) and (P,) are equivalent in
the sense that both have the same solutions. Indeed, since Uyg N L" (0, T; L2(£2)) D
UaaNL*(Q), itis obvious that every solution of (P,) is a solution of (P). Conversely,
let it be a solution of (P) and take u € Uyqy N L7 (0, T; L?(£2)) arbitrarily. For every
integer k > 1 we set ux = Projj_; 44 (u). Then, itis obvious that ux € Uga N L>(Q)
and up — win L"(0, T; L2(£2)). Using the optimality of # we have J(u) < J(ux)
for all k, and passing to the limit we infer that J () < J(u). Since u was arbitrary,
this implies that « is a solution of (P,).

5 Second Order Optimality Conditions

We consider the Lipschitz and convex mapping j : L'(£2) — R defined by j(v) =
lvll£1(s)- Its directional derivative is given by the expression

J'(u; v) =/ v(x)dx —/
F 2

where

v(x)dx+/ lv(x)|dx Yu,ve L'(2), (5.1)
20

.Q;:{xe.Q:u(x)>0}, 2, ={xe2:ulkx) <0}and93=9\((2;u9u_).

In order to derive the second order optimality conditions for (P), we define the
cone of critical directions. For a control u € U,y N L*°(Q) satisfying the first order
optimality conditions (3.2)—(3.5) we set

- 2 . /= _ o= ) ZOIftEI+,
Cu—{veL (Q).J(u)v_Oand](u(t),v(t)){SOifIGI;\I+, }
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where
I, ={te0,T):jl() =y} and I;r ={tel,:u() #0in £2}.

We first prove the second order necessary conditions. Given an element v € Cj,
the classical approach to prove these second order conditions consists of taking a
sequence {vk},fil converging to v such that u 4+ pvy is a feasible control for (P) for
every p > 0 small enough. The way of taking this sequence is different from the case
where box control constraints are considered. The main reason for this difference is
that the functional j, defining the constraint, is not differentiable and that it is non-
local in space. Even the approach followed in the case where j is involved in the cost
functional cannot be used in our framework; see [3]. The proof makes an essential use
of the following lemma.

Lemma5.1 Let v € L%(Q) satisfy j'(ii(t); v(t)) = O for almost all t € I;‘. Then,
J'(W)v = 0 holds if and only if

IO @) v, D] = @lx, Dvx, 1) fora.a. (x,1) € 29, x L. (5.2)

As a consequence, every element v of Cy; satisfies (5.2).

Proof From (2.20), (3.5), and (3.8) we infer

J’(ﬁ)v:/(gﬁ—i—xﬁ)vdxdt:—/ [wdxdt:—/ [[wdxdt
o 0 LS Je

=—/ @)l L) / vdx—f vdx —// avdx dr.
LF o 2> I J2)

14 () i(t) u(r)

Using that j'(it(z); v(¢)) = 0 for almost all 7 € I;r and (5.1) we get

/ vdx—/ vdx:—/ lvldx.
Q 2 20

+
ii(r) i(r) i(t)
Inserting this in the previous identity we obtain

J/(ﬁ)vz/ / U@l lvl — o] dx de.
LS J20

u(t)

Since iv < || (#)]lLoo(2)lv], we deduce from the above equality that J'(u)v = 0 if

and only if (5.2) holds. |
Theorem 5.1 Let it be a local solution of (P) in the L"(0, T; L>(£2)) sense with
r> ﬁ. Then, the inequality J" (it)v> > 0 holds for all v € Cj.
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Proof Let v be an element of C; NL>®(0, T; L?(£2)). We will prove that J” (it)v?> > 0.
Later, we will remove the assumption v € L>(0, T; L(£2)). Set

v(x, 1) . 0
gx, ) =1 li(x,t)| ifx ¢ $25), and a(?) :/Qg(x,t)ﬁ(x,t) dx.

0 otherwise,

From (5.1) we infer

J'@@); v(0) =a(t)+/0 [v(x, )] dx.

2aw

For every integer k > 1 we put

ax(t) = /KZProj[_k,_kk](g(x,t))zZ(x,t) dx,

a(t) —ak(t)ﬁ(x .

8r(x, 1) = Proji_y_q(g(x, 0)lax, ) + ),
0 ify — 4 < la®lpig <y
v 1) = | 8 D)+ v Dxge (@) iAW) = .
v(x,t) otherwise,

where XQQ( ) (x) takes the value 1 if x € .Qg(t) and 0 otherwise.
u(r

Using that | Proj;_; 141(g(x, 1)u(x, )| < |v(x, #)| and the pointwise convergence
Proj_j 11(g(x, 1))u(x, 1) — g(x, H)u(x, t) almost everywhere in 0, we deduce with
Lebesgue’s Theorem that limy_, « ax (#) = a(t) for almost all ¢ € (0, T'). Therefore,
we have that v (x, 1) — v(x, ) for almost all (x, t) € Q. Moreover, we have

2 _
lgr(x, D) < |v(x, )| + ;”v“LOO(O,T;Ll(_Q))||“||L°°(Q)
and
2 -
0606, 01 = [0 D+ 07501 ] @) for aa. (1) € 0.

Once again, with Lebesgue’s Theorem we get vy — v in L7 (0, T; L*(82)) for every
r < 0o.

