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ABSTRACT
Objective The greatest genetic effect reported 
for systemic sclerosis (SSc) lies in the major 
histocompatibility complex (MHC) locus. Leveraging 
the largest SSc genome- wide association study, we 
aimed to fine- map this region to identify novel human 
leucocyte antigen (HLA) genetic variants associated with 
SSc susceptibility and its main clinical and serological 
subtypes.
Methods 9095 patients with SSc and 17 584 controls 
genome- wide genotyped were used to impute and test 
single- nucleotide polymorphisms (SNPs) across the 
MHC, classical HLA alleles and their composite amino 
acid residues. Additionally, patients were stratified 
according to their clinical and serological status, namely, 
limited cutaneous systemic sclerosis (lcSSc), diffuse 
cutaneous systemic sclerosis (dcSSc), anticentromere 
(ACA), antitopoisomerase (ATA) and anti- RNApolIII 
autoantibodies (ARA).
Results Sequential conditional analyses showed nine 
SNPs, nine classical alleles and seven amino acids 
that modelled the observed associations with SSc. 
This confirmed previously reported associations with 
HLA- DRB1*11:04 and HLA- DPB1*13:01, and revealed 
a novel association of HLA- B*08:01. Stratified analyses 
showed specific associations of HLA- DQA1*02:01 with 
lcSSc, and an exclusive association of HLA- DQA1*05:01 
with dcSSc. Similarly, private associations were detected 
in HLA- DRB1*08:01 and confirmed the previously 
reported association of HLA- DRB1*07:01 with ACA- 
positive patients, as opposed to the HLA- DPA1*02:01 
and HLA- DQB1*03:01 alleles associated with ATA 
presentation.
Conclusions This study confirms the contribution 
of HLA class II and reveals a novel association of HLA 
class I with SSc, suggesting novel pathways of disease 
pathogenesis. Furthermore, we describe specific HLA 
associations with SSc clinical and serological subtypes 
that could serve as biomarkers of disease severity and 
progression.

INTRODUCTION
Genetic variation within the major histocompat-
ibility complex (MHC) has been associated with 
many human conditions, particularly autoimmune 
and infectious diseases or those with a central immu-
nological component.1 2 Systemic sclerosis (SSc) or 
scleroderma is a rare systemic immune- mediated 

Key messages

What is already known about this subject?
 ► The major histocompatibility complex is the 
genomic region shown to have the greatest 
genetic effect in several autoimmune diseases 
such as systemic sclerosis (SSc).

What does this study add?
 ► Taking advantage of the largest genetic study in 
SSc, we conducted an extensive fine- mapping 
of the region by assessing single nucleotide 
polymorphisms, human leucocyte antigen (HLA) 
classical alleles and polymorphic amino acid 
residues associated with SSc.

 ► We have confirmed the strong contribution of 
HLA class II in SSc susceptibility and showed 
for the first time the independent association 
of HLA class I, suggesting novel pathways of 
disease pathogenesis.

 ► We have identified specific associations in the 
different clinical forms of the disease, as well as 
private associations regarding autoantibodies 
presentation.

How might this impact on clinical practice or 
future developments?

 ► These findings may improve our knowledge of 
disease onset and progression, as well as assist 
in the identification of biomarkers that allow 
early and specific interventions.
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inflammatory disease (IMID), with a broad spectrum of clinical 
forms, affecting primarily connective tissues.3 It is characterised 
by an immunological disturbance leading to the production of 
autoantibodies, vascular damage, and widespread fibrosis of the 
skin and internal organs.3–5 Regarding the clinical characteris-
tics of the disease, patients with SSc are classified depending 
on the extent of the dermal fibrosis as either limited cutaneous 
systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis 
(dcSSc).3 5 6 Further classifications are performed according to 
the immunological dysregulation and the mutually exclusive 
production of autoantibodies in anticentromere (ACA), antito-
poisomerase (ATA) and anti- RNA polymerase III (ARA) anti-
bodies.3 6

