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Abstract
Local depth functions (LDFs) are used for describing the local geometric features
and mode(s) in multidimensional distributions. In this thesis, we undertake a rigor-
ous systematic study of LDFs and establish several analytical and statistical proper-
ties. First, we show that, when the underlying probability distribution is absolutely
continuous, scaled version of LDFs (referred to as τ-approximation) converge, uni-
formly and in Lq, to the density, when τ converges to zero. Second, we establish that,
as the sample size diverges to infinity the centered and scaled sample LDFs converge
in distribution to a centered Gaussian process uniformly in the space of bounded
functions onHG , a class of functions yielding LDFs. Third, using the sample version
of the τ-approximation and the gradient system analysis, we develop a new cluster-
ing algorithm. The validity of this algorithm requires several results concerning the
uniform finite difference approximation of the gradient system associated with the
sample τ-approximation. For this reason, we establish a Bernstein-type inequality
for deviations between the centered and scaled sample LDFs. Finally, invoking the
above results, we establish consistency of the clustering algorithm. Applications of
the proposed methods to mode estimation and upper level set estimation are also
provided.
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Summary

This thesis is divided into three main chapters. Chapter 1 contains a review of depth
functions and multidimensional quantiles. Results from the literature are comple-
mented with new mathematical insights into the general theory of statistical depth
functions (Liu, 1990; Zuo and Serfling, 2000a). Depth functions are divided in three
main types: (i) simplicial depth, spherical depth, lens depth, and β-skeleton depth
are Type A depth functions, (ii) Lq-depth and simplicial volume depth are Type B
depth functions, and (iii) Mahalanobis depth and projection depth are Type C depth
functions. We investigate the properties of these depth functions and the resulting
quantiles. We also study convergence of sample depth and quantiles. Since sample
Type A and Type B depths take the form of a U-statistics, we dedicate the last part of
Chapter 1 to review the theory of U-statistics and the corresponding empirical pro-
cesses, namely, U-processes. Although depth functions have been used in various
applications, we focus here on the properties of the depth functions themselves and
explain which depth functions yield meaningful multidimensional quantiles.

Chapters 2 and 3 are taken from the paper Francisci et al. (2020). While depth
functions are used to describe the global features of multidimensional distributions,
local depth functions (LDFs) can also detect local features such as modes and re-
gions with low probability mass (Agostinelli and Romanazzi, 2011). In Chapter 2,
we introduce a general class of Type A local depth functions and study its properties.
Specifically, we show that, as the localizing parameter τ diverges to infinity, LDFs
converge to Type A depth functions, whereas, as τ → 0+ and under appropriate
scaling, LDFs converge to a power of the underlying density f . Thus, the root of
scaled LDFs (referred to as τ-approximation and denoted by fτ) becomes arbitrar-
ily close to the density f . Indeed, we show that, under appropriate differentiability
assumptions, fτ and its derivatives converge uniformly to f and the correspond-
ing derivatives. Next, we replace depth by sample depth and obtain an estimator
fτ,n for the density f . Using the theory of U-processes mentioned above, we de-
velop a Bernstein-type inequality for LDFs and show that, for a suitable sequence
{τn}∞

n=1, fτn,n converges almost surely to f , uniformly over compact sets. This opens
the door to a series of applications including clustering, mode estimation, and up-
per level set estimation, which are investigated in Chapter 3. Specifically, we pro-
pose a new clustering algorithm via sample τ-approximation. At population level,
clusters are defined as the stable manifolds induced by a mode of f via a gradient
system (Chacón, 2015). First, we verify that the resulting clusters are well-defined
and non-trivial. Next, we show that the clusters of fτ converge to those of f . To-
wards this end, we show that the stationary points and modes of fτ converge to
those of f . Turning to sample τ-approximation and empirical clusters, we use the
aforementioned Bernstein-type inequality to establish uniform convergence of finite
difference approximations of the derivatives of fτ,n to the appropriate derivatives
of f . We use this and a density of data points argument to obtain convergence of
empirical clusters. As a by-product, we obtain convergence of the last iterate in the
clustering algorithm to the mode. Finally, we illustrate the finite sample behavior of
the proposed methods via numerical experiments and data analyses.
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Resumen

Esta tesis esta dividida en tres capítulos principales. El capítulo 1 contiene una re-
visión de las funciones de profundidad y de los cuantiles multidimensionales. Los
resultados existentes en la literatura se complementan con nuevos conocimientos
matemáticos sobre la teoría general de las funciones estadísticas de profundidad
(Liu, 1990; Zuo and Serfling, 2000a). Dividimos las funciones de profundidad en
tres grupos: (i) la profundidad simplicial, profundidad esférica, profundidad de
lente y profundidad β-esqueleto son funciones de profundidad Tipo A, (ii) la pro-
fundidad Lq y la profundidad de volumen simplicial son funciones de profundidad
Tipo B y (iii) la profundidad de Mahalanobis y la profundidad de proyección son
funciones de profundidad Tipo C. En el capítulo, investigamos las propiedades de
estas funciones de profundidad y de los cuantiles resultantes. También estudiamos
la convergencia de la profundidad muestral y de los cuantiles muestrales. Dado que
las profundidades muestrales del Tipo A y Tipo B son U-estadísticos, dedicamos la
última parte del Capítulo 1 a revisar la teoría de U-estadísticos y de los procesos
empíricos correspondientes, conocidos como U-procesos. Aunque las funciones de
profundidad se han utilizado en diferentes aplicaciones, aquí nos centramos en las
propiedades de las funciones de profundidad y explicamos por qué las funciones de
profundidad resultan en cuantiles multidimensionales con sentido.

Los capítulos 2 y 3 se han extraído del manuscrito Francisci et al. (2020). Mientras
que las funciones de profundidad se utilizan para describir las características glob-
ales de distribuciones multidimensionales, las funciones de profundidad local (FPL)
también detectan características locales como las modas y las zonas de baja proba-
bilidad (Agostinelli and Romanazzi, 2011). En el capítulo 2, presentamos una clase
general de funciones de profundidad local del Tipo A y estudiamos sus propiedades.
En particular, mostramos que, a medida que el parámetro de localización τ diverge
hacia el infinito, las FPL convergen a las funciones de profundidad Tipo A, mientras
que, cuando τ → 0+, bajo la escala adecuada, las FPL convergen a una potencia de la
función de densidad densidad correspondiente, f . Por lo tanto, la raíz de los FPL es-
calados (a la que llamamos τ-aproximación y denotamos fτ) se hace arbitrariamente
cercana a la densidad f . De hecho, demostramos que, bajo ciertas hipótesis de difer-
enciabilidad, fτ y sus derivadas convergen uniformemente en f y sus derivadas,
respectivamente. En el siguiente paso, reemplazamos la profundidad por la corre-
spondiente profundidad muestral y obtenemos un estimador fτ,n de la función de
densidad f . Usando la teoría de los U-procesos mencionada anteriormente, desar-
rollamos una desigualdad de tipo Bernstein para FPL y demostramos que, para una
secuencia {τn}∞

n=1 apropiada, fτn,n converge casi seguro a f , uniformemente sobre
conjuntos compactos. Esto abre la puerta a una serie de aplicaciones que incluyen
la clasificación no supervisada, estimación de modas y de conjuntos de nivel, que
se investigan en el capítulo 3. En particular, proponemos un nuevo algoritmo de
clasificación no supervisada haciendo uso de la τ-aproximación muestral. A nivel
poblacional, los grupos, o clusters, se definen como las variedades estables induci-
das por una moda de f a través de un sistema de gradientes (Chacón, 2015). Primero,
verificamos que los grupos que resultan están bien definidos y no son triviales. A
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continuación, mostramos que los grupos dados por fτ convergen a los dados por f .
Con este fin, demostramos que los puntos de estacionariedad y las modas de fτ con-
vergen a las de f . Para la τ-aproximación muestral y los clusters empíricos, usamos
la desigualdad de tipo Bernstein antes mencionada y así obtener convergencia uni-
forme de aproximaciones finito-diferenciales de las derivadas de fτ,n a las derivadas
correspondientes de f . Usamos este argumento y el de la densidad de los puntos
para obtener la convergencia de clusters empíricos. Como consecuencia, obtenemos
la convergencia a la moda en la la última iteración del algoritmo de clasificación
no supervisada. Finalmente, ilustramos el comportamiento muestral, finito, de las
metodologías propuestas mediante experimentos numéricos y análisis de datos.



vi

Contents

Abstract i

Acknowledgements ii

Summary iii

Resumen iv

1 Depth functions 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Multidimensional median and quantiles . . . . . . . . . . . . . . . . . . 4
1.4 Multidimensional symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Statistical depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Type A depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Type B depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Type C depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 Sample depth and quantiles . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.10 U-statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11 U-processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Local depth functions 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Local depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 τ-approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4 Sample local depth functions . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5 Sample τ-approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.6 Central limit results for sample τ-approximations . . . . . . . . . . . . 76
2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.8 Choice of localizing parameter . . . . . . . . . . . . . . . . . . . . . . . 83

3 Applications to clustering, mode estimation, and upper level set estimation 86
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Density upper level set estimation . . . . . . . . . . . . . . . . . . . . . 87
3.3 Mathematical background on clustering identification . . . . . . . . . . 89
3.4 Identification of stationary points . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Convergence of the gradient system under extreme localization . . . . 100
3.6 Algorithm and consistency of empirical clusters . . . . . . . . . . . . . 105
3.7 Proof of preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.8 Proof of consistency of empirical clusters . . . . . . . . . . . . . . . . . 112
3.9 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.10 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.11 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



vii

3.12 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Glossary of notation 129

Appendix 133
A Measurability in the sense of Arcones and Giné (1993) . . . . . . . . . . 133
B Convergence of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 143



1

Chapter 1

Depth functions

1.1 Introduction

The lack of a natural order on Rd has pushed researchers to look for different ap-
proaches for defining multidimensional median and quantiles. One of the most
successful approaches uses depth functions to assign a value to every point in Rd

based on a probability distribution P on Rd. Then, points in Rd are ordered based on
these values. Clearly, not every function provides a reasonable ordering. Liu (1990)
and Zuo and Serfling (2000a) state a series of properties that depth functions should
satisfy. These properties are formalized in the concept of statistical depth function.
Specifically, the depth median for P is defined as the point in Rd with highest depth
value and depth values are supposed to be non-increasing moving away from the
median. If the probability measure P is symmetric, then the depth median must co-
incide with the point of symmetry. It is conventionally assumed that depth functions
are non-negative and decrease to zero as the distance from the median tends to in-
finity. Finally, it is assumed that depth functions are invariant with respect to (w.r.t.)
affine transformations applied to both points in Rd and the probability distribution
P.

In this chapter, we review a series of results concerning multivariate quantiles
and depth functions and evaluate them based on the properties of the resulting
quantiles. A comparison between depth functions and other approaches to define
multivariate quantiles is given in Serfling (2002). As we will see, not all depth func-
tions in the literature satisfy the above axioms. However, it is worth mentioning that
depth functions have been used in many other contexts and their performance de-
pends on the specific task at hand. Among the many applications of depth functions
we shall mention location and scale estimation, classification and clustering, test for
symmetry, and outliers detection. Accordingly, Mosler and Mozharovskyi (2020)
evaluates the performance of depth functions based on invariance and uniqueness
of the resulting quantiles as well as robustness and computational feasibility.

In Section 1.3 we introduce two of the most popular depth functions, namely
halfspace and simplicial depth, and explain the link between these depth functions
and quantiles in R. Before studying in detail the properties of these depth func-
tions we briefly discuss other approaches to define quantiles on Rd. One of the
simplest approaches is given by componentwise quantiles, but has the drawback of
not being equivariant w.r.t. orthogonal transformations. More recent and advanced
techniques involve tools from set optimization and transportation theory. Specifi-
cally, Hamel and Kostner (2018) define multidimensional quantiles using the partial
order on Rd induced by convex cones, whereas Chernozhukov et al. (2017) obtain
multidimensional quantiles using a transportation map to a reference distribution.

In Section 1.5 we formally define the notion of statistical depth function. The
exposition is slightly different from Zuo and Serfling (2000a) in that depth functions
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are additionally assumed to be upper semicontinuous. This assumption ensures that
a depth median always exists. Apart from this, a weaker and more general definition
of statistical depth function is used allowing for invariance under a general class of
transformations and monotonicity w.r.t. the deepest point is allowed to hold only for
a smaller class of probability measures.

We study symmetric distributions in Section 1.4 and provide several examples of
depth functions in Sections 1.6-1.8, where we also study their properties. Following
Zuo and Serfling (2000a) depth functions are divided in three main types. Type A
depth functions include simplicial depth and β-skeleton depths, whereas Lq-depth
and simplicial volume depth are examples of Type B depth functions. Finally, Ma-
halanobis depth and projection depth are Type C depth functions. Specifically, we
see that halfspace depth, Mahalanobis depth, projection depth, and Lq-depth are
statistical depth functions. However, we notice that other depth functions such as
simplicial depth, simplicial volume depth, and β-skeleton depths do not satisfy one
or more of the above requirements. For the simplicial depth, this was shown already
by Zuo and Serfling (2000a). Results for simplicial volume and β-skeleton depths
are partially new. In particular, we unexpectedly conclude that the simplicial vol-
ume depth does not decrease to zero for certain distributions, whereas β-skeleton
depths fail to be non-increasing even for centrally symmetric probability measures.

In Section 1.9 we study consistency properties of depth quantiles. To this end, we
use suitable estimators for the above depth functions and show that, if they conver-
gence uniformly to the corresponding depth functions, then also the depth quantiles
converge. (Uniform) convergence of these estimators is studied in Sections 1.10-1.11
and Chapter 2. Specifically, in Section 1.10, we derive several properties and re-
sults for U-statistics, which are used to obtain consistency and asymptotic normality
for Type A and Type B depth functions. In Section 1.11 we extensively analyze em-
pirical processes and U-processes, that is, empirical processes that take the form of
U-statistics. There we summarize without proofs some of the most important results
concerning uniform law of large numbers and uniform central limit theorems for U-
statistics. To this end, we need to verify several measurability conditions. We differ
this analysis to Appendix A. These results are then used in Chapter 2 to prove the
uniform law of large numbers and uniform central limit theorem for Type A depth
functions.

Section 1.2 below may be skipped at first reading as it contains some mathe-
matical background on probability spaces, independence, convergence of random
variables etc. that is used in Sections 1.9-1.11 but, as noticed below, it is not strictly
necessary for Sections 1.3-1.8.

1.2 Mathematical background

In this section, we show that many properties of a random variable on an abstract
probability space can be checked directly on the space where it assumes its values,
thus simplifying the analysis. A probability space is a triple (Ω, Σ, P), where Ω is
a non-empty set, Σ is a σ-algebra on Ω,1 and P is a probability measure on (Ω, Σ).
Let E be a topological space and B(E) be the Borel σ-algebra on E.2 We denote by

1Σ is a σ-algebra on Ω if Σ ⊂ ℘(Ω), where ℘(Ω) is the power set of Ω, and satisfies the following
properties: (i) Ω ∈ Σ, (ii) if A ∈ Σ then Ω \ A ∈ Σ, and (iii) if A1, A2, · · · ∈ Σ then ∪∞

i=1 Ai ∈ Σ.
Using (i) and (ii) we also have that ∅ = Ω \Ω ∈ Σ and using (ii) and (iii) we obtain that ∩∞

i=1 Ai =
Ω \ (∪∞

i=1(Ω \ Ai)) ∈ Σ.
2B(E) is the smallest σ-algebra containing all open sets.
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Å, A, and ∂A be the interior, closure, and boundary of a set A ⊂ E. An E-valued
random variable is a measurable function X : (Ω, Σ) → (E,B(E)).3 X induces a
probability measure P on E, where P = PX is the push-forward measure given
by PX(B) = P(X−1(B)), for all B ∈ B(E)). As it is defined on (E,B(E)), P is
a Borel probability measure and it is referred to as the probability distribution (or
just distribution) of X. Most of the discussion of Sections 1.3-1.8 about multivariate
quantiles and depth functions is phrased in terms of Borel probability measures.
The underlying concept is that to each random variable X : Ω → E corresponds
a Borel probability measure P (and vice versa). We denote by M(E) the set of all
Borel measures on E and by P(E) the set of all probability measures. When E = Rd,
we will also write Pd for P(Rd) and Bd for B(Rd). Next, let H : E → R be Borel
measurable. The expectation of H(X), if it exists,4 is given by

E[H(X)] =
∫

Ω
H(X(ω))dP(ω).

By a change of variable, the above expectation can be directly computed as an inte-
gral over E. Indeed, by Theorem 16.13 of Billingsley (2012), it holds that∫

Ω
H(X(ω))dP(ω) =

∫
E

H(x)dP(x),

where P = PX. This allows to compute mean and variance of a Rd-valued random
variable directly on Rd (cf. Definition 1.4.3). For instance, if X : Ω→ R and H : R→
R, then

Var[H(X)] = E[(H(X)−E[H(X)])2] =
∫ (

H(x)−
∫

H(y)dP(y)
)2

dP(x).

Next, we define convergence of random variables on a metric space (F, dF). We
begin by defining weak convergence of a sequence of probability measures {Pn}∞

n=1
in P(E). We say that Pn converges weakly to P ∈ P(E) if limn→∞

∫
H(x)Pn(x) =∫

H(x)dP(x) for all bounded and continuous functions H : E → R. In this case,
we write Pn

w−→ P. Now, let (Ωn, Σn, Pn) and (Ω, Σ, P) be probability spaces and
{Xn}∞

n=1 be a sequence of random variables Xn : Ωn → F. We say that Xn converges
in distribution to a random variable X : Ω → F if PXn

w−→ PX. In this case we write

Xn
d−→ X. Next, suppose that (Ωn, Σn, Pn) = (Ω, Σ, P). We write Xn

p−→ X for Xn con-
verges in probability to X, that is, limn→∞ P({ω ∈ Ω : dF(Xn(ω), X(ω)) ≥ ε}) = 0,
for all ε > 0. Finally, Xn

a.s.−→ X means that Xn converges almost surely to X, namely,
P({ω ∈ Ω : limn→∞ dF(Xn(ω), X(ω)) = 0}) = 1. Almost sure convergence im-
plies convergence in probability, which in turn implies convergence in distribution.5

Finally, if c ∈ F then Xn
d−→ c if and only if Xn

p−→ c.6

We introduce next the product of sets, σ-algebras, and measures. Specifically, for
n ∈N∪{∞},7 we denote by ∏n

i=1 Ωi the n-fold Cartesian product of sets Ω1, . . . , Ωn.

3This means that X : Ω→ E and X−1(B) ∈ Σ for all B ∈ B(E).
4We refer to Sections 15 and 16 of Billingsley (2012) for a precise definition of the integral w.r.t.

a general measure and its properties. Existence of the integral reduces to the condition that at least
one of

∫
Ω H+(X(ω))dP(ω) and

∫
Ω H−(X(ω))dP(ω) is finite, where H+ = max(H, 0) and H− =

max(−H, 0) are the positive and negative part of H, respectively.
5See for instance Lemma 1.9.2 (i) and Lemma 1.10.2 (ii) of Van Der Vaart and Wellner (1996).
6See Lemma 1.10.3 (iii) of Van Der Vaart and Wellner (1996).
7n = ∞ is used to denote countable union.
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Next, if Σi are σ-algebras on Ωi, then the product σ-algebra ⊗n
i=1Σi is the smallest σ-

algebra including {∏n
j=1 Bj : Bj ∈ Σj}.8 Then (∏n

i=1 Ωi,⊗n
i=1Σi) is a measure space

and, for all finite n, the n-fold product ∏n
i=1 mi of measures mi on (Ωi, Σi) is a well-

defined measure on this space (see e.g. Section 18 of Billingsley (2012)). Also, the
infinite product ∏∞

i=1 mi is well-defined if mi = Pi are probability measures (see
Section 8.2 of Dudley (2018)). When Ωi = Ω (resp. Σi = Σ or mi = m) does not
depended on i, we also write Ωn for ∏n

i=1 Ωi (resp. Σ⊗n for⊗n
i=1Σi or mn for ∏n

i=1 mi).
In particular, if (Ωi, Σi, Pi) are probability spaces, then (∏n

i=1 Ωi,⊗n
i=1Σi, ∏n

i=1 Pi) is
also a probability space (cf. Definition 1.11.2 in Section 1.11).

We now turn to the definition of independent and identically distributed (i.i.d.)
random variables. To this end, let (Ω, Σ, P) be a probability space. Random variables
Xi : (Ω, Σi) → (E,B(E)), where Σi ⊂ Σ, are independent if, for all n ∈ N and
Ai ∈ B(E),

P(∩n
i=1X−1

i (Ai)) =
n

∏
i=1

P(X−1
i (Ai)).

Notice that independence means that, for all n ∈ N, the probability distribution of
(X1, . . . , Xn) : Ω → En is the product measure PX1 × · · · × PXn on (En, (B(E))⊗n).
On the other hand, Xi are identically distributed if PXi = PX1 for all i. In partic-
ular, if Xi are both independent and identically distributed, then (X1, . . . , Xn) has
probability distribution Pn, where P = PX1 . Much of the asymptotic properties of
depth functions, U-statistics and empirical processes in Sections 1.9, 1.10 and 1.11
are based on a sequence {Xi}∞

i=1 of independent and identically distributed (i.i.d.)
random variables Xi : Ω→ Rd. In particular, for the (uniform) asymptotic results in
Section 1.11, the probability space (Ω, Σ, P) is conveniently expressed as a product
(E∞, (B(E))⊗∞, P∞), where P ∈ P(E), and the random variables Xi : Ω→ E are de-
fined as the projections into the i component. Also, notice the implicit independence
assumption in the definition of Type A and Type B depth functions (see Definitions
1.6.1 and Definition 1.7.1) such as simplicial depth (see Definition 1.3.6), simplicial
volume depth (see Example 1.7.2), and β-skeleton depth (see Example 1.6.1). Indeed,
Type A and Type B depth functions are the expectation of a U-statistics (see Section
1.10).

1.3 Multidimensional median and quantiles

We begin with the definition of quantiles for unidimensional probability measures.
To this end, for P ∈ P1, we define the cumulative distribution function FP : R →
[0, 1] by FP(x) = P((−∞, x]). Clearly, FP is right-continuous and non-decreasing
with limx→−∞ FP(x) = 0 and limx→∞ FP(x) = 1. If P is continuous, i.e. P({x}) = 0
for all x ∈ R, then FP is continuous. Finding the quantiles of P amounts at inverting
the cumulative distribution function. However, this is not always possible since FP
may be constant on part of its domain, e.g. if P is a discrete measure. Let FP(x−) =
limy→x− FP(x) be the left limit of FP at x.

Definition 1.3.1 A quantile of order p for P ∈ P1, 0 < p < 1, is any number qp(P) ∈
Qp(P) = {x ∈ R : FP(x−) ≤ p ≤ FP(x)}. A median for P is a quantile of order 1/2
q1/2(P) ∈ Q1/2(P).

8Equivalently, ⊗n
i=1Σi is the smallest σ-algebra containing the one-dimensional cylinder sets

∏
j−1
i=1 Ωi × Bj ×∏n

i=j+1 Ωi, where Bj ∈ Σj and j = 1, . . . , n (cf. Kallenberg (1997) page 2). Indeed,

∏n
j=1 Bj, is the intersection of ∏

j−1
i=1 Ωi × Bj ×∏n

i=j+1 Ωi for j = 1, . . . , n.
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Notice that qp(P) is unique if FP is strictly increasing in a neighborhood of qp(P) or
FP(qp(P)−) < p < FP(qp(P)).

The definition of quantiles heavily relies on the order “≤” in R. The lack of a
natural order in Rd, d > 1, prevents a straightforward generalization of the notion
of quantiles and median to the multidimensional setting. In the last forty-fifty years,
several attempts have been made to provide a notion of multidimensional quantiles
that retains the same properties of unidimensional quantiles. An important appli-
cation of medians and quantiles is robust and non-parametric location estimation.
Indeed, unlike the mean, the median exists for all probability measures P ∈ P1 and
it is not affected much by perturbations, such as replacing P by Px,ε = (1− ε)P+ εδx,
for some 0 < ε < 1 and x ∈ R, where δx is the Dirac measure at x.

A natural extension of quantiles and median to Rd is given by componentwise
quantiles and median, which are defined below. First, we provide some notation. Let
Sd−1 be the unit sphere in Rd and {ej}d

j=1 be the standard basis of Rd. The orthogonal
projection onto the direction u ∈ Sd−1 is the function πu : Rd → R given by πu(x) =
〈x, u〉. In particular, the jth-coordinate of x is the projection onto ej πej(x) = 〈x, ej〉.
Finally, for a Borel measurable function T : Rd → Rd∗ and P ∈ Pd, let PT = P ◦ T−1

be the push-forward measure of P w.r.t. T, that is PT(A) = P(T−1(A)), for all A ∈
Bd∗ . For ease of notation, we also write Pu for Pπu , u ∈ Sd−1.

Definition 1.3.2 A quantile of order p for P ∈ Pd, 0 < p < 1, is any vector qp(P) ∈
Qp(P) = Qp(Pe1)× · · · × Qp(Ped). A median for P is a quantile of order 1/2 q1/2(P) ∈
Q1/2(P).

Reich (1980) uses componentwise median as a robust location estimate. In Galpin
and Hawkins (1987) (resp. Tyler (1987)), the componentwise median is used as an in-
termediate estimate for a robust (resp. non-parametric) estimate of scatter. However,
the componentwise median is not equivariant w.r.t. affine transformations. Indeed,
as the next example shows, it is not even equivariant w.r.t. orthogonal transforma-
tions. We begin with the definition of affine and orthogonal equivariance. To this
end, let T be the class of all Borel measurable functions T : Rd → Rd and A (resp.
U ) be the class of functions S : Rd → Rd given by S(x) = Mx+ b, for some invertible
(resp. orthogonal) matrix M and b ∈ Rd.

Definition 1.3.3 Let S ⊂ T . An estimator ζ(P) is said to be S-equivariant if S(ζ(P)) =
ζ(PS) for all S ∈ S . In particular, if S = A (resp. S = U ), then ζ(P) is said to be
affine-equivariant (resp. orthogonal-equivariant).

Example 1.3.1 P = 9−1(δ(0,0)> + 2δ(9,9)> + 3δ(0,10)> + 3δ(10,0)>) ∈ P2 has a unique com-
ponentwise median q1/2(P) = (9, 9)>. For γ ∈ [0, 2π), let

Uγ =

(
cos(γ) − sin(γ)
sin(γ) cos(γ)

)
be the rotation matrix corresponding to a clockwise rotation by angle γ about the origin.
Then, PUπ/4 = 9−1(δ(0,0)> + 2δ(0,9

√
2)> + 3δ(−5

√
2,5)> + 3δ(5

√
2,5)>) has componentwise

median q1/2(PUπ/4) = (0, 5)> whereas Uπ/4q1/2(p) = (0, 9
√

2)>.

Also, notice that q1/2(P) is a vertex of the quadrilateral with the point masses of P
as vertices. Hence, for d > 1, the componentwise median is not a good measure of
centrality. For d > 2, things are even worse. Indeed, the componentwise median
does not even belong, in general, to the convex hull of the measure support.
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Example 1.3.2 P = 7−1(δ(0,0,0)> + δ(5,0,0)> + δ(0,5,0)> + 2δ(5,10,10)> + 2δ(10,5,10)>) ∈ P3

has a unique componentwise median, i.e. q1/2(P) = (5, 5, 0)>.

An advantage of componentwise median is its fairly low computational complex-
ity, and, despite these drawbacks, it is still used in applications involving high-
dimensional spaces, such as signal processing, gene expressions and functional data
analysis (Astola et al., 1990; Ohm et al., 2012; Kenne Pagui et al., 2017; Makinde,
2019; Ojo et al., 2019). Also, affine-equivariance does not play a role in sequence and
functional spaces.

Tukey (1975) proposes an alternative way to define multidimensional quantiles.
Instead of computing the left probability FPej

(πej(x)) = Pej((−∞, πej(x)]) along each

coordinate projection πej(x), x ∈ Rd, he suggested to compute the left probability
over all projections πu(x) and then take the infimum over u ∈ Sd−1. Notice that, by
taking the direction −u, the right probability is also taken into account. This lead
to the concept of halfspace depth (see also Donoho and Gasko (1992), Chen (1995),
Massé (2002), Massé (2004), Arcones et al. (2006), Dutta et al. (2011), and Kuelbs and
Zinn (2016)).

Definition 1.3.4 (Halfspace depth) The halfspace depth of x ∈ Rd w.r.t. P ∈ Pd is given
by

D̃H(x, P) = inf
u∈Sd−1

FPu(πu(x)).

Notice that FPu(πu(x)) = Pu((−∞, πu(x)]) = P(Hx,u), where Hx,u = {y ∈ Rd :
πu(x) ≥ πu(y)} is the closed halfspace with outer normal u and x as boundary point.
Then, a (halfspace-)depth median for P is a point µ ∈ Rd satisfying D̃H(µ, P) =
maxx∈Rd D̃H(x, P) and (halfspace-)depth quantile sets are the regions RD̃H ,α(P) =

{x ∈ Rd : D̃H(x, P) ≥ α}, 0 ≤ α ≤ D̃H(µ, P). In Section 1.5 we provide a precise
definition of depth functions D, and provide further examples. Furthermore, we
give conditions on P that ensure that median and quantiles based on depth functions
are well-defined and enjoy reasonable properties. As we shall see an important role
is played by symmetry, which is further studied in Section 1.4. The broadest known
notion of symmetry is probably halfspace symmetry, which is naturally linked with
halfspace depth.

Definition 1.3.5 P ∈ Pd is said to be halfspace symmetric about µ ∈ Rd if P(Hµ,u) ≥ 1/2
for all u ∈ Sd−1. The subclass of Pd consisting of halfspace symmetric measures is denoted
by Pd,H.

Notice that P is halfspace symmetric about µ ∈ Rd if and only if D̃H(µ, P) ≥ 1/2.
The constant 1/2 is, in general, optimal. Indeed, if Pu is continuous, implying
that Pu({πu(µ)}) = 0, and FPu(πu(µ)) = P(Hµ,u) ≥ 1/2, then P(Hµ,−u) = 1 −
FPu(πu(µ)) ≤ 1/2. It follows that D̃H(µ, P) = 1/2. For the same reason, D̃H(x, P) ≤
1/2, for all x ∈ Rd, implying that µ ∈ RD̃H ,1/2(P) = {y ∈ Rd : D̃H(y, P) =

maxx∈R D̃H(x, P)}. Finally, we notice that for P ∈ P1,

D̃H(x, P) = min(FP(x), 1− FP(x−)).

The next proposition shows that µ ∈ R is a median for P if and only if it is a
halfspace-depth median.

Proposition 1.3.1 Let P ∈ P1 and µ ∈ R. The following statements are equivalent:
(i) P is halfspace symmetric about µ,
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(ii) D̃H(µ, P) ≥ 1/2,
(iii) µ ∈ Q1/2(P).

Proof of Proposition 1.3.1. It is enough to show the equivalence between (i) and
(iii). To this end, notice that P is halfspace symmetric about µ if and only if both
FP(µ) = P((−∞, µ]) ≥ 1/2 and 1− FP(µ

−) = P([µ, ∞)) ≥ 1/2. In turn, this holds if
and only if µ ∈ Q1/2(P).

Let Pd,�m ⊂ Pd be the subclass of absolutely continuous distributions w.r.t. a Borel
measure m on Rp, andPd,hp ⊂ Pd be the subclass of probability measures that assign
probability zero to all hyperplanes in Rd. Notice that Pd,�m ⊂ Pd,hp. Furthermore,
λ is the Lebesgue measure on Rd. Finally, for a set A ⊂ Rd∗ , d∗ ≥ 1, the indicator
function IA : Rd∗ → R is given by IA(y) = 1 if y ∈ A and IA(y) = 0 otherwise. Liu
(1990) proposes another notion of depth function, namely, simplicial depth.

Definition 1.3.6 (Simplicial depth) The simplicial depth of x ∈ Rd w.r.t. P ∈ Pd is

DS(x, P) =
∫
(Rd)d+1

IZS,x,∞(x1, . . . , xd+1)dP(x1) . . . dP(xd+1),

where ZS,x,∞ = {(y1, . . . , yd+1) ∈ (Rd)d+1 : x ∈ ∆[y1, . . . , yd+1]} and ∆[x1, . . . , xd+1] ⊂
Rd is the closed simplex with vertices x1, . . . , xd+1 ∈ Rd.9

Then, a (simplicial-)depth median for P is a point µ ∈ Rd satisfying DS(µ, P) =
maxx∈Rd DS(x, P) and quantiles sets are the regions RDS,α(P) = {x ∈ Rd : DS(x, P) ≥
α}, 0 ≤ α ≤ DS(µ, P). The simplicial depth function is related to the notion of angu-
lar symmetry.

Definition 1.3.7 P ∈ Pd is said to be angularly symmetric about µ ∈ Rd if PTA,µ = P−TA,µ ,
where TA,µ : Rd → Rd is given by TA,µ(x) = (x− µ)/‖x− µ‖2, if x 6= µ and TA,µ(x) =
0, if x = µ. The subclass of Pd consisting of angularly symmetric measures is denoted by
Pd,A.

We show in Section 1.4 that angular symmetry implies halfspace symmetry and that
if P ∈ Pd,hp is angularly symmetric, then P(Hµ,u) = 1/2 for all u ∈ Sd−1. Also, notice
that, when d = 1, ZS,x,∞ = {(y1, y2) ∈ R2 : y1 ≤ x ≤ y2 or y2 ≤ x ≤ y1} implying
that

DS(x, P) = 2FP(x)(1− FP(x−)).

Corollary 1.3.1 Suppose that P ∈ P1 is angularly symmetric about µ ∈ R. It holds that:
(i) D̃H(µ, P) ≥ 1/2,
(ii) DS(µ, P) ≥ 1/2,
(iii) µ ∈ Q1/2(P).

Proof of Corollary 1.3.1. Since P is halfspace symmetric, (i) and (iii) follow from
Proposition 1.3.1. Also, halfspace symmetric implies that FP(µ) = P((−∞, µ]) ≥ 1/2
and 1− FP(µ

−) = P([µ, ∞)) ≥ 1/2 yielding (ii).

Let Pd,c ⊂ Pd be the subclass of continuous probability measures. Notice that
Pd,�λ ⊂ Pd,hp ⊂ Pd,c and P1,c = P1,hp.

9∆[x1, . . . , xd+1] is defined as the convex hull of the points x1, . . . , xd+1. If x1, . . . , xd+1 are in general
position, then ∆[x1, . . . , xd+1] is a simplex. For P ∈ Pd,hp this happens with probability one.
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Proposition 1.3.2 Let P ∈ P1,c and µ ∈ R. The following statements are equivalent:
(i) P is angularly symmetric about µ,
(ii) D̃H(µ, P) = 1/2
(iii) DS(µ, P) = 1/2,
(iv) µ ∈ Q1/2(P).

Proof of Proposition 1.3.2. P ∈ P1,c is angularly symmetric about µ if and only if
P((−∞, µ]) = P([µ, ∞)) = 1/2, that is,

FP(µ) = 1− FP(µ
−) = 1/2. (1.3.1)

Therefore, (i) implies (ii), (iii), and (iv). Next, notice that FP(x−) = FP(x), for all
x ∈ R. This shows that (1.3.1) is equivalent to FP(µ) = 1/2. The latter equality is
implied by either (ii), (iii), or (iv).

Before concluding this section, we show alternative approaches for generalizing the
notion of quantiles and median to the multidimensional setting. We denote by
‖x‖q = (∑d

j=1 |πej(x)|)1/q, q ≥ 1, the Lq-norm of x ∈ Rd. Notice that, for d = 1,
the quantile set of P of order p is Qp(P) = Q−p (P) ∩ Q+

p (P), where Q−p (P) = {x ∈
R : FP(x) ≥ p} and Q+

p (P) = {x ∈ R : FP(x−) ≤ p}. Q−p (P) is the set of all
points with distribution function at least p and it is referred to as lower quantile set.
Similarly, Q+

p (P) is the set of points with (left limit of) the cumulative distribution
function at most p and it is referred to as upper quantile set. Hamel and Kostner
(2018) uses tools from set optimization theory and defines lower and upper quantile
sets based on closed convex cones C ⊂ Rd. We recall that C ⊂ Rd is a convex cone if
αz ∈ C, for all α > 0 and z ∈ Rd, and x + y ∈ C, for all x, y ∈ C. Suppose further that
0 ∈ C and C \ {0} 6= ∅. Lower C-quantile sets10 of P ∈ Pd of order p are are given by
Q−p,C(P) = ∩w∈C\{0}Q−p,w(P), where Q−p,w(P) = {z ∈ Rd : FPw/‖w‖2

(πw/‖w‖2
(z)) ≥ p}.

Similarly, upper C-quantile sets are given by Q+
p,C(P) = ∩w∈C\{0}Q+

p,w(P), where
Q+

p,w(P) = {z ∈ Rd : FPw/‖w‖2
(πw/‖w‖2

(z)−) ≤ p}. Notice that z ∈ Q±p,w(P) if and
only if πw/‖w‖2

(z) ∈ Q±p (Pw/‖w‖2
). Thus, the sets Q±p,C(P) are the intersection of all

unidimensional upper (resp. lower) unidimensional quantiles sets along every pro-
jection πw/‖w‖2

with w ∈ C \ {0}. Lower and upper C-quantiles are related by

Q−p,C(P) = Q+
1−p,−C(P). (1.3.2)

This follows from the fact that FPw/‖w‖2
(πw/‖w‖2

(z)) = P(Hw/‖w‖2
) is bigger or equal

to p if and only if FP−w/‖w‖2
(π−w/‖w‖2

(z)−) = P(H̊−w/‖w‖2
) is smaller or equal to 1− p.

In the case of unidimensional quantiles, it holds that

Q−p,1(P) ∩Q+
p,1(P) = Qp(P) and Q−p,−1(P) ∩Q+

p,−1(P) = Q1−p(P), (1.3.3)

implying corresponding equalities for the cones C = [0, ∞) and C = (−∞, 0]. De-
spite this, in general, the intersection Q−p,C(P) ∩Q+

p,C(P) can be empty (see Example
3 in Hamel and Kostner (2018)). This is the case even for d = 1 and C = R. Indeed,
using (1.3.3), we have that Q−p,C(P) ∩Q+

p,C(P) = Qp(P) ∩Q1−p(P). Thus, lower and
upper C-quantile sets have to be considered separately. An interesting properties of
C-quantile sets is that there are affine equivariant, in a certain sense. Namely, for

10For simplicity, we define quantile sets directly via the dual cone of Hamel and Kostner (2018).
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S ∈ A of the form S(x) = Mx + b, it holds that

Q±p,(M−1)>C(PS) = S(Q±p,C(P)). (1.3.4)

Ideally, one would like to have the same cone on both sides of (1.3.4). By (1.3.2), it
is enough to show (1.3.4) for lower C-quantiles. To this end, we denote by g ◦ h the
compositions of functions g and h and notice that

FPπ w
‖w‖2

◦S(π w
‖w‖2

(z)) = Pπ w
‖w‖2
◦S((−∞, π w

‖w‖2
(z)]) = PS(Hz, w

‖w‖2
) = P(S−1(Hz, w

‖w‖2
)),

implying that

Q−p,(M−1)>C(P) = {z ∈ Rd : FPπw/‖w‖2
◦S(πw/‖w‖2

(z)) ≥ p ∀w ∈ (M−1)>C \ {0}}

= {z ∈ Rd : P(S−1(Hz,w/‖w‖2
)) ≥ p ∀w ∈ (M−1)>C \ {0}}

= S({z ∈ Rd : P(S−1(HS(z),((M−1)>w)/(‖(M−1)>w‖2)
)) ≥ p ∀w ∈ C \ {0}}).

Next, we observe that S−1(HS(z),((M−1)>w)/(‖(M−1)>w‖2)
) is equal to

S−1({y ∈ Rd : π((M−1)>w)/(‖(M−1)>w‖2)
(Sz) ≥ π((M−1)>w)/(‖(M−1)>w‖2)

(y)})
={y ∈ Rd : π((M−1)>w)/(‖(M−1)>w‖2)

(Sz) ≥ π((M−1)>w)/(‖(M−1)>w‖2)
(S(y))}

={y ∈ Rd : π(w)/(‖w‖2)(z) ≥ π(w)/(‖w‖2)(y)} = Hz,w/‖w‖2
.