Let us prove that J/()vy = 0. To this end, we apply Lemma 5.1. Actually, we are
going to prove that vy € Cj. Givent € I, taking into account (5.1) and the fact that
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J@(@®) = u®l @) = v we get

J@@); ve(1))

= f . Proji_g (8. )i, )] dx — /Q Proj_ 41y (g(x, D), 1)] dx
27 y
i(t) u(t)

+—“(t)_“"(t)[/ ﬁ(x,t)dx—/ ﬁ(x,t)dx]+/ lv(x, )| dx
Y i) “ ‘

) 240

— /Qproj[_k’Jrk](g(x,t))zZ(x,t)dx + a(t) —ak(t)j(zz(t)) —i—/go [v(x, )| dx
u(r)
=0ift eI},
=a(t) + / . lv(x, 1) dx = j'(a(t), v(t)) { <0 ifi i I: \ IF

‘in(t)

where we used that v € Cj in the last step.

In the case where [[u(2) |11 (o) < v, according to the definition of v, we have that
vg (x, 1) is equal to O or to v(x, t). Since v satisfies (5.2) due to the fact that v € Cj,
we deduce that vy also satisfies (5.2). Then, Lemma 5.1 implies that J'(it)vy = O.
Therefore, v; € Cj; holds.

Take pr > 0 such that

1

2
et 2lolimain) <
Pk( +y||U||L o.1;L1(2)) < kmax{l. 7]

Then, we have for each fixed k and Vp € (0, px)

p (1 Proji_ iy (sr. )1+ |"’(”‘y—“"(’)'|)

2 1
<plk+— 2(0,T; ) S
< ,o( y vl Lo 0,7: 11 (2)) X
Using this estimate we have that [|u (1) + pvr ()| < y if j(u(2)) = y and0 < p < pi:

(@) + pve(®)ll 1)

= fg » @011+ p[ Proji_y, . (8Cx, 1) sign(a(x, 1) + dx

u(r)

a(t) —ak(t)]‘
Y

+p/ e nlds

Qﬁ(!)

- / 0 ()11 + p[ Proji_ 4y (g(x, 1)) sign(i(x, 1)) + M] dx
2\2y, >

+,0/0 lv(x, 1) dx

912(1)

=/Q|ﬁ(t)|dx+,0{/g [Proj[_k’+k](g(x,t))ﬁ(x,t)+a(t);—ak(t)lﬁ(x,tﬂ]dx
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+/ |v(x,t)|dx}
QO

i(t)

= u®lpr2) +p {a(t) +f0 Iv(x,t)IdX} =y +pj@;v) <y.

Qa(r)
In the case y — % < u@®lp o) <v.we have that v (#) = 0 and, consequently
lu@) + pveliL12) = lu®lL12) < V-

If @)1 @) < ¥ — 1. then we get

_ 1
lu@) + pvlip1o) v — ot pllvllpseo,r;L1(2) < V-

Using the local optimality of i, the fact that i + pvy € Uyg, J'(i)vy = 0, and
making a Taylor expansion we get for every p < p; small enough

2 2
0 < J(@i+ pv) — J@) = pJ (@)vg + %J”(ﬁ + Opup)v} = %J”(ﬁ + Opu) v}

Dividing the above inequality by p? /2 and making p — 0 we obtain with Corollary 2.1
that J”(ﬁ)v,% > 0. Since vy — v in L?(Q), we pass to the limit when k — 0o and
conclude that J” (it)v? > 0.

Finally, we take v € Cj; arbitrary and for every k > 1 set

v(x,t)

wx, )= ——°2
L+ vl L1 o)

Then, we have

1

J @y = —————
L+ HlvO L1

J'(W)v =0 and
=0ifre I;F,

J'@); ve() = <0ifrel, \ I}

S ST 70 (r)){
T+ Mol "

Therefore, vy € Cz NL>®(0, T; L' (£2)) and vy — v in L%(Q) is satisfied. Hence, we
get J” (i1)v? = limy_, oo J”(ﬁ)v,? > 0, which concludes the proof. O

Theorem 5.2 Let it € Uyy N L°(Q) satisfy the first order optimality conditions (3.2)—

(3.5). If J"(i)v? > 0 Yv € Cj \ {0} holds, then for each r € (ﬁ, o] there exist
6 > 0 and & > 0 such that

s ]
J@) + Sllu = @72 g) < J ) Vit € Uaa 0 Be(@), (5.3)
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where Bg(l/_i) = {M (S Lr(O, T, L2(Q)) . ||u — l’_l”Lr(O,T;LZ(.Q)) < 8}.

Proof We proceed by contradiction. If (5.3) is false for every § > 0 and ¢ > 0, then
for every integer k > 1 there exists an element u; € U,y such that

1 1
luk —ullzro,1:02(02)) < % and J(up) < J() + ﬁ”uk - IZ”iz(Q)- (5.4)

Letus set px = lluk — ull2(py and v = (uk — u)/pk. Then, we have [lvgll 2oy = 1
and, taking a subsequence that we denote in the same way, we have vy—v in L2(Q).
We divide the proof in several steps.

Step I - J'(i)v = 0. From (3.4) and (3.5) we infer that J'(ir) (ux — ir) > 0 for every
k > 1. Therefore, J'(it)vy > 0 and passing to the limit we obtain J'(i1)v > 0. Now,
using (5.4) along with the mean value theorem we get for some 6 € (0, 1)

1
Jug) = G = I G+ O = D) g = ) < ok = il
Dividing this inequality by p; we obtain
/= - 1 -
(U + O (up — u))vg < ﬁﬂuk —ullr2(g)-

Then, passing to the limit when k — oo it follows J'(i1)v < 0.