SSc is a complex disease, in which the contributions of envi-
ronmental and genetic factors are crucial for disease onset 
and progression.7–9 Several genome- wide association studies 
(GWASs) and Immunochip analyses have shed light into this 
genetic component.10–12 Interestingly, a recent GWAS in SSc 
confirmed that the greatest genetic contribution to the disease 
described thus far comes from the human leucocyte antigen 
(HLA) region.13 Genetic variations in the HLA system may 
determine their binding affinity for specific antigens and their 
presentation to antigen- presenting cells, leading to the activa-
tion of autoreactive T- helper and B cells and the production of 
autoantibodies.14 These genetic variations are detected in sero-
positive IMIDs, and several of them have been described to be 
shared among them.15 16 HLA fine- mapping studies have been 
carried out successfully in several IMIDs, including rheuma-
toid arthritis (RA),17 systemic lupus erythematosus (SLE)18 and 
myositis,19 among others, and have been proven useful in identi-
fying the strongest genetic risk factors in autoimmune diseases.2 
In SSc previous assessments identified polymorphic amino acid 
positions and single- nucleotide polymorphisms (SNPs) that 
modelled the observed associations in populations of Euro-
pean descent,11 12 and a recent study in African and European 
confirmed an African ancestry- predominant allele and a transan-
cestry association with individuals of European ancestry.20 21

Taking the aforementioned into consideration and leveraging 
the enhanced power provided by the most recent GWAS in SSc, 
we conducted a broad analysis of the MHC region to evaluate 
SNPs, classical HLA alleles and their polymorphic amino acid 
positions, with SSc and its clinical and serological subpheno-
types. We also functionally explored the associated variants, 
finding evidence of colocalisation with expression quantitative 
trait loci (eQTLs).

MATERIALS AND METHODS
Study population
This study included genome- wide genotyped data from 9846 
patients with SSc and 18 333 healthy individuals from the same 
source population.13 The patients fulfilled the 2013 American 
College of Rheumatology/the European League Against Rheu-
matism classification criteria or the criteria proposed by LeRoy 
and Medsger for early SSc.22 23 In addition, patients were strati-
fied by the main clinical classifications (lcSSc or dcSSc) and main 
autoantibody status (ACA, ATA or ARA). Details of the cohorts, 
genotyping methods and quality control (QC) for genotyped 
data are described elsewhere.13

SNP and HLA imputation
After genotyping QC, SNPs, classical HLA alleles and amino acid 
variants, were all imputed for each case–control dataset sepa-
rately in the extended MHC region in chromosome 6.24 The 

SNP2HLA25 software was used for imputation using a reference 
panel consisting of 5225 European individuals in the Type 1 
Diabetes Genetic Consortium,26 containing data of 8961 vari-
ants across the MHC region, and two and four digit- resolution 
allelic identities of the HLA class I (HLA- A, HLA- B and HLA- C) 
and II genes (HLA- DPA1, HLA- DPB1, HLA- DQA1, HLA- DQB1 
and HLA- DRB1) as well as their amino acid make- up. Imputed 
data were also filtered for 95% success call rate for alleles 
and amino acids, deviation from Hardy- Weinberg equilibrium 
(HWE) considering a p- value of <0.001 for SNPs in controls 
and 95% total call rate for individuals. The total numbers of 
imputed variants per case–control set are specified in online 
supplemental table 1.

Statistical analysis
Association analyses were performed with PLINK27 using 
logistic regressions in each of the 14 independent datasets, 
including sex and the five first principal components (PCs) as 
covariates. Briefly, PC analysis was performed using ~1 00 000 
quality- filtered independent SNPs outside the MHC region using 
PLINK and GCTA64. Outliers were identified and removed as 
described elsewhere.13 We tested SNPs, classical HLA alleles and 
all possible combinations of amino acid residues per position. 
Inverse variance fixed effects meta- analysis was conducted with 
PLINK to evaluate the consistency of effects across studies. The 
genome- wide significance was established at a p-­value­≤5×10−8.

Considering the main clinical SSc subtypes and serological 
classifications, stratification of cases was performed following 
the same procedure as for the global analysis and comparisons 
were made with the control group and intracases, namely, dcSSc 
with lcSSc, and ATA with ACA (patients without available data 
or positive for both autoantibodies were excluded from the anal-
ysis). Only classical alleles whose results outperformed those 
from the global analysis and that were significantly associated in 
both comparisons were declared as private.