(1.3.4) follows. We show next that lower C-quantile sets are closed and convex. By
(1.3.2), the same holds for upper C-quantiles. To this end, notice that the function
z 7→ P(Hz,w/‖w‖2

) is upper semicontinuous since Hz,w/‖w‖2
is closed. It follows that

Q−p,w(P) is closed and Q−p,C(P) is closed because it is the intersection of closed sets.
We now turn to convexity: if x, y ∈ Rd satisfy P(Hx,w/‖w‖2

), P(Hy,w/‖w‖2
) ≥ p, then,

for all α ∈ [0, 1],

P(Hαx+(1−α)y, w
‖w‖2

) = P({z ∈ Rd : π w
‖w‖2

(z) ≥ π w
‖w‖2

(αx + (1− α)y)}

≥ P({z ∈ Rd : π w
‖w‖2

(z) ≥ max(π w
‖w‖2

(x), π w
‖w‖2

(y))}

≥ min(P(Hx, w
‖w‖2

, P(Hy, w
‖w‖2

) ≥ p.

This also shows that halfspace-depth quantiles RD̃H ,α(P) are closed and convex. In-
deed, halfspace-depth quantiles are a special case of lower cone quantile sets when
the cone is C = Rd. Specifically, Q−

α,Rd(P) = RD̃H ,α(P).
Let Sr(x) (or Sd−1

r (x)), Br(x) and Br(x) be the sphere, and open and closed ball
in Rd with radius r ≥ 0 and center x ∈ Rd. Chernozhukov et al. (2017) notice
that convexity of quantile sets is sometimes a drawback. This is the case for the
banana-shaped distribution in that paper. To address, this issue, they propose to
map an arbitrary probability measure P ∈ Pd to the spherical uniform measure U
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on B1(0)11 and define quantiles of P as the image of the halfspace-depth quantiles
of U via this map. Indeed, McCann (1995) shows that, for all P ∈ Pd, there exists
a convex function ψ : Rd → R ∪ {+∞} such that P = U∇ψ. Although ψ may
not be unique, ∇ψ is unique U-almost everywhere (U-a.e.).12 Since such quantiles
are based on a transportation map, we call them transportation quantiles. They are
defined by

Q(T)
α (P) = ∇ψ(RD̃H ,α(U)), α ∈ [0, 1/2].

Notice that the function ∇ψ can be interpreted as the solution of the optimal trans-
port problem from U to P when the cost function is the squared Euclidean distance
(Villani, 2009). Indeed, suppose that P ∈ P (2)

d , where, for j ≥ 0, P (j)
d = {P ∈ Pd :∫

‖x‖j
2dP(x) < ∞} is the subclass of Pd of measures with finite jth-moment. Then,

by Theorem 9.4 in Villani (2009) (see also (2) in McCann (1995) and Knott and Smith
(1984)),

∇ψ = inf
T∈T :UT=P

∫
‖x− T(x)‖2

2dU(x) U-a.e.

For d = 1 the optimal transport problem from U to P is solved by F−1
P ◦ FU, where

FU
13 is the cumulative distribution function of U and F−1

P : [0, 1]→ R, given by

F−1
P (p) = min{x ∈ [−∞, ∞] : p ≤ FP(x)},

is the generalized inverse of the cumulative distribution function of P that gives the
minimal quantile in Qp(P), p ∈ (0, 1).14 See Section 1.2 in Bonnotte (2013) for a
detailed proof.

For the rest of the chapter, we deal with depth functions, which itself are defined
in Section 1.5. Since the concept of symmetry is key when defining median and
quantiles via depth functions, in the next section, we study properties of angular
and halfspace symmetry, and define other notions of multidimensional symmetry,
such as spherical and central symmetry.

11Even though U is taken to be absolutely continuous w.r.t. the Lebesgue measure and invariant
w.r.t. orthogonal matrices, it is not assumed that it has constant density (λ(B1(0)))−1IB1(0)(x). In-

stead, U assigns the same probability to spherical shells with the same difference in radii: U(Br2 (0) \
Br1 (0)) = r2 − r1, for all 0 ≤ r1 ≤ r2 ≤ 1. Specifically, U has density

fU(x) =

{
2−1IB1(0)(x), if d = 1

(Hd−1(Sd−1
‖x‖2

(0)))−1IB1(0)(x), if d ≥ 2,

where, for s ≥ 0, Hs is the s-dimensional Hausdorff measure on Rd. Finally, recall that, for all r ≥ 0
and y ∈ Rd, λ(Br(y)) = πd/2rd

Γ(d/2+1) and Hd−1(Sd−1
r (y)) = 2πd/2rd

Γ(d/2) , where Γ is the gamma function.
12Notice that, since ψ is convex, it is locally Lipschitz continuous in the interior of the convex set

Cψ = Rd \ ψ−1({∞}). It follows from Rademacher’s theorem that ψ is differentiable (hence, ∇ψ is
well-defined) λ-a.e. in C̊ψ.

13For d = 1 the cumulative distribution function of U is given by

FU(x) =


0 if x < −1
(x + 1)/2 if x ∈ [−1, 1]
1 if x > 1.

14Here it is used that FP is non-decreasing and right-continuous.
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1.4 Multidimensional symmetry

In Section 1.3 we have seen that for d = 1, a point of angular/halfspace symmetry for
P is a median of P. We show that angular symmetry implies halfspace symmetry. To
this end, let Sd−1

u = {v ∈ Sd−1 : πu(v) ≥ 0} be the halfsphere given by the direction
u ∈ Sd−1 and notice that P(Hµ,u) = P−TA,µ(S

d−1
u ∪ {0}), for all µ ∈ Rd and u ∈ Sd−1.

If P is angularly symmetric about µ ∈ Rd, we have that

P(Hµ,u) = P−TA,µ(S
d−1
u ∪ {0}) = PTA,µ(S

d−1
u ∪ {0}) = P−TA,µ(S

d−1
−u ∪ {0}) = P(Hµ,−u)

Since 1 = P(Rd) = P(Hµ,u) + P(Hµ,−u \ Hµ,u) ≤ P(Hµ,u) + P(Hµ,−u), it follows that
P(Hµ,u) ≥ 1/2, for all u ∈ Sd−1. Therefore, Pd,A ⊂ Pd,H. As the next examples show
this inclusion is strict. Notice that, for d = 1,

TA,µ(x) =


−1 if x < µ,
0 if x = µ,
1 if x > µ.

Example 1.4.1 Let P ∈ P1 satisfy P({µ}) > 0 and 1/2− P({µ}) < P((−∞, µ)) <
P((µ, ∞)), for some µ ∈ R. Then, P is halfspace symmetric about µ, but is not angu-
larly symmetric about any ν ∈ R. To see this, we use that P((−∞, ν)) = PTA,ν({−1}),
P((ν, ∞)) = PTA,ν({1}) and notice that P((−∞, ν)) < P((ν, ∞)), for ν ≤ µ, and
P((−∞, ν)) > 1/2 > P((ν, ∞)), for ν > µ.

Nevertheless, it holds that Pd,A ∩ Pd,hp = Pd,H ∩ Pd,hp. Indeed, if P ∈ Pd,hp, then
P(Hµ,−u ∩ Hµ,u) = 0 implying that P(Hµ,−u \ Hµ,u) = P(Hµ,−u) and P(Hµ,−u) +
P(Hµ,u) = 1. It follows that, for P ∈ Pd,hp angular and halfspace symmetry are
equivalent, and, if angular/halfspace symmetry holds, P(Hµ,u) = 1/2 for all u ∈
Sd−1. Next, we define central and spherical symmetry.

Definition 1.4.1 P ∈ Pd is said to be centrally symmetric about µ ∈ Rd if PTC,µ = P−TC,µ ,
where TC,µ : Rd → Rd is given by TC,µ(x) = x − µ. The subclass of Pd consisting of
centrally symmetric measures is denoted by Pd,C.

Next, we show that central symmetry implies angular symmetry. To this end,
let S : Rd → Rd̃ be Borel measurable, and P be centrally symmetric about µ ∈ Rd.
Using the Borel measurability of S, we have that

PS(TC,µ)(B) = PTC,µ(S
−1(B)) = P−TC,µ(S

−1(B)) = PS(−TC,µ)(B). (1.4.1)

Now, the result follows by taking S = TA,0.

Definition 1.4.2 P ∈ Pd is said to be spherically symmetric about µ ∈ Rd if PTS,I,µ =

PTS,U,µ , for any orthogonal matrix U, where TS,U,µ : Rd → Rd is given by TS,U,µ(x) =
U(x − µ). The subclass of Pd consisting of spherically symmetric measures is denoted by
Pd,S.

Letting U = −I, we see that spherical symmetry implies central symmetry.
Hence, Pd,S ⊂ Pd,C ⊂ Pd,A ⊂ Pd,H. When d = 1, there are only two orthogonal
matrices, 1 and −1, yielding P1,S = P1,C. However, not every median is a point
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of spherical/central symmetry. Next, we study the uniqueness of the point of sym-
metry. To this end, let Lx,u = {x + ru : r ∈ R} be the line through x ∈ Rd with
direction u ∈ Sd−1. Page 409 in Liu (1990) and Theorem 2.3.1 in Zuo (1998) show
that, if it exists, the point of angular and halfspace symmetry is unique, unless, for
some x ∈ Rd and u ∈ Sd−1, P(Lx,u) = 1 and, there exists µ1, µ2 ∈ Lx,u, µ1 6= µ2,
with πu(µ1), πu(µ2) ∈ Q1/2(Pu). We show that, if it exists, the point of spherical and
central symmetry is unique. To this end, let P ∈ P1,C with P(Lx,u) = 1, x ∈ Rd and
u ∈ Sd−1, and suppose that P is centrally symmetric about µ1, µ2 ∈ Lx,u. Letting
S = πu and B = [a, b], a < b, in (1.4.1), we have that, for i = 1, 2,

Pπu(πu(µi) + [a, b]) = Pπu(TC,µi )
([a, b]) = P−πu(TC,µi )

([a, b]) = Pπu(πu(µi)− [a, b]).

By replacing a and b by a− πu(µi) and b− πu(µi), we see that

Pπu([a, b]) = Pπu(2πu(µi)− [a, b]).

It follows that
Pπu(2πu(µ1)− [a, b]) = Pπu(2πu(µ2)− [a, b]),

and, replacing a and b by 2πu(µ1)− a and 2πu(µ1)− b, we conclude that

Pπu([a, b]) = Pπu(2πu(µ2 − µ1) + [a, b]).

Since this holds for all a < b, it follows that πu(µ2) = πu(µ1), and using µ1, µ2 ∈ Lx,u,
we have that µ1 = µ2.

An interesting feature of the point of spherical and central symmetry of a mea-
sure P is that it coincides with its mean, whenever P ∈ P (1)

d . We begin with the
definition of mean. The notation for covariance matrix and moments is needed in
the next section.

Definition 1.4.3 The mean of P ∈ P (1)
d is µ(P) =

∫
xdP(x), and the covariance matrix of

P ∈ P (2)
d is Σ(P) =

∫
(x− µ(P))(x− µ(P))>dP(x). The jth-moment of P ∈ P (j)

d , j ≥ 0,

is µ
(j)
m (P) =

∫
‖x‖j

2dP(x) and the jth central moment is µ
(j)
c (P) =

∫
‖x− µ(P)‖j

2dP(x).

Notice that the mean is affine-equivariant, that is, for S ∈ A (say, S(x) = Mx + b, for
some invertible matrix M and b ∈ Rd), it holds that

µ(PS) =
∫

xdPS(x) =
∫

MxdP(x) + b = S(µ(P). (1.4.2)

Using this, for the covariance matrix, we have that

Σ(PS) =
∫
(x− µ(PS))(x− µ(PS))

>dPS(x)

=
∫
(S(x)− S(µ(P)))(S(x)− S(µ(P)))>dP(x) = MΣ(P)M>.

(1.4.3)

Finally, we show that the point of central symmetry of P ∈ P (1)
d ∩ Pd,C is µ(P).

Indeed, suppose that P is symmetric about ν, then, using central symmetry,

TC,ν(µ(P)) =
∫

TC,ν(x)dP(x) =
∫

xdPTC,ν(x)

=
∫

xdP−TC,ν(x) =
∫
−TC,ν(x)dP(x) = −TC,ν(µ(P)),
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implying that ν = µ(P).

1.5 Statistical depth functions

In this section, we define statistical depth functions (Liu, 1990; Liu, 1992; Zuo, 1998;
Zuo and Serfling, 2000a; Dyckerhoff, 2004). These are functions of points x ∈ Rd

and measures P ∈ Pd,1 ⊂ Pd,15 that satisfy certain properties. First, they should
not vary when changes of coordinates or translations occur in both x and P. Thus,
the result does not change if a transformation S : Rd → Rd of the type S(x) =
Mx + b is applied. Here, M is an invertible matrix and b ∈ Rd is a vector. Thus,
invariance is w.r.t. all affine transformations S ∈ A. In some cases, M can only be
an orthogonal matrix, thus, S ∈ U . Therefore, we define depth functions w.r.t. a
general class of transformations S ⊂ T . S can be A or U , but other choices are
in principle possible. Second, for all measure in some class of symmetric measures
Pd,2, the center of symmetry must be the point of maximum depth. Here, Pd,2 can
be e.g. Pd,S, Pd,C, Pd,A, or Pd,H. Clearly, if Pd,2 is broader, then depth functions
can identify multidimensional medians for a larger class. Third, depth function are
non-decreasing along any ray from the point of maximum depth, whenever it exists.
Fourth, depth functions are upper semicontinuous. This condition, although it was
not assumed by Zuo and Serfling (2000a), ensures that depth quantile sets are closed.
Fifth and last, depth functions vanish at infinity, thus ensuring a proper order of
points from the point of maximum depth outward. We are now ready to define
depth functions.

Definition 1.5.1 A non-negative and bounded function D : Rd × Pd,1 → R is said to
be a statistical depth function w.r.t. (S ,Pd,1,Pd,2), where S ⊂ T is a class of invertible
transformations, Pd,1 is a subclass of Pd satisfying PS ∈ Pd,1 for all S ∈ S and Pd,2 ⊂ Pd,1
is a class of symmetric measures, if
(i) D(S(x), PS) = D(x, P), for all x ∈ Rd, S ∈ S and P ∈ Pd,1,
(ii) D(µ, P) = supx∈Rd D(x, P), for any P ∈ Pd,2 that is symmetric about µ ∈ Rd,
(iii) if D(ν, P) = supx∈Rd D(x, P), where ν ∈ Rd and P ∈ Pd,1, then D(ν + α1u, P) ≥
D(ν + α2u, P), for all 0 ≤ α1 ≤ α2 and u ∈ Sd−1,
(iv) for all P ∈ Pd,1, D(·, P) is upper semicontinuous,
(v) for all P ∈ Pd,1, limr→∞ supx∈Rd\Br(0) D(x, P) = 0.
We denote by D(S ,Pd,1,Pd,2) the class of statistical depth functions w.r.t. (S ,Pd,1,Pd,2).

Clearly, (S̃ , P̃d,1, P̃d,2) ⊂ (S ,Pd,1,Pd,2) implies thatD(S̃ , P̃d,1, P̃d,2) ⊃ D(S ,Pd,1,Pd,2).

Remark 1.5.1 In some cases it is useful to have statistical depth functions that are un-
bounded below (see Sections 1.6 and 1.7 below). We denote by D′(S ,Pd,1,Pd,2) the class of
functions D′ : Rd×Pd,1 → R∪{−∞} that are bounded above, satisfy (i)-(iv) of Definition
1.5.1 and the condition

(v’) for all P ∈ Pd,1, lim
r→∞

sup
x∈Rd\Br(0)

D(x, P) = −∞.

Notice that the two formulations are equivalent in the sense that every D ∈ D(S ,Pd,1,Pd,2)
can be identified with a D′ ∈ D′(S ,Pd,1,Pd,2) and vice versa. The identification is done via
a continuous, increasing, and surjective function ψ : [0, ∞) → R ∪ {−∞} with inverse
ψ−1. For instance, ψ(t) = log(t) and ψ−1(t) = et.

15Some depth functions, like Mahalanobis depth, are defined only w.r.t. some subclass Pd,1 ⊂ Pd.
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The importance of statistical depth functions lies in that they enable the definition
of depth median and quantiles.

Definition 1.5.2 Let D be a statistical depth function w.r.t. (S ,Pd,1,Pd,2) and P ∈ Pd,2.
The (D-)depth quantiles of P are the upper level sets RD,α(P) = {x ∈ Rd : D(x, P) ≥ α},
where 0 ≤ α ≤ αm(D, P) and αm(D, P) = maxx∈Rd D(x, P). A (D-)depth median of P is
a point ν ∈ RD,αm(D,P)(P).

We show next that the properties (i)-(iv) in Definition 1.5.1 imply analogous proper-
ties for the depth quantiles RD,α(P) (see Dyckerhoff (2004)). Specifically, (i) ensures
that depth quantiles are S-equivariant. Indeed, for S ∈ S , it holds that

RD,α(PS) = {x ∈ Rd : D(x, PS) ≥ α} = {Sy ∈ Rd : D(Sy, PS) ≥ α} = S(RD,α(PS)).

In particular, this holds for α = αm(D, P), implying that depth medians are S-
equivariant. Definition 1.5.1 (iv)-(v) implies that the sets RD,α(P) are closed and
bounded (and thus compact) for all α > 0. Then, upper semicontinuity implies the
existence of a point of maximum depth, that is, a depth median. We now turn to (iii).
If ν is a point of maximum depth and P ∈ Pd,2, then the sets RD,α(P) are star-shaped
w.r.t. ν, that is, (1− t)ν + tx ∈ RD,α(P), for all x ∈ RD,α(P) and t ∈ [0, 1]. Finally, (ii)
guaranties that the point of symmetry of P ∈ Pd,2 is a (D-)depth median.

Many depth functions (e.g. halfspace and simplicial depth) satisfy Definition
1.5.1 (i) with S = A. In general, the larger the class Pd,2 is, the more information
is obtained on quantiles of probability measures with a known center of symmetry.
Finally, the class Pd,1 should be large enough to include finite discrete probability
measures (cf. Section 1.9).

Zuo and Serfling (2000a) divides depth functions into four types: Type A, Type
B, Type C, and Type D. The Type A depth of a point x ∈ Rd w.r.t. a probability
measure P ∈ Pd is the integral w.r.t. Pk, k ≥ 1, of a bounded and non-negative
function hx,∞ : (Rd)k → [0, ∞). Similarly, Type B depth functions are obtained by
applying a function g : [0, ∞] → [0, ∞), which is continuous, decreasing, positive
on [0, ∞), and zero at infinity, to the integral of an unbounded and non-negative
function ix,∞ : (Rd)k → [0, ∞). A typical choice is the function g(t) = 1/(1 + t),
t ∈ [0, ∞]. Next, Type C depth functions are obtained by applying the function g to
a measure of outlyingness O : Rd × Pd,1 → [0, ∞], where Pd,1 ⊂ Pd. Finally, halfs-
pace depth (D̃H) seems to be the only example of Type D depth function. Theorem
2.1 in Zuo and Serfling (2000a) shows that, for the halfspace depth, one can choose
Pd,1 = Pd and Pd,2 = Pd,H in Definition 1.5.1 yielding D̃H ∈ D(A,Pd,Pd,H). In the
next three sections we further analyze Type A, Type B, and Type C depth functions
and provide additional examples. We denote Type B depth functions by D̂ (with a
possible subscript) and other depth functions such as Type C depth functions and
halfspace depth by D̃ (with a possible subscript). We reserve the notation D (with-
out any tilde ˜ or hat ˆ) to Type A depth functions, which will be further analyzed in
Chapter 2. The subscript ∞ in the functions hx,∞ and ix,∞ refers to depth, in contrast
to local depth (cf. Section 2.2).

1.6 Type A depth functions

Definition 1.6.1 A Type A depth is a function DG : Rd ×Pd → [0, ∞) given by

DG(x, P) =
∫

hG,x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG),
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where hG,x,∞ : (Rd)kG → [0, ∞) is a Borel measurable, non-negative and bounded function
depending on indexes G16 and x. kG ≥ 1 depends on G.

The simplicial depth is a typical example of Type A depth function and is obtained
by taking G = S, kS = d + 1, and hS,x,∞ = IZS,x,∞ . Liu (1990) shows that DS satisfies
(i) with S = A, (iv) and (v), as well as (ii) and (iii) for the subclass Pd,A ∩Pd,hp ⊂ Pd.
We notice that, in that paper, absolute continuity w.r.t. the Lebesgue measure can
be replaced by the condition that every hyperplane has probability zero. Upper
semicontinuity follows from the fact that ZS,x,∞ is closed for all x ∈ Rd. However,
DS /∈ D(A,Pd,Pd,A ∩ Pd,hp). Indeed, (iii) needs to hold for all P ∈ Pd and not only
for P ∈ Pd,A ∩ Pd,hp. Counterexamples 1-2 in Section 3.2 of Zuo and Serfling (2000a)
show that (iii) fails even for the class Pd,C. Finally, Counterexample 3 shows that (ii)
does not hold for Pd,2 = Pd,H.

Example 1.6.1 (β-skeleton depth) The β-skeleton depth (Bremner and Shahsavarifar, 2018;
Yang and Modarres, 2018) is obtained by taking β ∈ [1, ∞), G = Kβ, kKβ

= 2, and
hKβ,x,∞ = IZKβ ,x,∞ , where

ZKβ,x,∞ = {(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖xi + (2/β− 1)xj − 2/βx‖2 ≤ ‖x1 − x2‖2}.

Spherical depth (Elmore et al., 2006) and lens depth (Liu and Modarres, 2011) are
obtained by setting in the above definition β = 1 and β = 2, respectively. We let
B = K1 and L = K2 yielding DB = DK1 and DL = DK2 . Also, it is worth mentioning
that for d = 1 β-skeleton depth and simplicial depth coincide. We now turn to the
properties of statistical depth function. (iv)-(v) of Definition 1.5.1 hold true using
that, for fixed x1, x2 ∈ Rd, the function x 7→ IZKβ ,x,∞(x1, x2) is upper semicontinuous

and vanishes when x lies outside a suitable ball.17 Using invariance of the Euclidean
norm w.r.t. orthogonal transformations we see that (i) holds for S = U . Turning to
(ii) and (iii), Kleindessner and Von Luxburg (2017) notice that the proof of (ii) given
for DL is wrong. They also notice that the proofs of (ii) for DB and DKβ

contain
the same mistake. In particular, Liu and Modarres (2011) states that (ii) holds with
Pd,2 = Pd,C. A counterexample for (ii) and (iii) and P ∈ Pd,C is given by Geenens
et al. (2021). Specifically, suppose that Pz ∈ Pd,�λ has density function given by

fPz(x) =
1
2

φ2(x− z) +
1
2

φ2(x + z),

where φd is the d-variate standard normal density and z ∈ Rd \ {0}. Then, P is
centrally symmetric about 0,18, however, DKβ

(·, Pz) fails to satisfy (ii) and (iii). The
function fPz is plotted for d = 2 and z = (3, 0)> in Figure 1.1. The corresponding
β-skeleton depth for β = 1, 1.5, 2, 4 is plotted in Figure 1.2. We conclude that DKβ

is
not a statistical depth function as it does not satisfy (iii) of Definition 1.5.1.

One could ask whether DKβ
satisfies (ii) and (iii) for P ∈ Pd,S. A first step in this

direction is given by the following proposition, which shows that, if P is spherically

16For Type A depth functions the index G can be identified with a kernel function G : (Rd)kG →
[0, ∞) (see Section 2.2).

17Using the triangle inequality ‖xi + (2/β − 1)xj − 2/βx‖2 ≥ |‖xi + (2/β − 1)xj‖2 − 2/β‖x‖2|
yielding that IZKβ ,x,∞ (x1, x2) = 0 whenever 2/β‖x‖2 > max(i,j)∈{(1,2),(2,1)}‖xi + (2/β− 1)xj‖2 + ‖x1 −
x2‖2.

18Using that φd(y) = φd(−y), we immediately see that fPz (TC,0(x)) = fPz (−TC,0(x)) yielding that
(Pz)TC,0 (A) = Pz(A) = Pz(−A) = (Pz)−TC,0 (A) for all A ∈ Bd.
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FIGURE 1.1: Density function fPz for d = 2 and z = (3, 0)>.

symmetric about µ ∈ Rd, then all points that are equidistant from µ have the same
β-skeleton depth. It follows that it is enough to check (ii) and (iii) along a single
direction u ∈ Sd−1 (for instance u = e1). For an orthogonal matrix U and µ ∈ Rd

let TR,U,µ : Rd → Rd be the rotation matrix given by TR,U,µ(x) = µ + TS,U,µ(x) =
µ + U(x− µ).

Proposition 1.6.1 Let P ∈ Pd,S be spherically symmetric about µ ∈ Rd. Then, for any
orthogonal matrix U, DKβ

(TR,U,µ(x), P) = DKβ
(x, P).

Proof of Proposition 1.6.1. We first notice that spherical symmetry is equivalent to
PTR,U,µ = P for all orthogonal matrices U. Therefore,

DKβ
(TR,U,µ(x), P) = P2(ZKβ,TR,U,µ(x),∞) = P2

TR,U,µ
(ZKβ,TR,U,µ(x),∞).

Next, we use the invariance of the Euclidean norm w.r.t. orthogonal matrices and
get that

{(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖xi + (2/β− 1)xj − 2/βTR,U,µ(x)‖2 ≤ ‖x1 − x2‖2}

={(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖U(T−1
R,U,µ(xi) + (2/β− 1)T−1

R,U,µ(xj)− 2/βx)‖2

≤ ‖U(T−1
R,U,µ(x1)− T−1

R,U,µ(x2))‖2}

={(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖T−1
R,U,µ(xi) + (2/β− 1)T−1

R,U,µ(xj)− 2/βx‖2

≤ ‖T−1
R,U,µ(x1)− T−1

R,U,µ(x2)‖2}

This yields that ZKβ,TR,U,µ(x),∞ = (TR,U,µ, TR,U,µ)(ZKβ,x,∞), where for S, T ∈ T , (S, T) :
Rd ×Rd → Rd ×Rd is the function given by (S, T)(x, y) = (S(x), T(y)). We con-
clude that

DKβ
(TR,U,µ(x), P) = P2

TR,U,µ
((TR,U,µ, TR,U,µ)(ZKβ,x,∞)) = P2(ZKβ,x,∞) = DKβ

(x, P).
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FIGURE 1.2: β-skeleton depth constructed with n = 5000 samples
from Pz for d = 2 and z = (3, 0)>. From top to bottom, β = 1, 1.5, 2, 4.
From left to right, β-skeleton depth, corresponding heat map, and its

section along the line {x ∈ R2 : πe2(x) = 0}.
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We now turn to a general discussion on Type A depth functions. Zuo (1998) show
that (ii) and (iii) of Definition 1.5.1 are satisfied by Type A depth functions if the
function x 7→ hG,x,∞(x1, . . . , xkG) is concave (see Theorem 3.3.1 and Theorem 3.3.2 of
Zuo (1998)). Unfortunately, the function x 7→ hG,x,∞(x1, . . . , xkG) is concave if and
only if it is constant (see the lemma below). In view of (v) of Definition 1.5.1, the
only Type A statistical depth function with concave function x 7→ hG,x,∞(x1, . . . , xkG)
is given by hG,x,∞ = 0 for all x ∈ Rd. Indeed, by (v) DG(x, P) = 0 for all x ∈ Rd,
yielding that hG,x,∞ = 0 Pk-a.s. Since P is arbitrary, we conclude that hG,x,∞ = 0.
Accordingly, Zuo and Serfling (2000a) does not provide a systematic study of Type A
depth functions. We now state and proof the lemma, which applies to the function
x 7→ hG,x,∞(x1, . . . , xkG) since it is bounded below by zero.

Lemma 1.6.1 Let ϕ : Rd → R be either bounded below and concave or bounded above and
convex. Then ϕ is constant.

Proof of Lemma 1.6.1. Suppose by contradiction that ϕ(x) < ϕ(y) for some x, y ∈
Rd. If ϕ is concave, then for all α > 1

ϕ(x) = ϕ

(
1
α
(α(x− y) + y) +

(
1− 1

α

)
y
)
≥ 1

α
ϕ(α(x− y) + y) +

(
1− 1

α

)
ϕ(y).

It follows that
ϕ(α(x− y) + y) ≤ α(ϕ(x)− ϕ(y)) + ϕ(y)

implying that ϕ(α(x− y) + y) becomes arbitrary small as α increases. Similarly, if ϕ
is convex, we get that

ϕ(α(y− x) + x) ≥ α(ϕ(y)− ϕ(x)) + ϕ(x)

and this becomes arbitrary large as α increases.

Thus, to use concavity, the function x 7→ hG,x,∞(x1, . . . , xkG) must be unbounded
below.

Proposition 1.6.2 Let D′G : Rd ×Pd → R∪ {−∞} be given by

D′G(x, P) =
∫

h′G,x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG),

where h′G,x,∞ : (Rd)kG → R ∪ {−∞} is a Borel measurable function that is bounded above
(uniformly in x). If the function x 7→ h′G,x,∞(x1, . . . , xkG) is concave for fixed x1, . . . , xkG ,
then D′G satisfies (iii) of Definition 1.5.1. If, additionally, P ∈ Pd,C and D′G(·, P) is sym-
metric w.r.t. the center of symmetry µ of P,19 then D′G satisfies (iii) of Definition 1.5.1 with
Pd,2 = Pd,C.

Proof of Proposition 1.6.2. For (iii) let P ∈ Pd and ν ∈ Rd be such that D′G(µ, P) =
supx∈Rd D′G(x, P). Also, let u ∈ Sd−1 and 0 ≤ α1 < α2. Using the concavity of
x 7→ h′G,x,∞(x1, . . . , xkG) and ν + α1u = (1− α1

α2
)ν + α1

α2
(ν + α2u) we have that

D′G(ν + α1u, P) ≥
(

1− α1

α2

)
D′G(ν, P) +

α1

α2
D′G(ν + α2u) ≥ D′G(ν + α2u).

19That is, D′G(x, P) = D′G(2µ− x, P) for all x ∈ Rd.



Chapter 1. Depth functions 19

For (ii) let P ∈ Pd,C be centrally symmetric about µ ∈ Rd. Using the concavity, we
have that

D′G(µ, P) ≥ 1
2

D′G(x, P) +
1
2

D′G(2µ− x, P) = D′G(x, P).

If P ∈ Pd,C is centrally symmetric about µ ∈ Rd, then by Proposition 1.6.1 DKβ
(x, P) =

DKβ
(2µ− x, P) for all x ∈ Rd20 (cf. Theorem 2 of Yang and Modarres (2018)). How-

ever, the function x 7→ IZKβ ,x,∞(x1, x2) is clearly not concave.

1.7 Type B depth functions

Definition 1.7.1 A Type B depth is a function D̂G : Rd ×Pd → [0, ∞) given by

D̂G(x, P) = g
(∫

iG,x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG)

)
,

where iG,x,∞ : (Rd)kG → [0, ∞) is a Borel measurable, non-negative and unbounded func-
tion depending on indexes G and x. g : [0, ∞] → [0, ∞) is continuous, decreasing, positive
on [0, ∞), and zero at infinity. kG ≥ 1 depends on G.

Convexity of the function x 7→ iG,x,∞(x1, . . . , xkG) for fixed x1, . . . , xkG plays an impor-
tant role in showing that D̂G satisfies (ii) and (iii) of Definition 1.5.1 (see Theorems
3.3.4 and 3.3.5 of Zuo (1998)).

Proposition 1.7.1 Let D̂G be a Type B depth function. If the function x 7→ iG,x,∞(x1, . . . , xkG)
is convex for fixed x1, . . . , xkG , then D̂G satisfies (iii) of Definition 1.5.1. If, additionally,
P ∈ Pd,C and D̂G(·, P) is symmetric w.r.t. the center of symmetry µ of P, then D̂G satisfies
(iii) of Definition 1.5.1 with Pd,2 = Pd,C.

Proof of Proposition 1.7.1. For (iii) let P ∈ Pd and ν ∈ Rd be such that D̂G(ν, P) =
supx∈Rd D̂G(x, P). Fix u ∈ Sd−1 and 0 ≤ α1 < α2. Using that ν + α1u = (1− α1

α2
)ν +

α1
α2
(ν + α2u) and convexity, we have that

D̂G(ν + α1u, P) ≥ g
((

1− α1

α2

) ∫
iG,ν,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG)

+
α1

α2

∫
iG,ν+α2u,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG)

)
≥ min

y∈{ν,ν+α2u}
D̂G(y, P) = D̂G(ν + α2u, P).

For (ii) let P ∈ Pd,C be centrally symmetric about µ ∈ Rd. Since µ = 1
2 x + 1

2 (2µ− x),
we have that

D̂G(µ, P) ≥ g
(

1
2

∫
iG,x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG)

+
1
2

∫
iG,2µ−x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG)

)
≥ min

y∈{x,2µ−x}
D̂G(y, P) = D̂G(x, P),

20To see this, take U = −I in Proposition 1.6.1 and notice that by central symmetry we have that
PTR,−I,µ = P.
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where we have used that D̂G(x, P) = D̂G(2µ− x, P).

Next, we give some examples of Type B depth functions and check if they satisfy
(i)-(v) of Definition 1.5.1.

Example 1.7.1 (Lq-depth) The Lq-depth (Zuo and Serfling, 2000a) is obtained by taking
in Definition 1.7.1 G = Nq, kNq = 1, and iNq,x,∞ given by iNq,x,∞(x1) = ‖x− x1‖q.

Notice that
∫
‖x − x1‖qdP(x1) < ∞ if and only if P ∈ P (1)

d .21 Thus, if P /∈ P (1)
d , the

Lq-depth does not provide any useful information about P although it is still well-
defined. As the next proposition shows, it is a statistical depth function. To this end,
let R be the class of transformation R : Rd → Rd given by R(x) = ±Mx + b for
some permutation matrix M and b ∈ Rd.

Proposition 1.7.2 For all q ≥ 1, D̂Nq ∈ D(R,Pd,Pd,C) and D̂Nq(·, P) is continuous for
all P ∈ Pd. Additionally, D̂N2 ∈ D(U ,Pd,Pd,C).

Proof of Proposition 1.7.2. We verify (i)-(v) of Definition 1.5.1. Notice that for all
S ∈ T of the form S(x) = Mx + b for some matrix M and vector b∫

‖S(x)− x1‖qdPS(x1) =
∫
‖M(x− x1)‖qdP(x1).

Now, if M is a permutation matrix, then ‖M(x− x1)‖q = ‖x− x1‖q. Similarly, if M is
an orthogonal matrix, then ‖M(x− x1)‖2 = ‖x− x1‖2. This gives (i). Now, (ii) and
(iii) follow from Proposition 1.7.1 since the function x 7→ ‖x− x1‖q is convex for all
fixed x1 ∈ Rd22 and DG(·, P) is symmetric about µ if P ∈ Pd,C is centrally symmetric
about µ. Indeed, since TC,µ ∈ R, we have that for all x ∈ Rd

D̂Nq(x, P) = D̂Nq(TC,µ(x), PTC,µ) = D̂Nq(TC,µ(x), P−TC,µ)

= g
(∫
‖TC,µ(x) + TC,µ(x1)‖qdP(x1)

)
= D̂Nq(2µ− x, P).

Next, we notice that D(·, P) is continuous because the functions g and x 7→
∫
‖x −

x1‖qdP(x1) are continuous.23 In particular, (iv) holds true. Turning to (v), notice that,
if ‖x1‖q ≤ 1 ≤ r ≤ ‖x‖q, then by the triangle inequality ‖x− x1‖q ≥ ‖x‖q − ‖x1‖q ≥
r− 1 yielding that∫

‖x− x1‖qdP(x1) ≥
∫
{y∈Rd :‖x1‖q≤1}

‖x− x1‖qdP(x1) ≥ r− 1.

We conclude that

lim
r→∞

sup
x∈Rd\Br(0)

D̂Nq(x, P) ≤ lim
r→∞

g(r− 1) = 0.

21By the triangle inequality
∫
‖x1‖qdP(x1) − ‖x‖q ≤

∫
‖x − x1‖qdP(x1) ≤

∫
‖x1‖qdP(x1) + ‖x‖q

and, since all norms on Rd are equivalent,
∫
‖x1‖qdP(x1) < ∞ if and only if

∫
‖x1‖2dP(x1) < ∞.

22By the triangle inequality ‖tx + (1− t)y− x1‖q ≤ t‖x− x1‖q + (1− t)‖y− x1‖q for all t ∈ [0, 1]
and x, y ∈ R.

23If
∫
‖x1‖qdP(x1) < ∞, then |

∫
‖x− x1‖qdP(x1)−

∫
‖y− x1‖qdP(x1)| ≤ ‖x− y‖q for all x, y ∈ Rd.

Otherwise, for all x ∈ Rd,
∫
‖x− x1‖qdP(x1) ≥

∫
‖x1‖qdP(x1)− ‖x‖q = ∞.
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Example 1.7.2 (Simplicial volume depth) The simplicial volume depth (Oja, 1983; Zuo
and Serfling, 2000a) is obtained by taking in Definition 1.7.1 G = V, kV = d, and iV,x,∞
given by iV,x,∞(x1, . . . , xd) = λ(∆[x, x1, . . . , xd]).

Next, we investigate (i)-(v) of Definition 1.5.1. It is known (Stein, 1966) that the
volume of the simplex ∆[x, x1, . . . , xd] is

λ(∆[x, x1, . . . , xd]) =
1
d!
|det

(
1 1 . . . 1
x x1 . . . xd

)
|.

Furthermore, subtracting the first column to every other column, one has

det
(

1 1 . . . 1
x x1 . . . xd

)
= det

(
1 0 . . . 0
x x1 − x . . . xd − x

)
= det

(
x1 − x . . . xd − x

)
.24

For S ∈ A of the form S(y) = My + b, i = 1, . . . , d, one analogously has

det
(

1 1 . . . 1
S(x) S(x1) . . . S(xd)

)
= det

(
S(x1)− S(x) . . . S(xd)− S(x)

)
= det(M)det

(
x1 − x . . . xd − x

)
.

It follows that

λ(∆[S(x), S(x1), . . . , S(xd)]) = det(M)λ(∆[x, x1, . . . , xd]). (1.7.1)

In particular, if S ∈ U then det(M) = 1 yielding

D̂V(S(x), PS) = g
(∫

λ(∆[S(x), S(x1), . . . , S(xd)])dP(x1) . . . dP(xd)

)
= D̂V(x, P).

Thus, (i) of Definition 1.5.1 holds with S = U . (ii) and (iii) are obtained from Propo-
sition 1.7.1 using the convexity of the integrand x 7→ λ(∆[x, x1, . . . , xd]) for fixed
x1, . . . , xd.25 For (ii) we additionally use that the simplicial volume depth is symmet-
ric about the point µ ∈ Rd of central symmetry of P ∈ Pd,C. Indeed, using TC,µ ∈ U ,
central symmetry, and (1.7.1), we obtain that

D̂V(x, P) = D̂V(TC,µ(x), PTC,µ) = D̂V(TC,µ(x), P−TC,µ)

= g
(∫

λ(∆[−TC,µ(x), TC,µ(x1), . . . , TC,µ(xd)])dP(x1) . . . dP(xd)

)
= D̂V(2µ− x, P).

Next, we show (iv). Since g is continuous and decreasing, it is enough to show
that the function x 7→

∫
λ(∆[x, x1, . . . , xd])dP(x1) . . . dP(xd) is lower semicontinu-

ous. To this end, we first notice that the function x 7→ λ(∆[x, x1, . . . , xd]). Indeed,

24|det(x1 − x . . . xd − x)| is the volume of the parallelepiped spanned by x1 − x, . . . , xd − x.
25Using Laplace expansion w.r.t. the first column we see that, for all t ∈ [0, 1] and x, y ∈ Rd,

det
(

1 1 . . . 1
tx + (1− t)y x1 . . . xd

)
= t det

(
1 1 . . . 1
x x1 . . . xd

)
+ (1− t)det

(
1 1 . . . 1
y x1 . . . xd

)
yielding λ(∆[sx + ty, x1, . . . , xd]) ≤ tλ(∆[x, x1, . . . , xd]) + (1− t)λ(∆[y, x1, . . . , xd]).
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Hadamard’s inequality (Theorem 14.1.1 in Garling (2007)) gives

|det
(

1 1 . . . 1
x x1 . . . xd

)
| ≤ (1 + ‖x‖2)

d

∏
j=1

(1 + ‖xj‖2), (1.7.2)

which implies that

|λ(∆[x, x1, . . . , xd])− λ(∆[y, x1, . . . , xd])| ≤ d!
d

∏
j=1

(1 + ‖xj‖2)‖x− y‖2.

Finally, using Fatou’s lemma we have that, for every sequence {yj}∞
j=1 converging to

x ∈ Rd,

lim inf
j→∞

∫
λ(∆[yj, x1, . . . , xd])dP(x1) . . . dP(xd)

≤
∫

lim inf
j→∞

λ(∆[yj, x1, . . . , xd])dP(x1) . . . dP(xd)

=
∫

λ(∆[x, x1, . . . , xd])dP(x1) . . . dP(xd).