Step I - v € Cj. Since it (1) + Avg(t) = () + ﬁ(uk(t) — (1)) € Ugyq for every
0 < A < pk, we get for almost every ¢ € I,

u(?) + 2ol 12y — lu@ 112y
A

u(t) + A (t -
— lim flae(2) kOl o) —v 0.
A0 A

J@); v (@) = i{‘%

Take a measurable subset J C I,,. Since the functional
ueLl*(Q) — f J'@(); u(r))dr e R
J
is continuous and convex, recall (5.1), the weak convergence vy—v in LZ(Q) implies
f Jj'@(t); v(t))dt <lim inf/ J@(t); ve(t))de <0.
i k—oo Jj
Since J C I, is an arbitrary measurable set, we infer for almost all ¢ € I,

f v(t)dx —/ v(t)dx +f lv()|dx = j'u@); v(t)) <0. (5.5)
F 2 0

a0 ) a0
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Identities (3.5) and J'(it)v = 0, and (3.8) imply

Ozf ﬁ(x,t)v(x,t)dxdt:/ /ﬁ(x,t)v(x,t)dxdt
0 Iy Je

:f+ {||ﬂ(t)||Lm(Q)[f+ v(t)dx—/_ v(t)dx]+f0 /l(t)v(t)dx} dt
1 i) i) 2

Y
5.6)
From (5.5) we deduce
/+ {||/IL(t)||Loo(_Q)[/+ v(r)dx —/_ v(t)dx+/0 |v(t)|dx]} dr <0.
IV ‘th(l) Qﬁ(l) ‘QH(Z)
The last two relations lead to
[ AL, [a0hs@ o - aovo] s a <o
I)jr 'Qz(‘«)(r)

This is possible if and only if |||l 2)lv(x, )| = f(x, r)v(x, t) for almost all
te I)f and x € .Qg(t). Inserting this identity in (5.6) we get

0= [ Aot ndxdr = [ 1FOlIs@ ) @O: v

Iy

Finally, this identity and (5.5) yield j’ (i(¢); v(¢)) = O foralmostall 7 € I;“ . Therefore,
we conclude with Step I that v € Cj.

Step III - J" (it)v*> < 0. From (5.4) and a Taylor expansion we infer

1 ]
ped g + & J”(u + kv vE = J () = J (@) < - lluk = @32 g

Since J' (i) vy = pl—kJ "(u)(ur — i) > 0, we deduce from the above inequality

1= ~ 2 _ qlis 2 1
JU U+ O (g — ))v, = J" (U + O prvp) v < T 5.7

The strong convergence it + 6y (ux — i) — i in L"(0, T; L?(£2)) yields the uniform
convergences yg, — y and g, — @ in L>°(Q), where yg, and ¢g, are the state and
adjoint state associated with u + 6y (uy —u). This also implies that Z6,,v, — Zv strongly
in L2(Q), where z, is the solution of (2.20) for y, = y and z0 e is the solution of
(2.20) with v = vg and yu = yg,. Then, we can pass to the limit in (5 7) when k — oo
and deduce that J” (i1)v? < 0.
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Step IV - Final contradiction. Since v € C; and J”(i)v> < 0, according to the
assumptions of the theorem, this is only possible if v = 0. Therefore, we have that
vr—0 in L?(Q) and, consequently, ng,vk — 0 strongly in L>(Q). Now, using that
[lvg ||L2(Q) = 1 and (2.21), we infer from (5.7)

0 > liminf J” (it + Ok (uy, — i1))v}
k—o00

.. a2a 2 2
= liminf 0 [(1 — —z(x, t, ygk)(pgk)zgk,vk + Kvk] dx dr

k— 00 ay
. 9%a 2
k]ggo 0 (1 B 3_}’2()6’ £ ye")(pgk)zé’k,vk drdr 4+« = ke
which contradicts our assumption ¥ > 0. O

The next theorem establishes that the sufficient condition for local optimality,
J"(it)v? > 0 for every v € Cj \ {0}, provides a useful tool for the numerical analysis
of the control problem. Given T > 0 we define the extended cone

CE = {v € L2(Q) I @] < 'C||v||L2(Q) and

{ |j'@@); v(0))| < tlvll2g) ift € Lf, }
]/(IZ(I), U(t)) < T”U”LZ(Q) ift I)/ \ I;r,

Theorem 5.3 Let u € U,q satisfy the first order optimality conditions (3.2)—(3.5) and
the second order condition J”(IZ)U2 > O0Vv € C; \{0}. Then, foreveryr € (&, 0]
there exist strictly positive numbers ¢, T, v such that

J"Wyv* = v[vl7s,, YveCE and Yu € B.(i), (5.8)

Q)
where B (ii) denotes the L" (0, T: L2(2)) closed ball.
Proof First we prove the existence of 7 > 0 and v > 0 such that

J" @ = 2v||vll3,,, Vv e CE. (5.9)

(@

We proceed by contradiction. If (5.9) fails for all strictly positive numbers 7, v, then for
1

every integer k > 1 there exists a function vy € Cg’ such that J”(ﬁ)v,% < %||Uk||%2(Q)~
Dividing v by its L?>(Q) norm and taking a subsequence we get
: 2 "e=y.2 1
lvkllz2o) =1, ve—vin L7(Q), J (w)v; < T (5.10)
1 a(t); ve()| < Lifr e It
iyl < 2, | @O = gifee Ly, (5.11)
k J@@); @) < ¢ ifrel, \ I}
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We prove that v € Cj;. First, from (5.10) and (5.11) we get

|J'(@)v| < liminf |J'(@)ve| < 0.
k— 00

Thus, we have J'(i1)v = 0. Let us set
I={tel,:j@a@);v) >0}

Then, we obtain with (5.10) and (5.11)
/j’(ﬁ(t); v(t))dr < liminf/j’(ﬁ(t); ve())dt <0.
I k—oo J1