To identify independent signals within the region, sequential 
conditional association analyses were performed with the soft-
ware GCTA- COJO19 28 29 using the summary statistics from the 
meta- analysis (global and stratified by clinical and serological 
subtypes) and separately for each variant type (SNPs, alleles,and 
amino acids). The Manhattan plot was obtained with an in- house 
R script. The Protein Data Bank entries 3pdo, 1a1m, 3lqz and 
2bvp were used to produce the 3D models of the HLA molecules 
with the UCSF Chimaera software.30

Functional assessment of associated variants
In order to assign a biological meaning of our association results 
at the SNP level, we performed a colocalisation analysis using 
COLOC31 and the Genotype- Tissue Expression (GTEx) project 
release V.8 (dbGaP Accession phs000424.v8.p2). Colocalisation 
analysis evaluates if two independent studies at the same locus 
consistently share a causal variant; if so, the probability of a 
causal association increases.

RESULTS
A total of 9095 patients with SSc and 17 584 healthy individ-
uals fulfilled the QCs and 8339 variants were meta- analysed, 
including SNPs, classical alleles and amino acid positions 
within the MHC region (online supplemental table 1), iden-
tifying 1273 reaching the genome- wide level of significance 
(figure 1).

https://dx.doi.org/10.1136/annrheumdis-2021-219884
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SNP and HLA associations
Within this region, the global meta- analysis yielded 1082 signifi-
cantly associated SNPs, from which nine were independent and 
modelled the observed SNPs associations in the region (table 1) 
after the sequential conditional analysis. The most associated 
signal corresponded to a protective synonymous coding SNP 
in the HLA- DQA1 gene (rs1048372, OR=0.70, 95% CI 0.67 
to­ 0.73,­ p­ value=1.29×10−63). In addition, another synon-
ymous coding SNP in the same gene was independently asso-
ciated with SSc (rs1142338, OR=1.86, 95% CI 1.67 to 2.07, 
p­ value=3.16×10−12) and a truncating SNP mapping in the 

HLA- DPB1 gene (rs1126511, OR=1.21, 95% CI 1.16 to 1.27, 
p­value=2.37×10−25). All the remaining SNPs were non- coding 
intronic/intergenic, potentially involved in the regulation of 
gene expression. Given the complex linkage disequilibrium (LD) 
structure in the region, we assessed the relationship among the 
associated variants, and rs2844532 and rs17500468 were not in 
LD with any classical alleles and amino acid residues (figure 2).

In the global meta- analysis and regarding the classical alleles, 
a total of 21 four- digit classical alleles were significantly asso-
ciated with SSc at the genome- wide level with strong signals 
within the HLA class II. The strongest association observed 

Figure 1 Association signals for systemic sclerosis in the human leucocyte antigen region. The −log10 of the meta- analysis p values are plotted 
against their chromosomal position. The red line represents the genome- wide level of significance (p value=5×10−08). The size of the diamond 
indicates the degree of linkage disequilibrium with the strongest association from the meta- analysis (rs1048372).

Table 1 Independent association results from the global analysis comparing scleroderma and controls after the sequential conditional analysis

Gene Variation BP N OR (95% CI) P value Conditioned P value

HLA- DQA1 rs1048372T* 32 642 659 14 0.70 (0.67 to 0.73) 1.29E-63 –

HLA- DRB5/HLA- DQA1 rs482044G 32 608 287 14 0.73 (0.70 to 0.76) 7.09E-50 1.10E-35