We now turn to (v). Surprisingly, D̂V does not satisfy this property. Indeed, for all
r > 0, there exists x ∈ Rd \ Br(0) such that x, x1, . . . , xd are not in general position,
yielding λ(∆[x, x1, . . . , xd]) = 0. To obviate the problem, one could take P ∈ Pd,hp
implying that x, x1, . . . , xd are in general position with probability one. We sketch
the proof of this. First, for ε > 0 let c, s > 0 such that g(0)(1− Pd(Bs(0))) ≤ ε/2 and
g(c)Pd(Bs(0)) ≤ ε/2. Then,

D̂V(x, P) ≤ g(0)(1− Pd(Bs(0))) +
∫
(Bs(0))d

g(λ(∆[x, x1, . . . , xd]))dP(x1) . . . dP(xd)

≤ g(0)(1− Pd(Bs(0))) + g(c)Pd(Bs(0)) + g(0)Pd(As,c(x)),

where As,c(x) = {(y1, . . . , yd) ∈ (Bs(0))d : λ(∆[x, y1, . . . , yd])) ≤ c}. Since the first
two terms are bounded by ε, to conclude it is enough to show that

lim
r→∞

sup
x∈Rd\Br(0)

Pd(As,c(x)) = 0.

Now, the condition λ(∆[x, y1, . . . , yd])) ≤ c is equivalent to the fact that the vol-
ume |det(y1 − x, . . . , yd − x)| of the parallelepiped spanned by y1 − x, . . . , yd − x is
bounded above by cd!. Since, for all j = 1, . . . , d, ‖yj − x‖2 ≥ r− s becomes arbitrar-
ily large, one of the ‖yi − x‖2 becomes closer and closer to the space generated by all
the others. We conclude that, there exists δ(r) (independent on x and) decreasing to
zero such that, for large enough r,

sup
x∈Rd\Br(0)

Pd(As,c(x)) ≤ sup
z∈Rd

u∈Sd−1

P((∂Hz,u)
+δ(r))26

and the results hold under the condition limr→∞ sup z∈Rd

u∈Sd−1
P((∂H)+δ(r)) = 0. A

26For δ > 0, (A)+δ := {x ∈ Rp : infy∈A‖x− y‖2 ≤ δ} and (A)−δ := Rp \ (Rp \ A)+δ = {x ∈ Rp :
infy∈Rp\A‖x− y‖2 > δ}.



Chapter 1. Depth functions 23

sufficient condition for this is that P ∈ Pd,�λ has density fP that is bounded on
every compact set. Indeed, let t > 0 such that P(Rd \ Bt(0)) ≤ ε and suppose that
fp ≤ b on Bt(0). Then, we have that

sup
z∈Rd

u∈Sd−1

P((∂Hz,u)
+δ(r)) ≤ ε + b sup

z∈Rd

u∈Sd−1

λ(Bt(0) ∩ (∂Hz,u)
+δ(r)).

Using the translation invariance of the Lebesgue measure, we see that

sup
z∈Rd

u∈Sd−1

λ(Bt(0) ∩ (∂Hz,u)
+δ(r)) = λ(Bt(0) ∩ (∂H0,e1)

+δ(r)), 27

which converges to zero as r → ∞.
Thus, even though simplicial volume satisfies (i) of Definition 1.5.1 with S = A,

(ii) with Pd,2 = Pd,C, (iii), and (iv), it fails to satisfies (v) and therefore it is not a
statistical depth function. Also, we notice that

∫
λ(∆[x, x1, . . . , xd])dP(x1) . . . dP(xd)

may be infinite, in which case, very little can be deduced from DV(x, P) about P.
However, (1.7.2) ensures that

∫
λ(∆[x, x1, . . . , xd])dP(x1) . . . dP(xd) is finite for P ∈

P (1)
d .

Finally, we notice that Type B depth functions can be converted into Type A by
applying the function g directly to iG,x,∞; thus, computing the integral of hG,x,∞ =
g ◦ iG,x,∞ w.r.t. Pk (cf. Remark 3.3.2 of Zuo (1998)). However, because of the lack of
concavity of x 7→ hG,x,∞(x1, . . . , xkG), G = V, Nq, (ii) and (iii) of Definition 1.5.1 do
not hold in general. To address this issue, one can replace g by a continuous, de-
creasing and concave function g′ : [0, ∞] → R ∪ {−∞} and let D′Nq

and D′V be as in
Proposition 1.6.2 with h′G,x,∞ = g′ ◦ iG,x,∞, G = Nq, V. Since for fixed x1, . . . , xkG the
functions x 7→ iG,x,∞(x1, . . . , xkG) are convex and g′ is decreasing and concave, the
functions x 7→ h′G,x,∞(x1, . . . , xkG) are also concave and (ii) and (iii) hold by Propo-
sition 1.6.2. For (ii) we additionally use that D′Nq

(·, P) and D′V(·, P) are symmetric
about the center of symmetry µ of P ∈ Pd,C, which can be obtained as before. (i)
can be shown as before for both D′Nq

and D′V . We now turn to (iv) and (v) for the
Lq-depth. Since the function x 7→ h′Nq,x,∞(x1) is bounded by g′(0) and continuous,
by reverse Fatou’s lemma, we have that, for every sequence {yj}∞

j=1 converging to
x ∈ Rd,

lim sup
j→∞

D′Nq
(yj, P) ≤

∫
lim sup

j→∞
g(‖yj − x1‖q)dP(x1) = DNq(x, P).

Finally, using that g′ is decreasing and the triangle inequality, we have that

sup
x∈Rd\Br(0)

∫
g′(‖x− x1‖q)dP(x1) ≤

∫
sup

x∈Rd\Br(0)
g′(|‖x‖q − ‖x1‖q|)dP(x1)

≤ g′(0)P(Rd \ Br/2(0)) + g′(r/2)P(Br/2(0)),

where the last term converges to−∞ as r → ∞. We conclude that D′Nq
∈ D′(R,Pd,Pd,C),

q ≥ 1, and D′N2
∈ D′(U ,Pd,Pd,C).

27(∂H0,e1 )
+δ(r) is one of the enlarged hyperplanes yielding maximal volume when intersected with

Bt(0).
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1.8 Type C depth functions

Definition 1.8.1 A Type C depth function is a function D̃G : Rd × Pd,1 → [0, ∞) given
by

D̃G(x, P) = g(OG(x, P)),

where Pd,1 ⊂ Pd, OG : Rd ×Pd,1 → [0, ∞] is Borel measurable, and g : [0, ∞]→ [0, ∞) is
continuous, decreasing, positive on [0, ∞), and zero at infinity.

As for Type B depth functions, (ii) and (iii) of Definition 1.5.1 follow from convexity
(see Theorems 3.3.8 and 3.3.9 of Zuo (1998)).

Proposition 1.8.1 Let D̃G be a Type C depth function and P ∈ Pd,1. If the function
x 7→ OG(x, P) is convex, then D̂G satisfies (iii) of Definition 1.5.1. If, additionally, P ∈ Pd,C
and OG(·, P) is symmetric w.r.t. the center of symmetry µ of P, then D̃G satisfies (ii) of
Definition 1.5.1 with Pd,2 = Pd,C.

Proof of Proposition 1.8.1. The proof is similar to that of Proposition 1.7.1.

The class P (2)
d of probability distributions admitting second moment can be par-

titioned into P (2,i)
d ∪ P (2,s)

d , where P ∈ P (2,i)
d has invertible covariance matrix and

P (2,s)
d = P (2)

d \ P
(2,i)
d .

Example 1.8.1 (Mahalanobis depth) The Mahalanobis distance (Mahalanobis, 1936) on
Rd w.r.t. P ∈ P (2,i)

d is dΣ(P) : Rd ×Rd → [0, ∞) given by

d2
Σ(P)(x, y) = (x− y)>(Σ(P))−1(x− y).28

The Mahalanobis depth (Liu, 1992; Liu and Singh, 1993) is obtained by taking in Definition
1.8.1 G = M, Pd,1 = P (2,i)

d , and OM(x, P) = d2
Σ(P)(x, µ(P)).

µ(P) and Σ(P) can be replaced by any other affine-equivariant location estimator
and covariance measure satisfying (1.4.2) and (1.4.3) (Zuo and Serfling, 2000a).

Proposition 1.8.2 D̃M ∈ D(A,P (2,i)
d ,Pd,C ∩ P

(2,i)
d ) and D̃M(·, P) is continuous for all

P ∈ P (2,i)
d .

Proof of Proposition 1.8.2. We verify (i)-(v) of Definition 1.5.1 for D̃M. (i) fol-
lows from (1.4.2) and (1.4.3). For (ii) and (iii) we notice that O(·, P) is convex and
symmetric about µ(P), which is the center of symmetry of P ∈ Pd,C ∩ P

(2,i)
d , and

apply Proposition 1.8.1. Next, D̃M(·, P) is continuous because g and the function
x 7→ d2

Σ(P)(x, µ(P)) are continuous. In particular, this gives (iv). Finally, (v) follows
from limr→∞ infx∈Rd\Br(0) d2

Σ(P)(x, µ(P)) = ∞ and limt→∞ g(t) = 0.

We now turn to the projection depth (Stahel, 1981; Donoho and Gasko, 1992; Liu,
1992; Zuo and Serfling, 2000a; Zuo, 2003; Dyckerhoff, 2004).

Example 1.8.2 (Projection depth) The projection depth is obtained by taking in Defini-
tion 1.8.1 G = J, Pd,1 = P (2)

d , and OJ(x, P) = supu∈Sd−1(Σ(Pu))−1/2|πu(x)− µ(Pu)|.29

28If M is a positive definite matrix, then 〈x, y〉M = x>M−1y is a scalar product on Rd yielding that
‖x‖M = 〈x, x〉M is a norm. Then, dΣ(P)(x, y) = ‖x− y‖Σ(P) is the distance induced by this norm.

29Here, it is used the convention that

0−1a =

{
∞ if a 6= 0,
0 if a = 0.
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Proposition 1.8.3 D̃J ∈ D(A,P (2)
d ,Pd,C ∩ P

(2)
d ).

Proof of Proposition 1.8.3. Let P ∈ P (2)
d . For (i), notice that, for S ∈ A given by

S(x) = Mx + b,

µ((PS)u) =
∫

td(Pπu◦S)(t) =
∫

πu(S(x))dP(x) = πu(S(µ(P)))

and

Σ((PS)u) =
∫
(t− µ((PS)u))

2d(Pπu◦S)(t) =
∫
(πu(S(x− µ(P))))2dP(x)

implying that, replacing M>u/‖M>u‖2 by v,

D̃J(S(x), PS) = g
(

sup
u∈Sd−1

(∫
(πu(S(x− µ(P))))2dP(x)

)−1/2

|πu(S(x− µ(P)))|
)

= g
(

sup
u∈Sd−1

(∫
(πu(M(x− µ(P))))2dP(x)

)−1/2

|πu(M(x− µ(P)))|
)

= g
(

sup
v∈Sd−1

(∫
(πv(x− µ(P)))2dP(x)

)−1/2

|πv(x− µ(P))|
)

= D̃J(x, P).

(ii) and (iii) follow from Proposition 1.8.1 and the convexity of OJ(·, P). For (ii) we
also use that P ∈ Pd,C ∩ P

(2)
d is centrally symmetric about µ(P) and

πu(µ(P)) = πu

(∫
xdP(x)

)
=
∫

πu(x)dP(x) = µ(Pu),

which implies that OJ(·, P) is symmetric about µ(P). Next, (iv) follows from the fact
that OJ(·, P) is lower semicontinuous (as it is a supremum of lower semicontinuous
functions) and g is decreasing and continuous.30 We now turn to (v). Notice that, by
Cauchy–Schwarz inequality, for all u ∈ Sd−1,

|µ(Pu)| ≤
∫
|t|dPu(t) =

∫
|πu(x)|dP(x) ≤ µ

(1)
m (P)

and

Σ(Pu) =
∫
(t− µ(Pu))

2dPu(t) =
∫
(πu(x− µ(P)))2dP(x) ≤ µ

(2)
c (P)

implying that

OJ(x, P) ≥ (µ
(2)
c (P))−1/2( sup

u∈Sd−1

|πu(x)| − µ
(1)
m (P)) = (µ

(2)
c (P))−1/2(‖x‖2 − µ

(1)
m (P)).

It follows from the continuity of g that

lim
r→∞

sup
x∈Rd\Br(0)

D̃(x, P) ≤ lim
r→∞

g((µ(2)
c (P))−1/2[r− µ

(1)
m (P)]) = g(∞) = 0.

30Let for simplicity ϕ = OJ(·, P). The lower semicontinuity of ϕ implies that, for all a ∈ [0, g(0)],
the set (g ◦ ϕ)−1([a, ∞)) = ϕ−1(g−1([a, ∞))) = ϕ−1([0, g−1(a)]) is closed.
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It is usually preferred to replace mean and variance by other location and dispersion
estimators such as the median and median absolute deviation. However, they are
not, in general, unique. For instance, Zuo and Serfling (2000a) claims that, if P ∈
Pd,H is halfspace symmetric about a unique point ν ∈ Rd, then the projection depth
based on median and median absolute deviation is maximized at ν. However, for
this, it is used that P has a unique unidimensional median (namely, πu(ν)) for all
u ∈ Sd−1. Part (ii) of Theorem 2.4 in Zuo and Serfling (2000b) (which is used in the
proof) gives only πu(ν) ∈ Q1/2(Pu) and not Q1/2(Pu) = {πu(ν)}. The following
example shows that uniqueness of unidimensional medians can easily fail even for
centrally symmetric probability measures.

Example 1.8.3 Let P(1) ∈ P2 be the discrete measure assigning probability 1/4 to each
of the points (1, 1)>, (−1, 1)>, (−1,−1)>, (1,−1)> ∈ R2. Then P(1) ∈ P2,C ∩ P (2)

2 is
centrally symmetric about ν = (0, 0)> implying that πu(ν) = 0 for all u ∈ Sd−1. However,

Q1/2((P(1))u) =

{
[u1 − u2, u2 − u1] if u1 < u2,
[u2 − u1, u1 − u2] if u1 ≥ u2,

where ui = |πei(u)|, i = 1, 2. Thus, Q1/2((P(1))u) = {πu(ν)} if and only if

2u ∈ {(
√

2,
√

2)>, (−
√

2,
√

2)>, (−
√

2,−
√

2)>, (
√

2,−
√

2)>}.

For P ∈ Pd,C it seems that one can avoid the issue of non-uniqueness by defining the
median as the midpoint of the interval Q1/2(Pu). However, as the following example
shows, πu(ν) is, in general, no longer the midpoint of Q1/2(Pu) for P ∈ Pd,H \ Pd,C.

Example 1.8.4 Let P(α) ∈ P2, where α ∈ (0, 1) ∪ (1, ∞), be the discrete measure assign-
ing probability 1/4 to each of the points (α, α)>, (−1, 1)>, (−1,−1)>, (α,−α)> ∈ R2.
Then P(α) ∈ (P2,A \ P2,C) ∩ P (2)

2 is angularly symmetric about ν = (0, 0)>. A careful
calculation yields

Q1/2((P(α))u) =


E1,u if u1 < u2, πe1(u) ≥ 0,
E2,u if u1 < u2, πe1(u) < 0,
[u2 − u1, α(u1 − u2)] if u1 ≥ u2, πe1(u) ≥ 0,
[α(u2 − u1), u1 − u2] if u1 ≥ u2, πe1(u) < 0,

where ui = |πei(u)| for i = 1, 2,

E1,u =


[α(u1 − u2), α(u1 + u2)] if u2 ≥ 1+α

1−α u1, 0 < α < 1,
[α(u1 − u2), u2 − u1] if u2 < 1+α

|α−1|u1,

[−u1 − u2, u2 − u1] if u2 ≥ 1+α
α−1 u1, α > 1,

for u ∈ Sd−1 satisfying u1 < u2, πe1(u) ≥ 0, and

E2,u =


[α(−u1 − u2), α(u2 − u1)] if u2 ≥ 1+α

1−α u1, 0 < α < 1,
[u1 − u2, α(u2 − u1)] if u2 < 1+α

|α−1|u1,

[u1 − u2, u1 + u2] if u2 ≥ 1+α
α−1 u1, α > 1,

for u ∈ Sd−1 satisfying u1 < u2, πe1(u) < 0.
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Notice that the above examples do not show that the projection depth with unidi-
mensional median as location estimator is maximized at the center of symmetry, but
they raise some questions about the definition of median and the proof.

1.9 Sample depth and quantiles

We now turn to the estimation of a depth function D ∈ D(S ,Pd,1,Pd,2). To this end,
let {Xi}∞

i=1 be a sequence of i.i.d. random variables with probability distribution
P ∈ Pd,1. A natural estimator of D(x, P), where x ∈ Rd and P ∈ Pd,1, is obtained by
replacing P with the empirical probability distribution Pn = 1

n ∑n
i=1 δXi . The corre-

sponding estimator, D(x, Pn), is referred to as sample depth. We denote byPd,d (resp.
Pd, f d) the subclass of Pd of discrete (resp. finitely discrete) probability measures. It is
desirable that Pd,1 is large enough to contain Pd, f d. Indeed, this implies that D(·, Pn)
satisfies (i), (iii), (iv), and (v) of Definition 1.5.1. From Section 1.5 we deduce that
Pn possesses well-defined depth quantiles and median for all n ∈ N. This condi-
tion is satisfied by many of the statistical depth functions of Sections 1.5-1.8, namely,
halfspace depth, projection depth, and Lq-depth. However, since discrete distribu-
tion can have singular covariance matrix, it is not satisfied by Mahalanobis depth.
Furthermore, it is not satisfied by simplicial volume depth, which does not satisfy
(v), simplicial depth and β-skeleton depths, which do not satisfy (iii). Of course,
even if P is symmetric, Pn is not in general symmetric. Thus, the depth median31 of
Pn does not in general coincide with the depth median of P. Then, it is of interest
to study (uniform) convergence of D(x, Pn) to D(x, P), the corresponding rate, and
convergence of quantiles and medians. The last question is addressed by Theorem
4.1 in Zuo and Serfling (2000c),32 which we now state. Dn(x, P) denotes a general es-
timator of D(x, P) defined on a probability space (Ω, Σ, P) such that P = PX−1 is the
probability distribution of a random variable X : Ω → Rd. We use the abbreviation
P-a.s. (or a.s.) for almost surely w.r.t. P.

Theorem 1.9.1 For P ∈ Pd, let D(·, P) : Rd → [0, ∞) be continuous and Dn(·, P) :
Rd ×Ω → [0, ∞) be such that supx∈Rd |D(x, P)− Dn(x, P)| a.s.−→ 0. For every sequence
{αn}∞

n=1 of positive scalars converging to α > 0, it holds that

R̊D,α(P) ⊂ lim inf
n→∞

RDn,αn(P) ⊂ lim sup
n→∞

RDn,αn(P) ⊂ RD,α(P) a.s.

and, if P(∂RD,α(P)) = 0, then

lim
n→∞

RDn,αn(P) = RD,α(P) a.s.

Proof of Theorem 1.9.1. For k, n ∈ N, let An,k = {x ∈ Rd : |D(x, P)− Dn(x, P)| <
1/k}. We first show that limn→∞ An,k = Rd a.s. To this end, notice that, for k ∈ N

and almost all ω ∈ Ω, there exists n0(k, ω) ∈N such that |D(x, P)−Dn(x, P)| < 1/k
for all x ∈ Rd. It follows that

lim inf
n→∞

An,k(ω) = lim
n→∞
∩∞

l=n An,k(ω) ⊃ ∩∞
l=n0(k,ω)Al,k = Rd.

31Notice that by (i) and (iii)-(v) a depth median always exists even though it is not in general unique.
32One needs to take some extra care in the statement and proof of this result. For instance, the

authors use that, if a sequence of random variables {Xi}∞
i=1 converges almost surely to X then, for all

ε > 0, there exists nε ∈ N such that |Xi − X| ≤ ε almost surely for all i ≥ nε. However, this is not in
general true because pointwise convergence does not imply uniform convergence. We provide here a
simplified argument.
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Next, let n1 ∈ N such that |αn − α| < 1/k for all n ≥ n1. Then, for n ≥ n1,
RDn,α+1/k(P) ⊂ RDn,αn(P) ⊂ RDn,α−1/k(P). Using Corollary B.1 (v), we have that

lim inf
n→∞

RDn,αn(P) ⊃ lim inf
n→∞

(RDn,α+1/k(P) ∩ An,k)

⊃ lim
n→∞

(RD,α+2/k(P) ∩ An,k) = RD,α+2/k(P) a.s.

and

lim sup
n→∞

RDn,αn(P) ⊂ 33 lim sup
n→∞

(RDn,α−1/k(P) ∩ An,k)

⊂ lim
n→∞

(RD,α−2/k(P) ∩ An,k) = RD,α−2/k(P) a.s.

Using the continuity of D(·, P) we conclude that

R̊D,α(P) = ∪∞
k=1RD,α+2/k(P) ⊂ lim inf

n→∞
RDn,αn(P) ⊂ lim sup

n→∞
RDn,αn(P)

⊂ ∩∞
k=1RD,α−2/k(P) = RD,α(P) a.s.

The last part follows from RD,α(P) = R̊D,α(P) ∪ ∂RD,α(P) and P(X−1(∂RD,α(P))) =
P(∂RD,α(P)) = 0.

Thus, for convergence of depth quantiles it is enough to check continuity of the
depth function and almost sure uniform convergence of D(·, Pn) to D(·, P), which is
also referred to as uniform consistency. By (iv) of Definition 1.5.1 for continuity it is
enough to check lower semicontinuity. For instance, halfspace and simplicial depth
are continuous if P ∈ Pd,hp (see Lemma 6.1 in Donoho and Gasko (1992), Theorem
2 in Liu (1990), and Proposition 12 of Francisci et al. (2019)). Furthermore, Lq-depth
and Mahalanobis depth are continuous by Proposition 1.7.2 and Proposition 1.8.2,
respectively. Uniform consistency can be often obtained using tools from empirical
processes theory (see Section 1.11 below). For instance, it is well-known that the
uniform law of large numbers holds for VC classes of sets (see Definition 1.11.3).
Since closed halfspaces on Rd have this property, we obtain that

sup
x∈Rd
|D̃H(x, Pn)− D̃H(x, P)| ≤ sup

x∈Rd,u∈Sd−1

|P(Hx,u)− Pn(Hx,u)|
a.s.−−−→

n→∞
0,

which is given by (6.2) and (6.6) of Donoho and Gasko (1992). Uniform convergence
of sample projection depth is studied in Theorem 2.2 of Zuo (2003) under some con-
ditions on the unidimensional location and dispersion estimators. In the next propo-
sition we study uniform consistency of Mahalanobis depth (see Remark 2.2 of Liu
and Singh (1993)).

Proposition 1.9.1 For P ∈ P (2,i)
d it holds that supx∈Rd |D̃M(x, P)− D̃M(x, Pn|

a.s.−−−→
n→∞

0.

Proof of Proposition 1.9.1. We can assume without loss of generality (w.l.o.g.) that
det(Σ(Pn)) > 034 implying that d2

Σ(Pn)
(x, µ(Pn)) and D̃M(x, Pn) are well-defined. We

need to show that, for all ε > 0, P(lim supn→∞ An,ε) = 0, where An,ε = {ω ∈
Ω : supx∈Rd |D̃M(x, P) − D̃M(x, Pn)(ω)| > ε}. We first notice that, for all r > 0,

33Here, it is crucial that limn→∞ An,k exists a.s. (c.f. Lemma B.1 (ii)).
34Notice that by (1.9.2) below {ω ∈ Ω : det(Σ(Pn)(ω)) = 0} ⊂ Fn,δ and by (1.9.1)

P(lim supn→∞ Fn,δ) = 0.
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An,ε ⊂ Bn, ε
3 ,r ∪ Cn, ε

3 ,r ∪ D ε
3 ,r, where

Bn, ε
3 ,r = {ω ∈ Ω : sup

x∈Br(0)
|D̃M(x, P)− D̃M(x, Pn)(ω)| > ε

3
},

Cn, ε
3 ,r = {ω ∈ Ω : sup

x∈Rd\Br(0)
D̃M(x, Pn)(ω) >

ε

3
},

D ε
3 ,r = {ω ∈ Ω : sup

x∈Rd\Br(0)
D̃M(x, P) >

ε

3
}.

Now, by Proposition 1.8.2, there exists r1 > 0 such that D ε
3 ,r = ∅ for all r ≥ r1. By

Lemma B.1 (iv) we have that, for r ≥ r1,

P(lim sup
n→∞

(Bn, ε
3 ,r ∪ Cn, ε

3 ,r)) = P((lim sup
n→∞

Bn, ε
3 ,r) ∪ (lim sup

n→∞
Cn, ε

3 ,r)))

≤ P(lim sup
n→∞

Bn, ε
3 ,r) + P(lim sup

n→∞
Cn, ε

3 ,r).

Thus, it is enough to show that, for some r2 ≥ r1, P(lim supn→∞ Bn, ε
3 ,r2) = 0 and

P(lim supn→∞ Cn, ε
3 ,r2) = 0. To this end, we notice that, by the strong law of large

numbers, µ(Pn)
a.s.−→ µ(P) and

Σ(Pn) =
1
n

n

∑
i=1

XiX>i − (µ(Pn))(µ(Pn))
> a.s.−→

∫
xx>dP(x)− (µ(P))(µ(P))> = Σ(P).

By continuous mapping theorem, we also have that (Σ(Pn))−1 a.s.−→ (Σ(P))−1.35 Now,
for δ > 0, let En,δ = {ω ∈ Ω : ‖µ(Pn)(ω) − µ(P)‖2 > δ} and Fn,δ = {ω ∈ Ω :
‖(Σ(Pn))−1(ω)− (Σ(P))−1‖M,2 > δ}, where ‖M‖M,q = supy∈Rd\{0}

‖My‖q
‖y‖q

is the Lq-
matrix-norm of a d× d matrix M. By the above results, we have that, for all δ > 0,

P(lim sup
n→∞

(En,δ ∪ Fn,δ)) ≤ P(lim sup
n→∞

En,δ) + P(lim sup
n→∞

Fn,δ) = 0. (1.9.1)

Let σ̂(M) = {λ1(M), . . . , λd(M)} be the spectrum of a diagonalizable matrix M.36

Since Σ(Pn) and Σ(P) are symmetric, they are diagonalizable by orthogonal ma-
trices. By Bauer–Fike theorem (Theorem 2.1 in Eisenstat and Ipsen (1998)), for all
j = 1, . . . , d, we have that

min
i=1,...,p

|(λj(Σ(Pn)))
−1 − (λi(Σ(P)))−1| ≤ ‖(Σ(Pn))

−1 − (Σ(P))−1‖M,2. (1.9.2)

Now, let 2δ = mini=1,...,d(λi(Σ(P)))−1. There exist orthogonal matrices Un such that
Σ(Pn) = U−1

n D(Σ(Pn))Un, where D(Σ(Pn)) is the diagonal matrix with the eigenval-
ues λ1(Σ(Pn)), . . . , λd(Σ(Pn)) on the diagonal. Now, if ‖(Σ(Pn))−1− (Σ(P))−1‖M,2 ≤

35Here it is used that the function sending invertible matrices to their inverse is continuous. This
follows from the continuity of the functions sending a matrix to its determinant and adjugate, respec-
tively.

36That is, the set of its eigenvalues.
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δ, then minj=1,...,d(λj(Σ(Pn)))−1 ≥ δ,37 yielding that

d2
Σ(Pn)

(x, µ(Pn)) = (x− µ(Pn))
>(Σ(Pn))

−1(x− µ(Pn))
>

= (Un(x− µ(Pn)))
>(D(Σ(Pn)))

−1(Un(x− µ(Pn)))

≥ δ‖Un(x− µ(Pn))‖2
2

= δ‖x− µ(Pn)‖2
2.

If also ‖µ(Pn)− µ(P)‖2 ≤ δ and ‖x‖2 ≥ ‖µ(P)‖2 + δ, then

d2
Σ(Pn)

(x, µ(Pn)) ≥ δ(‖x‖2 − ‖µ(Pn)‖2)
2 ≥ δ(‖x‖2 − δ− ‖µ(P)‖2)

2. (1.9.3)

Using that limt→∞ g(t) = 0, let r2 > 0 be larger that r1 and ‖µ(P)‖2 + δ, and such that
g(δ(r2 − δ− ‖µ(P)‖2)2) ≤ ε

3 . Then, using (1.9.3), we have that Cn, ε
3 ,r2 ⊂ En,δ ∪ Fn,δ

and, by (1.9.1), P(lim supn→∞ Cn, ε
3 ,r2) = 0.

We are left to show that P(lim supn→∞ Bn, ε
3 ,r2) = 0. Since g is uniformly contin-

uous (because it is bounded, continuous, and decreasing), there exists η > 0 such
that, for all s, t ≥ 0 with |s− t| ≤ η, |g(s)− g(t)| ≤ ε

3 , yielding that Bn, ε
3 ,r2 ⊂ Gn,η,r2 ,

where

Gn,η,r2 = {ω ∈ Ω : sup
x∈Br2 (0)

|d2
Σ(P)(x, µ(P))− d2

Σ(Pn)
(x, µ(Pn))| > η}.

By adding and subtracting d2
Σ(P)(x, µ(Pn), we see that |d2

Σ(P)(x, µ(P))− d2
Σ(Pn)

(x, µ(Pn))|
is bounded above by

|d2
Σ(P)(x, µ(P))− d2

Σ(P)(x, µ(Pn))|+ |d2
Σ(P)(x, µ(Pn))− d2

Σ(Pn)
(x, µ(Pn))|,

where the first term is38

|‖x− µ(P)‖2
Σ(P) − ‖x− µ(Pn)‖2

Σ(P)|
≤‖µ(P)− µ(Pn)‖Σ(P)(‖x− µ(P)‖Σ(P) + ‖x− µ(Pn)‖Σ(P))

and the second term is

|(x− µ(Pn))
>((Σ(P))−1 − (Σ(Pn))

−1)(x− µ(Pn))|
≤‖x− µ(Pn)‖2‖((Σ(P))−1 − (Σ(Pn))

−1)(x− µ(Pn))‖2

≤‖x− µ(Pn)‖2
2‖(Σ(P))−1 − (Σ(Pn))

−1‖M,2

Using ‖y‖Σ(P) ≤ c‖y‖2 for some c > 0 and all y ∈ Rd,39 ‖x − µ(Pn)‖2 ≤ ‖x −
µ(P)‖2 + ‖µ(P)− µ(Pn)‖2, and ‖x‖2 < r2 in the above inequalities, we see that there
exists δ > 0 such that, if ‖µ(Pn)− µ(P)‖2 ≤ δ and ‖(Σ(Pn))−1 − (Σ(P))−1‖M,2 ≤ δ,
then

sup
x∈Br2 (0)

|d2
Σ(P)(x, µ(P))− d2

Σ(Pn)
(x, µ(Pn))| ≤ η.

As before, it follows that Gn,η,r2 ⊂ En,δ ∪ Fn,δ, yielding P(lim supn→∞ Gn,η,r2) = 0.

37This ensures that the covariance matrix Σ(Pn) is invertible and the distance dΣ(Pn) is well-defined.
38See 28.
39This is because all norms on Rd are equivalent.
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We now turn to the (uniform) consistency of Type A and Type B depth functions. To
this end, notice that they are given by (a function of)

Uk(h, P) =
∫

h(x1, . . . , xk)dP(x1) . . . dP(xk),

where k ≥ 1 and h : (Rd)k → R is Borel measurable and bounded below. A natural
estimate for Uk(h, P) is

Uk(h, Pn) =
∫

h(x1, . . . , xk)dPn(x1) . . . dPn(xk) =
1
nk

n

∑
i1,...,ik=1

h(Xi1 , . . . , Xik).

However, when k > 1, the appearance of the same random variable multiple times
in the function h can be detrimental. Therefore, Uk(h, Pn) is replaced by

Uk,n(h, P) =
(n− k)!

n!

n

∑
i1,...,ik=1

i1,...,ik all different

hG,x,∞(Xi1 , . . . , Xik).

Now, using the independence of X1, . . . , Xn, we see that Uk,n(h, P) is an unbiased
estimator of Uk(h, P), thus, a U-statistics for the estimation of Uk(h, P).40 We study
U-statistics in Section 1.10. We notice that if h is bounded, as it is the case for Type A
depth functions, then Uk(h, Pn) and Uk,n(h, P) are asymptotically equivalent because

n!
nk(n−k)! = 1 + O( 1

n ) and

|Uk(h, Pn)−
n!

nk(n− k)!
Uk,n(h, P)| ≤

(
1− n!

nk(n− k)!

)
l,

where 0 ≤ l < ∞ is the constant bounding |h(·)|. Thus, results for Uk,n(h, P) carry
over to Uk(h, Pn). Uniform consistency results for a class H of Borel measurable
functions h : (Rd)k → R, such as,

sup
h∈H
|Uk,n(h, P)−Uk(h, P)| a.s.−→ 0, (1.9.4)

are studied in Section 1.11. For k = kG and H = {hG,x,∞ : x ∈ Rd}, (1.9.4) entails
uniform consistency for Type A depth functions (see Theorem 2.4.1 in Chapter 2).
Similarly, for H = {iG,x,∞ : x ∈ Rd}, using that g in Definition 1.7.1 is uniformly
continuous over [0, ∞), (1.9.4) gives uniform consistency for Type B depth functions
with supx∈Rd |UiG,x,∞(P)| < ∞.

1.10 U-statistics

In this section we study U-statistics on a Hausdorff41 topological space E (Hoeffd-
ing, 1961; Hoeffding, 1963; Arcones and Giné, 1993; Arcones, 1995; Serfling, 2009;
Korolyuk and Borovskich, 2013). For Type A and Type B depth functions as well as
local depth functions (see Chapter 2) we take E = Rd. We begin with some notation.

40Uk(h, Pn) is called a V-statistics for the estimation of Uk(h, P).
41A topological space E is Hausdorff if for all x, y ∈ E, x 6= y, there are (open) neighborhoods Ux and

Uy of x and y that are disjoint, i.e. Ux ∩Uy = ∅. It follows that all points {x} ⊂ E = {x} ∪ ∪y∈E,y 6=xUy
are closed. In particular, they are Borel sets (cf. Harley and McNulty (1979)) and δx 6= δy for all x, y ∈ E,
x 6= y, which prevents degeneracy of empirical measures.
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For k ≥ 1, we denote by Hk the space of all Borel measurable functions h : Ek → R

and byM±(Ek) the set of all finite signed Borel measures on Ek.42,43 We will need to
integrate functions h ∈Hk w.r.t. signed measures Q ∈ M±(Ek). To this end, we let

DEk = {(h, Q) ∈Hk ×M±(Ek) :
∫

h(x1, . . . , xk)dQ(x1, . . . , xk) exists and is finite}44

and define the function Jk : DEk → R by

Jk(h, Q) =
∫

h(x1, . . . , xk)dQ(x1, . . . , xk).

We will also need some moment assumptions on the function h. For Q ∈ P(Ek) and
q ≥ 1, let

L q(Hk, Q) = {h ∈Hk : ‖h‖L q(Hk ,Q) < ∞}, where ‖h‖L q(Hk ,Q) = (Jk(|h|q, Q))1/q,

be the subclass of Hk of functions with finite qth-moment w.r.t. the distribution
Q. The seminorm ‖·‖L q(Hk ,Q) induces a pseudometric45 d̃L q(Hk ,Q) on L q(Hk, Q)

via d̃L q(Hk ,Q)(h1, h2) = ‖h1 − h2‖L q(Hk ,Q). Notice that L 1(Hk, Q) is precisely the
subspace of Hk where the integral Jk(h, Q) is well-defined and finite, that is, for
Q ∈ P(Ek), L 1(Hk, Q) = {h ∈ Hk : (h, Q) ∈ DEk}.46 We are now ready to give a
precise definition of U-statistics.

Definition 1.10.1 Let {Xi}∞
i=1 be a sequence of i.i.d. random variables with probability dis-

tribution P ∈ P(E) and h ∈ L 1(Hk, Pk). A U-statistics for the estimation of Uk(h, P) =
Jk(h, Pk) is Uk,n(h, P) = Jk(h, P̂k

n), where

P̂k
n =

(n− k)!
n!

n

∑
i1,...,ik=1

i1,...,ik all different

k

∏
j=1

δXij
.

The function h is the kernel of the U-statistics and k is its order.

42M±(Ek) = {P+ − P− : P+, P− ∈ M f (Ek)}, whereM f (Ek) ⊂ M(Ek) is the set of all finite Borel
measures on Ek.

43A natural question is whether the equality (B(E))⊗k = B(Ek) holds. We show that (B(E))⊗k ⊂
B(Ek). In particular, this implies that Pk ∈ P(Ek) for all P ∈ P(E). Moreover, (B(E))⊗k = B(Ek)
provided that E is second countable, that is, there are countable many open set {Ui}∞

i=1 in E such
that every open set V ⊂ E can be written as the union of elements from {Ui}∞

i=1. More generally, for
topological spaces {Ei}∞

i=1 we have that ⊗n
i=1B(Ei) ⊂ B(∏n

i=1 Ei) for all n ∈ N ∪ {∞}. Indeed, by
definition, ⊗n

i=1B(Ei) is the smallest σ-algebra including {∏n
i=1 Bi : Bi ∈ B(Ei}, whereas B(∏n

i=1 Ei) is
a σ-algebra including {∏n

i=1 Bi : Bi ∈ B(Ei}. In particular, this implies that ∏n
i=1 mi ∈ M(Ek) for all

m1, . . . , mn ∈ M(E). Suppose now that {Ei}∞
i=1 are second countable. Using the proof of Lemma 1.2

of Kallenberg (1997), we see that ⊗n
i=1B(Ei) = B(∏n

i=1 Ei) for all n ∈ N ∪ {∞}. Next, we notice that a
second countable topological space E is separable (see Proposition 4.5 of Folland (1999)), that is, there
exists {xn}∞

n=1 in E such that U ∩ {xn}∞
n=1 6= ∅ for every non-empty open set U ⊂ E. Finally, a metric

space is second countable if and only if it is separable (see Proposition 2.1.4 of Dudley (2018)).
44Write Q = Q+ − Q−, where Q+, Q− ∈ M f (Ek), and h = h+ − h−, where h+ =

max(h, 0) and h− = max(−h, 0). The condition (h, Q) ∈ DEk is equivalent to the fact that∫
h∗1 (x1, . . . , xk)dQ∗2 (x1, . . . , xk) exist and are finite for all ∗1, ∗2 ∈ {+,−} and is automatically sat-

isfied if the function h is bounded.
45d̃F : F × F → [0, ∞) is a pseudometric on F if, for all x, y, z ∈ F, (i) d̃F(x, x) = 0, (ii) d̃F(x, y) =

d̃F(y, x) for all x, y ∈ F, and (iii) d̃F(x, z) ≤ d̃F(x, y) + d̃F(y, z) for all x, y, z ∈ F. In this case, the pair
(F, d̃F) is said to be a pseudometric space.

46Use 44 with Q = Q+.
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Thus, when estimating the integral Jk(h, Pk), the product measure Pk is replaced by
the empirical measure P̂k

n .

Remark 1.10.1 In the following, we will restrict our attention to the class of Borel mea-
surable functions that are symmetric w.r.t. their arguments. There is no loss of generality
in doing so since every function is associated to a unique symmetric function via the map
σ̃ : Hk →Hk

47 given by

σ̃(h)(x1, . . . , xk) =
1
k! ∑ h(xi1 , . . . , xik),

48

where the summation is over all permutations (i1, . . . , ik) of (1, . . . , k). From now on, we
use the notation Hk for the class of Borel measurable, symmetric functions h : Ek → R. This
implies a simplification in the empirical measure P̂k

n . Indeed, since the order of the elements
in (Xi1 , . . . , Xik) does not matter, we take

P̂k
n =

(
n
k

)−1

∑
1≤i1<···<ik≤n

k

∏
j=1

δXij
.

In this section, we derive the law of large numbers (LLN) and central limit theorem
(CLT) for U-statistics. To this end, we use Hoeffding decomposition of U-statistics,
which we now state (see Lemma 1 of Hoeffding (1961) and (1.8) of Arcones and Giné
(1993)).

Proposition 1.10.1 For j = 1, . . . , k, define on Ek the product measure, Pk,j(x1, . . . , xj) =

∏
j
i=1(δxi − P)× Pk−j, where x1, . . . , xj ∈ E and P ∈ P(E), and let pk,j : L 1(Hk, Pk) →

L 1(Hj, Pj) be given by

(pk,jh)(x1, . . . , xj) = Jk(h, Pk,j(x1, . . . , xj)).