This is not possible unless || = 0. Hence, we have that j/'(i(¢); v(r)) < 0 for almost
all € I,. Now, from the identity J'()v =0, (5.1), and (3.8) it follows

O=/(¢+Kﬁ)vdxdt=—/ v dx dr
0 0

= [ [, taols@uar— [ laoisa@vars [ pvar] ar
If | Jef fody 29

u(t) i(t) (1)
This implies

f[f VAW ogyv dx — / ||ﬁ<r>||Loo<g>vdx] ar
I ot 2

y () (1)

—/ / wv dx dr. (5.12)
7 J20

u(t)

Now we have

/1+ 1)l ooy (@(@); v (1)) dt

=/ 1A |22) / vdx—/ vdx—}—/
I ot Q- 00

Y u(t) () u(t)

[v] dxi| dr.
From this identity and (5.12) we infer

/ VA g G): v()) df = / / [0l lv] — A)v] dx di = 0.
Lr L J2

(1)
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This inequality along with j'(i(2); v(¢)) < Oforr € I, implies that j' (i (2); v(¢)) = 0
for almost all ¢ € I;r . We have proved that v € Cj. From (5.10) we infer

J"@v? < liminf J”(@)v; < 0.
k— 00
Since u satisfies the second order condition, the above inequality is only possible if
v = 0. Therefore, we have that vy —0in LZ(Q). Using (2.21) and the fact that z,, — 0

strongly in L2(Q) this yields

T 2 IR TI 1=y, 2
K = hkrggf/cllkaLz(Q) —hklggéfJ (v <0,

which is a contradiction. Therefore, (5.9) holds.

Let us conclude the proof showing that (5.9) implies (5.8). Given p > 0 arbitrarily
small, from Theorem 2.2 we deduce the existence of ¢ > 0 such that

lyu = Ylle) = 1G W) = G)llL=) < p Vu € Be(u).
Using this estimate, we get from (2.17) and (2.22), and taking a smaller ¢ if necessary
lgu — @ll(o) + llzuw — 2ull2¢0) < o Vu € Be(it) and Yv € L*(Q),
where z,,., = G'(u)v, z, = G'(i1)v, and ¢, and ¢ are the adjoint states corresponding
to u and u, respectively. Therefore, selecting p small enough we obtain with (2.21)

for some ¢ > 0

17" ) = J"@1?| < vllvlj2, Vu € Be(@) and Yv € L*(Q).

(@)

Combining this with (5.9) we infer (5.8). m]

6 Stability of the Optimal Controls with Respect to y

The aim of this section is to prove some stability of the local or global solutions of
(P) with respect to y. For every y > 0 we consider the control problems

P inf J(u),
(Py) ueUylf%lLoo(Q) @)

where
U, ={ueL>0,T; LY(2)): lu@llp1(e) <y foraa.re (0,7)}
First, we prove some continuity of the solutions of (P,,) with respect to y.
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Theorem 6.1 Let {yi )2, C (0, 00) be a sequence converging to some y > 0. For
everyk letuy, be a global minimizer of the problem (P, ). Then, the sequence {uy, }32
is bounded in L*°(Q). Moreover, if u,, is a weak™ limit in L*°(Q) of a subsequence
of {uy 32, then uy is a global minimizer of (P,) and the convergence is strong in
LP(Q) for every p < o0o. Reciprocally, for every strict local minimizer u,, of (P,)
in the L™ (0, T; L2(2)) sense with ﬁ < r < 00, there exists a sequence {u,,k},fil
such that uy, isa L" (0, T; L?(£2)) local minimizer of (P,,) and uy, — u,, strongly
in LP(Q) for every p < o0.

Proof The boundedness of {uy, }72 | in L>°(Q) follows from Theorem 3.2. Therefore,
we can take subsequences converging weakly™ in L°°(Q). Let us take one of these

. * A .
subsequences, that we denote in the same form, such that u,, — i in L*°(Q). Let u,,
be a solution of (Py). For every k we define

Vel if yx > y.

{ u, ify <w,
up = .
—};’{uy ify > v,

6.1
Then, it is immediate that ux — u,, and iy X din L*(Q), (i}, € Uy and
u, € Uy, NU, for every k. Since U, N L?(Q) is a closed and convex subset of
L%(Q) and f;—a in L?(Q), we deduce that i € U, . With the compactness of the
embedding W (0, T) C L?(Q) we can easily prove that Ya, —> Yain L%(Q). Using
these convergences and the optimality of u,, and u, we get

J(uy) < J(@) <liminf J(uy,) <limsup J(uy,) < limsup J(ur) = J(u,).
k—o00 k— 00 k— 00

This implies that J(u,) = J(@) = limg_ o J(uy,). This identity proves that 7
is a solution of (P, ). Moreover, the convergence Yuy, = Yu, in L2(Q) leads to
limg— o0 luy, ll220) = ||zt l22(g)- From this fact and the weak convergence u,, —u,
in L2(Q), we obtain that u,, — i in L2(Q). This along with the boundedness of
{uy, }72, in L*°(Q) implies the strong convergence in L?(Q) for every p < oo.