HLA- DPB1 rs1126511T* 33 080 689 14 1.21 (1.16 to 1.27) 2.01E-16 2.37E-25

COL11A2 rs9469378C 33 191 887 14 1.44 (1.31 to 1.58) 8.02E-14 2.16E-14

HLA- DQA1 rs1142338T* 32 641 545 14 1.86 (1.67 to 2.07) 3.12E-29 3.16E-12

HLA- B/MICA rs2844532G 2 685 662 14 0.77 (0.73 to 0.81) 2.11E-23 1.54E-11

HLA- DQA2 rs17500468G 32 743 401 14 1.36 (1.28 to 1.43) 1.10E-27 3.64E-10

MICA/MICB rs3094228G 31 462 150 14 1.29 (1.23 to 1.36) 1.30E-26 5.42E-09

BTNL2/HLA- DRA rs9268515C 32 411 518 14 1.08 (1.03 to 1.14) 3.01E-03 1.76E-09

HLA- DRB1 DRB1*11:04 32 584 287 13 2.11 (1.92 to 2.31) 2.52E-56 –

HLA- DQB1 DQB1*02:02 32 663 284 14 0.56 (0.51 to 0.60) 5.79E-51 3.84E-45

HLA- DPB1 DPB1*13:01 33 081 591 14 2.05 (1.82 to 2.31) 6.10E-32 9.77E-30

HLA- DQA1 DQA1*04:01 32 640 529 14 1.86 (1.67 to 2.07) 3.12E-29 2.97E-28

HLA- DRB1 DRB1*13:01 32 584 287 14 0.68 (0.62 to 0.75) 2.15E-16 3.00E-14

HLA- B B*08:01 31 355 516 14 1.22 (1.15 to 1.30) 1.29E-10 1.79E-12

HLA- DQB1 DQB1*05:01 32 663 284 14 1.20 (1.14 to 1.27) 3.25E-10 1.33E-12

HLA- DPB1 DPB1*03:01 33 081 591 14 1.19 (1.12 to 1.27) 3.15E-08 4.81E-08

HLA- DPB1 DPB1*06:01 33 081 591 13 1.47 (1.27 to 1.70) 2.19E-07 2.15E-08

HLA- DRB1 AA Ile67 32 584 192 14 0.70 (0.67 to 0.73) 1.70E-63 –

HLA- DPB1 AA Ile76 33 080 885 14 1.74 (1.56 to 1.93) 1.73E-23 3.70E-29

HLA- DRB1 AA Tyr60 32 584 213 14 0.65 (0.62 to 0.69) 3.50E-52 7.03E-22

HLA- DQA1 AA Thr69 32 641 502 14 1.85 (1.66 to 2.05) 1.65E-30 1.90E-19

HLA- DRB1 AA Ala58 32 584 219 14 1.46 (1.37 to 1.55) 2.88E-33 2.56E-14

HLA- DPB1 AA Leu11 33 080 690 14 1.21 (1.16 to 1.27) 2.01E-16 1.65E-11

BP position based on build hg38.
Sequential conditional association analyses were performed separately for each variant type.
*Coding single- nucleotide polymorphisms: rs1126511 (SNP_DPB1_33156444), rs1142338 (SNP_DQA1_32717300) and rs1048372 (SNP_DQA1_32718414).
BP, base pair; N, number of cohorts where the variant was meta- analysed.
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was with HLA- DRB1*11:04 (OR=2.11, 95% CI 1.92 to 2.31, 
p­ value=2.52×10−56). After sequential conditional analysis 
controlling for the effect of the most associated HLA alleles, 
seven additional class II genes were independently associated, 
including three HLA- DPB1, two HLA- DQB1, one HLA- DQA1 
and one HLA- DRB1 alleles (table 1). Interestingly, here we 
describe for the first time the independent association with SSc 
of an HLA class I conferring risk, which belongs to the clas-
sical allele HLA- B*08:01 (OR=1.22, 95% CI 1.15 to 1.30, p 
value=1.79×10−12) (table 1). The HLA- DRB1*13:01, HLA- 
DQB1*05:01 and the HLA- DPB1*06:01 were independent 
(r2<0.2) from the other variants irrespective of their nature 
(amino acid residues and SNPs) (figure 2).

Moreover, we performed amino acid analysis with a total of 
170 polymorphic amino acid residues significantly associated in 
the global SSc meta- analysis. The most significant amino acid 
residue associated with SSc was the Ile67 of the HLA- DRβ1 
(OR=0.70,­ 95%­ CI­ 0.67­ to­ 0.73,­ p­ value=1.70×10−63). A 
summary of the independent associations after the stepwise 
conditional model is shown in table 1 and online supplemental 
figure S1A–C. All the associated amino acid residues were in 
moderate to high LD (0.4<r2<0.8) with the reported classical 
alleles and SNPs (online supplemental table 2).

Functional annotation of associated SNPs
To functionally characterise the associations from the meta- 
analysis and their proxies (r2≥0.8)­at­the­SNP­level,­they­were­
tested against the eQTLs from the 49 tissues contained in GTEx 
by a colocalisation approach.31 We identified 70 SNPs affecting 
the expression of 82 eGenes with a posterior probability of 80% 
in 40 tissues (online supplemental table 3). Then, we further 
assessed their overlap with the independent variants or any 
proxies and identified five of them affecting the expression of 
11 eGenes in relevant cells and tissues involved in the disease, 

including lymphocytes, fibroblasts, colon and oesophagus, 
among others (table 2).