Then, for all h ∈ L 1(Hk, Pk),

Jk(h, P̂k
n) = Jk(h, Pk) +

k

∑
j=1

(
k
j

)
Jj(pk,jh, P̂j

n).

Notice that the terms Jj(pk,jh, P̂j
n) = Uj,n(pk,jh, P) are U-statistics with kernel func-

tion pk,jh and order j. Thus, Proposition 1.10.1 shows that

Uk,n(h, P) = Uk(h, P) +
k

∑
j=1

(
k
j

)
Uj,n(pk,jh, P).

Proof of Proposition 1.10.1. We show that, for s = 1, . . . , k and h ∈ L 1(Hk, Pk),

Jk(h, Pk,s(x1, . . . , xs)) = Jk(h,
s

∏
i=1

δxi × Pk−s − Pk)

−
s−1

∑
j=1

∑
1≤l1<···<lj≤s

Jk(h, Pk,j(xl1 , . . . , xlj)).
(1.10.1)

47Notice that if h : Ek → R is Borel measurable, then also σ̃(h) is Borel measurable, yielding
σ̃(Hk) = {σ̃(h) : h ∈Hk} ⊂Hk.

48Using that Pk is a product measure and the linearity of the integral we see that σ̃(h) ∈ L 1(Hk, Pk)
if and only if h ∈ L 1(Hk, Pk).
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It follows from (1.10.1) with s = k that

Jk(h,
k

∏
i=1

δxi) = Jk(h, Pk) +
k

∑
j=1

∑
1≤l1<···<lj≤k

Jk(h, Pk,j(xl1 , . . . , xlj))

implying that

Jk(h, P̂k
n) = Jk(h, Pk) +

k

∑
j=1

(
n
k

)−1

∑
1≤i1<···<ik≤n

∑
1≤l1<···<lj≤k:
l1,...,lj∈{i1,...,ik}

Jk(h, Pk,j(Xl1 , . . . , Xlj))

= Jk(h, Pk) +
k

∑
j=1

(
k
j

)(
n
j

)−1

∑
1≤i1<···<ij≤n

Jk(h, Pk,j(Xi1 , . . . , Xij)).

We now show (1.10.1). Equality holds for all k ∈ N and s = 1. We show that if it
holds for s and all k ≥ s then it holds for s + 1 and all k ≥ s + 1. To this end, let
1 ≤ s ≤ k− 1 be fixed. Using the symmetry of h ∈ L 1(Hk, Pk) and (1.10.1) for s and
k− 1, we have that

Jk(h, Pk,s+1(x1, . . . , xs+1)) = Jk(h, (δxs+1 − P)× Pk−1,s(x1, . . . , xs))

= Jk(h, (δxs+1 − P)× (
s

∏
i=1

δxi × Pk−1−s − Pk−1))

−
s−1

∑
j=1

∑
1≤l1<···<lj≤s

Jk(h, (δxs+1 − P)× Pk−1,j(xl1 , . . . , xlj)).

The first term in the last equation is equal to

Jk(h,
s+1

∏
i=1

δxi × Pk−(s+1) − Pk)−Jk(h,
s

∏
i=1

δxi × Pk−s − Pk)−Jk(h, Pk,1(xs+1)),

where the term in the middle is

−Jk(h,
s

∏
i=1

δxi × Pk−s − Pk) = −
s

∑
j=1

∑
1≤l1<···<lj≤s

Jk(h, Pk,j(xl1 , . . . , xlj)).

Using symmetry we see that the second term is equal to

−
s

∑
j=2

∑
1≤l1<···<lj−1≤s

Jk(h, Pk,j+1(xl1 , . . . , xlj , xs+1)).

(1.10.1) for s + 1 and k follows.

We now turn to the definition of rank of a U-statistics.

Definition 1.10.2 Let P ∈ P(E) and 0 6= h ∈ L 1(Hk, Pk). The rank of the U-statistics
Uk,n(h, P) is

r = min({j ∈ {1, . . . , k} : pk,jh 6= 0 a.s.} ∪ {k}).49

Uk,n(h, P) is non-degenerate if r = 1 and degenerate if r > 1. If r = k, then Uk,n(h, P) is
completely degenerate.

49Equivalently, r = min({j ∈ {1, . . . , k} : Var[pk,jh(X1, . . . , Xj)] > 0} ∪ {k}).
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Thus, if Uk,n(h, P) has rank r, then Proposition 1.10.1 yields

Uk,n(h, P) = Uk(h, P) +
k

∑
j=r

(
k
j

)
Uj,n(pk,jh, P) a.s. (1.10.2)

Notice that the U-statistics Uj,n(pk,jh, P) are completely degenerate since pj,i pk,jh = 0

a.s. for all i = 1, . . . , j− 1. To see this, use that Pk,j(x1, . . . , xj) = ∏
j
i=1(δxi − P)× Pk−j

is a product measure and for all Borel measurable functions g : E→ R,∫ [∫
g(y)d(δxi − P)(y)

]
dP(xi) =

∫
g(xi)dP(xi)−

∫
g(y)dP(y) = 0. (1.10.3)

Hoeffding decomposition can be used to compute the (asymptotic) variance of Uk,n(h, P)
(see Lemma B, page 184, of Serfling (2009)).

Proposition 1.10.2 For all P ∈ P(E) and h ∈ L 2(Hk, Pk),

Var[Uk,n(h, P)] =
k

∑
j=r

(
k
j

)2(n
j

)−1

Var[pk,jh(X1, . . . , Xj)]

=

(
k
r

)2

r!n−rVar[pk,rh(X1, . . . , Xr)] + O(n−(r+1))50.

Proof of Proposition 1.10.2. Using (1.10.2) we have that

Var[Uk,n(h, P)] = E[(Uk,n(h, P)−Uk(h, P))2]

=
k

∑
j=r

k

∑
l=r

(
k
j

)(
k
l

)
E[Uj,n(pk,jh, P)Ul,n(pk,lh, P)].

Next, using (1.10.3) we see that E[Uj,n(pk,jh, P)Ul,n(pk,lh, P)] = 0 for j 6= l, yielding

Var[Uk,n(h, P)] =
k

∑
j=r

(
k
j

)2

Var[Uj,n(pk,jh, P)].

Using again (1.10.3) we have that

Var[Uj,n(pk,jh, P)] =
(

n
j

)−2

E

[(
∑

1≤i1<···<ij≤k
pk,jh(Xi1 , . . . , Xij)

)2]

=

(
n
j

)−2

∑
1≤i1<···<ij≤k

E

[(
pk,jh(Xi1 , . . . , Xij)

)2]

=

(
n
j

)−1

E

[(
pk,jh(X1, . . . , Xj)

)2]
,

which gives the first equality. For the second equality, notice that (n
j)
−1 = O(n−j) for

all j = r + 1, . . . , k and

r!
nr ≤

(
n
r

)−1

=
r!
nr

nr

n . . . (n− r + 1)
≤ r!

nr

(
1 +

r− 1
n

)r−1

=
r!
nr + O(n−(r+1)),

50g(n) = O( f (n)) if there exists M, N > 0 such that |g(n)| ≤ M| f (n)| for all n ≥ N.
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where the last equality follows from binomial theorem.

We are now ready to state the central limit theorem for non-degenerate U-statistics
(Hoeffding, 1948). The degenerate case is more complicated and it is studied in
Section 4.4 of Korolyuk and Borovskich (2013).

Proposition 1.10.3 Let {Xi}∞
i=1 be a sequence of i.i.d. random variables with probability

distribution P ∈ P(E) and h ∈ L 2(Hk, Pk) with Var[pk,1h(X1)] > 0. Then,

√
n(Uk,n(h, P)−Uk(h, P)) d−→ (W(P))(h),

where (W(P))(h) is normally distributed with mean zero and variance k2Var[pk,1h(X1)].

Proof of Proposition 1.10.3. By Hoeffding decomposition (Proposition 1.10.1), we
have that

Uk,n(h, P)−Uk(h, P) =
k
n

n

∑
i=1

pk,1h(Xi) +
k

∑
j=2

(
k
j

)
rn,j,

where

rn,j = Jj(pk,jh, P̂j
n) =

(
n
j

)−1

∑
1≤i1<···<ij≤n

pk,jh(Xi1 , . . . , Xij).

We show that
√

nrn,j converges in probability to zero. First notice that by Markov
inequality for all ε > 0

P(
√

nrn,j ≥ ε)51 ≤ n
ε2 E[r2

n,j]. (1.10.4)

Next, using (1.10.3) we have that

E[r2
n,j] =

(
n
j

)−2

∑
1≤i1<···<ij≤n

∑
1≤l1<···<lj≤n

E[pk,jh(Xi1 , . . . , Xij)pk,jh(Xl1 , . . . , Xlj)]

=

(
n
j

)−2

∑
1≤i1<···<ij≤n

E[(pk,jh(Xi1 , . . . , Xij))
2]

=

(
n
j

)−1

E[(pk,jh(X1, . . . , Xj))
2].

Now, we apply Jensen inequality and, using that h ∈ L 2(Hk, Pk), we obtain that

E[(pk,jh(X1, . . . , Xj))
2] ≤ E[(h(X1, . . . , Xk))

2] < ∞,

Since j ≥ 2, we conclude that
√

nrn,j
p−−−→

n→∞
0. Finally, we notice that k

n ∑n
i=1 pk,1h(Xi)

is an average of i.i.d. random variables with mean 0 and variance k2Var[pk,1h(X1)].
The result now follows from the central limit theorem for i.i.d. random variables.

51P(
√

nrn,j ≥ ε) is a short notation for P({ω ∈ Ω :
√

nrn,j(ω) ≥ ε}). Using a common convention,
here and in the following, the full definition of subsets of Ω is shortened.
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Remark 1.10.2 By Slutsky theorem,52 the CLT in Proposition 1.10.3 is equivalent to√
n

k2Var[pk,1h(X1)]
(Uk.n(h, P)−Uk(h, P)) d−→ N,

where N has the standard normal distribution. Since by Proposition 1.10.2

Var[Uk,n(h, P)] = k2Var[pk,1h(X1)]n−1 + O(n−2),

another application of Slutsky theorem yields that the CLT is equivalent to

(Var[Uk,n(h, P)])−1/2(Uk,n(h, P)−Uk(h, P)) d−→ N.

A straightforward consequence of the above CLT is the (weak) law of large numbers:

Uk,n(h, P) − Uk(h, P)
p−→ 0. Indeed, by Slutsky theorem Uk,n(h, P) − Uk(h, P) d−→ 0

and convergence in distribution and in probability to a constant are equivalent (see
e.g. Section 1.2). The strong law of large numbers was proved by Hoeffding (1961)
using Hoeffding decomposition (Proposition 1.10.1). Of course, the conditions h ∈
L 2(Hk, Pk) and Var[pk,1h(X1)] > 0 are not required.

Proposition 1.10.4 For all P ∈ P(E) and h ∈ L 1(Hk, Pk), Uk,n(h, P)−Uk(h, P) a.s.−→ 0.

For a simplified proof, which makes use of the backward martingale convergence
theorem, see Theorem 3.1.1 of Korolyuk and Borovskich (2013).

Next, we provide (without proof) some bounds on the deviations probabilities
of U-statistics from their means. For x ∈ R, bxc is the greatest integer less than or
equal to x.

Proposition 1.10.5 Let P ∈ P(E) and h ∈ Hk be bounded (say a ≤ h ≤ b and let
l = b− a). Then, for all n ≥ k and t > 0,

(i) P(|Uk,n(h, P)−Uk(h, P)| ≥ t) ≤ 2 exp
(
−2
bn/kct2

l2

)
,

(ii) P(|Uk,n(h, P)−Uk(h, P)| ≥ t) ≤ 2 exp
(
− bn/kct2

2Var[h(X1, . . . , Xk)] + 2/3lt

)
.

If additionally Uk,n(h, P) has rank r = 1, then

(iii) P

(√
n

k2Var[pk,1h(X1)]
|Uk,n(h, P)−Uk(h, P)| ≥ t

√
log(n)

)
= O

(
1√

log(n)n
t2
2

)
,

(iv) P(
√

n|Uk,n(h, P)−Uk(h, P)| ≥ t) ≤ 4 exp
(
− t2

2k2Var[pk,1h(X1)] + cnlt

)
,

where cn = 2k+2kk
√

n−1
+ 2

3k
√

n .

(i) and (ii) provide upper bounds for the probabilities of large deviations of the U-
statistics Uk,n(h, P) from its mean Uk(h, P). Notice that (i) gives a better bound for
large t.53 These are two-sided versions54 of Theorem 8.1.1 of Korolyuk and Borovs-
kich (2013) and Theorem A, page 201, of Serfling (2009) (see also Hoeffding (1963)).

52See for instance Theorem 1.3.6 and Example 1.4.7 of Van Der Vaart and Wellner (1996).
53This happens whenever t > 3

l (
l2

4 −Var[h(X1, . . . , Xk)]).
54For (ii) it is used that both Uk(h, P)− a and b−Uk(h, P) are non-negative and bounded above by

l.
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(iii) is concerned with deviations of order
√

log(n) for the term√
n

k2Var[pk,1h(X1)]
(Uk,n(h, P)−Uk(h, P)),

which converges by Remark 1.10.2 to a standard normal distribution. Such devia-
tions are called moderate. See Corollary 8.2.1 of Korolyuk and Borovskich (2013).
Finally, (iv) is a Bernstein-type inequality for U-statistics and its given in Theorem 2
of Arcones (1995).
The following inequality will be used in Section 2.8 (see (2.1.16) of Korolyuk and
Borovskich (2013) and Theorem 1.5.1 of Lee (1990)).

Proposition 1.10.6 Let P ∈ P(E) and h ∈ L q(Hk, Pk), where q ≥ 2. Then, there is a
constant 0 ≤ c < ∞ depending on h and q such that

E[|Uk,n(h, P)−Uk(h, P)|q] ≤ cn−q/2.

Furthermore, if |h| ≤ l for some 0 ≤ l < ∞, then c can be chosen so that it depends on l and
q only.

We conclude this section by generalizing the CLT in Proposition 1.10.3 to multidi-
mensional U-statistics. To this end, let H̃ m

k be the space of all Borel measurable
functions h : Ek → Rm that are symmetric w.r.t. their arguments and

D̃m
Ek = {(h, Q) ∈ H̃ m

k ×M±(Ek) :
∫

h(x1, . . . , xk)dQ(x1, . . . , xk) exists and is finite},

where the integral of a vector is the vector of the integrals and it exists and is finite if
and only if each of its components exists and is finite. Next, we define the function
J̃ m

k : D̃m
Ek → R by

J̃ m
k (h, Q) =

∫
h(x1, . . . , xk)dQ(x1, . . . , xk).

The subclass of H̃ m
k of functions with finite qth-moment w.r.t. Q ∈ P(Ek) is given by

L q(H̃ m
k , Q) = {h ∈ H̃ m

k : ‖h‖L q(H̃ m
k ,Q) < ∞}, where ‖h‖L q(H̃ m

k ,Q) = (Jk(‖h‖
q
2, Q))1/q.

Then, for P ∈ P(E) and h ∈ L 1(H̃ m
k , Pk), Ũm

k,n(h, P) = J̃ m
k (h, P̂k

n) is a (multidimen-
sional) U-statistics for the estimation of Ũm

k (h, P) = J̃ m
k (h, Pk).

Proposition 1.10.7 Let {Xi}∞
i=1 be a sequence of i.i.d. random variables with probabil-

ity distribution P ∈ P(E) and h ∈ L 2(H̃ m
k , Pk) with Var[pk,1hl(X)] > 0 for all

l = 1, . . . , m, where hl = πel ◦ h is the lth-component of h. Then,

√
n(Ũm

k,n(h, P)− Ũm
k (h, P)) d−→ (W̃m(P))(h),

where (W̃m(P))(h) = ((W(P))(h1), . . . , (W(P))(hm))> is normally distributed with mean
zero and covariance matrix whose (l1, l2)th-element is given by k2E[pk,1hl1(X)pk,1hl2(X)],
where l1, l2 = 1, . . . , m.

Proof of Proposition 1.10.7. Let p̃m
k,j : L 1(H̃ m

k , Pk)→ L 1(H̃ m
j , Pj) be given by

( p̃m
k,jh)(x1, . . . , xj) = J̃ m

k (h, Pk,j(x1, . . . , xj)).
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By Hoeffding decomposition (Proposition 1.10.1) applied to every component,

Ũm
k,n(h, P)− Ũm

k (h, P) =
k
n

n

∑
i=1

p̃m
k,1h(Xi) +

k

∑
j=2

(
k
j

)
r̃m

n,j,

where r̃m
n,j = J̃ m

j ( p̃m
k,jh, P̂j

n). Next, we notice that
√

nr̃m
n,j

p−−−→
n→∞

0. Indeed, the lth-

component of r̃m
n,j is πel (r̃

m
n,j) = Jj(pk,jhl , P̂j

n) and, as in the proof of Proposition 1.10.3,

we see that
√

nπel (r̃
m
n,j)

p−−−→
n→∞

0. Finally, observe that k
n ∑n

i=1 p̃m
k,1h(Xi) is an average of

i.i.d. random variables with mean 0 and covariance matrix whose (l1, l2)th-element
is given by

k2E[πel1
( p̃m

k,1h(X))πel2
( p̃m

k,1h(X))] = k2E[pk,1hl1(X)pk,1hl2(X)].

Therefore, the result follows from the multivariate central limit theorem.

1.11 U-processes

In this section, we use tools from empirical processes theory and make the conver-
gence results of the previous section (Propositions 1.10.4 and 1.10.3) uniform over
a class of functions H. This results are better understood for the case of sums of
i.i.d. random variables, that is, U-statistics of order one (Van Der Vaart and Wellner,
1996; Dudley, 2014; Giné and Nickl, 2016). Extension to arbitrary order is due to
(among others) Arcones and Giné (1993). For most of the results in this section we
do not provide proofs as they are often quite lengthy and involved. Nevertheless,
proofs are provided in the above references. Throughout this section, we denote by
E a Hausdorff topological space. First, we extend the definition of expectation and
probability to non-measurable functions and sets. Specifically, given a probability
space (Ω, Σ, P), we define the outer expectation of X : Ω→ R∪ {±∞} by

E∗[X] = inf
{

E[Y] : Y ≥ X, Y : Ω→ R∪ {±∞} is measurable and E[Y] exists
}

.

Similarly, the outer probability of an arbitrary subset A ⊂ Ω is given by

P∗(A) = inf{P(B) : A ⊂ B, B ∈ Σ}.

We notice that the above infima are achieved. Indeed, by Lemma 1.2.1 of Van Der
Vaart and Wellner (1996), there exists a measurable function X∗ : Ω → R ∪ {±∞}
such that (i) X∗ ≥ X, (ii) X∗ ≤ Y a.s. for every measurable function Y : Ω →
R ∪ {±∞} with Y ≥ X a.s. Thus, if E[X∗] exists, then E∗[X] = E[X∗]. For the ex-
istence of E[X∗] it is enough that E∗[X] < ∞. Next, Lemma 1.2.3 of Van Der Vaart
and Wellner (1996) shows that (i) the equality P∗(A) = E∗[IA], where A ⊂ Ω, con-
tinues to hold for outer expectation and (ii) there exists A ⊂ A∗ ∈ Σ such that
P∗(A) = P(A∗) and IA∗ = (IA)

∗. We refer to Section 1.2 of Van Der Vaart and
Wellner (1996) for further properties of outer expectation and probability. Next, we
extend the notions of convergence in distribution, convergence in probability, and
almost sure convergence to non-measurable maps (c.f. Section 1.2). Let (Ωn, Σn, Pn)
and (Ω, Σ, P) be probability spaces and {Xn}∞

n=1 be a sequence of random vari-
ables Xn : Ωn → F, where (F, dF) is a metric space. We say that Xn converges in
distribution∗ to a random variable X : Ω → F if limn→∞ E∗[H(Xn)] = E[H(X)]
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for all bounded and continuous functions H : F → R (see Definition 1.3.3 of Van
Der Vaart and Wellner (1996)). In this case, we write Xn

d∗−→ X. Notice that if Xn

are measurable, then Xn
d∗−→ X if and only if PXn

w−→ PX, that is, Xn
d−→ X. Next,

suppose that (Ωn, Σn, Pn) and (Ω, Σ, P). We say that Xn converges in outer proba-
bility (or in probability∗) if limn→∞ P∗({ω ∈ Ω : dF(Xn(ω), X(ω)) ≥ ε}) = 0 for
all ε > 0 (see Definition 1.9.1 of Van Der Vaart and Wellner (1996)). In this case,

we write Xn
p∗−→ X. Finally, Xn converges outer almost surely (or almost surely∗) if

P∗({ω ∈ Ω : limn→∞ dF(Xn(ω), X(ω)) = 0}) = 1. In this case, we write Xn
a.s.∗−−→ X.

We are now ready to define uniform convergence for a class of functionsH ⊂Hk.

Definition 1.11.1 Let P ∈ P(E) and H ⊂ L 1(Hk, Pk). H is a (P-)Glivenko-Cantelli

class if suph∈H|Uk,n(h, P)−Uk(h, P)| a.s.∗−−→ 0.

Following Arcones and Giné (1993) we give necessary and sufficient conditions for
H to be Glivenko-Cantelli. To this end, we need some conditions allowing for mea-
surability and finiteness of suprema of functions h ∈ H and their projections pk,jh,
j = 0, . . . , k, where pk,0 : L 1(Hk, Pk) → R is given by pk,0h = Jk(h, Pk) (see Ar-
cones and Giné (1993) page 1497). For this purpose, it is convenient to assume
that the underlying probability space is the countable product of probability spaces
(E,B(E), P), where P ∈ P(E). Then, it is sufficient that the above measurability
conditions hold for the completion55 of this probability space (c.f. Van Der Vaart and
Wellner (1996) pages 108-110). A sufficient condition for this is that the classH is im-
age admissible Suslin (see Dudley (2014) page 186). We summarize these conditions
in the following definition.

Definition 1.11.2 For P ∈ P(E), let (Ω, Σ, P) = (E∞, (B(E))⊗∞, P∞) be the product of
countably many identical probability spaces (E,B(E), P) and {Xn}∞

n=1 be the sequence of
random variables Xn : Ω→ E that map ω ∈ Ω into its nth-component. We say that a class
of functions H ⊂ L 1(Hk, Pk) is measurable in the sense of Arcones and Giné (1993) if (i)
suph∈H|pk,jh(x1, . . . , xj)| < ∞ for all x1, . . . , xk ∈ E and j = 0, . . . , k and (ii) H is image
admissible Suslin, that is, there exists a Suslin measurable space (Y,Y)56 and a surjective
function T : Y → H such that the map (x1, . . . , xk, y) 7→ (T(y))(x1, . . . , xk) is measurable
in (Ek ×Y, (B(E))⊗k ⊗Y).

Several steps are required to verify that the desired measurability conditions (cf.
page 1497 of Arcones and Giné (1993)) are satisfied by the class H in Definition
1.11.2. We refer to Appendix A for a thorough analysis. In particular, it is shown
there that suph∈H|Uk,n(h, P) − Uk(h, P)|, the envelope function hH, and several re-
lated functions are measurable in (Ω, Σ, P), where (Ω, Σ, P) is the completion of
(Ω, Σ, P). Finally, Proposition A.5 shows that the outer expectation of functions that
are completion measurable is equal to the expectation w.r.t. the completion. Using
Proposition A.5, we suppress in the following the superscript ∗ for sets and functions

55The completion of a probability space (Ω, Σ, P) (w.r.t. P) is the probability space (Ω, Σ, P), where
Σ consists of all the sets B∪N, where B ∈ Σ and N ⊂ Ω with P∗(N) = 0, and P is given by P(A∪N) =
P(A) (see Exercise 1.2.10 of Van Der Vaart and Wellner (1996)).

56A Polish space X is a separable, completely metrizable topological space, that is, there is a metric
dX on X such that (X, dX) is a complete (every Cauchy sequence of points in X has a limit in X) metric
space and the topology on X is generated by dX . A Suslin measurable space is a measurable space
(Y,Y) such that (i) Y is generated by a countable subclass Z ⊂ Y and {y} ∈ Y for all y ∈ Y and (ii)
there is a Polish space X and a measurable, surjective map S : X → Y (see Dudley (2014) pages 179-180
and 185).
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that are completion measurable. Under the assumptions in Definition 1.11.2, neces-
sary and sufficient conditions for H (endowed with some pseudometric d̃H) to be
Glivenko-Cantelli can be given in terms of covering numbers. The ε-covering num-
ber of a (non-empty) pseudometric space (F, d̃F) is the minimum number of d̃F-balls
with radius at most ε needed to cover F, that is,

N(F, d̃F, ε) = inf{j ∈N : ∃z1, . . . , zj ∈ F : sup
y∈F

min
i=1,...,j

d̃F(y, zi) ≤ ε}.57

Examples of (random) pseudodistances on a class of functions H ⊂ Hk are d̃(k,0)
H,q,P̂k

n
:

H×H → [0, ∞) and d̃(1,k−1)
H,q,P̂k

n
: H×H → [0, ∞), where for q ≥ 1

d̃(k,0)
H,q,P̂k

n
(h1, h2) = d̃L q(Hk ,P̂k

n)
(h1, h2)

d̃(1,k−1)
H,q,P̂k

n
(h1, h2) = ‖Jk(h1 − h2, kδ(·) × P̃k−1

n (·))‖L q(H1,Pn),

and, for y ∈ {X1, . . . , Xn}, P̃k−1
n (y) is the empirical measure P̂k−1

n−1 of Remark 1.10.1
based on the sample {X1, . . . , Xn} \ {y} of size n− 1.

We introduce some more notation and define the envelope of a class H ⊂ Hk as
the function hH : Ek → [0, ∞) given by hH(x1, . . . , xk) = suph∈H|h(x1, . . . , xk)|. We
are now ready to state Theorem 3.1 of Arcones and Giné (1993).

Theorem 1.11.1 Let P ∈ P(E) and H ⊂ L 1(Hk, Pk) be measurable in the sense of Ar-
cones and Giné (1993). If Jk(hH, Pk) < ∞, then H is P-Glivenko-Cantelli if and only if
1
n log(N(H, d̃(1,k−1)

H,1,P̂k
n

, ε))
p∗−→ 0 for all ε > 0.

We notice that by Jensen’s inequality, for all h1, h2 ∈ H,

d̃(1,k−1)
H,1,P̂k

n
(h1, h2) ≤ d̃(k,0)

H,1,P̂k
n
(h1, h2)

yielding that, for all ε > 0,

N(H, d̃(1,k−1)
H,1,P̂k

n
, ε) ≤ N(H, d̃(k,0)

H,1,P̂k
n
, ε).

This immediately gives the following corollary (Corollary 3.2 in Arcones and Giné
(1993)).

Corollary 1.11.1 Let P ∈ P(E) and H ⊂ L 1(Hk, Pk) be measurable in the sense of

Arcones and Giné (1993). If Jk(hH, Pk) < ∞ and 1
n log(N(H, d̃(k,0)

H,1,P̂k
n
, ε))

p∗−→ 0 for all
ε > 0, thenH is P-Glivenko-Cantelli.

For k = 1, d̃(k,0)
H,1,P̂k

n
= d̃(1,k−1)

H,1,P̂k
n

58 yielding that the condition 1
n log(N(H, d̃(k,0)

H,1,P̂k
n
, ε))

p∗−→ 0,
for all ε > 0, is necessary (see also Theorem 3.7.14 and Corollary 3.7.15 in Giné and
Nickl (2016)). On the other hand, Arcones and Giné (1993), pages 1511-1512, show

that, for k > 1, the condition 1
n log(N(H, d̃(k,0)

H,1,P̂k
n
, ε))

p∗−→ 0, for all ε > 0, is, in general,
only sufficient.

57As usual, the infimum over the empty set is infinity.
58For k = 1, kδ(·) × P̂k−1

n (·) reduces to δ(·) yielding that Jk(h1 − h2, kδ(·) × P̂k−1
n (·)) = h1 − h2. Also,

notice that P̂1
n = Pn.
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As we will see, a typical sufficient condition for 1
n log(N(H, d̃(k,0)

H,1,P̂k
n
, ε))

p∗−→ 0 is
that H is a VC subgraph class of functions, that is, a class of functions whose sub-
graphs form a VC class of sets (see Section 2.6 of Van Der Vaart and Wellner (1996)
and Section 3.6 of Giné and Nickl (2016)). We give now a precise definition of VC
subgraph class. To this end, we denote by #A the cardinality of a set A.

Definition 1.11.3 Let C be a collection of subsets of a set A. The VC index of C is

V(C) = inf{j ∈N : max
z1,...,zj∈A

#(C ∩ {{z1}, . . . , {zj}}) < 2j}.59

C is said to be a VC class if V(C) < ∞. The subgraph of a function h : A→ R is

Gh = {(z, t) ∈ A×R : h(z) ≥ t}.

A collection H of functions h : A → R is called a VC subgraph class if the collection
CH = {Gh : h ∈ H} of all subgraphs of functions inH is a VC class of sets in A×R.

We give several examples of VC subgraph classes of functions in Section 2.7. In
many of those examples it is used that the collection of indicators of a VC class of
sets is a VC subgraph class of functions. To see this, let H = {IC : C ∈ C}, where C
is a VC class of sets in a set A. Then, for C ∈ C,

GIC = {(z, t) ∈ A×R : IC ≥ t} = A× (−∞, 0] ∪ C× (0, 1],

yielding that
CH = {GIC : C ∈ C} = A× (−∞, 0] ∪ C × (0, 1].

It follows from Proposition 1.11.1 below that CH is a VC class of sets. We summarize
therein several permanence properties of VC classes of sets (see Lemma 2.6.17 in Van
Der Vaart and Wellner (1996) and Proposition 3.6.7 in Giné and Nickl (2016)).

Proposition 1.11.1 Let C and D be VC classes of sets in a set A, ϕ : A → B be a bijective
function and ψ : Z → A be an arbitrary function. Then, the following classes of sets are
VC:

(i) A \ C = {A \ C : C ∈ C},

(ii) C ∩ D = {C ∩ D : C ∈ C, D ∈ D},

(iii) C ∪ D = {C ∪ D : C ∈ C, D ∈ D},

(iv) ϕ(C) = {ϕ(C) : C ∈ C},

(v) ψ−1(C) = {ψ−1(C) : C ∈ C},

(vi) C̃, where C̃ ⊂ C.

Finally, if C and D are VC classes in sets A and B, then the following class is VC:

(vii) C ×D = {C× D : C ∈ C, D ∈ D}.

For VC subgraph classes of functions we have the following result (see Lemma 2.6.18
in Van Der Vaart and Wellner (1996)).

59For two collections of subsets of a set A, C and D, C ∩ D = {C ∩ D : C ∈ C, D ∈ D}.
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Proposition 1.11.2 Let H and I be VC subgraph classes of functions on a set A, g : R→
R be a monotone function, and ϕ : A → R and ψ : Z → A be arbitrary functions. Then,
the following classes of functions are VC subgraph:

(i) min(H, I) = {min(h, i) : h ∈ H, i ∈ I},

(ii) max(H, I) = {max(h, i) : h ∈ H, i ∈ I},

(iii) ϕ +H = {ϕ + h : h ∈ H},

(iv) ϕH = {ϕh : h ∈ H},

(v) H ◦ ψ = {h ◦ ψ : h ∈ H},

(vi) g ◦ H = {g ◦ h : h ∈ H}.

The importance of VC subgraph classes lies in that their ε-covering numbers are
bounded above by a polynomial in ε (see Theorem 2.6.7 of Van Der Vaart and Well-
ner (1996) or Theorem 3.6.9 of Giné and Nickl (2016)).

Theorem 1.11.2 For Q ∈ P(Ek) and q ≥ 1, let H ⊂ L q(Hk, Q) be a VC subgraph class
of functions with envelope hH that is measurable for the completion of (Ek, (B(E))⊗k, Q)
and satisfies ‖hH‖L q(Hk ,Q) > 0.60 Then, for all 0 < ε < 1,

N(H, d̃L q(Hk ,Q), ε‖hH‖L q(Hk ,Q)) ≤ c1ε−qc2

for some constants c1 ≥ 1 and c2 ≥ 0 that depend on V(CH) but not on Q.

Remark 1.11.1 Under the assumptions of Theorem 1.11.2, we have that

N(H, d̃L q(Hk ,Q), ε‖hH‖L q(Hk ,Q)) ≤


c1ε−qc2 if 0 < ε < 1,
c1 if 1 ≤ ε < 2,
1 if ε ≥ 2.

Indeed, since, for every pseudometric space (F, d̃F), the function ε 7→ N(F, d̃F, ε) is non-
increasing, we have that, for all ε ≥ 1,

N(H, d̃L q(Hk ,Q), ε‖hH‖L q(Hk ,Q)) ≤ lim
η→1−

c1η−qc2 = c1.

Next, for all h1, h2 ∈ H, we have that

sup
h∈H

min
i=1,2

d̃L q(Hk ,Q)(h, hi) ≤ sup
h∈H
‖h‖L q(Hk ,Q) + min

i=1,2
‖hi‖L q(Hk ,Q) ≤ 2‖hH‖L q(Hk ,Q),

implying that N(H, d̃L q(Hk ,Q), ε‖hH‖L q(Hk ,Q)) = 1 for all ε ≥ 2. We finally notice that,
if ‖hH‖L q(Hk ,Q) = 0, then N(H, d̃L q(Hk ,Q), ε) = 1 for all ε > 0.

By combining Corollary 1.11.1 and Theorem 1.11.2, we obtain that VC subgraph
classes of functions are Glivenko-Cantelli (Corollary 3.3 in Arcones and Giné (1993)).

Corollary 1.11.2 Let P ∈ P(E) and H ⊂ L 1(Hk, Pk) be measurable in the sense of
Arcones and Giné (1993). If Jk(hH, Pk) < ∞ andH is VC subgraph, thenH is P-Glivenko-
Cantelli.

60‖hH‖L q(Hk ,Q) = ∞ is possible, in which case, by definition of covering number,
N(H, d̃L q(Hk ,Q), ε‖hH‖L q(Hk ,Q)) = 1.
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Proof of Corollary 1.11.2. By Corollary 1.11.1 it is enough to show that for all ε > 0
1
n log(N(H, d̃(k,0)

H,1,P̂k
n
, ε))

p∗−→ 0. Recall that d̃(k,0)
H,1,P̂k

n
= d̃L 1(Hk ,P̂k

n)
. Using Theorem 1.11.2

with q = 1 and Q = P̂k
n and Remark 1.11.1 we see that for all ε > 0

N(H, d̃L 1(Hk ,P̂k
n)

, ε) ≤ c1 max
(

1,
(‖hH‖L 1(Hk ,P̂k

n)

ε

)c2)
. (1.11.1)

Since, by Proposition 1.10.4, ‖hH‖L 1(Hk ,P̂k
n)

a.s.−→ ‖hH‖L 1(Hk ,Pk), (1.11.1) yields that

1
n

log(N(H, d̃L 1(Hk ,P̂k
n)

, ε))
a.s.∗−−→ 0.

We now turn to the uniform CLT over a classH ⊂ L 2(Hk, Pk), where P ∈ P(E).
We study only the non-degenerate case, that is, Un,k(h) is non-degenerate for all
h ∈ H (Section 4 of Arcones and Giné (1993)). The degenerate case is studied in
Section 5 of Arcones and Giné (1993). We begin with the case k = 1 and define the
Gaussian limit process. We denote by f(A) the set of all real-valued functions from
a set A and by `∞(A) ⊂ f(A) the subset of all bounded functions. We endow `∞(A)
with the supremum norm.

Definition 1.11.4 Let P ∈ P(E) and H ⊂ L 2(H1, P). A (P-)Brownian bridge is an
f(H)-valued Gaussian process {(B(P))(h)}h∈H with mean 0 ∈ f(H) and covariance func-
tion61,62 γB(P) : H×H → R given by

γB(P)(h1, h2) = J1((p1,1h1)(p1,1h2), P).

The name P-Brownian bridge is due to the fact that if P = λ|E is the Lebesgue mea-
sure on E = [0, 1] and H = {I[0,t] : t ∈ [0, 1]}, then γB(P)(I[0,s], I[0,t]) = min(s, t)− st.
By identifyingH with [0, 1] via the bijection I[0,t] ←→ t, we see that {(B(P))(h)}h∈H
is indeed a Brownian bridge.

In general, the stochastic process {(B(P))(h)}h∈H is not continuous nor bounded.
However, it is useful that {(B(P))(h)}h∈H admits a continuous and bounded version
(see Definition 3.7.26 of Giné and Nickl (2016)). We recall that {Ỹ(a)}a∈A is a ver-
sion of the stochastic process {Y(a)}a∈A if P(Ỹ(a) = Y(a)) = 1 for all a ∈ A (see
page 116 of Van Der Vaart and Wellner (1996)). For k ∈ N, q ≥ 1, and H ⊂ Hk we
define the pseudodistance d̃(1,k−1)

H,q,Pk : H×H → [0, ∞) by d̃(1,k−1)
H,q,Pk (h1, h2) = ‖pk,1h1 −

pk,1h2‖L q(H1,P).63

Definition 1.11.5 Let P ∈ P(E) and H ⊂ L 2(H1, P). We say that H is (P-)pre-
Gaussian if the P-Brownian bridge {(B(P))(h)}h∈H admits a version whose sample paths
are all bounded and uniformly continuous w.r.t. the pseudodistance d̃(1,0)

H,2,P.

61γ : H×H → R is a covariance function if, for all m ∈ N and h1, . . . , hm ∈ H, the m×m matrix
whose (i, j)th-element is given by γ(hi, hj) is symmetric and positive semi-definite.

62Existence of a Gaussian process with given mean and covariance function on some probability
space (Ω̃, Σ̃, P̃) is guaranteed by Kolmogorov existence theorem (see Theorem 2.1.5 in Oksendal (2003)
or Theorem 2.4.3 in Tao (2011)).

63Notice the similarity between d̃(1,k−1)
H,q,Pk and d̃(1,k−1)

H,q,P̂k
n

. However, P̂k
n is not a product measure, which

makes its expression seemingly more involved.
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Thus, if H is P-pre-Gaussian, then {(B(P))(h)}h∈H has a version that takes val-
ues in `∞(H). We also suppose that the empirical processes {Bn(P)(h)}h∈H, where
Bn(P)(h) =

√
n(U1,n(h, P)−U1(h, P)), are bounded so that {Bn(P)(h)}h∈H assumes

values in `∞(H). For this, it is sufficient that (i) of Definition 1.11.2 holds (here k = 1).
Accordingly, the uniform CLT is given as convergence in distribution∗ in `∞(H) (see
Definition 3.7.29 of Giné and Nickl (2016)).

Definition 1.11.6 Let P ∈ P(E) and H ⊂ L 2(H1, P) satisfying (i) of Definition 1.11.2.
We say thatH is (P-)Donsker if it is P-pre-Gaussian and

Bn(P) d∗−→ B̃(P),

where B̃(P) is the bounded and uniformly continuous version of B(P).

Using Remark 3.7.27 of Giné and Nickl (2016), we see thatH is P-pre-Gaussian if and
only if {(B(P))(h)}h∈H admits a version whose sample paths are all uniformly con-
tinuous w.r.t. the pseudodistance d̃(1,0)

H,2,P and (H, d̃(1,0)
H,2,P) is totally bounded (cf. page

89 of Van Der Vaart and Wellner (1996)). We recall that a pseudometric space (F, d̃F)
is totally bounded if and only if for all ε > 0 there exists x1, . . . , xm ∈ F such that
F ⊂ ∪m

i=1{y ∈ F : d̃F(y, xi) < ε}. Next, we notice that, by the continuous mapping

theorem (Theorem 1.3.6 of Van Der Vaart and Wellner (1996)), Bn(P) d∗−→ B̃(P) im-
plies convergence of the corresponding finite-dimensional marginal distributions.
Theorem 1.5.4 and 1.5.7 of Van Der Vaart and Wellner (1996) yield the converse of
this statement under an additional condition (see (iii) below), which entails that,
with high probability, Bn(P)(h1) and Bn(P)(h2) are close to each other whenever
d̃(1,0)
H,2,P(h1, h2) is small and n is large. We thus obtain Example 1.5.10 of Van Der Vaart

and Wellner (1996) (see also Theorem 3.7.31 of Giné and Nickl (2016)).

Theorem 1.11.3 Let P ∈ P(E) and H ⊂ L 2(H1, P) satisfying (i) of Definition 1.11.2.
H is P-Donsker if and only if the following three conditions hold:
(i) the finite-dimensional marginal distributions of {(Bn(P))(h)}h∈H converge weakly to
the corresponding marginal distributions of {(B(P))(h)}h∈H,
(ii) (H, d̃(1,0)

H,2,P) is totally bounded, and

(iii) {(Bn(P))(h)}h∈H is asymptotically equicontinuous in probability w.r.t. d̃(1,0)
H,2,P, that is,

for all ε > 0,

lim
δ→0+

lim sup
n→∞

P∗( sup
h1−h2∈H

d̃(1,0)
H,2,P ,δ

(P)
|(Bn)(P)(h1 − h2)| ≥ ε) = 0,

where
H

d̃(1,0)
H,2,P,δ

(P) = {h1 − h2 : h1, h2 ∈ H and d̃(1,0)
H,2,P(h1, h2) ≤ δ}.