Let us prove the second part of the theorem. Let u,, be an L" (0, T’; Lz(.Q)) strict
local minimizer to (P,,). This means that there exists & > 0 such that

J(uy) < J(u) Yu e U, N Be(uy) withu # u,,

where B, (u, ) is the closed ball in L" (0, T; L2(£2)) of radius ¢ and center uy,. Now,
we consider the problems

(PBy) min J(u) and (PBy,) min J(u)
ucUyNB:(uy) ueUykﬂBg(uy)

It is immediate that u,, is the unique solution of (P B, ). Observe that the controls uy

defined in (6.1) are elements of Uy, N B¢(u, ) for all k large enough. Hence, U,, N
B, (u,) is non-empty, closed, convex, and bounded in L"(0, T’ L2(£2)). Therefore,
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problem (P B,,) has at least one solution u,, . Let us prove that u,, — u, in L?(Q)
for every p < oo. Denote y,, and ¢,, the state and adjoint state associated with
Uy, . Since {uy, }22  is bounded in L"(0, T’ L?(£2)) we infer from Theorem 2.1 the
boundedness of {y,, };2, in L>°(Q). Hence, from the adjoint state equation and the
classical estimates for linear equations we deduce that {g,, }22, is also bounded in
L*®(Q). Due to the optimality of u,, for (PB,,) we obtain

/ (Qy +Kuy) (U —uy)dxdt = J’(uyk)(u —uy) >0 Yu € Uy, N Bs(uy).
0

Setting § = U,, N B, (u, ) we get from the above inequalities

. 1
Uy, = Projg ( — ;%/k)v

where Projg denotes the L%(Q) projection on S. Let us prove that

1
lin o = 2( - llen e + iy le(o))- (6.2)

For this purpose we define

QO {("C’l) S Q . |ll (;C’l)| > 2( |¢V (’C’l)| |MV(“C7Z)|>}'
Yk K 'k

w1y = | TRPR D+ (0 (x, 1) € Qo
’ Uy, (x, 1) otherwise.

Then, it is obvious that

lu@llLr @) = lluyOll@) < V.

lu —wuyllpror: 2@y <y —uyllpro.r: L2y < &
1 1 .
Jlu + e ||L2(Q) < Juy + el ||L2(Q) if [Qol # 0,

The first two inequalities show that u € § and, consequently, the third one contra-
dicts the fact that u,, is the L%(Q) projection of —%(pyk unless |Qg| = 0. Now, the
boundedness of {g,,}72, in L>(Q) and (6.2) imply the boundedness of {uy, }7° ;.

Therefore, there exists a subsequence, denoted in the same way, such that u,, X i
in L*(Q). Using the functions {iix}2 ; defined in (6.1) and arguing as above, we
deduce that it € U,. Moreover, is is also immediate that i € B¢ (u, ). Let us consider
the functions {uk},fil defined in (6.1). Since

0 ify < w,
lug —uyll=Q) =\ y=n llty || Lo () otherwise,

14
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we have that uy — u, in L>(Q) as k — oo and ux € U, N By(u,) for every k
large enough. Then, using the optimality of u, and u,,, and the fact that u; and i are
feasible controls for (P B, ) and (P B, ), respectively, we infer

J(uy) < J(@) <liminf J(uy,) <limsup J(uy,) <limsup J(ur) = J(u,).
k—o00 k— 00 k— 00

This implies that J(u,,) = J (&) and, hence, i is also a solution of (P B,,). Due to the
uniqueness of solution of (P B,) we conclude that u,, = i. The strong convergence
uy, — uy in LP(Q) follows as above. We have proved that every subsequence con-
verge to u,, then the whole sequence does. In particular, the convergence u,, — u,
in L"(0, T; L3(£2)) implies that u,, is in the interior of the ball B¢ (u,) for all k
sufficiently large. Hence, u,, is an L" (0, T; L2(£2)) local minimizer of (PBy). O

Remark 6.1 Givenan L” (0, T'; L?(£2)) strict local minimizer of (P,), from the above

theorem we deduce the existence of a family {u,},/~o of L"(0, T; L2(£2)) local
minimizers of problems (P,/) such that ), — u, in LP(Q) as y' — y for every
p < o0o. Looking at the definition of the elements u,, in the previous proof we have
that

J(uy) < J(u) Yu e Uy N Be(uy) and J(uy) < J(u) Yu € Uy, N Be(uy).
(6.3)

Theorem 6.2 Let {u,}, be a family of local minimizers of problems (P,) such that

Uy — uy inL"(0, T; L*(2)) as y' — y with uy, alocal minimizer of (PV) satisfying
(5.3). We also assume that (6.3) holds. Then, there exists a constant L such that

1
luy — My||L2(Q) <Lly' —yl2. (6.4)

Proof The first part of the theorem follows from Remark 6.1. We only have to prove
(6.4). For every y’ we define

A

u, ify <y, ,if
ﬁy':{ ity =~y i~y (69

’ . d ;= .
V7uy ify >y, MW { %uy/ ify’ > y.
Then we have

i, 0y € Uy MUy, ity — uy, in L%(Q) and 0,1 — uy in L7 (0, T; L*(£2)).
(6.6)

From here we infer that v, € U, N Bg(u,) for y’ close enough to y with B (u,,)
defined in (5.3). Therefore, we get

5 . N
Sy =ty g2y = () = T ). 6.7)
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In the case ¥’ < y, using (6.7), the optimality of u,, and the definition of f)yr we
obtain with the mean value theorem

2
ity =y 72y = 5[0 0y) = TGy) + () = T ()]

2 . R Ci
< U Gy) = Juy) < Cilliy —uylLco) = 7||uy||L°°(Q>I)/ Al

In the case ¥y’ > y we proceed as follows
R 2 2 R
10y —uy 29y < E[U(vy/) — J@uy) + (J(uyr) = J(uy))]
< %(J(ﬁy’) — J(uy)) < Colldy — uyrllpro.7:12(2))
= y_3||u)/’||Lr(O,T;L2((2))|V/ -yl < Gly' =yl