Clinically restricted subphenotype analysis
The numbers of patients in each subgroup are summarised in 
online supplemental table 4. Given that previous studies reported 
genetic differential susceptibility to SSc depending on its 
subtype,12 13 32 we performed stratified analyses comparing with 
the control group and the results are summarised in the online 
supplemental tables 5‒9. For lcSSc, a total of six classical alleles 
were identified as independently associated (table 3 and online 
supplemental table 5). Among them, HLA- DQA1*02:01 was 
only­ associated­ with­ lcSSc­ (OR=0.54,­ p­ value=5.23×10−51), 
and this was further confirmed when compared with the 
patients­ with­ dcSSc­ (OR=0.71,­ p­ value=2.08×10−8; online 
supplemental table 10). Regarding dcSSc, four classical alleles 
were independently associated with this subphenotype when 
compared with the healthy individuals (table 3 and online 
supplemental table 6). HLA- DQA1*05:01 was exclusively asso-
ciated with dcSSc (OR=1.49, p­value=1.59×10−11). This was 
confirmed when comparing these patients with patients with 
lcSSc­ (OR=1.30,­ p­ value=1.76×10−11) (online supplemental 
table 10).

Serologically restricted analysis
Taking into account the serologically restricted subphenotypes, 
we conducted different analyses to compare ACA, ATA and ARA 
positive cases and controls in this locus. In the case of ACA, 
HLA- DRB1*08:01­(OR=3.18,­p­value=4.00×10−64) and HLA- 
DRB1*07:01­ (OR=0.36,­p­ value=1.84×10−45) were the clas-
sical alleles independently and exclusively associated with the 
presence of this autoantibody (online supplemental table 7), 
and this was verified when comparing with the ATA- positive 
patients­ (OR=2.17,­ p­ value=1.42×10−10 and OR=0.42, p 
value=3.85×10−27, respectively) (table 3 and online supple-
mental table 10). Concerning the analysis in the ATA subgroup, 
two classical alleles, namely, HLA- DPA1*02:01 and HLA- 
DQB1*03:01 were significantly and exclusively associated with 
this­phenotype­(OR=1.87,­p­value=2.93×10−19 and OR=1.86, 
p­ value=7.00×10−19, respectively) (online supplemental table 
8), which was confirmed in the intracases comparison (OR=2.41, 
p­ value=1.09×10−40­and­ OR=1.67,­ p­ value=1.73×10−22, 
respectively) (table 3). Regarding the ARA- positive analysis, only 
HLA- DRB1*11:04 was significantly associated with the presence 
of this autoantibody (online supplemental table 9).

Given the known correlation between the subphenotypes 
and the autoantibodies,3 it is worth noting the overlap of 
HLA- DRB1*08:01 as associated with lcSSc (OR=2.18, p 
value=8.07×10−29) and with ACA- positive patients (OR=3.18, 
p­value=4.00×10−64); however, this association was no longer 
significant for lcSSc when compared with dcSSc (OR=1.49, p 
value=3.43×10−5) (online supplemental tables 5 and 7).

DISCUSSION
Leveraging the largest genetic study conducted in SSc, we 
performed a comprehensive analysis of the MHC locus by fine- 
mapping approaches involving SNPs and imputed four- digit 
classical HLA alleles and their amino acid residues. Our results 
showed strong evidence for the substantial contribution of the 
HLA class II region in the pathophysiology of SSc, with strong 
associations with HLA- DRB1*11:04, HLA- DQB1*02:02 and 
HLA- DPB1*13:01 alleles. Furthermore, we revealed for the first 
time the genome- wide significant association of a class I HLA 

Figure 2 LD among the independent variants. Circos plot depicting 
the LD relationship among the SNPs, four- digit classical HLA alleles and 
HLA amino acid residues independently associated from the sequential 
conditional analysis. HLA, human leucocyte antigen; LD, linkage 
disequilibrium; SNP, single- nucleotide polymorphism.
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gene, the HLA- B*08:01. In addition, we identified associated 
amino acid residues in several HLA type II genes, mapping in the 
peptide binding pocket and non- coding variants involved in gene 
expression regulation. Importantly, the stratified analysis showed 
HLA- DQA1*02:01 as associated with the lcSSc subtype, in 
contrast to HLA- DQA1*05:01 that was private for dcSSc. Like-
wise, the serological stratification also showed exclusive associ-
ations; for instance, HLA- DRB1*08:01 and HLA- DRB1*07:01 
alleles were significantly associated in ACA- positive patients 
unlike in the ATA- positive patients, where associations with the 
HLA- DPA1*02:01 and HLA- DQB1*03:01 alleles were detected. 
In ARA- positive patients only HLA- DRB1*11:04 was signifi-
cantly associated with this autoantibody presentation.