Actually, Example 1.5.10 shows that it is enough that (ii) and (iii) in Theorem 1.11.3
hold for any pseudodistance on H. As we will see below, a convenient choice is the

L 2(H1, P)-pseudometric d̃
(1,0)
H,2,P, which is defined as the restriction of d̃L 2(H1,P) toH.

Similarly, if (i) of Definition 1.11.2 holds, then d̃(1,0)
H,2,P can be replaced in Definition

1.11.7 by d̃
(1,0)
H,2,P (see page 89 of Van Der Vaart and Wellner (1996)). Finally, we notice

that, by the CLT (Proposition 1.10.7 with k = 1), (i) of Theorem 1.11.3 is satisfied
if and only if Var[p1,1h(X1)] > 0 for all h ∈ H, that is, p1,1h 6= 0 P-a.s. and h
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is non-constant on a set of positive probability. In this case, we say that H is (P-
)non-degenerate. Using that E is a Hausdorff topological space and footnote 41, we
see that in this case U1,n(h, P) = J1(h, Pn) = 1

n ∑n
i=1 h(Xi) is non-degenerate for all

h ∈ H.
As before, necessary conditions for a class to be Donsker can be given in terms

of covering numbers. To this end, we assume that E is second countable, which is
used alongside Definition 1.11.2 to obtain the desired measurability conditions (see
Proposition A.3 in Appendix A). We begin with Theorem 3.7.36 of Giné and Nickl
(2016).

Theorem 1.11.4 Suppose that E is second countable. Let P ∈ P(E) andH ⊂ L 2(H1, P)
be measurable in the sense of Arcones and Giné (1993) and P-non-degenerate. IfJ1(h2

H, P) <
∞ and

lim
δ→0+

lim sup
n→∞

E∗[
∫ δ

0

√
log(N(H, d̃L 2(H1,P̂1

n )
, ε)dε] = 0, (1.11.2)

thenH is P-Donsker.

Remark 1.11.2 Let Pd f (E) be the subset of P(E) consisting of all finitely discrete proba-
bility measures. By Theorem 3.7.37 of Giné and Nickl (2016) (see also Theorem 2.5.2 of Van
Der Vaart and Wellner (1996) and Theorem 6.3.1 of Dudley (2014)), a sufficient condition
for (1.11.2) is that∫ ∞

0
sup

Q∈Pd f (E):‖hH‖L 2(H1,Q)>0

√
log(N(H, d̃L 2(H1,Q), ε‖hH‖L 2(H1,Q))dε < ∞. (1.11.3)

Notice that (1.11.3) holds if H is a VC subgraph class. Indeed, using Remark 1.11.1, we see
that the left hand side (LHS) of (1.11.3) is bounded above by∫ 1

0

√
log(c1) + 2c2 log(1/ε)dε +

√
log(c1) < ∞.64

Now, we extend the above results to general k and class H ⊂ L 2(Hk, Pk). To this
end, we need some more notation. For j = 1, . . . , k, we define the product measure
on Ek, Pk,j(x1, . . . , xj) = ∏

j
i=1 δxi × Pk−j, where x1, . . . , xj ∈ E, and the function pk,j :

L 1(Hk, Pk) → L 1(Hj, Pj) by (pk,jh)(x1, . . . , xj) = Jk(h, Pk,j(x1, . . . , xj)). The limit
process is the f(H)-valued Gaussian process {(Wk(P))(h)}h∈H, where Wk(P)(h) =
kB(P)(pk,1h) and {(B(P))(pk,1h)}h∈H is the P-Brownian bridge process indexed by
pk,1H. Next, the empirical process {Bn(P)(h)}h∈H is replaced, for general k, by the
U-process {(Wk,n(P))(h)}h∈H, where (Wk,n(P))(h) =

√
n(Uk,n(h, P)−Uk(h, P)). Fi-

nally, for general k, the pseudodistances d̃(1,0)
H,2,P and d̃

(1,0)
H,2,P are replaced by d̃(1,k−1)

H,2,Pk and

d̃
(1,k−1)
H,2,Pk , respectively, where, for k ∈ N and q ≥ 1, d̃(1,k−1)

H,q,Pk is defined before Defi-

nition 1.11 and d̃
(1,k−1)
H,q,Pk : H ×H → [0, ∞) is given by d̃

(1,k−1)
H,q,Pk (h1, h2) = ‖pk,1h1 −

pk,1h2‖L q(H1,P). We begin with the definition of Donsker class for general k.

Definition 1.11.7 Let P ∈ P(E) andH ⊂ L 2(Hk, Pk) satisfying (i) of Definition 1.11.2.
We say thatH is a (P-)Donsker class if pk,1H is P-pre-Gaussian and

Wk,n(P) d∗−→ W̃k(P),

64Set t = 1
ε and use that log(t) ≤ t for all t ≥ 1.
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where W̃k(P) is the bounded and uniformly continuous version of Wk(P).

The condition that pk,1H is P-pre-Gaussian entails that {(Wk(P))(h)}h∈H admits a
version whose sample paths are all bounded and uniformly continuous w.r.t. the

pseudodistance d̃
(1,k−1)
H,2,Pk . Indeed, for all h1, h2 ∈ H and q ≥ 1

d̃
(1,0)
pk,1H,q,P(pk,1h1, pk,1h2) = ‖pk,1h1 − pk,1h2‖L q(H1,P) = d̃

(1,k−1)
H,q,Pk (h1, h2).

As mentioned before, boundedness of the sample paths is equivalent to total bound-

edness of (H, d̃
(1,k−1)
H,2,Pk ). Theorem 1.11.3 now takes the following form (see pages

1496-1497 of Arcones and Giné (1993)).

Theorem 1.11.5 Let P ∈ P(E) and H ⊂ L 2(Hk, Pk) satisfying (i) of Definition 1.11.2.
H is P-Donsker if and only if the following three conditions hold:
(i) the finite-dimensional marginal distributions of {(Wk,n(P))(h)}h∈H converge weakly to
the corresponding marginal distributions of {(Wk(P))(h)}h∈H,

(ii) (H, d̃
(1,k−1)
H,2,Pk ) is totally bounded, and

(iii) {(Wk,n(P))(h)}h∈H is asymptotically equicontinuous in probability w.r.t. d̃
(1,k−1)
H,2,Pk , that

is, for all ε > 0,

lim
δ→0+

lim sup
n→∞

P∗( sup
h1−h2∈H

d̃
(1,k−1)
H,2,Pk ,δ

(P)
|(Wk,n)(P)(h1 − h2)| ≥ ε) = 0, (1.11.4)

where
H

d̃
(1,k−1)
H,2,Pk ,δ

(P) = {h1 − h2 : h1, h2 ∈ H and d̃
(1,k−1)
H,2,Pk (h1, h2) ≤ δ}.

Using Proposition 1.10.7, we see that condition (i) is satisfied if and only if Var[pk,1h(X1)] >
0 for all h ∈ H, that is, pk,1h 6= 0 P-a.s. As before, in this case, we say that H is (P-
)non-degenerate. Thus, non-degenerate classes are Donsker if and only if (ii) and
(iii) of Theorem 1.11.5 hold.

Now, we briefly discuss convergence of finite dimensional distributions for depth
functions, which, by Theorem 1.11.5, is necessary for the uniform CLT. Specifically,
Proposition 1.10.7 yields convergence of the finite dimensional distributions of Type
A and Type B depth functions that, for a given P ∈ Pd, are (functions of) non-
degenerate U-statistics with finite second moment. In particular, Type A depth func-
tions possess finite second moments because they are bounded (see Definition 1.6.1).
Finiteness of the second moment for Type B depth functions depends on the distri-
bution P. For more details about the uniform CLT for Type A depth functions, we
refer to Theorem 2.4.2 in Chapter 2. Turning to the halfspace depth, uniform CLT
is studied by Massé (2004). In this case, convergence of finite dimensional distribu-
tions does not hold for a large class of probability distributions (see Theorem 2.4 and
Remark 2.1 of Massé (2004)). Nevertheless, Theorem 2.1 and Corollary 2.3 therein
shows that the uniform CLT holds under some additional conditions. Specifically,
it is supposed that P ∈ Pd,hp. Then, the function u 7→ P(Hx,u) is continuous by
Proposition 4.5 (i) and, since Sd−1 is compact, it assumes a minimal value. Thus, for
all x ∈ Rd there exists u∗x ∈ Sd−1 such that D̃H(x, P) = P(Hx,u∗x). The CLT holds
uniformly on a closed subset A ⊂ Rd such that D̃(x, P) > 0 and u∗x is unique for all
x ∈ A.
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We now return to the general theory of U-processes and provide in the following
necessary and sufficient conditions for a class to be Donsker. We begin with Theorem
4.1 of Arcones and Giné (1993).

Theorem 1.11.6 Suppose that E is second countable. Let P ∈ P(E) andH ⊂ L 2(Hk, Pk)
be measurable in the sense of Arcones and Giné (1993), P-non-degenerate, and such that

limt→∞ t2Pk(hH > t) = 0. H is P-Donsker if and only if (H, d̃
(1,k−1)
H,2,Pk ) is totally bounded

and for some (resp. all) 0 < q < 2

lim
δ→0+

lim sup
n→∞

E[ sup
h1−h2∈H

d̃
(1,k−1)
H,2,Pk ,δ

(P)
|(Wk,n)(P)(h1 − h2)|q] = 0. (1.11.5)

If limt→∞ t2Pk(hH > t) = 0 we say that the envelope function hH possesses a weak
second moment condition. This condition is necessary for H to be Donsker (see
pages 129-130 of Van Der Vaart and Wellner (1996) and Proposition 3.7.32 of Giné
and Nickl (2016)) and, since t2Pk(hH > t) ≤ Jk(h2

HI[hH>t], Pk), it is satisfied when-
everJk(h2

H, Pk) < ∞. Under the conditions of Definition 1.11.2, we can remove outer
probability in Theorem 1.11.5. Thus, the “if” part in Theorem 1.11.6 follows immedi-
ately from Theorem 1.11.5 and Markov inequality. The term “resp. all” in Theorem
1.11.6 means that ifH is P-Donsker, then (1.11.5) already holds for all 0 < q < 2.

We know from Hoeffding decomposition (Proposition 1.10.1) that for all h ∈ H

Wk,n(P)(h) =
√

n
k

∑
j=1

(
k
j

)
Uj,n(pk,jh, P). (1.11.6)

SinceH is P-non-degenerate, the finite dimensional distributions of {
√

nkU1,n(pk,1h, P)}h∈H
converge to those of {Wk(P)(h)}h∈H, whereas, for fixed h, the other terms in (1.11.6)
converge to zero (cf. Proposition 1.10.7). Therefore, we see that H is P-Donsker
if pk,1H is P-Donsker and the remainder terms in (1.11.6) satisfy the asymptotic
equicontinuity condition (1.11.4) or (1.11.5). This shows that (ii) and (iii) of the fol-
lowing corollary imply (i) (see Corollary 4.2 of Arcones and Giné (1993)).

Corollary 1.11.3 Suppose that E is second countable. Let P ∈ P(E) andH ⊂ L 2(Hk, Pk)
be measurable in the sense of Arcones and Giné (1993), P-non-degenerate, and such that
limt→∞ t2Pk(hH > t) = 0. The following are equivalent:
(i)H is P-Donsker,
(ii) pk,1H is P-Donsker and

√
n suph∈H|Uj,n(pk,jh, P)| p−→ 0 for all j = 2, . . . , m, and

(iii) pk,1H is P-Donsker and
√

nE[suph∈H|Uj,n(pk,jh, P)|q] −→ 0 for all j = 2, . . . , m and
some (resp. all) 0 < q < 2.

The next result gives a simple necessary condition for convergence in (ii) and (iii) of
Corollary 1.11.3 in terms of covering numbers (see Theorem 4.4 of Arcones and Giné
(1993)). We say that H ⊂ HK is uniformly bounded if for some 0 < lH < ∞ and all
h ∈ H |h| ≤ lH.

Theorem 1.11.7 Suppose that E is second countable. Let P ∈ P(E) and H ⊂ Hk be mea-
surable in the sense of Arcones and Giné (1993), P-non-degenerate, and uniformly bounded.
Then,H is P-Donsker if pk,1H is P-Donsker and for all ε > 0

lim
n→∞

E∗[n−1/2 log(N(H, d̃L 1(Hk ,P̂k
n)

, n−1/2ε))] = 0. (1.11.7)
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Notice that (1.11.7) is satisfied by a uniformly bounded VC subgraph class of func-
tions H. Indeed, using (1.11.1) and ‖hH‖L 1(Hk ,P̂k

n)
≤ lH, for some 0 < lH < ∞, we

obtain that for n ≥ ε2

l2
H

n−1/2 log(N(H, d̃L 1(Hk ,P̂k
n)

, n−1/2ε)) ≤ n−1/2 log(c1) + n−1/2c2 log
(

lH
n−1/2ε

)
,

which converges to zero as n→ ∞. We thus obtain the following corollary.

Corollary 1.11.4 Suppose that E is second countable. Let P ∈ P(E) andH ⊂Hk be mea-
surable in the sense of Arcones and Giné (1993), P-non-degenerate, and uniformly bounded.
IfH is a VC subgraph class, thenH is P-Donsker.

Proof of Corollary 1.11.4. By Theorem 1.11.7, it is enough to show that pk,1H is
P-Donsker. This follows from Proposition 1.11.3 below.

Proposition 1.11.3 Suppose that E is second countable. Let P ∈ P(E) andH ⊂ L 2(Hk, Pk)
be measurable in the sense of Arcones and Giné (1993), P-non-degenerate, and such that
Jk(h2

H, Pk) < ∞. IfH is a VC subgraph class, then pk,1H is P-Donsker.

Proof of Proposition 1.11.3. We apply Theorem 1.11.4 to the class pk,1H. To this
end, notice that by Jensen’s inequality pk,1H ⊂ L 2(H1, P) and J1(h2

pk,1H
, P) ≤

Jk(h2
H, Pk) < ∞. Next, using that H is measurable in the sense of Arcones and

Giné (1993) and pk,jh = p1,j pk,1h for h ∈ H and j = 0, 1, we obtain that pk,1H satisfies
(i) of Definition 1.11.2. pk,1H satisfies (ii) of Definition 1.11.2 by Proposition A.1 in
Appendix A. To conclude the proof, it is enough to show that

lim
δ→0+

lim sup
n→∞

E∗
[∫ δ

0

√
log(N(pk,1H, d̃L 2(H1,P̂1

n )
, ε)dε

]
= 0.

Now, by Jensen’s inequality we have that for all h1, h2 ∈ H

d̃L 2(H1,P̂1
n )
(pk,1h1, pk,1h2) ≤ d̃L 2(Hk ,P̂1

n×Pk−1)(h1, h2),

which implies that for all ε > 0

N(pk,1H, d̃L 2(H1,P̂1
n )

, ε) ≤ N(H, d̃L 2(Hk ,P̂1
n×Pk−1), ε).

Using Theorem 1.11.2 with q = 2 and Q = P̂1
n × Pk−1 and Remark 1.11.1 we see that

for all ε > 0

N(H, d̃L 2(Hk ,P̂1
n×Pk−1), ε) ≤ c1 max

(
1,
(‖hH‖L 2(Hk ,P̂1

n×Pk−1)

ε

)2c2)
.

Using that log(s) ≤ s and
√

c1 + t ≤ c1 +
√

t for all s > 0 and t ≥ 0, we obtain that√
log(N(pk,1H, d̃L 2(H1,P̂1

n )
, ε) ≤

√
c1 + 2c2‖hH‖L 2(Hk ,P̂1

n×Pk−1)ε
−1

≤ c1 +
√

2c2‖hH‖L 2(Hk ,P̂1
n×Pk−1)ε

−1/2.

Therefore, for all δ > 0,

E∗
[∫ δ

0

√
log(N(pk,1H, d̃L 2(H1,P̂1

n )
, ε)dε

]
≤ c1δ +

√
8c2δE[‖hH‖1/2

L 2(Hk ,P̂1
n×Pk−1)

].
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We finally notice that by Hölder inequality

E[‖hH‖1/2
L 2(Hk ,P̂1

n×Pk−1)
] ≤ (E[‖hH‖2

L 2(Hk ,P̂1
n×Pk−1)

])1/4 = (Jk(h2
H, Pk))1/4 < ∞.

Theorem 4.9 of Arcones and Giné (1993) provides a version of Theorem 1.11.7 for
unbounded classes, which we now state.

Theorem 1.11.8 Suppose that E is second countable. Let P ∈ P(E) andH ⊂ L 2(Hk, Pk)
be measurable in the sense of Arcones and Giné (1993), P-non-degenerate, and such that
Jk(h2

H, Pk) < ∞. If H is a VC subgraph class and limt→∞ tP(pk,1h2
H > t) = 0, then H is

P-Donsker.

Notice that, under the assumptions of Theorem 1.11.8, Proposition 1.11.3 yields that
pk,1H is P-Donsker. The moment condition limt→∞ tP(pk,1h2

H > t) = 0 is used by
Arcones and Giné (1993) to obtain (ii) and (iii) of Corollary 1.11.3 yielding that H is
P-Donsker. Assumption (i) of Theorem 4.9 seems unnecessary as pk,1H is already
P-pre-Gaussian by Proposition 1.11.3.

We conclude this section with a Bernstein-type inequality for the process {Wk(P)(h)}h∈H.
This is a uniform version of (iv) of Proposition 1.10.5 and it is given in Theorem 5
of Arcones (1995). Notice that, if H is uniformly bounded by 0 < lH < ∞, then, by
Jensen’s inequality,

σ2
H = sup

h∈H
Var[pk,1h(X1)] ≤ sup

h∈H
Var[h(X1, . . . , Xk)] ≤ sup

h∈H
E[h2(X1, . . . , Xk)] ≤ l2

H.

Theorem 1.11.9 Let P ∈ P(E) and H ⊂ Hk be measurable in the sense of Arcones and
Giné (1993) and uniformly bounded. If H is a VC subgraph class, then there are constants
1 < cH,0, cH,1, cH,2 < ∞ such that for all t ≥ max(23σH, 24cH,0)

P(sup
h∈H

Wk,n(P)(h) ≥ t) ≤
3

∑
j=1

MH,j(n, t)

where

MH,1(n, t) = 8 exp
(
−

√
nt2

215k2(
√

nσ2
H + tlH)

)
,

MH,2(n, t) = 8c2cH,2
H,1

(
σ2
H +

2tlH√
n

)−cH,2

exp
(
−
(

nσ2
H

2l2
H

+

√
nt

4lH

))
, and

MH,3(n, t) = 2 exp
(
−

√
nt2

26+kkk+1lHcH,0(
√

nσ2
H + tlH)

)
.



51

Chapter 2

Local depth functions

2.1 Introduction

The notion of local depth, as first described by Agostinelli and Romanazzi (2011),
provides a framework to describe the local features of multidimensional distribu-
tions. Recently, Francisci et al. (2020) show that Type A depth functions originate
from a larger class of functions, which is referred to as Type A local depth functions.
Interestingly, this class not only contains depth functions but also kernel density
estimators. Therefore, it can be used for density estimation and many related ap-
plications such as clustering, mode estimation, and upper level set estimation (see
Chapter 3 for a through analysis). In this chapter, we provide a thorough analysis of
Type A local depth functions as contained in Section 2 and Appendices A, B, C, and
H of Francisci et al. (2020).

We recall from Definition 1.6.1 that Type A depth functions take the form

DG(x, P) =
∫

hG,x,∞(x1, . . . , xkG)dP(x1) . . . dP(xkG) (2.1.1)

for some Borel measurable, non-negative, and bounded function hG,x,∞ depending
on G and x. As we will see below, Type A local depth functions are obtained by
replacing hG,x,∞ in (2.1.1) with a function hG,x,τ, where τ ∈ [0, ∞]. Specifically, Type
A local depth functions take the form

LG(x, τ, P) =
∫

hG,x,τ(x1, . . . , xkG)dP(x1) . . . dP(xkG).

We denote by HG = {hG,x,τ : x ∈ Rd, τ ∈ [0, ∞]} the class of functions yielding LG.
Notice that for τ = ∞ local depth functions coincide with Type A depth functions. On
the other hand, we will show that, if P is absolutely continuous w.r.t. the Lebesgue
measure and τ is small, then the local depth, under appropriate scaling, is close to
the density f of P. For this reason, τ is called the localizing parameter. We will also
see that the index G can be identified with a kernel function, which coincides with
hG,0,1, and, vice versa, a suitable kernel function G generates all functions inHG.

For simplicial depth and β-skeleton depths, HG is a class of indicators of appro-
priate Borel sets. Specifically, we recall from Definition 1.3.6 that for the simplicial
depth G is equal to S and hS,x,∞ = IZS,x,∞ , where ZS,x,∞ = {(x1, . . . , xd+1) ∈ (Rd)d+1 :
x ∈ ∆[x1, . . . , xd+1]}. The local simplicial depth is obtained by replacing ZS,x,∞ with

ZS,x,τ = {(x1, . . . , xd+1) ∈ (Rd)d+1 : x ∈ ∆[x1, . . . , xd+1], max
1≤i<j≤d+1

‖xi − xj‖2 ≤ τ}.
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Similarly, for the local β-skeleton depth (see Example 1.6.1), we take G = Kβ and
hKβ,x,τ = IZKβ ,x,τ , where β ≥ 1 and

ZKβ,x,τ = {(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖xi +(2/β− 1)xj− 2/βx‖2 ≤ ‖x1− x2‖2 ≤ τ}.

In particular, local spherical depth and local lens depth are obtained by taking B =
K1 and L = K2. Thus, local simplicial and β-skeleton depths are obtained by limiting
the sets ZG,x,∞, G = S, Kβ to a smaller region, which is obtained by imposing that
the norms ‖xi − xj‖2, i, j = 1, . . . , kG, are bounded by τ. Clearly, if τ = ∞ no bound
applies and we retrieve simplicial depth and β-skeleton depths. We finally notice
that when d = 1 local simplicial depth and local β-skeleton depths coincide.

In Section 2.2 we define Type A local depth functions (LDFs) and study their
properties as the localizing parameter varies. Specifically, we show that, if the lo-
calizing parameter tends to infinity, LDFs converge to Type A depth functions. On
the other hand, if the localizing parameter tends to zero, then, under appropriate
scaling, LDFs converge to the kth power of the underlying density f . This suggests
that the kth root of scaled LDFs (referred to as τ-approximation) can be used to ap-
proximate f and it is therefore called τ-approximation. Indeed, we show in Section
2.3 that the τ-approximation and its derivatives converge uniformly to f . In Section
2.4 we define an appropriate estimator for Type A depth functions, called sample
local depth, which takes the form of a U-statistics. Using the theory developed in
Sections 1.10 and 1.11 we show that the sample local depth is a uniformly consistent
and asymptotically normal estimator of Type A LDFs. Finally, we obtain a Bernstein-
type inequality for Type A LDFs. Next, we use sample local depth functions to obtain
an estimate of the τ-approximation (referred to as sample τ-approximation). Using
the aforementioned Bernstein-type inequality, we show in Section 2.5 that the sam-
ple τ-approximation is a uniformly consistent estimator of the density. In Section
2.6 we determine the correct centering and scaling for the sample τ-approximation
to be asymptotically normal. Several examples of Type A local depth functions arise
both from the depth and kernel density estimator literature and are summarized in
Section 2.7. Finally, in Section 2.8 we derive a method for choosing the localizing
parameter τ.

2.2 Local depth functions

In this section, we describe in detail Type A local depth functions. We begin with
some notation. First, the support of a function g : A 7→ toR is Sg = {y ∈ A :
g(y) 6= 0}. Next, Lq((Rd)k) = Lq((Rd)k, λk), 1 ≤ q < ∞, denote the space of
Lebesgue measurable functions g : (Rd)k → R for which gq is absolutely integrable,
and L∞((Rd)k) = L∞((Rd)k, λk) be the space of Lebesgue measurable functions g :
(Rd)k → R that are essentially bounded. First, we describe the kernel function
G. Specifically, we assume that G : (Rd)kG → [0, ∞) and satisfies the following
properties:

(P1) G is Borel measurable and ΛG,1 =
∫

G(x1, . . . , xkG)dx1 . . . dxkG < ∞,

(P2) t 7→ G(tv) is non-increasing on [0, ∞) for all v ∈ SdkG−1,

(P3) sup
(x1,...,xkG

)∈∏
kG
i=1(R

d\Bri (0))
G(x1, . . . , xkG)→ 0 as maxi=1,...,kG ri → ∞, and
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(P4) For any ε > 0, there exist 0 < δ ≤ ε and cG > 0 such that λ((Bδ(0))kG ∩ SG) > 0
and G ≥ cG in (Bδ(0))kG ∩ SG.

We denote by G the class of kernel functions G : (Rd)kG → [0, ∞) satisfying the
properties (P1)-(P4). Some comments are in order. First, (P1) ensures that G is ab-
solutely integrable. Next, G is positive in a neighborhood of the origin of (Rd)kG by
(P4) and is non-decreasing along any ray from the origin by (P2). Finally, (P3) entails
that G tends to zero as the distance from the origin increases to infinity. In typical
examples, such as simplicial and β-skeleton depths, G will have bounded support
implying (P3); i.e., for some ρ > 0,

SG ⊂ (Bρ(0))k. (2.2.1)

Additionally we assume, without loss of generality (w.l.o.g.), that functions in G are
permutation invariant. If not, apply to G ∈ G the symmetrization function σ̃ of
Remark 1.10.1. We are now ready to give a precise definition of Type A local depth
function.

Definition 2.2.1 Let G ∈ G, x ∈ Rd, τ ∈ [0, ∞], and let hG,x,τ : (Rd)kG → [0, ∞) be
given by

hG,x,τ(·) =


G((· − x)/τ) if τ ∈ (0, ∞)

limτ→0+ G((· − x)/τ) if τ = 0
limτ→∞ G((· − x)/τ) if τ = ∞.

The Type A local depth at localization level τ ∈ [0, ∞] of a point x ∈ Rd with respect to
P ∈ Pd is given by

LG(x, τ, P) =
∫

hG,x,τ(x1, . . . , xkG)dP(x1) . . . dP(xkG). (2.2.2)

The Type A depth of x with respect to P is obtained by setting τ = ∞ in (2.2.2), that
is,

DG(x, P) = LG(x, ∞, P).

At the end of Section 1.7 we notice that Type B depth functions can be converted into
Type A by applying the function g directly to iG,x,∞ in Definition 1.7.1 and computing
the integral of hG,x,∞ = g ◦ iG,x,∞ w.r.t. Pk. In general, there’s no guarantee that the
resulting Type A depth is still a statistical depth function, but this observation allows
to define local depth functions even for Type B depth functions such as Lq-depth
and simplicial volume depth. We discuss these and other instances of local depth in
Section 2.7.

We discuss now some consequences of Definition 2.2.1 and properties (P1)-(P4).
We first notice that, by (P2), G is maximized at (0, . . . , 0) ∈ (Rd)kG and let lG =
G(0, . . . , 0). Next, using (P2) and (P3), we obtain that hG,x,0 = lGI{(x,...,x)} is zero
unless all its kG components equal to x ∈ Rd. Also, hG,0,1 = G, and using (P1) and
(P2), we see that

0 ≤ hG,x,τ ≤ lG, (2.2.3)

for all x ∈ Rd and τ ∈ [0, ∞], that is, the class HG = {hG,x,τ : x ∈ Rd, τ ∈ [0, ∞]} is
uniformly bounded by lG. Furthermore, (P4) ensures that ΛG,1 > 0 and hG,0,τ is non-
trivial for all τ > 0. Indeed, there is a neighborhood of (0, . . . , 0) ∈ (Rd)kG where
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hG,0,τ is positive. Since G is permutation invariant, we also have that

hG,x,τ(x1, . . . , xkG) = hG,x,τ(xi1 , . . . , xikG
) (2.2.4)

for every permutation (i1, . . . , ikG) of (1, . . . , kG). Furthermore, notice that

hG,x+b,τ(x1 + b, . . . , xkG + b) = hG,x,τ(x1, . . . , xkG), b ∈ Rd, (2.2.5)
and hG,−x,τ(−x1, . . . ,−xkG) = hG,x,τ(x1, . . . , xkG). (2.2.6)

If P is absolutely continuous w.r.t. λ with density f = fP, then, by (2.2.5) and (2.2.6),
for all x ∈ Rd and τ ∈ [0, ∞], it holds that

LG(x, τ, P) =
∫

hG,0,τ(x− x1, . . . , x− xkG) f (x1) . . . f (xkG)dx1 . . . dxkG

= (hG,0,τ ∗ f×kG)(x, . . . , x),
(2.2.7)

where ∗ is the convolution operator and f×kG : (Rd)kG → [0, ∞) is the kG-fold prod-
uct of identical functions f , that is, f×kG(x1, . . . xkG) = f (x1) . . . f (xkG).

When there is no scope for confusion we suppress the subscript G. Hence, we
also write e.g. k for kG, hx,τ for hG,x,τ, Λ1 for ΛG,1. Since P is fixed in the following,
we write DG(x) for DG(x, P) and LG(x, τ) for LG(x, τ, P). Also, for j = 1, . . . , d, we
denote by ∂jg the partial derivative of the function g : Rd → R with respect to its
jth-component. Our first proposition summarizes several continuity and differentia-
bility properties of the LDFs. Specifically, the behavior of the LDFs when τ → 0+

and τ → ∞ are provided.

Proposition 2.2.1 (i) For all x ∈ Rd, LG(·, τ) is monotonically non-decreasing with

lim
τ→0+

LG(x, τ) = lG(P({x}))k and lim
τ→∞

LG(x, τ) = DG(x).

(ii) For τ ∈ [0, ∞), limr→∞ supx∈Rd\Br(0) LG(x, τ) = 0.
(iii) If P ∈ Pd,�λ, then, for all τ ∈ [0, ∞), LG(·, τ) is bounded and continuous.
(iv) Under assumption (2.2.1), if P ∈ Pd,�λ with m-times continuously differentiable den-
sity f , then, for all τ ∈ [0, ∞), LG(·, τ) is m-times continuously differentiable and, for
i1, . . . , im ∈ {1, . . . , d},

∂im . . . ∂i1 LG(x, τ) = (h0,τ ∗ (∂im . . . ∂i1 f×k))(x, . . . , x). (2.2.8)

When τ = ∞, part (ii) does not hold in general. For instance, if P ∈ Pd,�λ with
density function f , k = 1, and G = exp(−‖·‖2

2/2), then hx,∞ = 1 for all x ∈ Rd and
(ii) holds for LG(·, ∞) if and only if it holds for f . Thus, not all Type A depth func-
tions satisfy (v) of Definition 1.5.1. Indeed, as noticed in Section 1.6, Type A depth
functions are not necessarily statistical depth functions.

Proof of Proposition 2.2.1. We start by proving (i). For the monotonicity, observe
that, by Definition 2.2.1 and (P2), for all x ∈ Rd, (x1, . . . , xk) ∈ (Rd)k and 0 ≤ τ1 ≤
τ2 ≤ ∞, hx,τ1(x1, . . . , xk) ≤ hx,τ2(x1, . . . , xk) and therefore LG(x, τ1) ≤ LG(x, τ2). Us-
ing Lebesgue dominated convergence Theorem (LDCT) and Definition 2.2.1, we get
that

lim
τ→0+

LG(x, τ) =
∫

lim
τ→0+

hx,τ(x1, . . . , xk)dP(x1) . . . dP(xk) = lG(P({x}))k
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and
lim
τ→∞

LG(x, τ) =
∫

lim
τ→∞

hx,τ(x1, . . . , xk)dP(x1) . . . dP(xk) = DG(x).

For (ii) let τ ∈ [0, ∞), 0 < ε < 1, and r1 > 0 such that P(Br1(0)) ≥ 1 − ε. By
(P3), there exists r̃ > 0 such that, if x1 ∈ Rd \ Bτr̃(x), then hx,τ(x1, . . . , xk) ≤ ε for
all (x2, . . . , xk) ∈ (Rd)k−1. Since, for r2 > τr̃ and x ∈ Rd \ Br1+r2(0), it holds that
Bτr̃(x) ⊂ Rd \ Br1(0), using (2.2.3), we conclude that, for all r ≥ r1 + r2,

sup
x∈Rd\Br(0)

LG(x, τ) ≤ sup
x∈Rd\Br1+r2 (0)

∫
Bτr̃(x)×(Rd)k−1

hx,τ(x1, . . . , xk)dP(x1) . . . dP(xk)

+ sup
x∈Rd\Br1+r2 (0)

∫
(Rd\Bτr̃(x))×(Rd)k−1

hx,τ(x1, . . . , xk)dP(x1) . . . dP(xk)

≤ lG sup
x∈Rd\Br1+r2 (0)

P(Bτr̃(x)) + ε

≤ lGP(Rd \ Br1(0)) + ε

≤ (lG + 1)ε.

We now prove (iii). Let f be the density function of P with respect to λ. By (2.2.3),
we have that

LG(x, τ) ≤ lG

∫
f (x1), . . . , f (xk)dx1 . . . dxk = lG,

which shows that LG(·, τ) is bounded. Furthermore, by (2.2.7) and (2.2.5), it holds
that

|LG(y, τ)− LG(x, τ)| =
∣∣∣∣∫ h0,τ(x1, . . . , xk)

k

∏
j=1

f (y− xj)dx1 . . . dxk

−
∫

h0,τ(x1, . . . , xk)
k

∏
j=1

f (x− xj)dx1 . . . dxk

∣∣∣∣
≤ lG

∫ ∣∣∣∣ k

∏
j=1

f (y− xj)−
k

∏
j=1

f (x− xj)

∣∣∣∣dx1 . . . dxk.

By Theorem 8.19 in Wheeden and Zygmund (2015), it follows that |LG(y, τ)− LG(x, τ)|
converges to 0 as ‖y− x‖2 → 0.

We turn to the proof of (iv). We first observe that, by (iii) and (2.2.7), (iv) holds
when m = 0. Also, if τ = 0 then LG(x, τ) = 0 for all x ∈ Rd and the statement
is trivial. Let τ > 0 and m ≥ 1. We will show that, for all 0 ≤ j ≤ m, the partial
derivatives of LG(·, τ) up to order j exist and are given by

∂ij . . . ∂i1 LG(x, τ) = (h0,τ ∗ gij,...,i1)(x, . . . , x), (2.2.9)

where, for (x1, . . . , xk) ∈ (Rd)k, gij,...,i1(x1, . . . , xk) = ∂ij . . . ∂i1 f (x1) . . . f (xk). In par-
ticular, since f is m-times continuously differentiable, gij,...,i1 is (m− j)-times contin-
uously differentiable. For h > 0 and i ∈ {1, . . . , d}, we define the ith partial finite
difference of a function g̃ : Rd → R by

∂h
i g̃(x) =

g̃(x + hei)− g̃(x)
h

.

Suppose by induction that the partial derivatives of the local depth up to order j− 1
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(1 ≤ j ≤ m) exist and, for some choice of indices i1, . . . , ij−1 ∈ {1, . . . , d} are given by
(2.2.9). Let ij ∈ {1, . . . , d}. Then by (2.2.9) and the mean value theorem, there exists
0 ≤ c ≤ 1, such that

∂h
ij

∂ij−1 . . . ∂i1 LG(x, τ)

=
∫

h0,τ(x1, . . . , xk)∂
h
ij

gij−1,...,i1(x− x1, . . . , x− xk)dx1 . . . dxk

=
∫

h0,τ(x1, . . . , xk)∂ij gij−1,...,i1(x− x1, . . . , x + cheij − xij , . . . , x− xk)dx1 . . . dxk.

(2.2.10)

Notice that, by (2.2.1), Sh0,τ ⊂ (Bτρ(0))k; by (2.2.3), h0,τ is bounded; and finally
∂ij gij−1,...,i1 = gij,...,i1 is (m − j)-times continuously differentiable (in particular, con-
tinuous). By taking the limit for h → 0+ in (2.2.10) and using LDCT, we get (2.2.9).
By induction, (2.2.8) follows. To conclude, we show that ∂im . . . ∂i1 LG(·, τ) is contin-
uous. By (2.2.5) and (2.2.3), we have that, for x, y ∈ Rd,

|∂im . . . ∂i1 LG(y, τ)− ∂im . . . ∂i1 LG(x, τ)|

=
∣∣∣ ∫ h0,τ(x1, . . . , xk)gim,...,i1(y− x1, . . . , y− xk)dx1 . . . dxk

−
∫

h0,τ(x1, . . . , xk)gim,...,i1(x− x1, . . . , x− xk)dx1 . . . dxk

∣∣∣
≤lG

∫
Sh0,τ

|gim,...,i1(y− x1, . . . , y− xk)− gim,...,i1(x− x1, . . . , x− xk)|dx1 . . . dxk.

Since Sh0,τ is compact by (2.2.1), the continuity follows from the uniform continuity
of gim,...,i1 over compact sets.

If P ∈ Pd,�λ with density f , then Proposition 2.2.1 (i) entails that

lim
τ→0+

LG(x, τ) = 0.

A natural question is whether a suitable scaling yields a non-trivial limit and how it
relates with f . The behavior of LG for τ → 0+, that is, under extreme localization,
is investigate in our next result. Specifically, we show there that, under appropriate
conditions, scaled versions of LDFs converge pointwise, uniformly, and in Ld(Rd) to
the kth power of the density f . Also, part (iii) of the following theorem is concerned
with the rate of convergence of scaled LDFs. It is worth noticing that, under the
assumption (2.2.1), for all x ∈ Rd \ S f , f k(x) = 0 and τ−kdLG(x, τ) = 0 for small
values of τ.

Theorem 2.2.1 Let P ∈ Pd,�λ with density f .
(i) Under assumption (2.2.1) at every point x of continuity of f , it holds that

lim
τ→0+

τ−kdΛ−1
1 LG(x, τ) = f k(x). (2.2.11)

Furthermore, (2.2.11) holds uniformly on any set where f is uniformly continuous.
(ii) If f ∈ L∞(Rd), then (2.2.11) holds at every point of continuity of f and the convergence
in (2.2.11) is uniform on any set where f is uniformly continuous.
(iii) Let f be twice continuously differentiable. Then, under assumption (2.2.1), for all x ∈
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S f , it holds that

lim
τ→0+

τ−2
(

τ−kdLG(x, τ)−Λ1 f k(x)
)
= R1(x) + R2(x),

where

R1(x) =
k
2

f k−1(x)
∫

h0,1(x1, . . . , xk)x>1 H f (x)x1dx1 . . . dxk and

R2(x) =
k(k− 1)

2
f k−2(x)

∫
h0,1(x1, . . . , xk)〈∇ f (x), x1〉〈∇ f (x), x2〉dx1 . . . dxk.

(iv) If f k ∈ Lq(Rd), 1 ≤ q < ∞, then τ−kdΛ−1
1 LG(·, τ) converges in Lq(Rd) to f k.

Before we prove Theorem 2.2.1 we state a couple of lemmas concerning the approxi-
mation of the identity for the function G (see Section 9.2 in Wheeden and Zygmund
(2015) and Section XIII.2 in Torchinsky (1995)).

Lemma 2.2.1 Let G̃τ = τ−kdΛ−1
1 h0,τ. Then the following hold:

(i)
∫

G̃τ(x1, . . . , xk)dx1 . . . dxk = 1.

(ii) For all δ > 0, lim
τ→0+

∫
(Rd)k\(Bδ(0))k

G̃τ(y1, . . . , yk)dy1 . . . yk = 0.

Proof of Lemma 2.2.1. (i) follows from a change of variable. Similarly, for (ii), we
have that∫
(Rd)k\(Bδ(0))k

G̃τ(y1, . . . , yk)dy1 . . . dyk = τ−kdΛ−1
1

∫
(Rd)k\(Bδ(0))k

G
(

y1

τ
, . . . ,

yk

τ

)
dy1 . . . dyk

= Λ−1
1

∫
(Rd)k\(Bδ/τ(0))k

G(y1, . . . , yk)dy1 . . . dyk,

and the last term converges to zero as τ → 0+ by (P1).

Lemma 2.2.2 Let f̃ : (Rd)k → Rd be Lebesgue measurable and suppose that assumption
(2.2.1) holds true. Then, at every point (x1, . . . , xk) ∈ (Rd)k of continuity of f̃

lim
τ→0+

(G̃τ ∗ f̃ )(x1, . . . , xk) = f̃ (x1, . . . , xk). (2.2.12)

Furthermore, (2.2.12) holds uniformly on any set A ⊂ (Rd)k where f̃ is uniformly contin-
uous.