From here we get

Ny —uyll2cgy < luyr — Oyl 200y + 10y — uyllr20)

ly" — vl 1 1
= THMV’HLZ(Q) +VGly' —y12 < Caly’ —yI2,

which concludes the proof. O

Theorems 5.2 and 6.2 imply Holder stability with respect to y of the optimal controls
if the sufficient second order condition J” (u),)v2 > 0 Vv € Cy; \ {0} holds. Now, we
are interested in proving Lipschitz stability. To this end we need to make a stronger
assumption, namely

J"(uz)v* >0 Yve L2(Q)\ {0}, yoe€ Co(2), and 7> i, (6.8)

where y > 0is fixed and C(£2) denotes the space of continuous real valued functions
on £2 vanishing on I'. From the first assumption in (6.8) we deduce the existence of
strictly positive numbers p and v such that

T = v|vl|3,,, YveL*(Q) and Yu € B (uyp), (6.9)

Q)
where B, (uj) denotes the Lf(O, T: L?(£2)) closed ball. Indeed, if (6.9) does not

hold, then we can take sequences {u}2, C L7(0, T; L*(£2)) and {uelze, C L%(Q)
satisfying

kll)néo llur — u;7||L?((),T;L2(_Q)) =0, ||Uk||L2(Q) =1,y —vin LZ(Q): J”(uk)v,% <

| =
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It is easy to pass to the limit and to deduce
J" (uz)v* < liminf J” (ug)vy < O.
k— 00

This inequality and (6.8) yield v = 0. But, arguing as in the proof of Theorem 5.3 we
infer

Kk = lim inf/cllvk||%2 = lim inf J”(uk)v,% <0,
k— 00 k— 00

(@)

which contradicts our assumption x > 0.
We finish this section by proving the next theorem.

Theorem 6.3 Letuj be alocal minimizer of (P ). We assume that (6.8) holds and that p
satisfies (6.9). Then, there exists € € (0, y) suchthat ( Py) has a unique local minimizer

uy in the interior of the Lf(O, T; L%(£2)) ball B,(uy) foreveryy € (y — &,y +é).
Moreover, there exists a constant L such that

lluy, — M?”L;(()’T;LZ(_Q)) <Lly—-y|l Vve(y—¢&y+eé. (6.10)

Proof Let us take p > O such that (6.9) holds. Then, J has at most one local (and
global) minimizer u,, in the closed set B, (u;) NU,q. This is a consequence of the strict
convexity of J in the ball B,(uy); see (6.9). We will prove that this local minimizer
belongs to the interior of the Lf(O, T: L2(£2)) ball B, (uy) if y is close enough to y,
and consequently it is a local minimizer of (P, ). In order to prove this, as well as
(6.10), we reformulate the control problem (P,) as follows

1 2
Q) inf G = / Gy . 1) — ya (o) dedr +2° / u(e. 1) dxdr,
ueky 2 0 2 o

where
Kyg={ue L;(O, T:L*(2)): lu@llp1(e) < 1foraa.t e (0,7)}
and y,, , is the solution of the semilinear parabolic equation

0
8—f+Ay+a<x,t,y>:winQ=9x(o,T>,

y=0onX =T x(0,7T), y(0)=ypin£2.

(6.11)

It is obvious that the problems (P,) and (Q, ) are equivalent for every y . This equiv-
alence is understood in the sense that u is a local (global) minimizer of (Q, ) if and
only if u,, = yu is a local (global) minimizer of (PV), and J(u)) = Jy, (u); recall
Remark 4.2.
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Take ¢ € (0, ) and p € (0, p] such that (y +&)p +ellitll 17 7.12(0)) < p- Then,
we have with the notation u; = yu and u, = yu

||’4y - u)?”ﬁ((),T;LZ(_Q) <vlu— ’/_i||Lf(0,T;L2(_Q)) +ly — ]7|||’/_‘||Lf(0,T;L2(Q))
<@ +eap+eluplior.2@y <P Yu € Bsi)andVy € (¥ — &,y +¢).

Due to (6.9) and the fact that J}/,’(u)v2 = yzj/’(uy)vz, we deduce that

2

Voriay 2 7 = oIl Vu € Bj ().

2 2
J)///(u)v = Y 1)”1)” LF(O,T;LZ(Q))

Therefore, J), is strictly convex on the ball B;(u). Hence, a control u is a local solution
of (Q,) in the interior of Bj (i) if and only if u satisfies the optimality system

ay .
:a—t—i—Ay—f—a(x,t,y) = yu in Q, 6.12)
y=0on%, y(0)=yin 2,
5 a4 2%ty in 0
N, — WX, 7, = - 1 )
or T L Ye= YTy (6.13)
¢ =0o0n%X, ¢(T)=0in 2,
/u(v—u)dxdtgo Yv e Kyq4, (6.14)
o
yo+kyiu+u=0. (6.15)

Denote by y and ¢ the state and adjoint state associated to u. Our goal is to apply
[10,Theorem 2.4] to the previous optimality system. To this end we define the spaces:

-9 )
V={yeWO0.T)NCQ): a—f + Ay € L' (0, T; L*(2))},

O ={pecH(Q)NCWO): —2—‘5 + A% € L7(0, T; L*(£2)) and ¢(T) = 0},

X=YVx®xL(0,T;L%2)), Y=R, Z=Cy(R)xL0,T; L>(2))°.