In the global analysis, three of the most associated alleles in 
the model, that is, HLA- DRB1*11:04, HLA- DQB1*02:02 and 
HLA- DPB1*13:01, have been previously reported as associated 
with SSc in different populations,21 33–36 confirming them as 
robustly associated with the disease. In addition, the risk allele 
rs17500468*G, which is an intronic variant mapping in the 
HLA- DQA2 gene, was previously reported in an Immunochip 
study11 and is in tight LD (D’=1.0) with rs2857130 identified 
in a further Immunochip,12 validating its association in Euro-
pean population.11 The current study revealed the genome- wide 
significant association of HLA- B*08:01. Other autoimmune 

diseases such as RA, SLE, myositis, Sjögren’s syndrome (SjS) 
and primary sclerosing cholangitis17 37 38 with strong HLA class 
II associations, have also shown HLA class I associations, as 
described here for SSc. A haplotypic block containing this allele 
was previously nominally associated in Mexican patients with 
SSc.35 These HLA- B*08 associations have been attributed to 
the long ancestral 8.1 haplotype, supporting a common genetic 
background in autoimmunity.16 39–41 This allele is in high LD 
(r2=0.998) with the amino acid residue Asp9 located in the 
peptide binding groove of HLA- B, with a potential functional 
impact on antigen presentation.17

The association with SSc of independent signals in HLA 
classes I and II may suggest novel mechanisms for disease patho-
genesis, including the involvement of not only CD4+ but also 
CD8+ T cells.2 42 Interestingly, genes associated with CD8+ 
T- cell biology have been reported to be deregulated in skin biop-
sies of active SSc lesions, and these cells have been described to 
produce proinflammatory cytokines, contributing to the over-
production of collagen by fibroblasts and excessive fibrosis.43 
A recent report by Maehara et al assessed T- cell infiltrates in 
the skin of early dcSSc and showed that CD4+ cytotoxic T 
cells and CD8+ T cells are responsible for these infiltrates and 
induce apoptotic death of endothelial cells, contributing to the 
vasculopathy and fibrotic environment observed in SSc.44 45 

Table 2 Colocalisation analysis for the independently associated SNPs

SNP Association P value eGENE Tissue GTEx P value

rs482044 1.10E-35 TNXA Oesophagus (mucosa) 8.46E-05

STK19P Kidney cortex 7.10E-07

HLA- DRB1 Adipose (visceral) 1.70E-18

Brain 3.50E-16

Cardiac ventricle 1.20E-22

Liver 1.50E-06

HLA- DRB6 Brain 3.92E-21

BRD2 Nerve (tibial) 1.05E-04

rs1126511 (SNP_DPB1_33156444) 2.37E-25 HLA- DPA2 Brain 4.46E-07

LEMD2 Colon transverse 1.04E-04

rs9469378 1.16E-14 RING1 Adipose (subcutaneous) 2.70E-05

Cultured fibroblasts 2.20E-06

Oesophagus (muscularis) 1.30E-05

Skin 5.50E-06

ITPR3 Oesophagus (mucosa) 7.87E-06

rs1142338 (SNP_DQA1_32717300)* 3.16E-12 C2 Transformed lymphocytes 6.03E-08

rs3094228 5.42E-09 DDR1 Oesophagus (muscularis) 3.85E-05

eGENE is the gene modulated by SNP.
*Colocalisation was found for the proxy of rs1142338 (SNP_DQA1_32717300), the rs4713586 (r2=0.95).
GTEx, Genotype- Tissue Expression; SNP, single- nucleotide polymorphism.

Table 3 Summary of the independent association results from the stratified analysis