Proof of Lemma 2.2.2. Using Lemma 2.2.1 we obtain that

|(G̃τ ∗ f̃ )(x1, . . . , xk)− f̃ (x1, . . . , xk)|

≤
∫
| f̃ (x1 − y1, . . . , xk − yk)− f̃ (x1, . . . , xk)|G̃τ(y1, . . . , yk)dy1 . . . dyk.

Now, (2.2.1) yields that SG̃τ
⊂ (Bτρ(0))k and, if f̃ is continuous at (x1, . . . , xk) ∈

(Rd)k, then, for all ε > 0, there exists δ > 0 such that

| f̃ (x1 − y1, . . . , xk − yk)− f̃ (x1, . . . , xk)| ≤ ε, (2.2.13)
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for all (y1, . . . , yk) ∈ (Bδ(0))k. Therefore, for 0 < τ ≤ δ/ρ, it holds that

|(G̃τ ∗ f̃ )(x1, . . . , xk)− f̃ (x1, . . . , xk)| ≤ ε. (2.2.14)

Finally, if f̃ is uniformly continuous on A, then (2.2.13) and (2.2.14) hold for all
(x1, . . . , xk) ∈ A.

Proof of Theorem 2.2.1. We begin by proving (i). To this end, notice that, if f is
continuous at x ∈ Rd, then f×k is continuous at (x, . . . , x) ∈ (Rd)k. Similarly, if f is
uniformly continuous in A ⊂ Rd, then f×k is uniformly continuous in (A)k ⊂ (Rd)k.
Now, the result follows from (2.2.7) and Lemma 2.2.2 with f̃ = f×k.

We now prove (ii). We first notice that, since f ∈ L∞(Rd), there exists a constant
1 ≤ c∞ < ∞ such that f ≤ c∞ λ-a.e. In particular, for all 1 ≤ q < ∞, it holds that
f q ≤ cq

∞ λ-a.e., implying that f q ∈ L∞(Rd). Then, we compute

|LG(x, τ)

Λ1τkd − f k(x)| =
∣∣∣∣∫ k

∏
j=1

f (x− xj)G̃τ(x1, . . . , xk)dx1 . . . dxk − f k(x)
∣∣∣∣

≤
∫ ∣∣∣∣ k

∏
j=1

f (x− xj)− f k(x)
∣∣∣∣G̃τ(x1, . . . , xk)dx1 . . . dxk.

(2.2.15)

Next, we recursively apply the triangle inequality and obtain∣∣∣∣ k

∏
j=1

f (x− xj)− f k(x)
∣∣∣∣ ≤ k

∑
i=1

i−1

∏
j=1

f (x− xj)| f (x− xi)− f (x)| f k−i(x), (2.2.16)

thus implying that the right hand side (RHS) of (2.2.15) is bounded above by

k

∑
i=1

∫ i−1

∏
j=1

f (x− xj)| f (x− xi)− f (x)| f k−i(x)G̃τ(x1, . . . , xk)dx1 . . . dxk

≤ck−1
∞

k

∑
i=1

∫
| f (x− xi)− f (x)|G̃τ(x1, . . . , xk)dx1 . . . dxk.

Now, by Lemma 2.2.1 (ii), for all δ > 0 there exists τ̃(δ) > 0 such that, for all 0 <
τ ≤ τ̃(δ), ∫

(Rd)k\(Bδ(0))k
G̃τ(x1, . . . , xk)dx1 . . . xk ≤ ε. (2.2.17)

If x ∈ Rd is a continuity point for f , then for all ε > 0, there exists δ > 0 such that

| f (x− y)− f (x)| ≤ ε, (2.2.18)
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for all y ∈ Bδ(0). Using Lemma 2.2.1(i), (2.2.17), and (2.2.18), we conclude that, for
all 0 < τ ≤ τ̃(δ),

|LG(x, τ)

Λ1τkd − f k(x)| ≤ ck−1
∞

k

∑
i=1

∫
(Bδ(0))k

| f (x− xi)− f (x)|G̃τ(x1, . . . , xk)dx1 . . . dxk

+ ck−1
∞

k

∑
i=1

∫
(Rd)k\(Bδ(0))k

| f (x− xi)− f (x)|G̃τ(x1, . . . , xk)dx1 . . . dxk

≤ kck−1
∞ (1 + 2c∞)ε.

(2.2.19)
Finally, if f is uniformly continuous on A ⊂ Rd, then (2.2.18) and (2.2.19) hold for all
x ∈ A.

For (iii), notice that, by (2.2.6) and a change of variable in (2.2.7),

τ−kdLG(x, τ)−Λ1 f k(x) =
∫

h0,1(x1, . . . , xk)

[ k

∏
j=1

f (x− τxj)− f k(x)
]

dx1 . . . dxk.

(2.2.20)
Since f is twice continuously differentiable, by multivariate Taylor’s theorem with
integral remainder, for i = 1, . . . , k,

f (x + τxi) = f (x) + τ〈∇ f (x), xi〉+ τ2
∫ 1

0
(1− z)x>i H f (x + τzxi)xidz.

Therefore,

f (x + τx1) . . . f (x + τxk) = f k(x) + τ f k−1(x)〈∇ f (x),
k

∑
i=1

xi〉

+ τ2 f k−1(x)
k

∑
i=1

∫ 1

0
(1− z)x>i H f (x + zτxi)xidz

+ τ2 f k−2(x)
k

∑
i=1

k

∑
j=i+1
〈∇ f (x), xi〉〈∇ f (x), xj〉+ O(τ2).

(2.2.21)

Since S f is open, there exist τ̃ > 0 such that, for all τ ∈ [0, τ̃], (x1, . . . , xk) ∈ Sh0,1

and z ∈ [0, 1], x + zτxi ∈ S f . The continuity of the second order partial derivatives
implies that, for τ ∈ [0, τ̃], the functions

(x1, . . . , xk) 7→
∫ 1

0
(1− z)x>i H f (x + zτxi)xidz

are continuous (and uniformly bounded for all τ ∈ [0, τ̃]) with

lim
τ→0+

∫ 1

0
(1− z)x>i H f (x + zτxi)xidz =

1
2

x>i H f (x)xi. (2.2.22)
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Similarly, the remainder O(τ2) is uniformly bounded for all τ ∈ [0, τ̃] and continu-
ous with respect to (x1, . . . , xk). By substituting (2.2.21) in (2.2.20), we see that

τ−kdLG(x, τ)−Λ1 f k(x) = τ f k−1(x)
∫

h0,1(x1, . . . , xk)〈∇ f (x),
k

∑
i=1

xi〉dx1 . . . dxk

+ τ2 f k−1(x)
∫

h1(0; x1, . . . , xk)

[ k

∑
i=1

∫ 1

0
(1− z)x>i H f (x + zτxi)xidz

]
dx1 . . . dxk

+ τ2 f k−2(x)
∫

h1(0; x1, . . . , xk)

[ k

∑
i=1

k

∑
j=i+1
〈∇ f (x), xi〉〈∇ f (x), xj〉

]
dx1 . . . dxk + O(τ2).

By (2.2.6) and the change of variable −(x1, . . . , xk) for (x1, . . . , xk), it follows that

∫
h0,1(x1, . . . , xk)〈∇ f (x),

k

∑
i=1

xi〉dx1 . . . dxk

=−
∫

h0,1(x1, . . . , xk)〈∇ f (x),
k

∑
i=1

xi〉dx1 . . . dxk.

Therefore, ∫
h0,1(x1, . . . , xk)〈∇ f (x),

k

∑
i=1

xi〉dx1 . . . dxk = 0.

Now, using (2.2.4), we obtain that

∫
h0,1(x1, . . . , xk)

[ k

∑
i=1

∫ 1

0
(1− z)x>i H f (x + zτxi)xidz

]
dx1 . . . dxk

=k
∫

h0,1(x1, . . . , xk)

[∫ 1

0
(1− z)x>1 H f (x + zτx1)x1dz

]
dx1 . . . dxk

and ∫
h0,1(x1, . . . , xk)

[ k

∑
i=1

k

∑
j=i+1
〈∇ f (x), xi〉〈∇ f (x), xj〉

]
dx1 . . . dxk

=
k(k− 1)

2
f k−2(x)

∫
h0,1(x1, . . . , xk)〈∇ f (x), x1〉〈∇ f (x), x2〉dx1 . . . dxk.

By (2.2.22) and LDCT, we conclude that

lim
τ→0+

τ−2(τ−kdLG(x, τ)−Λ1 f k(x)) = R1(x) + R2(x).

We now prove (iv). We first notice that, since f ∈ L1(Rd)∩ Lkq(Rd), then f ∈ Lq(Rd),
for all 1 ≤ q ≤ kd. Indeed, it holds that∫

Rd
f q(x)dx =

∫
{y∈Rd : f (y)<1}

f q(x)dx +
∫
{y∈Rd : f (y)≥1}

f q(x)dx

≤
∫
{y∈Rd : f (y)<1}

f (x)dx +
∫
{y∈Rd : f (y)≥1}

f kd(x)dx < ∞.

Next, we write in (2.2.15) G̃τ(x1, . . . , xk) = G̃1/q
τ (x1, . . . , xk)G̃

1/q̃
τ (x1, . . . , xk), where

q̃ ∈ (1, ∞] satisfies 1/q + 1/q̃ = 1 (q̃ = ∞ if q = 1), apply Hölder inequality with



Chapter 2. Local depth functions 61

exponents q and q̃ and Lemma 2.2.1 (i), thus obtaining

|LG(x, τ)

Λ1τkd − f k(x)|q ≤
∫ ∣∣∣∣ k

∏
j=1

f (x− xj)− f k(x)
∣∣∣∣qG̃τ(x1, . . . , xk)dx1 . . . dxk.

Now, Jensen’s inequality yields that (∑k
i=1 ai)

q ≤ kq−1 ∑k
i=1 aq

i for ai ≥ 0. Using this
and (2.2.16), we obtain that

∫
|LG(x, τ)

Λ1τkd − f k(x)|qdx ≤ kq−1
k

∑
i=1

Iτ,i,

where

Iτ,i =
∫ (∫ (i−1

∏
j=1

f q(x− xj)| f (x− xi)− f (x)|q f (k−i)q(x)
)

G̃τ(x1, . . . , xk)dx1 . . . dxk

)
dx.

Notice that Iτ,i are finite since f ∈ Lq(Rd), 1 ≤ q ≤ kd, and, by (2.2.3), 0 ≤ G̃τ ≤
lG/Λ1τkd. By Fubini’s theorem, we have that

Iτ,i =
∫

Jτ,i(x1, . . . , xk)G̃τ(x1, . . . , xk)dx1 . . . dxk,

where

Jτ,i(x1, . . . , xk) =
∫ i−1

∏
j=1

f q(x− xj)| f (x− xi)− f (x)|q f (k−i)q(x)dx.

Now, we apply again Hölder inequality with exponents s = k/(k − 1) and t = k,
and see that

Jτ,i(x1, . . . , xk) ≤
[∫ i−1

∏
j=1

f sq(x− xj) f (k−i)sq(x)dx
]1/s[∫

| f (x− xi)− f (x)|tqdx
]1/t

≤ c1K(x1, . . . , xk),

where

c1 = max
i=1,...,q

[∫ i−1

∏
j=1

f sq(x− xj) f (k−i)sq(x)dx
]1/s

and

K(x1, . . . , xk) = max
i=1,...,q

[∫
| f (x− xi)− f (x)|tqdx

]1/t

.

Notice that

K(x1, . . . , xk) ≤ c2 = 2q
[∫

f (x)tqdx
]1/t

< ∞, (2.2.23)

and, for all ε > 0, by Theorem 8.19 in Wheeden and Zygmund (2015), there exists
δ > 0 such that, for all (x1, . . . , xk) ∈ (Bδ(0))k,

K(x1, . . . , xk) ≤ ε. (2.2.24)
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Using Lemma 2.2.1 (i), (2.2.23), (2.2.24), and (2.2.17), we conclude that, for all 0 <
τ ≤ τ̃(δ),∫

|LG(x, τ)

Λ1τkd − f k(x)|qdx ≤ c1kq
∫

K(x1, . . . , xk)G̃τ(x1, . . . , xk)dx1 . . . dxk

≤ c1(1 + c2)kqε.

When d = 1 certain simplifications occur in Theorem 2.2.1. Specifically, for G =
L, S, B, Kβ, ΛG,1 = 1 and the functions R1 and R2 in (iii) take a simpler form. This is
summarized in the following corollary.

Corollary 2.2.1 Let G = L, S, B, Kβ, d = 1, and P ∈ P1,�λ with density f . It holds that

LG(x, τ) = 2
∫

Tτ,++

f (x + x1) f (x− x2)dx1dx2, (2.2.25)

where Tτ,++ = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ τ}. Furthermore, we have that (i) at
every point x of continuity of f

lim
τ→0+

τ−2LG(x, τ) = f 2(x), (2.2.26)

and (2.2.26) holds uniformly on any set where f is uniformly continuous.
(ii) If f ∈ L∞(R), then (2.2.26) holds at every point of continuity of f and the convergence
in (2.2.26) is uniform on any set where f is uniformly continuous.
(iii) If f is twice continuously differentiable, then

lim
τ→0+

τ−2(τ−2LG(x, τ)− f 2(x)) =
1
12
[
2 f (x) f ′′(x) + [ f ′(x)]2

]
.

(iv) If f 2 ∈ Lq(R), 1 ≤ q < ∞, then τ−2LG(·, τ) converges in Lq(R) to f 2.

Proof of Corollary 2.2.1. By a change of variable, it follows that

LG(x, τ) =
∫

ZG,x,τ

f (x1) f (x2)dx1dx2

=
∫

ZG,0,τ

f (x + x1) f (x + x2)dx1dx2.
(2.2.27)

In two dimensions ZG,0,τ can be expressed as the union of two triangles Tτ,−+ and
Tτ,+−; that is,

Tτ,−+ = {(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≥ 0, x2 − x1 ≤ τ}
Tτ,+− = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≤ 0, x1 − x2 ≤ τ}.

Now, by a change of variables in the integrals over the triangles it follows that

LG(x, τ) =
∫

Tτ,−+
f (x + x1) f (x + x2) + f (x− x1) f (x− x2)dx1dx2

=
∫

Tτ,++

f (x− x1) f (x + x2) + f (x + x1) f (x− x2)dx1dx2

= 2
∫

Tτ,++

f (x + x1) f (x− x2)dx1dx2.
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(i), (ii) and (iv) follows directly from Theorem 2.2.1 (i), (ii) and (iv) and the fact that
ZG,0,1 is bounded with area ΛG,1 = 1. Finally, (iii) follows from Theorem 2.2.1 (iii),
where

R1(x) = 2 f (x) f ′′(x)
∫ 1

0

∫ 1−x1

0
x2

1dx1dx2 =
1
6

f (x) f ′′(x), and

R2(x) = 2 f ′(x)]2
∫ 1

0

∫ 1−x1

0
x1x2dx1dx2 =

1
12

[ f ′(x)]2.

In the next section, we will use Theorem 2.2.1 to approximate the density f .
Specifically, scaled LDFs converge to f k and, by taking the kth root, we obtain an
approximation of the density. This leads to the concept of τ-approximation.

2.3 τ-approximation

Using (2.2.11) one can express f in terms of the limit of LDFs, for a given choice of G.
This leads to an important idea, namely the τ-approximation. This approximation is
useful since in applications it enables one to provide alternate approaches for density
estimation. In Chapter 3, we will illustrate this idea in three distinct but related
contexts; viz. clustering, estimation of mode, and estimation of upper level sets.

Definition 2.3.1 (τ-approximation) For any τ > 0,

fG,τ(x) =
(

LG(x, τ)

τkdΛ1

)1/k

. (2.3.1)

Remark 2.3.1 From Proposition 2.2.1 (iii), it follows that when P has a density f then, fG,τ
is continuous. Additionally, Proposition 2.2.1 (iv) implies that fG,τ is m-times continuously
differentiable in S fG,τ .

We begin by studying the properties of S fG,τ . First, we recall the definition of limits
of sets below. The limit inferior and superior of a sequence of sets {An}∞

n=1 are
lim infn→∞ An = ∪∞

n=1 ∩∞
l=n Al and lim supn→∞ An = ∩∞

n=1 ∪∞
l=n Al . If they are equal

we say that the sequence {An}∞
n=1 converges and write A = limn→∞ An, where A =

lim infn→∞ An = lim supn→∞ An. We summarize in Appendix B various properties
concerning the limit of sets.

Proposition 2.3.1 For all 0 < τ1 ≤ τ2, we have that S fτ1
⊂ S fτ2

. Additionally, if f is
continuous, then, for all τ > 0, S f ⊂ S fG,τ and limτ→0+ S fG,τ ⊃ S f . Under assumption
(2.2.1), limτ→0+ S fG,τ ⊂ S f .

We observe that the assumption (2.2.1) is essential in the last part of Proposition
2.3.1. Indeed, if G is the Gaussian kernel, then S fG,τ = Rd, for all τ > 0, implying
limτ→0+ S fG,τ = Rd. Also, since ∂S f and SG have arbitrary shape, it is unclear if
x ∈ ∂S f belongs to limτ→0+ S fG,τ or not.

Proof of Proposition 2.3.1. We first observe that x ∈ S fG,τ if and only if fG,τ(x) > 0
if and only if LG(x, τ) > 0. Proposition 2.2.1 (i) implies that for x ∈ Rd, LG(x, τ1) ≤
LG(x, τ2), from which it follows that S fτ1

⊂ S fτ2
. Next, suppose that f is continuous

and let x ∈ S f and τ > 0. Since f is continuous, S f is open and there exists ε >
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0 such that Bτε(x) ⊂ S f . By (P4), there exist 0 < δ ≤ τε and c > 0 such that
λ((Bδ(x))k ∩ Shx,τ ) > 0 and hx,τ ≥ c in (Bδ(x))k ∩ Shx,τ . It follows that

LG(x, τ) =
∫

hx,τ(x1, . . . , xk) f (x1) . . . f (xk)dx1 . . . dxk

≥ c
∫
(Bδ(x))k∩Shx,τ

f (x1) . . . f (xk)dx1 . . . dxk > 0.

Thus, x ∈ S fG,τ and S f ⊂ S fG,τ . Since the sets {S fG,τ}τ>0 are monotonically decreasing
with τ, we have that limτ→0+ S fG,τ = ∩τ>0S fG,τ ⊃ S f . For the last part, let x ∈ Rd \ S f .
Since Rd \ S f is open, there exists ε > 0 such that Bε(x) ⊂ Rd \ S f . Let 0 < τ ≤ ε/ρ.
By (2.2.1) it follows that Shx,τ ⊂ (Bρτ(x))k ⊂ (Bε(x))k implying that LG(x, τ) = 0.
Therefore, x /∈ ∩τ>0S fG,τ and ∩τ>0S fG,τ ⊂ S f .

Our next result establishes that the analytical properties of LG are inherited by its τ-
approximation fG,τ. Specifically, fG,τ and its derivatives converge uniformly to those
of f . This plays a critical role in the properties of clustering investigated in Chapter
3.

Proposition 2.3.2 Let P ∈ Pd,�λ with density f . Then the following hold:
(i) If f is uniformly continuous and bounded, then

lim
τ→0+

sup
x∈Rd
| fG,τ(x)− f (x)| = 0. (2.3.2)

(ii) If f is continuous, then for all compact sets K ⊂ Rd

lim
τ→0+

sup
x∈K
| fG,τ(x)− f (x)| = 0.

In particular, for all x ∈ Rd, limτ, ε→0+ supy∈Bε(x) | fG,τ(y)− f (x)| = 0.
(iii) If f ∈ Lkq(Rd), q ≥ 1, then fG,τ converges in Lkq(Rd) to f .
(iv) Suppose (2.2.1) holds and f is m-times continuously differentiable, then, for all compact
sets K ⊂ S f and i1, . . . , im ∈ {1, . . . , d},

lim
τ→0+

sup
x∈K
|∂im . . . ∂i1 fG,τ(x)− ∂im . . . ∂i1 f (x)| = 0.

Before proving Proposition 2.3.2 we establish useful inequalities in the following
lemma.

Lemma 2.3.1 Let s, t ≥ 0. The following hold: (i) |ta − sa| ≤ |t− s|a, for all 0 < a ≤ 1,
and (ii) |ta − sa| ≥ |t− s|a, for all a > 1.

Proof. It is enough to prove the statement for 0 < s < t. Let ϕ : (0, ∞)→ R be given
by ϕ(a) = (1− s/t)a − 1 + (s/t)a. Notice that, lima→0+ ϕ(a) = 1, lima→∞ ϕ(a) = −1
and

ϕ′(a) = log(1− s/t)(1− s/t)a + log(s/t)(s/t)a < 0.

Then, the equality ϕ(1) = 0 shows that ϕ(a) ≥ 0, for 0 < a ≤ 1, and ϕ(a) < 0, for
a > 1. The same inequalities hold for ta ϕ(a) and the result follows.
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Proof of Proposition 2.3.2. We start by proving (i). By Lemma 2.3.1, for τ > 0,

sup
x∈Rd
| fG,τ(x)− f (x)| = sup

x∈Rd

∣∣∣∣(LG(x, τ)

τkdΛ1

)1/k

− ( f k(x))1/k
∣∣∣∣

≤ sup
x∈Rd

∣∣∣∣LG(x, τ)

τkdΛ1
− f k(x)

∣∣∣∣1/k

= sup
x∈Rd

(FG,τ(x))1/k,

where

FG,τ(x) =
∣∣∣∣ 1
Λ1

∫
h0,1(x1, . . . , xk)

[ k

∏
j=1

f (x + τxj)− f k(x)
]

dx1 . . . dxk

∣∣∣∣.
Since the kth root is a continuous and increasing function, we have that

sup
x∈Rd

(FG,τ(x))1/k = (sup
x∈Rd

FG,τ(x))1/k. (2.3.3)

Hence, (2.3.2) follows, if we show that

lim
τ→0+

sup
x∈Rd

FG,τ(x) = 0. (2.3.4)

For this, observe that supx∈Rd FG,τ(x) is bounded above by

∫
h0,1(x1, . . . , xk) sup

x∈Rd

∣∣∣∣ k

∏
j=1

f (x + τxj)− f k(x)
∣∣∣∣dx1 . . . dxk.

Since f is uniformly continuous and bounded, for all (x1, . . . , xk) ∈ (Rd)k, it holds
that

lim
τ→0+

sup
x∈Rd

∣∣∣∣ k

∏
j=1

f (x + τxj)− f k(x)
∣∣∣∣ = 0.

(2.3.4) now follows from LDCT, since h0,1 ∈ L1((Rd)k) and the supremum is bounded.
Since a continuous function is uniformly continuous on a compact set, the proof of
the first part of (ii) follows from the proof of (i) with Rd replaced by K. For the second
part of (ii), notice that

sup
y∈Bε(x)

| fG,τ(y)− f (x)| ≤ sup
y∈Bε(x)

| fG,τ(y)− f (y)|+ sup
y∈Bε(x)

| f (y)− f (x)|.

The result now follows from the first part of (ii) and continuity of f . Finally, for (iii),
notice that, by Lemma 2.3.1 and Theorem 2.2.1 (iv),∫

| fG,τ(y)− f (y)|kddy ≤
∫
| f k

G,τ(y)− f k(y)|ddy −−−→
τ→0+

0.

Before we prove Proposition 2.3.2 (iv) we state without proof a result concerning
the partial derivatives of the composition of two functions (Proposition 1 in Hardy
(2006)). For any set R, we denote by #R the cardinality of R.

Claim 2.3.1 Let ϕ : Rd → R and ψ : R → R be m-times continuously differentiable in
A ⊂ Rd and ϕ(A) ⊂ R, respectively. Then, ψ ◦ ϕ is m-times continuously differentiable in
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A and, for x ∈ A and i1, . . . , im ∈ {1, . . . , d}, it holds that

∂im . . . ∂i1 ψ(ϕ(x)) = ∑
R∈Rm

[∂[#R]ψ](ϕ(x)) ∏
{ijl

,...,ij1}∈R
∂ijl

. . . ∂ij1
ϕ(x),

whereRm is the set of all partitions of {1, . . . , m} and ∂[n] denotes the (unidimensional) nth

derivative.

The following lemma is also required for completing the proof of the proposition.

Lemma 2.3.2 Let ϕn : Rd → R, ψn : Rd → R and A ⊂ Rd. Suppose that ϕn and
ψn converge uniformly on A to ϕ and ψ, respectively. It holds that (i) ϕn + ψn converges
uniformly on A to ϕ + ψ and (ii) if A is compact and ϕn, ψn are continuous, then ϕnψn
converges uniformly on A to ϕψ.

Proof of Lemma 2.3.2. Proof of (i) is standard. For (ii), we first notice that, by the
uniform limit theorem, ϕ and ψ are continuous. Next, we use that A is compact and
let cϕ = maxx∈A ϕ(x) and cψ = maxx∈A ψ(x). For 0 < ε ≤ 1, let ñ ∈N such that, for
all n ≥ ñ, supx∈A|ϕn(x)− ϕ(x)| ≤ ε and supx∈A|ψn(x)− ψ(x)| ≤ ε. Then,

sup
x∈A
|ϕn(x)ψn(x)− ϕ(x)ψ(x)| ≤ sup

x∈A
|ϕn(x)||ψn(x)− ψ(x)|+ sup

x∈A
|ψ(x)||ϕn(x)− ϕ(x)|

≤ (1 + cϕ + cψ)ε.

We now turn to the proof of (iv). We first notice that, by Proposition 2.2.1 (iv), Re-
mark 2.3.1, and Proposition 2.3.1, LG(·, τ) and fG,τ are m-times continuously differ-
entiable in S f . Since K ⊂ S f , c1 = minx∈K f k(x) > 0 and c2 = maxx∈K f k(x) < ∞. By
Theorem 2.2.1 (i), there exists τ1 > 0 such that, for all 0 < τ ≤ τ1, supx∈K| f k

G,τ(x)−
f k(x)| ≤ c1

2 , implying that f k
G,τ(x) ∈ [c3, c4], where c3 = c1

2 and c4 = c2 +
c1
2 . Next,

we apply Lemma 2.3.1 with ϕ = f k and ψ = (·)1/k, and obtain that

∂im . . . ∂i1 f (x) = ∂im . . . ∂i1 ψ(ϕ(x)) = ∑
R∈Rm

[∂[#R]ψ](ϕ(x)) ∏
{ijl

,...,ij1}∈R
∂ijl

. . . ∂ij1
ϕ(x).

(2.3.5)
Similarly, with ϕτ = f k

G,τ, we have that

∂im . . . ∂i1 fG,τ(x) = ∂im . . . ∂i1 ψ(ϕτ(x)) = ∑
R∈Rm

[∂[#R]ψ](ϕτ(x)) ∏
{ijl

,...,ij1}∈R
∂ijl

. . . ∂ij1
ϕτ(x).

(2.3.6)
By Proposition 2.2.1 (iv), it holds that ∂ijl

. . . ∂ij1
ϕτ(x) = (G̃τ ∗ (∂ijl

. . . ∂ij1
f×k))(x, . . . , x).

We apply Lemma 2.2.2 with f̃ = ∂ijl
. . . ∂ij1

f×k and A = (K)k, and obtain that
∂ijl

. . . ∂ij1
ϕτ converges uniformly on K to ∂ijl

. . . ∂ij1
ϕ. Next, notice that, for all j ∈

{1, . . . , m}, ∂[j]ψ is uniformly continuous on [c3, c4]: for all ε > 0, there exists δ > 0
such that sups,t∈[c3,c4]:|s−t|≤δ|∂[j]ψ(s)− ∂[j]ψ(t)| ≤ ε. By Theorem 2.2.1 (i), there exists
0 < τ2 ≤ τ1, such that, for all 0 < τ ≤ τ2, supx∈K| f k

G,τ(x)− f k(x)| ≤ δ. Therefore,
we have that, for all 0 < τ ≤ τ2, supx∈K|[∂[j]ψ](ϕτ(x)) − [∂[j]ψ](ϕ(x))| ≤ ε; that
is, [∂[j]ψ](ϕτ(·)) converges uniformly on K to [∂[j]ψ](ϕ(·)). Now, the result follows
from (2.3.5), (2.3.6), and Lemma 2.3.2 with A = K.

We show that continuity is not enough in Proposition 2.3.2 (i). To this end, let for
simplicity d = 1 and G = L, S, B, Kβ. Consider the function f̃ : R→ R with support
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S f̃ = ∪∞
n=1

(
n− 1

2n3 , n + 1
2n3

)
defined by

f̃ (n + x1) = f̃ (n− x1) =

{
2n4 ( 1

2n3 − x1
)

if 0 ≤ x1 < 1
2n3

0 if 1
2n3 ≤ x1 ≤ 1

2 .

Notice that, since ∑∞
n=1

1
n2 = π2

6 ,

∫
f̃ (x)dx =

∞

∑
n=1

∫(
n− 1

2n3 ,n+ 1
2n3

) f̃ (x)dx =
∞

∑
n=1

1
2n2 =

π2

12
.

Let c = π2

12 . Then f : R → R defined by f (x) = 1
c f̃ (x) is an unbounded, continu-

ous density function. The τ-approximation of f is given by fG,τ(x) = 1
τ

√
LG(x, τ),

where, by Corollary 2.2.1,

LG(x, τ) = 2
∫

Tτ,++

f (x + x1) f (x− x2)dx1dx2

= 2
∫ τ

0

[∫ τ−x1

0
f (x− x2)dx2

]
f (x + x1)dx1.

Notice that f is symmetric about n ∈N and for 1
n3 ≤ τ ≤ 1

2

LG(n, τ) = 2
∫ min

(
τ, 1

2n3

)
0

[∫ min
(

τ−x1, 1
2n3

)
0

2n4

c

(
1

2n3 − x2

)
dx2

]
2n4

c

(
1

2n3 − x1

)
dx1

=
2
c2

∫ 1
2n3

0

[∫ 1
2n3

0
2n4

(
1

2n3 − x2

)
dx2

]
2n4

(
1

2n3 − x1

)
dx1

=
2
c2

∫ 1
2n3

0

n2

2

(
1

2n3 − x1

)
dx1 =

1
8c2n4 .

For all 0 < τ ≤ 1
2 fixed there exists n ∈N such that 1

n2 ≤ τ, and therefore

sup
x∈R

| fG,τ(x)− f (x)| ≥ sup
n∈N: 1

n2≤τ

| fG,τ(n)− f (n)| = sup
n∈N: 1

n2≤τ

∣∣∣∣ 1τ 1
2
√

2cn2
− n

∣∣∣∣
≥ sup

n∈N: 1
n2≤τ

∣∣∣∣ 1
2
√

2c
− n

∣∣∣∣ = ∞.

The boundedness assumption in Proposition 2.3.2 (i) prevents f to become arbitrar-
ily large and allows one to show that the above supremum is bounded. On the other
hand, uniform continuity ensures that the supremum converges to zero, thus allow-
ing to use LDCT and obtain the statement.
In the next proposition, we use Theorem 2.2.1 (iii) to obtain a uniform approximation
of fτ = fG,τ in compact sets. We need the following notation: for A ⊂ Rd and δ > 0,
(A)+δ = {x ∈ Rd : infy∈A‖x− y‖2 ≤ δ} and (A)−δ = Rd \

(
Rd \ A

)+δ
= {x ∈ Rd :

infy∈Rd\A‖x− y‖2 > δ}.

Proposition 2.3.3 Suppose (2.2.1) holds true and f is three times continuously differen-
tiable. Let K be a compact subset of S f . Then, there are constants τ̃(K), c̃1(K), c̃2(K) > 0
and a continuously differentiable function R̃τ : K → R such that, for all x ∈ K and
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0 < τ ≤ τ̃(K), |R̃τ(x)| ≤ c̃1(K), ‖∇R̃τ(x)‖2 ≤ c̃2(K), and

fτ(x) = f (x) + R̃τ(x)τ2.

Proof of Proposition 2.3.3. Notice that, since K ⊂ S f , K is closed and S f is open,
there is δ, h̃ > 0 such that (K)+(δ+h̃) ⊂ S f . Let τ1 = δ/ρ and K̃ = K+h̃. Then, for
τ ∈ (0, τ1], we have that (K̃)+ρτ ⊂ (K)+(δ+h̃) and, by Remark 2.3.1, fτ is three times
continuously differentiable in K̃. Since f is three times continuously differentiable,
by Theorem 2.2.1 (iii), we have that, for x ∈ K̃,

f k
τ (x)− f k(x) = Qτ(x)τ2,

where, for all τ ∈ [0, τ1], Qτ(x) = (R1(x) + R2(x))/Λ1 + o(τ) is well-defined and
continuously differentiable with uniformly bounded derivatives in K̃. Let

c̃3(K̃) = sup
y∈K̃

sup
τ∈[0,τ1]

|Qτ(y)/ f k(y)|

and τ̃(K) ∈ (0, min(1, τ1, c̃−1/2
3 (K̃), c̃−2

3 (K̃))). It follows from Newton’s generalized
binomial theorem that, for τ ∈ (0, τ̃(K)],

fτ(x) = f (x)
(

1 + τ1/2Qτ(x)/ f k(x)τ2
)1/k

= f (x) + 1/kQτ(x)/ f k−1(x)τ2 + τ3Q̃τ(x),

where Q̃τ(x) = 1/τ3 f (x)∑∞
j=2 (

1/k
j )
(
Qτ(x)/ f k(x)τ2)j and (1/k

j ) = (1/k . . . (1/k −
j + 1))/j!. Now, since τ ≤ τ̃(K) < 1, we obtain that

|Q̃τ(x)| ≤ f (x)|
∞

∑
l=2

(
1/k

l

)(
τ1/2Qτ(x)/ f k(x)

)l
|

= f (x)(1 + 1/kτ1/2Qτ(x)/ f k(x)− (1 + τ1/2Qτ(x)/ f k(x))1/k).

Hence, c̃4(K̃) = supy∈K̃ supτ∈[0,τ̃(K)]|Q̃τ(y)| < ∞. Let R̃τ(x) = 1/kQτ(x)/ f k−1(x) +
τQ̃τ(x). We need to show that, for all τ ∈ (0, τ̃(K)], Q̃τ is continuously differentiable
in K with uniformly bounded derivatives. To this end, let

Tτ,l(x) =
(

1/k
l

)
(Qτ(x)/ f k(x)τ2)l ,

T̃(i)
τ,l (x) =

(
1/k

l

)
l(Qτ(x)/ f k(x)τ2)l−1∂i(Qτ(x)/ f k(x)τ2),

Sτ,j(x) = ∑
j
l=2 Tτ,l(x) and S̃(i)

τ,j(x) = ∑
j
l=2 T̃(i)

τ,l (x). Notice that ∂iSτ,j(x) = S̃(i)
τ,j(x) and

let
c̃5(K̃) = sup

y∈K̃
sup

τ∈[0,τ̃(K)]
‖∇Qτ(y)/ f k(y)‖2.

We compute

sup
y∈K̃

sup
τ∈[0,τ̃(K)]

|Sτ,∞(y)− Sτ,j(y)| ≤
∞

∑
l=j+1

(c̃3(K̃)τ̃2(K))l =
(c̃3(K̃)τ̃2(K))j+1

1− c̃3(K̃)τ̃2(K)
−−→
j→∞

0
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and

sup
y∈K̃

sup
τ∈[0,τ̃(K)]

|S̃(i)
τ,∞(y)− S̃(i)

τ,j(y)| ≤ c̃5(K̃)τ̃2(K)
∞

∑
l=j

(c̃3(K̃)τ̃2(K))l

= c̃5(K̃)τ̃2(K)
(c̃3(K̃)τ̃2(K))j

1− c̃3(K̃)τ̃2(K)
−−→
j→∞

0.

Hence, the series Sτ,j and S̃(i)
τ,j converge uniformly to Sτ,∞ and S̃(i)

τ,∞. By the funda-

mental theorem of calculus (FTC), the uniform convergence of S̃(i)
τ,∞, and LDCT, we

have that, for all x ∈ K and 0 < h ≤ h̃,

Sτ,∞(x + hei)− Sτ,∞(x) =
∞

∑
l=2

(Tτ,l(x + hei)− Tτ,l(x))

=
∞

∑
l=2

∫ h

0
T̃(i)

τ,l (x + tei)dt =
∫ h

0
S̃(i)

τ,∞(x + tei)dt.

Now, using again FTC, we have that

∂iSτ,∞(x) = lim
h→0+

Sτ,∞(x + hei)− Sτ,∞(x)
h

= lim
h→0+

1
h

∫ h

0
S̃(i)

τ,∞(x + tei)dt = S̃(i)
τ,∞(x)

and

∇Sτ,∞(x) = (S̃(1)
τ,∞(x), . . . , S̃(d)

τ,∞(x))>

=
∞

∑
l=2

(
1/k

l

)
l(Qτ(x)/ f k(x)τ2)l−1∇(Qτ(x)/ f k(x)τ2).

It follows that Q̃τ is continuously differentiable in K with

∇Q̃τ(x) = ∇ f (x)(Sτ,∞(x)/τ3) + f (x)∇Sτ,∞(x)/τ3.

Since c̃3(K̃)τ̃1/2(K) < 1 we obtain that

sup
y∈K

sup
τ∈[0,τ̃(K)]

|Sτ,∞(x)/τ3| ≤
∞

∑
l=2

(c̃3(K̃)τ̃1/2(K))l < ∞,

sup
y∈K

sup
τ∈[0,τ̃(K)]

‖∇Sτ,∞(x)/τ3‖2 ≤ c̃5(K̃)
∞

∑
l=1

(c̃3(K̃)τ̃1/2(K))l < ∞,

and c̃6(K) = supy∈K supτ∈[0,τ̃(K)]‖∇Q̃τ(x)‖2 < ∞. Let

c̃7(K) = sup
y∈K

sup
τ∈[0,τ̃(K)]

|(Qτ(y)/ f k−1(y))|

and
c̃8(K) = sup

y∈K̃
sup

τ∈[0,τ̃(K)]
‖∇(Qτ(y)/ f k−1(y))‖2.

Then, we conclude that

sup
x∈K

sup
τ∈[0,τ̃(K)]

|R̃τ(x)| ≤ c̃1(K) = c̃7(K)/k + τ̃(K)c̃4(K̃) < ∞
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and
sup
x∈K

sup
τ∈[0,τ̃(K)]

‖∇R̃τ(x)‖2 ≤ c̃2(K) = c̃8(K)/k + τ̃(K)c̃6(K) < ∞.

2.4 Sample local depth functions

As noticed at the end of Section 1.9, typical estimator of Type A depth functions
are U-statistics. Since Type A LDFs have the same integral form (2.2.2), the same
considerations apply to them. Specifically, let {Xi}∞

i=1 be a sequence of i.i.d. random
variables from P ∈ Pd. The estimate of LG, called sample local depth, is the U-
statistics of order k

LG,n(x, τ, P) =
(

n
k

)−1

∑
1≤i1<···<ik≤n

hx,τ(Xi1 , . . . , Xik), (2.4.1)

where x ∈ Rd and τ ∈ [0, ∞]. In particular, (2.4.1) entails that the sample depth
DG,n(x, P) = LG,n(x, ∞, P) is an estimator of DG(x, P). When there is no scope of
confusion, we will also write LG,n(x, τ) and DG,n(x) for LG,n(x, τ, P) and DG,n(x, P).
In the next proposition, we study the rank of the U-statistics LG,n(x, τ, P) (see Defi-
nition 1.10.2).

Proposition 2.4.1 Let P ∈ Pd and x ∈ Rd. The following holds:
(i) If P(Br(x)) > 0 for all r > 0, then, for all τ ∈ (0, ∞), LG(x, τ, P) has rank 1.
(ii) Suppose (2.2.1) holds and P(Br(x)) = 0 for some r > 0, then there exists τ̃ > 0 such
that LG,n(x, τ, P) = 0 Pk-a.s. and pk,jhx,τ = 0 Pj-a.s. for all τ ∈ [0, τ̃] and j = 1, . . . , k.

Notice that, if in Proposition 2.4.1 P ∈ Pd,�λ with density f , then (ii) holds for all
x ∈ Rd \ S f . Furthermore, if f is continuous, then (i) holds for all x ∈ S f . The exam-
ple after Proposition 2.2.1 shows that (i) does not hold in general for τ = ∞.