On )Y and @ we consider the graph norms

ay
= 5 — 4+ A ,
Iyly = lyllwo,r) + Ivlce) + H oy TAY LT L))

*

d¢
= 2 - A .
lelo = lIelio) +Iele@) +| = 57 + 40| 0 1iocen
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Thus, X is a Banach space. Moreover, we introduce the mapping f : X x ¥ — Z
and the multivalued function F : X — Z

y(0) = yo
dy
§+Ay+a(-,-,y)—yu
f((y,o.u),y) = de . 9a ,
5 TAPt G Ye -yt
t ay
ye +vicu
0
0
F(y,p,u) = 0 ,
Fo(u)

where the multivalued function Fy : Lf(O, T; Lz(.Q)) — L;(O, T; L2(SZ)) is
defined by

] ifué¢ Kaq,

Fo(u) = {M c Lf((), T: LZ(Q)) : / u(w—u)ydxdt <0Vv e Kad}’ otherwise.
0

Due to the regularity yg € Co($2), see assumption (6.8), we deduce from (6.12)
that y € ). Therefore, we have that (y, ¢, u) € X. Moreover, (y, ¢, i) satisfies the
optimality system (6.12)—(6.15), which implies that0 € f((¥, @, 1), y)+ F(, @, it).
Using our assumptions on a and the continuous embedding )V € C(Q) we deduce
that the function f is of class C'. Then, the function g : X —> Z, defined by

g(y7 @, u) = f(()_)i (157 1/_{), )7) + D(y,tp,u)f((y» (/_)9 '2)7 )7)()) - )_)v (e (/_7, u— 12),
strongly approximates f at ((y, ¢, u), ¥), and g(y, ¢, u) = f((y, ¢, u), y); see [19]
for the definition of a strong approximation.

We will apply [10,Theorem 2.4] to deduce the existence of ¢ € (0, e]and p € (0, p]

such that (6.12)—(6.15) has a unique solution u in the interior of the ball B;(iz) for
every y € (y — &, y + €). Moreover, these solutions satisfy

N —ullpio,7:0200)) < Ay — VI (6.16)
for some A > 0. For this purpose it is enough to prove that the equation
Begly,o,u)+ F(y, o, u) (6.17)

has a unique solution (yg, ¢g, ug) € X for every g = (,3,-);‘: | € Z and the Lipschitz
property

1(vgs @5 up) — (g, 9. up)llx < AllB — Bllz (6.18)
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holds for some A > 0 and all B , B € Z. First, we prove the existence of a unique
solution. To this end we consider the optimal control problem

(Pg) ug}(fad Jpu),

where

9%a

) 1 =12 K)72 2
Jp(u) ':E/Q[l —8—y2(x,t,y)<p]y dxdt+T/Qu(x,t) dx dt
+/ /33ydxdt+/()7g5+)721c12—,34)udxdt,

0 0

and y satisfies the equation

D Ayt e Py =jut by inQ
— — X, I, =yu )
or T gy Yy =T (6.19)
y=0on2%, y() = p;in 2.
Let us consider the solution ég € ) of the equation
0& da _ .
E‘FA%-'F@(XJ,)’)%—/% m Qv (620)

§=0o0nX, £0)=pin .

According to (2.17) we have that y = yG'(uy)u + &g = yz4 + £g. Inserting this
identity in the cost functional we get

172 9%a
jﬁ(“)z—{/ [1——2(x’t,&)¢]z3dxdt+/c/ uzdxdt}
2 Ue dy 0
+ 37/ ([ - P4, @ep + B3 )zu dx dr
0 dy?

+/ Yo + )721614); — Ba)udx dt
0

1 3%a RS
+/Q (5[1 - a—yz(x,t,y)(p]fﬁ +ﬁ3sﬂ) dx dr.

From (2.21), (6.9), and the continuity of the mapping u — z,, in L?(Q) we deduce
the existence of two constants C; and C, such that

=2
14
Tp@) = - vlula g, + Cilluliz ) + Co.

Therefore, J3 is a coercive, continuous, and strictly convex quadratic functional on
L%(Q). As a consequence, we infer the existence and uniqueness of a minimizer i 8
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of Jg on the set
Kea = {u € L*(Q) : [u@®)ll 1oy < 1 foraa.t e (0, T)}.

Similarly as in Theorem 3.1, we deduce the existence of elements yg € W(0, T),
¢p € H'(Q), and ig € L*(Q) satisfying

AT . da o . .
a7 + Ayg + 5(% t,y)yg = vug + B2 in Q,

yﬂ =0on 2, yﬁ(O):ﬁl in.Q,

6.21)

00 ... da . 3%a - .
_W—FA (Pﬁ—i-@()ﬂf’y)(ﬂﬁ—[1_8—))2(X,l,)’)§0])’5+/33 m Qy (622)
¢p=00n X, ¢g(T)=0in£2,
/ fip(u —iig)dxdt <0 Yu € Kua, (6.23)
0
7@ + 7 iig + 7@ + 77 — Pa+ fip = 0. (6.24)

Arguing similarly as in the proof of Theorem 4.4 we deduce that iig and [ig belong to
the space L (0, T; L?(£2)). Thus, i g is the unique solution of (Pg). Moreover, from
(6.21) and (6.22) along with (6.8) we infer that yg € ) and ¢g € @. Hence, we have
that (yg, ¢g, tig) € X and (6.23) holds forevery u € K,4. Due to the convexity of (Pg),
we know that (6.21)—(6.24) are necessary and sufficient conditions of optimality for
(Pg). This fact and the strict convexity of Jg imply that the system (6.21)—(6.24) has a
unique solution (yg, @p, lig, fig). lf we set yg = yg+ ¥, 0 = @p + @, ug = iig +u,
and ug = fig, (6.21)-(6.24) yields that (yg, g, ug) is the unique element of X
satisfying (6.17).