Gene Alleles OR* P value* Conditioned P value Phenotype OR† Intracase P value†

HLA- DQA1 DQA1*02:01 0.54 5.23E-51 NA‡ lcSSc 0.71 2.08E-08

HLA- DQA1 DQA1*05:01 1.49 1.16E-30 1.59E-11 dcSSc 1.30 1.76E-11

HLA- DRB1 DRB1*08:01 3.18 9.73E-57 4.00E-64 ACA 2.17 1.42E-10

HLA- DRB1 DRB1*07:01 0.36 1.17E-63 1.84E-45 ACA 0.42 3.85E-27

HLA- DPA1 DPA1*02:01 1.87 7.91E-43 2.93E-19 ATA 2.41 1.09E-40

HLA- DQB1 DQB1*03:01 1.86 7.11E-47 7.00E-19 ATA 1.67 1.73E-22

*Association effect and p value compared with the control group.
†Association effect and p value in the intracase comparisons (dcSSc with lcSSc and ATA with ACA).
‡Not available as it was the most significant allele in the sequential conditional model.
ACA, anticentromere; ATA, antitopoisomerase; dcSSc, diffuse cutaneous systemic sclerosis; lcSSc, limited cutaneous systemic sclerosis.
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Functional maturation defects have been detected in regulatory 
CD8+ lymphocytes from an ex vivo model of SSc46 and differ-
ential regulatory programmes of IFN- associated genes in CD4+ 
and CD8+ T cells have been shown to lead to elevated serum 
interferon levels in patients with SSc .47 Taken altogether, further 
studies on the contribution of CD8+ T cells in SSc may bear 
great therapeutic value, due to either its connection with the 
development of fibrosis or the assessment of the subpopulation 
of regulatory CD8+ cells in these patients.

Given that most of the independent SNPs in the global analysis 
mapped in non- coding regions of the genome, we performed 
a colocalisation study to assess if the associated variants were 
modulating gene expression. Our data showed immunity- related 
genes such as HLA- DRB1, HLA- DRB6, HLA- DPA2 and the 
complement gene C2 as eGENES regulated by the associated 
variants (table 2). Specifically, the risk allele of rs4713586 is 
correlated with an increased expression of the C2 gene in trans-
formed lymphocytes. This gene was previously associated with 
SLE48 and psoriasis.49 Interestingly, genetic variations on the 
complement genes have been recently described to contribute 
to the sex- biased susceptibility in highly related diseases like SLE 
and SjS,50 and may be further explored in SSc. This could be seen 
as a limitation of our study because the reference panel used here 
does not allow the imputation of these structural variations.

One potential application of genetic studies is the identification 
of variants associated with clinical and serological subtypes to 
assist in patient stratification, and potentially to anticipate their 
progression and to propose specific therapeutic interventions. 
The determination of classical HLA alleles is routine in immu-
nology laboratories for autoimmune diseases such as coeliac 
disease, ankylosing spondylitis and type 1 diabetes, and could 
be extended to others like SSc. To this aim, our stratified anal-
ysis showed that HLA- DQA1*02:01 was significantly associated 
with lcSSc, while HLA- DQA1*05:01 was exclusively associated 
with dcSSc. Regarding the serological stratifications, HLA- 
DRB1*08:01 and HLA- DRB1*07:01 were associated with ACA 
positive patients, further confirming associations reported in 
previous candidate gene GWAS, and Immunochip studies.11 12 51 
In the ATA- positive SSc subgroup, HLA- DPA1*02:01 and HLA- 
DQB1*03:01 showed exclusive and significant associations, and 
the latter was also reported in an Immunochip study.11

It is worth noting that the private associations were stronger 
when stratifying by the clinical and serological group of patients, 
despite the considerable loss of statistical power (online supple-
mental table 10). These results highlight the importance of 
analysing homogeneous groups of patients, reducing the loss of 
power due to phenotypical heterogeneity.52 As expected, these 
alleles were significantly different even when comparing the 
group of patients among them and not with the control group, 
reinforcing the idea that they are present in specific clinical and 
serological subtypes of patients. Overall, the risk alleles iden-
tified thus far bear modest effects and a better understanding 
of the genetic structure of the disease will include interactions 
between several risk factors. Further studies warrant the simulta-
neous qualitative and quantitative assessments of allele- specific 
expression of the genes in order to detect context- specific regu-
latory effects.53 54 Genotyping equivalent SNPs to the associated 
HLA alleles may also be of clinical utility, as SNP genotyping 
is straightforward and cost- efficient and has been proven to be 
very valuable to infer classical alleles for this and other rheu-
matic diseases.21 55 56

In summary, our extensive study of the HLA genes has 
confirmed and revealed novel associations with SSc suscepti-
bility, highlighting for the first time the involvement of HLA class 

I genes in the pathogenesis of the disease. In addition, our data 
points to specific allelic associations that may serve as molecular 
biomarkers of clinical disease and serological subphenotypes. 
This evidence may eventually lead to early interventions that 
are crucial to avoid the devastating effects of the disease, and 
to develop specific and effective therapeutic options for patients 
with SSc.
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