Proof of Proposition 2.4.1. We begin by proving (i). We need to show pk,1hx,τ 6= 0
P-a.s. To this end, suppose by contradiction that∫

hx,τ(y, x2, . . . , xk)dP(x2) . . . dP(xk) =
∫

hx,τ(x1, . . . , xk)dP(x1) . . . dP(xk)

for all y ∈ Rd \ N, where N ∈ Bd and P(N) = 0. It follows that, for Pk−1-almost all
(x2, . . . , xk) ∈ (Rd)k−1,

hx,τ(y, x2, . . . , xk) =
∫

hx,τ(x1, . . . , xk)dP(x1)

and hx,τ(·, x2, . . . , xk) is constant for Pk−1-almost all (x2, . . . , xk) ∈ (Rd)k−1. We show
that this contradicts (P3) and (P4). To this end, let δ > 0 be as in (P4). Then, it holds
that P(Bδ(x)) > 0 and (P3) and (P4) yield that hx,τ(·, x2, . . . , xk) is not constant for all
x2, . . . , xk ∈ Bδ(x).

We now prove (ii). Using (2.2.1), we obtain that Shx,τ ⊂ (Bτρ(x))k. Let τ̃ = r/ρ. It
follows that, for all τ ∈ [0, τ̃] and x2, . . . , xk ∈ Rd, hx,τ(·, x2, . . . , xk) = 0 in Rd \ Br(x).
Since P(Br(x)) = 0, we conclude that hx,τ = 0 Pk-a.s. yielding that LG,n(x, τ, P) = 0
Pk-a.s. and pk,jhx,τ = 0 Pj-a.s. for all j = 1, . . . , k.
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Several properties of LG,n can be deduced from the properties of U-statistics and U-
processes derived in Sections 1.10 and 1.11. The fact that HG is uniformly bounded
yields some simplification in the assumptions. In particular, the variance of LG,n(x, τ, P)
is given by Proposition 1.10.2 and it is equal to

Var[LG,n(x, τ, P)] =
k

∑
j=1

(
k
j

)2(n
j

)−1

Var[pk,jhx,τ(X1, . . . , Xj)]

=
k2

n
Var[pk,1hx,τ(X1)] + O(n−2).

(2.4.2)

Each term on the RHS is in general non-zero, although it may be zero in some cases
(cf. Proposition 2.4.1). Importantly, Proposition 1.10.4 yields that LG,n(x, τ, P) is a
consistent estimator of LG(x, τ, P) for all P ∈ Pd. However, in typical applications,
the choice of x, τ, and G varies and different choices of x, τ and G may be inves-
tigated. Using Corollary 1.11.2, we show that LG,n is uniformly consistent over x
and τ. To this end, notice that Rd × [0, ∞] can be identified with HG via the bijec-
tion (x, τ) ↔ hx,τ. We assume that HG is a VC subgraph class. We show in Section
2.7 that this assumption holds for local simplicial depth, local β-skeleton depth, and
other examples of LDFs.

Theorem 2.4.1 Let P ∈ Pd andHG be VC subgraph. Then,

sup
(x,τ)∈Rd×[0,∞]

|LG,n(x, τ, P)− LG(x, τ, P)| a.s.−→ 0.

Proof of Theorem 2.4.1. Since HG is uniformly bounded, using Corollary 1.11.2,
it is enough to show that HG is image admissible Suslin (see Definition 1.11.2).
To this end, we show that the function S : (Rd)k × Rd × [0, ∞] → R given by
S(x1, . . . , xk, x, τ) = hx,τ(x1, . . . , xk) is Borel measurable. To see this, for τ ∈ [0, ∞],
let hτ : (Rd)k × Rd → R be given by h̃τ(x1, . . . , xk, x) = hx,τ(x1, . . . , xk) and R :
(Rd)k ×Rd × [0, ∞] → R be given by R(x1, . . . , xk, x, τ) =

( x1−x
τ , . . . , xk−x

τ

)>
. Since

G is Borel measurable and R is continuous, h̃(·)(·) = G(R(·)) is Borel measurable.
In particular, h̃τ is Borel measurable for all τ ∈ (0, ∞) and h̃0 and h̃∞ are Borel mea-
surable because they are limit of Borel measurable functions. It follows that, for all
A ∈ B1,

S−1(A) =(R−1(G−1(A)) ∪ (h̃−1
0 (A)× {0}) ∪ (h̃−1

∞ (A)× {∞})
∈B((Rd)k ×Rd × [0, ∞]).

Hence, HG is image admissible Suslin via the onto Borel measurable map T : Rd ×
[0, ∞]→ HG given by T(x, τ) = hx,τ.

In some examples, it is possible that G = Gθ ∈ G is indexed by a parameter θ ∈
Θ ⊂ R, as is the case for β-skeletons. In such cases, one can strengthen the above
Theorem 2.4.1 to obtain uniformity in the indexing parameter, that is,

sup
(θ,x,τ)∈Θ×Rd×[0,∞]

|LGθ ,n(x, τ, P)− LGθ
(x, τ, P)| a.s.−→ 0. (2.4.3)

To this end, we make the following assumptions:

(A1) Gθ satisfies (P1)-(P4), where k = k∗Θ = kGθ
is independent of θ.
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(A2) H∗Θ = ∪θ∈ΘHGθ
is a VC subgraph class.

(A3) supθ∈Θ Gθ ≤ l∗Θ for some 0 < l∗Θ < ∞.

(A4) G(·)(·) is jointly Borel measurable.

The details for the β-skeleton are provided in Section 2.7.

Proof of (2.4.3). Using (A3), we obtain that H∗Θ is uniformly bounded. Since H∗Θ is
VC subgraph by (A2), the statement follows from Corollary 1.11.2 if we show that
H∗Θ is image admissible Suslin. To this end, let R∗Θ, S∗Θ : (Rd)k×Rd×Θ× [0, ∞]→ R

be given by R∗Θ(x1, . . . , xk, x, θ, τ) =
( x1−x

τ , . . . , xk−x
τ , θ

)>
and S∗Θ(x1, . . . , xk, x, θ, τ) =

hGθ ,x,τ(x1, . . . , xk). Also, for τ ∈ [0, ∞], let h∗Θ,τ : (Rd)k × Rd × Θ → R be given
by h∗Θ,τ(x1, . . . , xk, x, θ) = hGθ ,x,τ(x1, . . . , xk) and G∗Θ : (Rd)k × Θ → R be given by
G∗Θ(x1, . . . , xk, θ) = Gθ(x1, . . . , xk). Since, for θ ∈ Θ and τ ∈ (0, ∞), h∗Θ,τ(·, ·) =
G∗Θ(R∗Θ(·, ·, θ, τ), where G∗Θ is Borel measurable by (A4) and R∗Θ is continuous, we
obtain that G∗Θ ◦ R∗Θ, h∗Θ,0, and h∗Θ,∞ are Borel measurable. Therefore, for all A ∈ B1,

(S∗Θ)
−1(A) =((R∗Θ)

−1((G∗Θ)
−1(A)) ∪ ((h∗Θ,0)

−1(A)× {0}) ∪ ((h∗Θ,∞)
−1(A)× {∞})

∈ B((Rd)k ×Rd ×Θ× [0, ∞]).

We conclude that ŜΘ is Borel measurable and the class ĤΘ is image admissible Suslin
via T̂Θ : Rd ×Θ× [0, ∞]→ ĤΘ given by T̂Θ(x, θ, τ) = hGθ ,x,τ.

We now turn to the uniform central limit theorem for LG,n over a suitable subset
A of Rd× [0, ∞]. Specifically, for P ∈ Pd, A is chosen so that that LG,n(x, τ, P) is non-
degenerate for all (x, τ) ∈ A (cf. Proposition 2.4.1). Notice that there is a one-to-one
correspondence between A and the class ĤG,A = {hx,τ ∈ HG : (x, τ) ∈ A}. Also,
if HG is VC subgraph, then ĤG,A is VC subgraph by Proposition 1.11.1 (vi). We are
now ready to state the uniform CLT for sample LDFs.

Theorem 2.4.2 Let P ∈ Pd and A ⊂ Rd × [0, ∞] such that ĤG,A is P-non-degenerate. If
ĤG,A is VC subgraph, then

√
n(LG,n(·, ·, P)− LG(·, ·, P)) d∗−→ (Ŵk(P))(·, ·),

where {(Ŵ(P))(x, τ)}(x,τ)∈A is a Gaussian process with mean zero and covariance function
γŴ(P) : A× A→ R given by

γŴ(P)((x, τ), (y, ν)) = k2
(∫

(pk,1hx,τ)(x1)(pk,1hy,ν)(x1)dP(x1)− LG(x, τ, P)LG(y, ν, P)
)

.

(2.4.4)

Proof of Theorem 2.4.2. Let ŜA : (Rd)k × A → R be given by ŜA(x1, . . . , xk, x, τ) =
S(x1, . . . , xk, x, τ), where S is defined in the proof of Theorem 2.4.1 and (x, τ) ∈ A.
Since S is Borel measurable, ŜA is Borel measurable on (Rd)k × A and ĤG,A is image
admissible Suslin via the onto Borel measurable map T̂A : A → ĤG,A given by
T̂A(x, τ) = hx,τ. Since ĤG,A is VC subgraph and uniformly bounded, Corollary 1.11.4
yields that

√
n(LG,n(·, ·, P)− LG(·, ·, P)) d∗−→ (Ŵk(P))(·, ·),
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where (Ŵk(P))(x, τ) = (W̃(P))(hx,τ) = k(B̃(P))(pk,1hx,τ). For (x, τ), (y, ν) ∈ A, we
obtain that

γŴ(P)((x, τ), (y, ν)) = k2γB̃(P)(pk,1hx,τ, pk,1hy,ν)

= k2J1((p1,1 pk,1hx,τ)(p1,1 pk,1hy,ν), P)

= k2
∫
(p1,1 pk,1hx,τ)(x1)(p1,1 pk,1hy,ν)(x1)dP(x1)

= k2
(∫

(pk,1hx,τ)(x1)(pk,1hy,ν)(x1)dP(x1)− LG(x, τ, P)LG(y, ν, P)
)

.

In the clustering applications discussed below, we will establish the consistency of
the sample clustering algorithm. This will involve approximating the τ-approximations
of the depth functions and their derivatives via their sample versions. The quality
of this approximation will play a critical role in the consistency arguments. Our next
result enables this study by establishing a Bernstein-type inequality for local depth
functions.

Theorem 2.4.3 Let P ∈ Pd and σ2
G = sup(x,τ)∈Rd×[0,∞] Var[pk,1hG,x,τ(X1)]. If HG is

VC subgraph, then there are constants 1 < cG,0, cG,1, cG,2 < ∞ such that, for all t ≥
max(23σG, 24cG,0),

P(
√

n sup
(x,τ)∈Rd×[0,∞]

|LG,n(x, τ, P)− LG(x, τ, P)| ≥ t) ≤ MG(n, t) =
3

∑
j=1

MG,j(n, t),

(2.4.5)
where

MG,1(n, t) = 8 exp
(
−

√
nt2

215k2(
√

nσ2
G + tlG)

)
,

MG,2(n, t) = 8c2cG,2
G,1

(
σ2

G +
2tlG√

n

)−cG,2

exp
(
−
(

nσ2
G

2l2
G

+

√
nt

4lG

))
, and

MG,3(n, t) = 2 exp

(
−

√
nt2

26+kkk+1lGcG,0(
√

nσ2
G + tlG)

)
.

Proof of Theorem 2.4.3. We apply Theorem 1.11.9 with E = Rd and H = HG. For
ease of notation we use the subscript G in place ofHG.

2.5 Sample τ-approximation

Sample LDFs can be used to estimate the τ-approximation via a plug-in approach.
The resulting estimator is given by

fG,τ,n(x) =
(

LG,n(x, τ)

τkdΛ1

)1/k

(2.5.1)

and is called sample τ-approximation. In this section, we use Proposition 2.3.2
and Theorem 2.4.3 and show that, if P is absolutely continuous with respect to the
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Lebesgue measure with density f , then the sample τ-approximation is a uniform
consistent estimator of f . The precise statement reads as follows.

Proposition 2.5.1 Let P ∈ Pd,�λ with density f and suppose thatHG is VC subgraph. Let
{τn}∞

n=1 and {εn}∞
n=1 be sequences of positive scalars converging to zero with limn→∞

n
log(n)τ2kd

n =

∞. Then the following hold:
(i) If f is uniformly continuous and bounded, then

sup
x∈Rd
| fτn,n(x)− f (x)| a.s.−→ 0.

(ii) If f is continuous, then for all compact sets K ⊂ Rp

sup
x∈K
| fτn,n(x)− f (x)| = 0 a.s.−→ 0.

In particular, for all x ∈ Rd, supy∈Bεn (x) | fτn,n(y)− f (x)| a.s.−→ 0.

In the remaining of this section we prove Proposition 2.5.1. In Section 2.6, we study
the asymptotic limit distribution of the sample τ-approximation. In Section 2.7, we
provide several examples of LDFs and verify that they satisfy the VC subgraph prop-
erty. We begin with a lemma concerning the quantity MG in (2.4.5).

Lemma 2.5.1 Let MG, σG, and cG,0 be as in Theorem 2.4.3, {an}∞
n=1 be a sequence of

positive scalars converging to zero with limn→∞
na2

n
log(n) = ∞, b > 0, and tn =

√
nanb.

Then, there are constants 0 < c̃G < ∞ and ñ ∈ N such that, for all n ≥ ñ and
tn ≥ max(23σG, 24cG,0),

MG(n, tn) ≤
c̃G

n2 .

Proof of Lemma 2.5.1. Since limn→∞ tn = ∞ and limn→∞ an = 0, there is n1 ∈ N,
such that, for all n ≥ n1, tn ≥ max(23σG, 24cG,0) and tn/

√
n = anb ≤ 1. Then, for all

n ≥ n1, it holds that

MG(n, tn) ≤ 8 exp
(
− t2

n

215k2(σ2
G + lG)

)
+ 2 exp

(
− t2

n

26+kkk+1lGcG,0(σ2
G + lG)

)

+ 8c2cG,2
G,1 (σ2

G + 2anblG)
−cG,2 exp

(
−
(

nσ2
G

2l2
G

+

√
ntn

4lG

))
≤ 16 exp

(
− t2

n
cG,3

)
+ cG,4a−cG,2

n exp
(
−
√

ntn

cG,5

)
,

where cG,3 = (σ2
G + lG)max(215k2, 26+kkk+1lGcG,0), cG,4 = 8c2cG,2

G,1 (2blG)
−cG,2 , and cG,5 =

4lG. Next, we use that limn→∞
na2

n
log(n) = ∞ and obtain that

lim
n→∞

n2 exp
(
− t2

n
cG,3

)
= lim

n→∞
exp

(
−
(

log(n)
cG,3

)(
t2
n

log(n)
− 2cG,3

))
= 0.
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In particular, there is n2 ∈ N, such that, for all n ≥ n2, exp
(
− t2

n
cG,3

)
≤ 1

n2 . Next,

notice that

n2a−cG,2
n exp

(
−
√

ntn

cG,5

)
= exp

(
2 log(n)− nanb

2cG,5

)
exp

(
−cG,2 log(an)−

nanb
2cG,5

)
= exp

(
− log(n)

(
b

2cG,5

nan

log(n)
− 2
))

exp
(
− b

2cG,5
nan

(
1 +

2cG,2cG,5

b
log(an)

nan

))
.

Now, limn→∞
na2

n
log(n) = ∞ implies that limn→∞

nan
log(n) = ∞ and limn→∞ nan = ∞ yield-

ing that

lim
n→∞

n2a−cG,2
n exp

(
−
√

ntn

cG,5

)
= 0.

This show that there is n3 ∈ N such that a−cG,2
n exp

(
−
√

ntn
cG,5

)
≤ 1

n2 for all n ≥ n3. Let

ñ = maxi=1,...,3 ni. Then, for all n ≥ ñ, it holds that

MG(n, tn) ≤
16 + cG,4

n2 ,

and the result follows by letting c̃G = 16 + cG,4.

Proof of Proposition 2.5.1. For (i), observe that

sup
x∈Rd
| fτn,n(x)− f (x)| ≤ sup

x∈Rd
| fτn,n(x)− fτn(x)|+ sup

x∈Rd
| fτn(x)− f (x)|

and, by Proposition 2.3.2 (i), it is enough to show that

sup
x∈Rd
| fτn,n(x)− fτn(x)| a.s.−→ 0. (2.5.2)

Now, using Lemma 2.3.1, we see that

sup
x∈Rd
| fτn,n(x)− fτn(x)| ≤ sup

(x,τ)∈Rd×[0,∞]

∣∣∣∣LG,n(x, τ)− LG(x, τ)

Λ1τkd
n

∣∣∣∣1/k

.

Let ε > 0, tn =
√

nτkd
n Λ1εk and notice that, since limn→∞ nτ2kd

n = ∞, limn→∞ tn = ∞.
It follows from Theorem 2.4.3 and Lemma 2.5.1 with an = τkd

n and b = Λ1εk that
there are constants 1 < cG,0 < ∞, 0 < c̃G < ∞, and ñ ∈ N such that, for all n ≥ ñ,
tn ≥ max(23σG, 24cG,0) and

P

(
sup
x∈Rd
| fτn,n(x)− fτn(x)| ≥ ε

)
= P

(√
n sup

(x,τ)∈Rd×[0,∞]

|LG,n(x, τ)− LG(x, τ)| ≥ tn

)
≤ MG(n, tn) ≤

c̃G

n2 .



Chapter 2. Local depth functions 76

Therefore, we obtain that

∞

∑
n=1

P

(
sup
x∈Rd
| fτn,n(x)− fτn(x)| ≥ ε

)
≤ ñ− 1 +

∞

∑
n=ñ

MG(n, tn) ≤ ñ− 1 +
∞

∑
n=ñ

c̃G

n2 < ∞.

Now, (2.5.2) follows from Borel-Cantelli lemma. The proof of the first part of (ii)
follows from the inequality

sup
x∈K
| fτn,n(x)− f (x)| ≤ sup

x∈Rd
| fτn,n(x)− fτn(x)|+ sup

x∈K
| fτn(x)− f (x)|,

(2.5.2), and Proposition 2.3.2 (ii). For the second part of (ii), let ε∗ > 0 and n∗ ∈ N

such that εn ≤ ε∗ for all n ≥ n∗. Then, for all n ≥ n∗ and x ∈ Rd,

sup
y∈Bεn (x)

| fτn,n(y)− f (x)| ≤ sup
y∈Bε∗ (x)

| fτn,n(y)− fτn(y)|+ sup
y∈Bεn (x)

| fτn(y)− f (x)|.

Now, using the compactness of Bε∗(x) and the first part of (ii), we have that

lim
n→∞

sup
y∈Bε∗ (x)

| fτn,n(y)− fτn(y)|
a.s.−→ 0.

Finally, Proposition 2.3.2 (ii) implies that

lim
n→∞

sup
y∈Bεn (x)

| fτn(y)− f (x)| = 0.

2.6 Central limit results for sample τ-approximations

It is well known that extreme localization is an important concept in depth analysis,
however, the fluctuations of fτ,n are unknown. Our main result in this section char-
acterizes the asymptotic variance and establishes a related limit distribution. To this
end, let

Λ̂2
1 =

∫
Λ̃2

1(x1)dx1,

where, for x1 ∈ Rd,

Λ̃1(x1) =
∫

G(x1, . . . , xd)dx2 . . . dxd.

Theorem 2.6.1 Let P ∈ Pd,�λ with continuous density f and suppose (2.2.1) holds true.
Let x ∈ S f and {τn}∞

n=1 be a sequence of positive scalars converging to zero.

If limn→∞
√

nτ
((2k−1)d)/2
n = ∞, then

√
nτd/2

n ( fτn,n(x)− fτn(x)) d−→ N

(
0,

Λ̂2
1

Λ2
1

f (x)

)
.

Remark 2.6.1 We notice that, for k > 1, the limit distribution in Theorem 2.6.1 with fτn

replaced by f cannot hold. In fact, the deterministic term fτn(x) − f (x) is, by Proposi-
tion 2.3.3, of order O(τ2

n), while the term fτn,n(x) − fτn(x) converges to a normal distri-
bution at rate 1/(

√
nτd/2

n ). Since, necessarily, limn→∞
√

nτ
((2k−1)d)/2
n = ∞, fτn(x) −

f (x) is the dominant term. On the other hand, if k = 1, limn→∞
√

nτd/2
n = ∞ and
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limn→∞
√

nτd/2+2
n = 0, then, by Proposition 2.3.3, limn→∞

√
nτd/2

n ( fτn(x)− f (x)) = 0.
Hence,

√
nτd/2

n ( fτn,n(x)− f (x)) d−→ N

(
0,

Λ̂2
1

Λ2
1

f (x)

)
.

In the examples with uniform kernel, the constant Λ1 appearing in the limiting vari-
ance in Theorem 2.6.1 can be calculated numerically using (2.2.1) by computing the
percentage of uniformly distributed random points in (Bρ(0))k that lie in ZG,0,1 (e.g.,
for G = Kβ, k = 2 and ρ =

√
2 min(1, β/2)) and multiplying the result by its volume

λk((Bρ(0))k) = (λ(Bρ(0)))k =

(
πd/2ρd

Γ(d/2 + 1)

)k

,

where Γ is the gamma function. Similarly, the constant Λ̂2
1 can be calculated by ap-

proximating the integral with a sum. An alternative form for Theorem 2.6.1 without
the factor f (x) in the variance term is given in the following corollary.

Corollary 2.6.1 Under the hypothesis of Theorem 2.6.1,

√
nτd/2

n

(√
fτn,n(x)−

√
fτn(x)

)
d−→ N

(
0,

Λ̂1

4Λ2
1

)
.

We now turn to the proof of Theorem 2.6.1 and Corollary 2.6.1. To this end, notice
that, by Hoeffding’s decomposition of U-statistics, the limit behavior of LG(x, τ) for
τ → 0+ critically depends on the limit behavior of 1

n ∑n
i=1 pk,1hx,τ(Xi) for τ → 0+,

which has variance 1
n Var[pk,1hx,τ(X1)]. Under the hypothesis of Theorem 2.6.1,

Proposition 2.4.1 yields that Var[pk,1hx,τ(X1)] > 0 for all τ ∈ (0, ∞). Using that
P ∈ Pd,�λ, we also see that pk,1hx,0 = 0 P-a.s. and Var[pk,1hx,0(X1)] = 0. We begin
by studying the order of convergence of Var[pk,1hx,τ(X1)] to 0, as τ → 0+.

Lemma 2.6.1 Suppose (2.2.1) holds true. If f is continuous, then

lim
τ→0+

Var[pk,1hx,τ(X1)]

τ(2k−1)d
= Λ̂2

1 f 2k−1(x).

Proof of Lemma 2.6.1. Let τ > 0. We compute

Var[pk,1hx,τ(X1)]

τ(2k−1)d
=

Var[pk,1hx,τ(X1)]

τ(2k−1)d
−
(

LG(x, τ)

τ(k−1/2)d

)2

, (2.6.1)

where, by Theorem 2.2.1 (i),

lim
τ→0+

LG(x, τ)

τkd = Λ1 f k(x) and lim
τ→0+

LG(x, τ)

τ(k−1/2)d
= 0.
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We now focus on the first term in (2.6.1). By changing variables twice, we note that

Var[pk,1hx,τ(X1)]

τ(2k−1)d
=

1
τ(2k−1)d

∫ (∫
hx,τ(x1, . . . , xk)

k

∏
j=2

f (xj)dx2 . . . dxk

)2

f (x1)dx1

=
1

τ2(k−1)d

∫ (∫
G
(

x1,
x2 − x

τ
, . . . ,

xk − x
τ

) k

∏
j=2

f (xj)dx2 . . . dxk

)2

f (x + τx1)dx1

=
∫ (∫

G(x1, . . . , xk)
k

∏
j=2

f (x + τxj)dx2 . . . dxk

)2

f (x + τx1)dx1.

Since f is continuous, it follows from the boundedness of G, (2.2.1) and LDCT that

lim
τ→0+

∫
G(x1, . . . , xk)

k

∏
j=2

f (x + τxj)dx2 . . . dxk

= f k−1(x)
∫

G(x1, . . . , xk)dx2 . . . dxk

and

lim
τ→0+

∫ (∫
G(x1, . . . , xk)

k

∏
j=2

f (x + τxj)dx2 . . . dxk

)2

f (x + τx1)dx1

= f 2k−1(x)
∫ (∫

G(x1, . . . , xk)dx2 . . . dxk

)2

dx1

Proof of Theorem 2.6.1. Using Hoeffding’s decomposition of U-statistics (Proposi-
tion 1.10.1 with E = Rd and h = hx,τn ), it follows that

LG,n(x, τn)− LG(x, τn) =
k
n

n

∑
i=1

pk,1hx,τn(Xi) +
k

∑
j=2

(
k
j

)
r̃n,j, (2.6.2)

where

r̃n,j =

(
n
j

)−1

∑
1≤i1<···<ij≤n

pk,jhx,τn(Xi1 , . . . , Xij).

Now, applying Lindeberg-Levy Theorem for triangular arrays (Billingsley, 2012, The-
orem 27.2) with

rn = n, sn =
√

n
√

Var[pk,1hx,τn(X1)], and Sn =
n

∑
i=1

pk,1hx,τn(Xi),

it follows that √
n

Var[pk,1hx,τn(X1)]

(
1
n

n

∑
i=1

pk,1hx,τn(Xi)

)
d−→ N(0, 1), (2.6.3)

provided the Lindeberg condition (Billingsley, 2012, Equation (27.8))

lim
n→∞

1
Var[pk,1hx,τn(X1)]

∫
An,ε

(pk,1hx,τn(x1))
2 f (x1)dx1 = 0 (2.6.4)
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holds for all ε > 0, where

An,ε = {x1 ∈ Rd : (pk,1hx,τn(x1))
2 ≥ ε2nVar[pk,1hx,τn(X1)]}.

Using (2.2.3), it holds that (pk,1hx,τn(x1))
2 ≤ l2

G, for all x, x1 ∈ Rd. Also, due to x ∈ S f

and limn→∞ nτ
(2k−1)d
n = ∞, Lemma 2.6.1 implies that limn→∞ nVar[pk,1hx,τn(X1)] =

∞. Let ñ ∈ N be such that l2
G < ε2nVar[pk,1hx,τn(X1)] for all n ≥ ñ. It follows that

An,ε = ∅ for all n ≥ ñ. Thus, (2.6.4) holds true and we obtain (2.6.3). Next, we use
(1.10.4) with h, rn,j and n replaced by hx,τn , r̃n,j, and n

Var[pk,1hx,τn (X1)]
, and obtain that,

for all ε > 0,

P

(√
n

Var[pk,1hx,τn(X1)]
r̃n,j ≥ ε

)
≤

n(n
j)
−1

ε2Var[pk,1hx,τn(X1)]
E[(pk,jhx,τn(X1, . . . , Xj))

2].

Since j ≥ 2 and limn→∞ nVar[pk,1hx,τn(X1)] = ∞, it follows that

lim
n→∞

P

(√
n

Var[pk,1hx,τn(X1)]
r̃n,j ≥ ε

)
= 0. (2.6.5)

From (2.6.2), (2.6.3), and (2.6.5), we conclude that√
n

k2Var[pk,1hx,τn(X1)]
(LG,n(x, τn)− LG(x, τn))

d−→ N(0, 1). (2.6.6)

Now, using the delta method we obtain√
n

Var[pk,1hx,τn(X1)]
(LG(x, τn))

1−1/k
(
(LG,n(x, τn))

1/k − (LG(x, τn))
1/k
)

d−→ N (0, 1) ;

equivalently,

Zn =

√
n

Var[pk,1hx,τn(X1)]
(τkd

n Λ1 f k−1
τn

(x)) ( fτn,n(x)− fτn(x)) d−→ N (0, 1) . (2.6.7)

To complete the proof, since x ∈ S f and τn > 0, it holds, by Theorem 2.2.1 (i), that

lim
n→∞

f k
τn
(x)

f k(x)
= lim

n→∞

LG(x, τn)

Λ1τkd
n f k(x)

= 1 (2.6.8)

and, by Lemma 2.6.1,

lim
n→∞

√
Var[pk,1hx,τn(X1)]

τ
(k−1/2)d
n

= Λ̂1 f k−1/2(x) > 0. (2.6.9)

(2.6.8) and (2.6.9) imply that

Yn =

√
Var[pk,1hx,τn(X1)]

τ
(k−1/2)d
n f k−1

τn (x)
· 1

Λ̂1 f
1
2 (x)

=

√
Var[pk,1hx,τn(X1)]

τ
(k−1/2)d
n

· 1
Λ̂1 f k−1/2(x)

· f k−1(x)
f k−1
τn (x)

−−−→
n→∞

1.
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From (2.6.7) and Slutsky’s Theorem it follows that

YnZn
d−→ N (0, 1) ,

completing the proof.

Proof of Corollary 2.6.1. We will show that

fτn,n(x)
fτn(x)

=
(LG,n(x, τn))1/k

(LG(x, τn))1/k
d−→ 1. (2.6.10)

For this, it is enough to verify that

LG,n(x, τn)

LG(x, τn)
d−→ 1. (2.6.11)

Notice that
LG,n(x, τn)

LG(x, τn)
=

τkd
n

LG(x, τn)
· LG,n(x, τn)− LG(x, τn)

τkd
n

+ 1,

where, by Theorem 2.2.1 (i),

lim
n→∞

LG(x, τn)

τkd
n

= Λ1 f k(x) > 0.

On the other hand,

LG,n(x, τn)− LG(x, τn)

τkd
n

=

(√
Var[pk,1hx,τn(X1)]

τ
(k−1/2)d
n ·

√
nτd/2

n

)(√
n

LG,n(x, τn)− LG(x, τn)√
Var[pk,1hx,τn(X1)]

)
,

where limn→∞
√

nτd/2
n = ∞, by Lemma 2.6.1,

lim
n→∞

√
Var[pk,1hx,τn(X1)]

τ
(k−1/2)d
n

= Λ̂1 f k−1/2(x) > 0,

and by (2.6.6)√
n

Var[pk,1hx,τn(X1)]
(LG,n(x, τn)− LG(x, τn))

d−→ N(0, k2).

Now applying Slutsky’s Theorem

LG,n(x, τn)− LG(x, τn)

τkd
n

d−→ 0,

and, hence (2.6.11) and (2.6.10) hold. Now, (2.6.8) and (2.6.10) imply that

fτn,n(x)
f (x)

=
fτn,n(x)
fτn(x)

· fτn(x)
f (x)

d−→ 1. (2.6.12)

By Theorem 2.6.1

Z̃n =
√

nτd/2
n

1√
f (x)

( fτn,n(x)− fτn(x)) d−→ N
(

0,
Λ̂2

1

Λ2
1

)
,
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where we write fτn,n(x)− fτn(x) as

fτn,n(x)− fτn(x) =
(√

fτn,n(x)−
√

fτn(x)
)(√

fτn,n(x) +
√

fτn(x)
)

.

Also, by (2.6.8) and (2.6.12)

Ỹn =

√
fτn,n(x) +

√
fτn(x)√

f (x)
=

√
fτn,n(x)

f (x)
+

√
fτn(x)
f (x)

d−→ 2,

and, by another application of Slutsky’s Theorem,

Z̃n

Ỹn

d−→ N
(

0,
Λ̂2

1

4Λ2
1

)
,

proving the Corollary.

An extension of Theorem 2.6.1 uniformly over S f , namely,

√
nτd/2

n ( fτn,n(·)− fτn(·))
d∗−→ Λ̂1

Λ1
(W∗k ( f ))(·),

where {(W∗k ( f ))(x)}x∈S f is a centered Gaussian process with the covariance function
γ : S f × S f → R given by γW∗k ( f )(x, y) =

√
f (x) f (y), requires an extension of the

results of Arcones and Giné (1993) to triangular arrays and it is beyond the scope of
the present work. A result in this direction, when the kernel is uniform, is given by
Schneemeier (1989), but this is not sufficient in this context since the sets {ZG,x,τn}∞

n=1
not only depend on x but also on n.

2.7 Examples

In this section, we provide additional examples of LDFs and verify that they satisfy
the VC subgraph property. We begin with local simplicial depth (Agostinelli and
Romanazzi, 2008).

Example 2.7.1 (Local simplicial depth) G = S = IZS,0,1 , where for x ∈ Rd and τ ∈
[0, ∞]

ZS,x,τ = {(x1, . . . , xd+1) ∈ (Rd)d+1 : x ∈ ∆[x1, . . . , xd+1], max
1≤i<j≤d+1

‖xi − xj‖2 ≤ τ}.

Notice that that the last constraint max1≤i<j≤d+1‖xi − xj‖2 ≤ τ restricts the indicator
function hS,x,τ = IZS,x,τ to simplices ∆[x1, . . . , xd+1] with side lengths smaller than τ.
Next, observe that the class of simplices in Rd is VC, since they are given by the
intersections of d + 1 halfspaces (see Lemma 6.6 and Corollary 6.7 of Arcones and
Giné (1993)). Finally, using that the set ZS,0,1 is closed, we see that IZS,0,1 is Borel
measurable.

Example 2.7.2 (Local β-skeleton depth) For some β ≥ 1, G = Kβ = IZKβ ,0,1 , where for

x ∈ Rd and τ ∈ [0, ∞]

ZKβ,x,τ = {(x1, x2) ∈ (Rd)2 : max
(i,j)∈{(1,2),(2,1)}

‖xi +(2/β− 1)xj− 2/βx‖2 ≤ ‖x1− x2‖2 ≤ τ}.
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By taking β = 1 and β = 2 in the above example, we obtain local spherical depth
and local lens depth (Kleindessner and Von Luxburg, 2017), respectively. We will
now verify that this class of depth functions satisfy the VC subgraph property. Let
B = {Br(x) : x ∈ Rd, r > 0} be the class of balls in Rd and, for β ≥ 1, Kβ =

{B β
2 ‖x1−x2‖2

( β
2 x1 + (1 − β

2 )x2) ∩ B β
2 ‖x1−x2‖2

((1 − β
2 )x1 +

β
2 x2) : x1, x2 ∈ Rd} be the

class of all β-skeleton sets. By Theorem 1 in Dudley (1979), B is a VC class of sets.
Applying Proposition 1.11.1 (ii), it follows that also the intersection B ∩ B is a VC
class of sets. Proposition 1.11.1 (vi) implies that K∗[1,∞) = ∪β∈[1,∞)Kβ ⊂ B ∩ B is a VC
class. In particular, Kβ is a VC class for all β ≥ 1. We finally notice that the function
IZK(·) ,0,1(·) is jointly Borel measurable. Thus, assumptions (A1)-(A4) hold true.

As noticed before, Type B depth functions can be converted to Type A depth func-
tions. We use this observation and define Type A local depth functions for Type B
depth functions. To this end, let g : [0, ∞) → [0, ∞) be continuous, positive, and
decreasing with limt→∞ g(t) = 0.

Example 2.7.3 (Local Lq-depth) Let kG = 1 and

G = Nq = g(‖·‖q)IZNq ,0,1

and ZNq,x,τ = {y ∈ Rd : ‖y− x‖q ≤ τ} is the closed Lq-ball with center x and radius τ.

Notice that the VC dimension of Lq-balls in Rd is finite for q = 2, ∞ (see Dudley
(1979) and Despres (2017)). This is true also for q = 1, since L1-balls are given by
intersections of halfspaces. Hence, the function ‖·‖q is VC subgraph for q = 1, 2, ∞.
Since g is monotone, using Proposition 1.11.2 (vi), we see that g(‖·‖q) is VC subgraph
for q = 1, 2, ∞, and hence so is Nq. We now turn to local simplicial volume depth
(Agostinelli and Romanazzi, 2008).

Example 2.7.4 (Local simplicial volume depth) In this case, kG = d and

G(x1, . . . , xd) = V(x1, . . . , xd) = g(λ(∆[0, x1, . . . , xd]))IZV,0,1(x1, . . . , xd)

where for x ∈ Rd and τ ∈ [0, ∞]

ZV,x,τ = {(x1, . . . , xd) ∈ (Rd)d : max
1≤i<j≤d

‖xi − xj‖2 ≤ τ, max
i=1,...,d

‖xi − x‖2 ≤ τ}.

We show next that kernel density techniques can also be developed using Type A
LDFs. We begin with the uniform kernel (see Devroye and Györfi (1985)).

Example 2.7.5 (Uniform kernel) Let kG = 1 and

G = Ũ = IB1(0)).

Since closed balls in Rd form a VC class of sets by Theorem 1 in Dudley (1979), it
follows that hŨ,x,τ = IBτ(x)) belongs to the VC subgraph class for all x ∈ Rd and
τ ∈ (0, ∞].

Example 2.7.6 (Gaussian kernel) Set k = 1 and

G = K̃ = exp(−‖·‖2
2/2).
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It follows that ΛK̃,1 = 1 and hK̃,x,τ = exp(−‖(· − x)/τ‖2
2/2). In particular, τ−dhK̃,x,τ

is a Gaussian kernel with covariance matrix τ2 I (see, for instance, Chacón and Duong
(2018)). Also, the h-depth (Cuevas et al., 2007), used in functional data, can be ob-
tained by scaling hK̃,x,τ by τ. As a last example, we consider LDFs generated using
continuous bump functions (see e.g. Section 13 in Tu (2011)). These are non-negative,
continuous functions G : Rd → R with bounded support. From the continuity and
bounded support assumption it follows that G has finite integral. Under the addi-
tional assumptions that G(0) > 0 and G is non-increasing along any ray from the
origin 0 ∈ Rd, we see that (P2) and (P4) hold.

Example 2.7.7 (Bump functions) Let kG = 1 and G = B̃, where B̃ : Rd → R is non-
negative and continuous with bounded support. Moreover, B̃(0) > 0 and B̃ satisfies (P2).

Bump functions can be constructed, for instance, by the following procedure. Let
g1 : R → R be positive, continuous and increasing with limt→∞ g1(t) = ∞. Set
g2(t) = 1/g1(1/t) and

g3(t) =

{
g2(1 + t)g2(1− t) if |t| < 1
0 if |t| ≥ 1.

Finally, let G(x) = g3(‖x‖2). Alternative, one can let G(x) be the product ∏d
i=1 g3(πei(x)).

Additional smoothness can be added by requiring that g1 has continuous derivatives
of all orders and limt→∞ g1(t)/tn = ∞, for all n ∈ N. This last assumption ensures
that G decays quickly to zero near the boundary of its support. For instance, by
taking g1(t) = et/2, we get the classical bump function

G(x) =

{
e−1/(1−‖x‖2

2) if ‖x‖2 < 1
0 if ‖x‖2 ≥ 1,

which has continuous derivatives of all orders and decays exponentially fast as
‖x‖2 → 1−.

2.8 Choice of localizing parameter

A key issue in the use of LDFs is that it requires a method to choose τ. A typical
approach, as for kernel density techniques, is to choose τ so as to minimize the mean
squared error. This involves the integral of the square of the bias and the variance
term. We begin by calculating the squared error. To this end, notice that, by the
Newton generalized binomial theorem, for 0 ≤ t < 1, (1 + t)1/k = ∑∞

j=0 (
1/k

j )t
j,

where (1/k
j ) = (1/k . . . (1/k− j + 1))/j!. Setting t = f k

τ (x)− f k(x)
f k(x) and t = f k

τ,n(x)− f k
τ (x)

f k
τ (x)

,
respectively, we see that, for x ∈ S f ,

fτ(x) =
∞

∑
j=0

(
1/k

j

)
f 1−kj(x)( f k

τ (x)− f k(x))j, and (2.8.1)

fτ,n(x) =
∞

∑
j=0

(
1/k

j

)
f 1−kj
τ (x)( f k

τ,n(x)− f k
τ (x))j. (2.8.2)

Now, using Proposition 1.10.6 with h = hx,τ and q = j ≥ 2, we obtain that

E[|LG,n(x, τ)− LG(x, τ)|j] = O(n−j/2). (2.8.3)
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Notice that one can take, for all j ≥ 2, x ∈ Rd, and τ > 0, the same constant in the
big O notation in (2.8.3). Now, (2.8.3) implies that

E

[
| f k

τ,n(x)− f k
τ (x)|j

]
= O(n−j/2). (2.8.4)

It follows from (2.8.2) and (2.8.4) that

E[| fτ,n(x)|] ≤
∞

∑
j=0

E

[
|
(

1/k
j

)
f 1−kj
τ (x)( f k

τ,n(x)− f k
τ (x))j|

]

≤ fτ(x)
∞

∑
j=0

f−kj
τ (x)E

[
| f k

τ,n(x)− f k
τ (x)|j

]
< ∞

(2.8.5)

Now, using (2.8.2), (2.8.4), and (2.8.5) we obtain that

E[ fτ,n(x)] =
∞

∑
j=0

(
1/k

j

)
f 1−kj
τ (x)E[( f k

τ,n(x)− f k
τ (x))j].

Next, using the unbiasedness of f k
τ,n and (2.8.4), we have that

E[ fτ,n(x)] = fτ(x) +
1− k
2k2 f 1−2k

τ (x)E[( f k
τ,n(x)− f k

τ (x))2] + o
(

1
n

)
. (2.8.6)

In particular, the squared bias term is given by

(E[ fτ,n(x)]− f (x))2 = ( fτ(x)− f (x))2

+ ( fτ(x)− f (x))
1− k

k2 f 1−2k
τ (x)E[( f k

τ,n(x)− f k
τ (x))2] + o

(
1
n

)
.