Now, we prove that this solution is Lipschitz with respect to 8. First, we observe
that (6.24) can be written as

Vop + 7okup — Pa + pp = 0. (6.25)
Given B, B € Z, we infer from (6.23)-(6.24) and (6.25) for 8 and B
/Q (Pop(0) + 7Preup(t) — Bat) (ug(t) —ug() dxdr <0,
/9(37903(0 + 7Piup () = o)) up(6) — uy (1) dx dr < 0.

Adding these inequalities we get

PRicllug(t) —upgl72q) < 7 /Q (9p(1) = 95D ug() —up(®)) dx

+11B40) = Ba®l 2@ g (1) = up (D)l 22 (6.26)
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for almost every ¢ € (0, T). Now, taking into account that Yg—Yp = 93 - Y8,
95— ¥p = ¢/§ — @g, and uy —ug = Uy — ug, subtracting the equations (6.21)
satisfied by y i and yg, and the equations (6.22) for ¢ 4 and ¢g, respectively, we obtain

Y ,/Q((pﬁ(t) —@p(O) (1) —up(r)) dx

a a _ A
= fQ {(5 AT D)0 = )0~ 0p) = (B = B) g w,§>} dx dr

a d .
_ /Q {(_ G AT 5, D)@ — 00— p) = (Ba — B2)(0p - gap} dx dr

at
- /Q (B1 — B (p(0) — ¢;(0)) dx
- [ |n- 22—2@, L 9§05 =) + (B2 — B s — 9p) | dx e
Q y
- fQ (Bs — B3 (v — yp) dx di — /Q (Bi = B (9(0) — 95(0)) dx.

Let us denote by &g and 53 the solutions of (6.20) corresponding to (B1, B2) and
(,31 , ﬁz), respectively. Then, we have that g~V = fG’(ﬁ)(uﬁ —ug) + 5;} — &g =

)71,45_” s+ 6 5= &p). Inserting this identity in the above equality we infer
?/;g(wﬁ(t) —@pO)(ug(t) —up(t)) dx
82
= —)72/Q [1- B_yi(x’ 7 ﬁ)(ﬁ]ziﬁ_uﬂ dx dt
8%a - 2
- /Q [1- a—yz(x, 1, 9)¢)[(E; — &p)° + 22u;—uy (§g — §p)1dx dt
- /Q [(B2 = B (05— o) + By — B — yp) f dx
- fg (B1 — B (95(0) — 9;(0)) dx
82
< _772/9 [1- a—;(x,t,y)é]zﬁﬁ_uﬂ dx dr

+Ca{l1B1 = il ) + 182 = Balla g

+llug —ugl2lIB1 = Bill2 o) + 182 — Bllr2g)]

+11B2 = Ball2 o) les — wslli2c0) + 185 — B3l 2oz — gllacg)
+ 11 = Bill 2 los©) — 95Ol 20a |
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Now, from the equations satisfied by y 5~V and ¢ 5 — ¥p We get

lys = ygllwo,r) < c4(||u,§ —upllz20) + 182 — Ball 20y + I1B1 — B ||Lz<9>),
(6.27)

g = esllm o) = Cs(Ivg = ysllizigy + 183 = Bsllzg))- (6.28)

Using the continuous embeddings W(0,T) C L*(Q) and H'(Q) c C([0, T];
L2(£2)), and the estimates (6.27) and (6.28), we infer

7 /Q (1) — @3(0)(ug() — up(1)) dx

<72 [1—82—a(xt')‘]z2 dx dr
=TT ot Ty

+ 66{ lug —ugllp20)[181 = Bill 22y + 182 — Bl 2oy + 183 = Bl 2]

+1B1 = Bill32ggy + 12 = Balla g + 185 = Bala |-
Combining this inequality with (6.26) and using (6.9) we deduce
Povllug —ugliap) < 7RI @ W — up)

d%a

-2 =\ -1.2 2

_ {/Q[l—a—yz(x,t,y)fﬂ]zuﬁuﬁ dxdi + g — gl |
4

= Cr{lug — upllzio) (11 = Bill oy + D165 = Bill o)

j=2

3
1B = Bilae) + 2 1B) = Billdao |
j=2

This yields

lug —ugli 20y < CsllB — Bliz. (6.29)
Using (6.27) and (6.29) it follows that

lys = yellwo.r) < CollB = Bllz. (6.30)
Now, (6.28) and (6.30) lead to

log — 08l micg) + llog — 98llcg) < CrollB — Blz. 6.31)
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Getting back to (6.26), and using (6.31), we get

lug = upll i 0.7:12¢2y) < C11llB = Bllz. (6.32)

Using this in the equation satisfied by y 5~ Yp We also obtain

1y = y8llegy < Cr2llB = Bllz. (6.33)

Now, (6.30)—(6.33) imply (6.18). Hence, we apply [10,Theorem 2.4] to deduce the
existence of € € (0, e]and p € (0, p] such thatforevery y € (y —¢&, y +¢) the system
(6.12)—(6.15) has a solution (y, ¢, u) with u in the interior of the ball B;(u) satisfying
(6.16). Since &€ < € and p < p, we know that J,, is strictly convex on Bj(u), hence u
is the unique local minimizer of (Q, ) in this ball. Moreover, u,, = yu belongs to the
interior of the ball B,(uy) and u, is the unique local minimizer of (P,) in B, (uy).
Moreover, from (6.16) we infer

Ny —uplipior.c22y < VIw—=ulliior.2y + v = vIlulior. 2@
<y +oAy —yI+ly — )7|||’/_l||L?((),T;L2(Q)) =Lly —v|

for L = (y + &)A + llull 7o, 7.12(s2))- This ends the proof. O
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