Now, using (2.8.2), we can see that

E[ f 2
τ,n(x)] =

∞

∑
i=0

∞

∑
j=0

(
1/k

i

)(
1/k

j

)
f 2−k(i+j)
τ (x)E[( f k

τ,n(x)− f k
τ (x))i+j]

= f 2
τ (x) +

2− k
k2 f 2−2k

τ (x)E[( f k
τ,n(x)− f k

τ (x))2] + o
(

1
n

)
.

(2.8.7)

It follows from (2.8.6) and (2.8.7) that

Var[ fτ,n(x)] = E[ f 2
τ,n(x)]− (E[ fτ,n(x)])2

=
1
k2 f 2−2k

τ (x)E[( f k
τ,n(x)− f k

τ (x))2] + o
(

1
n

)
.

Thus, we conclude that

(E[ fτ,n(x)]− f (x))2 + Var[ fτ,n(x)] = ( fτ(x)− f (x))2

+
1
k2

(
fτ(x) + (1− k)( fτ(x)− f (x))

)
f 1−2k
τ (x)E[( f k

τ,n(x)− f k
τ (x))2] + o

(
1
n

)
.
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Notice that, by (2.4.2),

E[( f k
τ,n(x)− f k

τ (x))2] =
1
n

(
k

Λ1τkd

)2

Var[pk,1hx,τ(X1)] + o
(

1
n

)
,

and, by Lemma 2.6.1, there exists Λ̂1 > 0 such that

lim
τ→0+

Var[pk,1hx,τ(X1)]

τ(2k−1)d
= Λ̂2

1 f 2k−1(x),

implying that
E[( f k

τ,n(x)− f k
τ (x))2] = O(n−1τ−d).

Next, using (2.8.1) and Theorem 2.2.1 (iii), we have that

fτ(x) = f (x) +
1

kΛ1
f 1−k
τ (x)(R1(x) + R2(x))τ2 + o(τ2).

Therefore, it holds that

(E[ fτ,n(x)]− f (x))2 + Var[ fτ,n(x)] = O(τ4) + O(n−1τ−d).

By imposing the same order of convergence on the terms τ4
n and n−1τ−d

n , for some
sequence {τn}∞

n=1, we have that τn = O(n−1/(d+4)), and the rate of convergence
is n−4/(d+4). If the above calculations hold for mean squared error (MSE), then an
optimal choice for τn is τn = n−4/(d+4). In the case of one dimension, it is not hard to
establish that the aforementioned calculation holds true for MSE using Type A LDFs.
The details on this derivation, extensions to d > 1 dimensions, and a related limit
distribution are provided in Francisci et al. (2021).
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Chapter 3

Applications to clustering, mode
estimation, and upper level set
estimation

3.1 Introduction

As described in Section 3 and Appendices A, D, E, F, G, I, J, and K of Francisci et al.
(2020), the developments in Chapter 2 allow further applications to clustering, mode
estimation, and upper level set estimation. This is the main content of this chapter.
We suppose throughout that P is absolutely continuous with respect to the Lebesgue
measure with density f .

Under appropriate differentiability assumptions, Proposition 2.3.2 (iv) shows
that the derivatives of fτ converge uniformly over compact sets to those of f , which
facilitates an inquiry into the modes of the density via a gradient system analysis.
This, in turn, allows one to characterize the related stable manifolds paving the way
for cluster analysis. Related ideas about clustering appear in Chazal et al. (2013),
Chen et al. (2016), and Genovese et al. (2016). Our methodology differs from the ex-
isting literature in that we take advantage of the local depth notion, specifically the
τ-approximation fτ and its properties, developed in Chapter 2, as an approximation
to the density.

We recall from dynamical systems that the stable manifold generated by a mode
m of a “smooth” density f is given by

C(m) = {x ∈ S f : lim
t→∞

ux(t) = m},

where ux(t) is the solution at time t of the gradient system

u′(t) = ∇ f (u(t)) (3.1.1)

with initial value u(0) = x and ∇ f represents the gradient of f . If m1, · · ·mM are
the modes of f , then the clusters associated with f are given by C(m1), . . . , C(mM)
(Chacón, 2015). We verify in Section 3.3 that these clusters are well-defined, non-
trivial and disjoint using Lyapunov’s theory in dynamical systems. Additionally,
we establish that

S f = ∪M
i=1C(mi) ∪ ∪L

l=1C(µl),

where µ1, . . . , µL are the other stationary points of f . Hence, C(m1), . . . , C(mM),
C(µ1), . . . , C(µL) form a partition of S f . Additionally, we show that the set S f \
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(∪M
i=1C(mi)) = ∪L

l=1C(µl) has (topological) dimension smaller than d and the clus-
ters C(m1), . . . , C(mM) are separated in S f by the lower dimensional stable mani-
folds C(µ1), . . . , C(µL).

In real applications, f is unknown and is replaced by its estimate fτ,n. For every
fixed τ, by the results in Section 2.4, fτ,n converges to fτ. This raises the question
concerning the convergence of clusters associated with fτ to that of f . Of course,
to get the clusters associated with f we would prefer to replace τ by τn so that the
sample τ-approximation, fτn,n, converges to f (cf. Proposition 2.5.1). Hence, to use
the gradient system above, it is natural to replace the derivatives by their finite dif-
ference approximations. In Sections 3.5 and 3.6, we execute this strategy wherein
we establish the convergence of population clusters and empirical clusters. First, we
show in Section 3.4 that the stationary points and modes of fτ converge to those of
f . Next, we replace f by fτ in (3.1.1) and consider the gradient system

u′(t) = ∇ fτ(u(t)). (3.1.2)

We show that the solution ux,τ of (3.1.2) with initial value ux,τ(0) = x converges to
the solution ux of (3.1.1). We exploit this convergence in Section 3.5 to obtain con-
vergence of the clusters of fτ to those of f . The convergence of empirical clusters
requires the uniform convergence of empirical finite difference approximations to
the appropriate derivatives which is established using the Bernstein-type inequality
described in Theorem 2.4.3. Convergence of empirical finite difference approxima-
tions is proved in Section 3.7, which also contains other preliminary results such
as a discrete Grönwall lemma. The proof of convergence of empirical clusters it-
self is contained in Section 3.8. To the best of our knowledge, these results seem to
be the first to provide strong theoretical guarantees for clustering in multidimen-
sional problems. We note here that since the clustering described above is based on
mode(s) of the density and upper level sets, the sample τ-approximation can also be
used for mode estimation and upper level set estimation. While Section 3.6 includes
mode estimation, upper level set estimation is studied in Section 3.2. We provide a
detailed description of the clustering algorithm and its numerical implementation in
Section 3.9. Section 3.10 contains some examples illustrating the clustering algorithm
and the role of the localizing parameter τ. Specifically, we explain in detail how the
population and estimated clusters are computed and compare the estimated clus-
ters with those obtain via kernel density estimators (cf. Chacón and Duong (2018)).
A through analysis of the performance of the clustering algorithm is provided in
Sections 3.11 and 3.12.

3.2 Density upper level set estimation

In this section, we provide an application of LDFs to estimate the upper level sets.
We begin with the definition of level sets and upper level sets.

Definition 3.2.1 For α > 0, the level sets of f and fτ are Lα = {x ∈ Rd : f (x) = α}
and Lα,τ = {x ∈ Rd : fτ(x) = α}, respectively. The upper level sets of f , fτ and fτ,n are
Rα = {x ∈ Rd : f (x) ≥ α}, Rα,τ = {x ∈ Rd : fτ(x) ≥ α} and Rα,τ,n = {x ∈ Rd :
fτ,n(x) ≥ α}, respectively.

The next proposition shows that in the limit the upper level sets induced by fτ and
fτ,n coincide with those induced by f .
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Proposition 3.2.1 Suppose that f is uniformly continuous and bounded. Let {αn}∞
n=1 and

{τn}∞
n=1 be sequences of positive scalars converging to α > 0 and 0, respectively. It holds

that
R̊α ⊂ lim inf

n→∞
Rαn,τn ⊂ lim sup

n→∞
Rαn,τn ⊂ Rα, (3.2.1)

and, if λ(Lα) = 0, then
lim
n→∞

Rαn,τn = Rα λ-a.e. (3.2.2)

Suppose additionally thatHG is a VC subgraph class of functions and limn→∞
n

log(n)τ2kd
n =

∞. It holds that

R̊α ⊂ lim inf
n→∞

Rαn,τn,n ⊂ lim sup
n→∞

Rαn,τn,n ⊂ Rα a.s., (3.2.3)

and, if λ(Lα) = 0, then
lim
n→∞

Rαn,τn,n = Rα a.s. (3.2.4)

Proof of Proposition 3.2.1. Using liml→∞ αl = α and Proposition 2.3.2 (i), we have
that, for all m ∈N, there exists a constant n ∈N such that |αl − α| < 1

m , for all l ≥ n,
and | fτl (x)− f (x)| < 1

m , for all l ≥ n and x ∈ Rd. It follows that

lim inf
n→∞

Rαn,τn = ∪∞
n=1 ∩∞

l=n {x ∈ Rd : fτl (x) ≥ αl}

⊃ {x ∈ Rd : f (x) > α +
2
m
} = R̊α+ 2

m
↑m→∞ ∪∞

m=1R̊α+ 2
m
= R̊α

and

lim sup
n→∞

Rαn,τn = ∩∞
n=1 ∪∞

l=n {x ∈ Rd : fτl (x) ≥ αl}

⊂ {x ∈ Rd : f (x) ≥ α− 2
m
} = Rα− 2

m
↓m→∞ ∩∞

m=1Rα− 2
m
= Rα,

establishing (3.2.1). For the second part, using Rα = Lα ∪ R̊α and (3.2.1), it follows
that

lim inf
n→∞

Rαn,τn = R̊α ∪ (lim inf
n→∞

Rαn,τn ∩ Lα) and

lim sup
n→∞

Rαn,τn = R̊α ∪ (lim sup
n→∞

Rαn,τn ∩ Lα), where

lim inf
n→∞

Rαn,τn ∩ Lα ⊂ lim sup
n→∞

Rαn,τn ∩ Lα ⊂ Lα

are sets of Lebesgue measure 0. Therefore,

lim inf
n→∞

Rαn,τn = lim sup
n→∞

Rαn,τn = Rα

except for a set of Lebesgue measure 0 and we obtain (3.2.2). We now prove (3.2.3).
Let An,m = {x ∈ Rd : | fτn,n(x)− f (x)| < 1

m}. We first show that limn→∞ An,m = Rd

a.s. To this end, we use Proposition 2.5.1 (i) and notice that, almost surely, there exists
ñ(m) ∈ N (in general, different for different samples) such that, for all n ≥ ñ(m),
supx∈Rd | fτn,n(x)− f (x)| < 1

m . It follows that

lim inf
n→∞

An,m = lim
n→∞
∩∞

l=n Al,m ⊃ ∩∞
l=ñ(m)Al,m = Rd a.s.
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Next, using Corollary B.1 (v), we have that, for all m ∈N,

lim inf
n→∞

Rαn,τn,n ⊃ lim inf
n→∞

{x ∈ Rd : fτn,n(x) > α +
1
m

, | fτn,n(x)− f (x)| < 1
m
}

⊃ lim
n→∞

(R̊α+ 2
m
∩ An,m) = R̊α+ 2

m
a.s.,

(3.2.5)

and

lim sup
n→∞

Rαn,τn,n ⊂ lim sup
n→∞

{x ∈ Rd : fτn,n(x) ≥ α− 1
m

, | fτn,n(x)− f (x)| < 1
m
}

⊂ lim
n→∞

(Rα− 2
m
∩ An,m) = Rα− 2

m
a.s.

(3.2.6)
Using (3.2.5) and (3.2.6), we conclude that

R̊α = ∪∞
m=1R̊α+ 2

m
⊂ lim inf

n→∞
Rαn,τn,n ⊂ lim sup

n→∞
Rαn,τn,n ⊂ ∩∞

m=1Rα− 2
m
= Rα a.s.

Finally, notice that, since P ∈ Pd,�λ, λ(Lα) = 0 implies that

P(lim inf
n→∞

Rαn,τn,n ∩ Lα) ≤ P(lim sup
n→∞

Rαn,τn,n ∩ Lα) ≤ P(Lα) = 0.

Thus,
lim inf

n→∞
Rαn,τn,n = lim sup

n→∞
Rαn,τn,n = Rα a.s.,

and (3.2.4) holds.

Remark 3.2.1 If we restrict Rα, Rα,τ and Rα,τ,n to a compact subset of Rd, then, using
Propositions 2.3.2-2.5.1 (ii), we see that Proposition 3.2.1 also holds for continuous f .

Although we will follow a different approach we notice that one can also define
clusters as the connected components of the upper level sets Rα for some α > 0
(see Menardi (2016)). Once the connected components are computed, the remain-
ing points may be allocated to one of the clusters by using supervised classification
techniques. A common approach is then to study how the clusters change as the
parameter α varies, yielding cluster trees.

3.3 Mathematical background on clustering identification

In this section, we give a precise definition of modes and clusters and verify that the
latter are non-trivial and disjoint. To this end, we make the following assumption on
the density f . We denote by Hg the Hessian matrix associated with a function g and
by 〈·, ·〉 the inner product on Rd.

Assumption 3.3.1 f is a probability density function on Rd that is twice continuously
differentiable with a finite number of stationary points in S f . Additionally, the Hessian
matrix H f has non-zero eigenvalues at its stationary points. Also, let Rα = {x ∈ Rd :
f (x) ≥ α} be a bounded set for every α > 0.

By continuity of f , Rα is compact. We notice that Rα is bounded if f vanishes at
infinity, that is, limt→∞ supx∈Rd :‖x‖2≥t f (x) = 0, which is satisfied, for example, if S f
is bounded.
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Recall that the clusters are defined as the stable manifolds generated by the mode
and are obtained using the limiting trajectory of the gradient system. Specifically, for
any µ ∈ S f , the stable manifold generated by µ is given by

C(µ) = {x ∈ S f : lim
t→∞

ux(t) = µ}, (3.3.1)

where ux(t) is the solution at time t of the gradient system

u′(t) = ∇ f (u(t)) (3.3.2)

with initial value u(0) = x. For any choice of µ, it is not required for the stable
manifold so-defined to be non-trivial; i.e. the Lebesgue measure of C(µ) can be zero.
However, we will see below that if µ is chosen as a mode of f then the resulting
manifold has a positive Lebesgue measure. We next turn to define the stationary
points type, and, in particular, the mode.

Definition 3.3.1 A stationary point µ ∈ S f of f is said to be of type l, 0 ≤ l ≤ d, if
H f (µ) has l negative and d − l positive eigenvalues. In particular, m ∈ S f is said to
be a mode (resp. an antimode) for f if it is a stationary point of f and H f (m) has only
negative (resp. positive) eigenvalues, that is, m is a local maximum (resp. minimum) for f .
If m1, . . . , mM are the modes of f , then the clusters induced by m1, . . . , mM are the stable
manifolds C(m1), . . . , C(mM).

Since the clusters are obtained as limits of trajectories induced by modes, we now
summarize relevant properties of the gradient system (3.3.2) by using results from
the theory of ordinary differential equations and dynamical systems (Agarwal and
Lakshmikantham, 1993; Hale, 1980; Teschl, 2012; Perko, 2013). We first note that ux
exists and is unique for t in some maximal time interval (a, b) with a < 0 < b, where
a = −∞ or b = ∞ is allowed. To see this, observe that, as f is twice continuously
differentiable, for every x ∈ Rd there exists a convex neighborhood U(x) of x in
which the second order partial derivatives are bounded. By applying Lemma 3.2.1
in Agarwal and Lakshmikantham (1993) to ∇ f , it follows that ∇ f is Lipschitz in
U(x), and therefore ∇ f is locally Lipschitz in S f . Now, applying Picard-Lindelöf
Theorem (see Theorems 2.2 and 2.5 in Teschl (2012)), it follows that ux exists in some
time interval, which can be chosen to be maximal in view of Theorem 2.13 in Teschl
(2012).

We now show that, using the boundedness of Rα, the solution ux(t) exists for
all t ≥ 0 and all x ∈ S f . Furthermore, the solution starting in Rα cannot leave the
set. To this end, notice that the equilibria of (3.3.2) are the stationary points of f .
Furthermore, the gradient computed at each point gives the direction of most rapid
increase of f . Hence, the trajectories {ux(t) : t ∈ R} for x ∈ S f that are not stationary
points are curves of steepest ascent for f . More specifically, if ux(t) ∈ Lα for some
x ∈ S f and t ∈ R, then any vector v tangent to Lα at ux(t) satisfies 〈v, u′x(t)〉 = 0 (see
Theorem 9.4.2 in Hirsch et al. (1974) and Lemma 6.4.2. in Jost (2005)). Hence, either
ux(t) = x for all t is an equilibrium of the gradient system (3.3.2) or the trajectory
{ux(t) : t ∈ R} crosses Lα orthogonally. This also implies that ux(t) cannot leave
Rα for t ≥ 0. Furthermore, this property shows that, for all x ∈ S f , the solutions
ux(t) exists for all t ≥ 0, i.e. the maximal time interval in which ux is defined is
(a, ∞) for some a < 0, where a = −∞ is possible. To see this, for x ∈ S f , choose
α > 0 such that x ∈ Rα. Since ux(t) cannot leave Rα for t ≥ 0 and Rα is compact by
Assumption 3.3.1, the result follows from Corollary 2.15 of Teschl (2012). Recalling
that our clusters are the stable manifolds generated by modes, we now link modes
to the gradient system. This requires the notion of ω-limit which we now define.
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Definition 3.3.2 The ω-limit of a point x ∈ S f is the set of points y ∈ S f such that ux(t)
goes to y as t→ ∞, in symbols

ω(x) = {y ∈ S f : lim
t→∞

ux(t) = y}.

We use the following definition of Theorem 9.3.1 in Hirsch et al. (1974) and Sec-
tion 6.6 of Teschl (2012). For any function W : U(µ) → R, we use the notation
W′(ux(t)) = d

dt W(ux(t)).

Definition 3.3.3 Let µ ∈ S f be an equilibrium point for (3.3.2) and U(µ) ⊂ S f a neigh-
borhood of µ. A differentiable function W : U(µ) → R is a strict Lyapunov function if (i)
W(µ) = 0 and W(u) > 0 for u 6= µ, and (ii) W′(ux(t)) < 0 when ux(t) ∈ U(µ) \ {µ}.

Let V = − f . If m is a mode for f , there exists a neighborhood U(m) of m such that,
for all u ∈ U(m) \ {m}, V(u)−V(m) > 0 and

(V(u)−V(m))′ = −( f (u))′ = −〈∇ f (u), u′〉 = −‖∇ f (u)‖2
2 < 0.

Hence, V(·)− V(m), restricted to U(m), is a strict Lyapunov function. By the Lya-
punov stability Theorem (see Theorem 9.3.1 in Hirsch et al. (1974) and Theorem
X.1.1 in Hale (1980)) m is asymptotically stable, that is, there is a neighborhood
Ũ(m) ⊂ U(m) of m such that each solution starting from a point x ∈ Ũ(m) con-
verges to m, i.e., for all x ∈ Ũ(m), ω(x) = {m}. As we will see below, the set of
points that have m as ω-limit (that is, the stable manifold generated by m) is typically
much larger than Ũ(m). For instance, if 0 < α < f (m) is such that the connected
component of m in Rα contains no equilibria other than m, then, since each solutions
of (3.3.2) starting in that component cannot leave it, by LaSalle’s invariance principle
(see Theorem 9.3.2 in Hirsch et al. (1974) and Theorem 6.14 in Teschl (2012)) applied
to the strict Lyapunov function V(·)− V(m), all the points in that component have
m as an ω-limit point. On the other hand, if m is an antimode for f , then there ex-
ists a neighborhood U(m) of m such that for all u ∈ U(m) \ {m}, V(m)− V(u) > 0
and (V(m) − V(u))′ > 0. This implies that m is unstable (see Theorem X.1.2 in
Hale (1980)): for every neighborhood Ũ(m) ⊂ U(m) of m, every solution ux starting
from a point x ∈ Ũ(m) eventually leaves Ũ(m). Furthermore, any ω-limit point of
gradient system (3.3.2) is an equilibrium point: that is, a stationary points of f (see
Theorem 9.4.4 in Hirsch et al. (1974) and Theorem X.1.3 in Hale (1980), and Lemma
6.4.4 in Jost (2005) in a different context).

For a stationary point µ of f , recall from (3.3.1) that C(µ) is the stable manifold in-
duced by µ, that is, the set of points with ω-limit µ. The hypothesis that H f has non-
zero eigenvalues at stationary points and Stable Manifold Theorem (see Section 2.7
in Perko (2013), Section 9 in Teschl (2012), and Theorem A, Remark 2.3 in Abbondan-
dolo and Pietro (2006)) indeed imply that the sets C(µ) are immersed submanifolds
of Rd with (topological) dimension equal to the number of negative eigenvalues of
H f (µ). As in Definition 3.3.1, let m1, . . . , mM be the modes and µ1, . . . , µL the other
stationary points of f . We are now ready to verify that the clusters C(m1), . . . , C(mM)
are non-trivial. We first observe that, by the uniqueness of the limit,

C(m1), . . . , C(mM), C(µ1), . . . , C(µL)

are disjoint and, since any ω-limit point of gradient system (3.3.2) is an equilibrium
point,

S f = ∪M
i=1C(mi) ∪ ∪L

l=1C(µl). (3.3.3)
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Hence, C(m1), . . . , C(mM), C(µ1), . . . , C(µL) form a partition of S f . Also, the set
S f \ (∪M

i=1C(mi)) = ∪L
l=1C(µl) has (topological) dimension smaller than d. The

next proposition provides a characterization of the boundaries of C(m1), . . . , C(mM).
In particular, it shows that the clusters C(m1), . . . , C(mM) are divided in S f by the
lower dimensional stable manifolds C(µ1), . . . , C(µL). We denote by dist(A, B) =
infx∈A,y∈B‖x− y‖2 the distance between two sets A, B ∈ Rd.

Proposition 3.3.1 Suppose that Assumption 3.3.1 holds true. Then, for all i = 1, . . . , M,
C(mi) is open and ∂C(mi) ⊂ ∂S f ∪ ∪L

l=1C(µl).

Proof of Proposition 3.3.1. Suppose by contradiction that C(mi) is not open. Then,
there exists x ∈ C(mi) such that Bε(x)∩ (Rd \C(mi)) 6= ∅ for all ε > 0. Using (3.3.3),
we obtain that

(Rd \ C(mi)) = (Rd \ S f ) ∪ ∪M
j=1
j 6=i

C(mj) ∪ ∪L
l=1C(µl).

Since x ∈ S f and S f is open, there exists ε̃ > 0 such that Bε̃(x) ∩ (Rd \ S f ) = ∅.
Hence, for all 0 < ε ≤ ε̃, it holds that

Bε(x) ∩ (∪M
j=1
j 6=i

C(mj) ∪ ∪L
l=1C(µl)) 6= ∅.

Therefore, there is a sequence {xl}∞
l=1 in (∪M

j=1
i 6=j

C(mj)∪∪L
l=1C(µl)) with liml→∞ xl = x

and f (xl) ≥ α, where α = f (x)/2. Notice that, by Assumption 3.3.1, f is twice
continuously differentiable and Rα is compact. In particular, ∇ f is locally Lipschitz.
Denote by L the Lipschitz constant of∇ f on Rα and let δ = dist({mi}, Rd \C(mi))/3.
Since C(mi) contains an open neighborhood Ũ(mi) of mi,

δ ≥ dist({mi}, Rd \ Ũ(mi))/3 > 0.

Recall that the solution ux(t) of (3.3.2) exists for all t ∈ (a, ∞), a < 0. Since x ∈ C(mi),
there exists t̃ ≥ 0 such that, for all t ≥ t̃, ‖mi − ux(t)‖2 ≤ δ. Next, we use the
continuity of solutions of ordinary differential equations with respect to the initial
value (see Theorem 2.8 and (2.43) in Teschl (2012)) and obtain that for all t ≥ 0

‖ux(t)− uxl (t)‖2 ≤ ‖xl − x‖2eLt.

Now, let l̃ such that ‖xl − x‖2eLt̃ ≤ δ for all l ≥ l̃. Then, by the triangle inequality,
we have that ‖mi − uxl̃

(t̃)‖2 ≤ 2δ. Hence, uxl̃
(t̃) ∈ C(mi). By the flow property of

autonomous ordinary differential equations (see (6.10) in Teschl (2012)), it holds that
uxl̃

(t + t̃) = uuxl̃
(t̃)(t), implying that

lim
t→∞

uxl̃
(t + t̃) = lim

t→∞
uuxl̃

(t̃)(t) = mi.

It follows that xl̃ ∈ C(mi). A contradiction. Hence, C(mi) are open for all i =
1, . . . , M. Now, using again (3.3.3) and C(mi) ⊂ S f , we have that

∂C(mi) ⊂ ∂S f ∪ ∪M
j=1
j 6=i

C(mj) ∪ ∪L
l=1C(µl).
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Since C(mi) and C(mj) are open and disjoint for j 6= i, we obtain that

∂C(mi) ⊂ C(mi) ⊂ Rd \ C(mj)

yielding that ∂C(mi) ∩ (∪M
j=1
j 6=i

C(mj)) = ∅.

Remark 3.3.1 Since Hausdorff dimension is larger or equal to topological dimension (see
Theorem 6.3.10 in Edgar (2007)), the stable manifold C(µl) does not necessarily have Lebesgue
measure zero. However, λ(C(µl)) = 0 whenever topological and Hausdorff dimension coin-
cide; and if they differ, the latter is smaller than n. Osgood curves (Sagan, 1994, Chapter 8)
are examples of one-dimensional embedded manifolds in R2 with positive Lebesgue measure.
These examples also show that, in Proposition 3.2.1, the assumption that the level sets of f
have zero Lebesgue measure is, in general, necessary.

3.4 Identification of stationary points

The clusters and boundaries critically depend on the stationary points of f and their
type. In this section, we characterize the stationary points of fτ and show that they
converge to stationary points of f . Notice that for small τ, the first and second order
derivatives are close (Proposition 2.3.2). Hence, one can pick a hypercube, centered
at the stationary point with directions provided by eigenvectors of Hessian matrix,
so that f and fτ share similar properties within the hypercube. This idea is made
precise in the following theorem.

Theorem 3.4.1 Suppose (2.2.1) holds true. The following hold:
(i) If f has is continuously differentiable in Bρτ(µ) ⊂ S f , τ > 0, then ∇ fτ(µ) = 0 if and
only if∫

h0,τ(x1, . . . , xk)∇ f (µ + x1) f (µ + x2) . . . f (µ + xk)dx1 . . . dxk = 0, (3.4.1)

where the integral of a vector is the vector of the integrals.
(ii) If f is twice continuously differentiable in Bδ(µ) ⊂ S f , δ > 0, and µ is a stationary
point of f of type l, then there exists h∗, τ∗ > 0 and a closed hypercube Fh∗(µ) ⊂ Bδ(µ)
with side length 3/2h∗ such that, for 0 < τ ≤ τ∗, fτ has a unique stationary point µτ in
F̊h∗(µ) and µτ is of type l. Moreover, limτ→0+‖µτ − µ‖2 = 0.
(iii) If f is three times continuously differentiable, then ‖µτ − µ‖2 = O(τ2).

Before we prove Theorem 3.4.1, we introduce few additional notations. The Lq-norm
of a d× d matrix M is given by ‖M‖M,q = supy∈Rd,y 6=0‖My‖q/‖y‖q and the spectrum
of M, that is, the set of all the eigenvalues of M is denoted by σ(M). Finally, the sign
function sgn : R→ R is given by

sgn(t) =


−1 if t < 0
0 if t = 0
1 if t > 0.

Before the proof, we provide a brief description of the idea. Proof of (i) is standard
and allows for a characterization of the stationary points of fτ (see Theorem 3.4.2
below). As for the proof of part (ii), note that for each stationary point µ of f , first a
closed hypercube centered at µ with directions given by the orthogonal eigenvectors
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of H f (µ) is constructed. The side lengths of the hypercube are such that, for small
enough τ and all points in the hypercube (i) the eigenvalues of H fτ

and H f corre-
sponding to the same eigenvector have the same sign and (ii) points on opposite “hy-
perfaces” have directional derivatives (w.r.t. the eigenvector that is orthogonal to the
two “hyperfaces”) of opposite sign. This follows using the convergence of first and
second order derivatives of fτ to those of f . Now, (ii) implies that every straight line
connecting the two “hyperfaces” contains a point having zero directional derivative.
Thus, by intersecting all such sets of points along every direction, we find a point µτ

having zero directional derivative w.r.t. all eigenvectors. Since these are orthogonal,
the gradient of µτ is zero, that is, µτ is a stationary point of fτ. Next, using (i), we
conclude that µτ and µ are of the same type. Finally, the convergence µτ → µ fol-
lows by letting the side length of the hypercube converge to zero. For part (iii), we
use Proposition 2.3.3 to show that, in a compact set, |∇ fτ(·)−∇ f (·)| = o(τ2). We
then infer the same order of convergence for µτ to µ.

Proof of Theorem 3.4.1. We start by proving (i). Notice that, if f is continuously
differentiable in Bρτ(x) ⊂ S f , then, for j = 1, . . . , d,

∂j fτ(x) =
1
k
( fτ(x))1−k ∂jLG(x, τ)

τkdΛ1
, (3.4.2)

where, by Proposition 2.2.1, (2.2.4), and (2.2.6),

∂jLG(x, τ) =
∫

h0,τ(x1, . . . , xk)∂j( f (x− x1) . . . f (x− xk))dx1 . . . dxk

= k
∫

h0,τ(x1, . . . , xk)∂j f (x + x1) f (x + x2) . . . f (x + xk)dx1 . . . dxk.

Hence, ∂j fτ(µ) = 0 if and only if∫
h0,τ(x1, . . . , xk)∂j f (µ + x1) f (µ + x2) . . . f (µ + xk)dx1 . . . dxk = 0, (3.4.3)

and hence (3.4.1) holds. We next turn to the proof of (ii). Since H f (µ) is symmet-
ric, it has orthonormal eigenvectors vi associated with eigenvalues λi, i = 1, . . . , d.
Notice that, since µ is of type l, l eigenvalues are negative and d− l are positive. In
particular,

min
i=1,...,d

|λi| > 0. (3.4.4)

Let 0 < τ ≤ τ1, where τ1 = δ/(2(1 + ρ)), and x ∈ Bτ1(µ). Since x ∈ Bδ/2(µ),
(Bτ1(x))+ρτ ⊂ Bδ/2(x) ⊂ Bδ(µ). It follows that fτ is twice continuously differen-
tiable in Bτ1(x) and its first order partial derivatives are given by (3.4.2). By uniform
continuity of the second order partial derivatives of f in Bδ(µ) and Proposition 2.3.2
(iv), it follows that, for i, j = 1, . . . , d,

sup
y∈Bδ(µ)

|∂i∂j f (y)− ∂i∂j f (µ)| −−−→
δ→0+

0. (3.4.5)
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and, for 0 < τ̃1, τ̃2 ≤ τ1,

sup
0<τ≤τ̃2

sup
y∈Bτ̃1 (µ)

|∂i∂j fτ(y)− ∂i∂j f (y)| ≤ sup
0<τ≤τ̃2

sup
y∈Bτ1 (µ)

|∂i∂j fτ(y)− ∂i∂j f (y)|

+ sup
y∈Bτ̃1 (µ)

|∂i∂j f (y)− ∂i∂j f (y)| −−−−−→
τ̃1,τ̃2→0+

0.

(3.4.6)

For y1, . . . , yd ∈ Bδ(0), let

H f (x; y1, . . . , yd) =

(∇∂1 f (x + y1)))
>

...
(∇∂d f (x + yd))

>


>

and, for y1, . . . , yd ∈ Bτ1(0),

H fτ
(x; y1, . . . , yd) =

(∇∂1 fτ(x + y1)))
>

...
(∇∂d fτ(x + yd))

>


>

.

(3.4.5) and (3.4.6) show that,

sup
y1,...,yd∈Bδ(0)

‖H f (µ; y1, . . . , yd)−H f (µ)‖M,2 −−−→
δ→0+

0 (3.4.7)

and

sup
0<τ≤τ̃2

sup
y1,...,yd∈Bτ̃1 (0)

‖H fτ
(µ; y1, . . . , yd)−H f (µ)‖M,2 −−−−−→

τ̃1,τ̃2→0+
0. (3.4.8)

In particular, (3.4.7) implies that, for i = 1, . . . , d,

sup
y1,...,yd∈Bδ(0)

‖H f (µ; y1, . . . , yd)vi − λivi‖2 −−−→
δ→0+

0.

and, for ti ∈ R,

sup
y1,...,yd∈Bδ(0)

∣∣∣∣〈H f (µ; y1, . . . , yd)

(
vi +

d

∑
j=1,j 6=i

tjvj

)
, vi〉 − λi

∣∣∣∣ −−−→δ→0+
0.

By (3.4.4), there exists 0 < δ2 ≤ δ such that, for i = 1, . . . , d,

sgn
(
〈H f (µ; y1, . . . , yd)

(
vi +

d

∑
j=1,j 6=i

tjvj

)
, vi〉

)
= sgn(λi), (3.4.9)

for all y1, . . . , yd ∈ Bδ2(0). Similarly, by (3.4.8), we see that

sup
0<τ≤τ̃2

sup
y1,...,yd∈Bτ̃1 (0)

‖H fτ
(µ; y1, . . . , yd)vi − λivi‖2 −−−−−→

τ̃1,τ̃2→0+
0,
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which implies that

sup
0<τ≤τ̃2

sup
y1,...,yd∈Bτ̃1 (0)

|〈H fτ
(µ; y1, . . . , yd)vi, vi〉 − λi| −−−−−→

τ̃1,τ̃2→0+
0. (3.4.10)

Moreover, by Bauer–Fike theorem (Theorem 2.1 in Eisenstat and Ipsen (1998)), for
all λ̃τ(µ; y1, . . . , yd) ∈ σ(H fτ

(µ; y1, . . . , yd)), we have that

min
i=1,...,d

|λ̃τ(µ; y1, . . . , yd)− λi| ≤ ‖H fτ
(µ; y1, . . . , yd)−H f (µ)‖M,2. (3.4.11)

By (3.4.4), (3.4.10), (3.4.11) and (3.4.8), it follows that, there exists 0 < τ2 ≤ τ1 such
that, for all 0 < τ ≤ τ2 and y1, . . . , yd ∈ Bτ2(0),

sgn
(
〈H fτ

(µ; y1, . . . , yd)vi, vi〉
)
= sgn(λi) (3.4.12)

and σ(H fτ
(µ; y1, . . . , yd)) = {λ̃τ,1(µ; y1, . . . , yd), . . . , λ̃τ,d(µ; y1, . . . , yd)} with

sgn(λ̃τ,i(µ; y1, . . . , yd)) = sgn(λi). (3.4.13)

Now, let 0 < τ ≤ τ2, 0 < h ≤ h∗, where h∗ = min(δ2, τ2)/(2
√

d), and ti ∈ [−2h, 2h].
By the mean value theorem, there exist 0 ≤ ci,j ≤ 1 such that

∇ f (µ± hvi + ∑
j=1,j 6=i

tjvj) = H f (µ; y1, . . . , yd)

(
±hvi +

d

∑
j=1,j 6=i

tjvj

)
,

where yj = ci,j

(
±hvi + ∑d

j=1,j 6=i tjvj

)
, implying that

1
h
〈∇ f (µ± hvi + ∑

j=1,j 6=i
tjvj), vi〉 = ±〈H f (µ; y1, . . . , yd)

(
vi ±

d

∑
j=1,j 6=i

(tj/h)vj

)
, vi〉.

Since ‖yj‖2 ≤ 2
√

dh∗ ≤ δ2, by (3.4.9),

sgn
(
〈∇ f (µ± hvi + ∑

j=1,j 6=i
tjvj), vi〉

)
= sgn(±λi). (3.4.14)

Now, let us define the hypercube Fh∗(µ) with center µ, directions vj, and side length
3/2h∗ by

Fh∗(µ) =

{
µ +

d

∑
j=1

tjvj : tj ∈ [−3/4h∗, 3/4h∗]
}

and its “hyperfaces” by

F±h∗,i(µ) =
{

µ± 3/4h∗vi +
d

∑
j=1,j 6=i

tjvj : tj ∈ [−3/4h∗, 3/4h∗]
}

.

Since, by (2.2.1), for 0 < τ ≤ τ∗, where τ∗ = min(τ2, h∗/(4ρ)),

Sh0,τ(·,x2,...,xk) ⊂ Bρτ(0) ⊂
{ d

∑
j=1

sjvj : sj ∈ [−h∗/4, h∗/4]
}

,
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we have that, for µ±i ∈ F±h∗,i(µ) and x1 ∈ Sh0,τ(·,x2,...,xk),

µ±i + x1 ∈ µ +

{
±hvi +

d

∑
j=1,j 6=i

sjvj : h ∈ [h∗/2, h∗], sj ∈ [−h∗, h∗]
}

.

Now, by (3.4.14),
sgn

(
〈∇ f (µ±i + x1), vi〉

)
= sgn(±λi),

for all x1 ∈ Sh0,τ(·,x2,...,xk) and tj ∈ [−3/4h∗, 3/4h∗]. It follows from (3.4.2) that

sgn
(
〈∇ fτ(µ

±
i ), vi〉

)
= sgn(±λi).

In particular, for all µ+
i ∈ F+

h∗,i(µ) and µ−i ∈ F−h∗,i(µ),

sgn(〈∇ fτ(µ
+
i ), vi〉) = − sgn(〈∇ fτ(µ

−
i ), vi〉) 6= 0. (3.4.15)

Notice that µ+
i ∈ F+

h∗,i(µ) if and only if µ+
i − 3/2h∗vi ∈ F−h∗,i(µ) and let αi : F+

h∗,i(µ)×
[0, 1]→ Fh∗(µ) be given by

αi(y, t) = (1− t)y + t(y− 3/2h∗vi) = y− 3/2h∗tvi.

Using (3.4.15) and the continuity of ∇ fτ, for all µ+
i ∈ F+

h∗,i(µ), there exists 0 < t1 < 1
such that 〈∇ fτ(αi(µ

+
i , t1)), vi〉 = 0. Next, we show that t1 is unique. To this end, let

0 < t2 < 1 be such that 〈∇ fτ(αi(µ
+
i , t2)), vi〉 = 0. By the mean value theorem, there

exist 0 ≤ cj ≤ 1 such that

∇ fτ(αi(µ
+
i , t2)) = ∇ fτ(αi(µ

+
i , t1)) + H fτ

(µ; y1, . . . , yd)
>(αi(µ

+
i , t2)− αi(µ

+
i , t1))),

where yj = (1− cj)αi(µ
+
i , t2) + cjαi(µ

+
i , t1)− µ, implying that

3/2h∗(t2 − t1)〈H fτ
(µ; y1, . . . , yd)vi, vi〉 = 0.

Using (3.4.12) we obtain that t2 = t1. For i = 1, . . . , d let

Zτ,i(µ) = {αi(y, t) : 〈∇ fτ(αi(y, t1)), vi〉 = 0, y ∈ F+
i (µ), t ∈ [0, 1]}.

Notice that Zτ,i(µ) are closed subsets of the hypercube Fh∗(µ) of dimension d − 1
and divide Fh∗(µ) into two parts with only the faces F+

h∗,i(µ) and F−h∗,i(µ) entirely
contained in the same part. It follows that ∩d

i=1Zτ,i(µ) = {µτ}, where µτ satisfies
〈∇ fτ(µτ), vi〉 = 0 for all i = 1, . . . , d yielding that ∇ fτ(µτ) = 0. Finally, by (3.4.13)
and ‖µτ − µ‖2 ≤ 3/4

√
dh∗ ≤ τ2, it follows that µτ is of type l. Also, by letting

τ2 → 0+, we see that ‖µτ − µ‖2 → 0.
We now prove (iii). Since H f (µ)

−1 is symmetric, it holds that

ξ = ‖H f (µ)
−1‖M,2 = max

i=1,...,d
1/|λi| > 0.

By (3.4.8) there exists 0 < τ3 ≤ τ2 such that for all 0 < τ ≤ τ2 and yj ∈ Bτ3(0)

‖H fτ
(µ; y1, . . . , yd)−H f (µ)‖M,2 ≤ 1/(2ξ). (3.4.16)
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It follows from (3.4.16) and the triangle inequality that, for all v ∈ Rd,

‖v‖2 ≤ 2ξ
(
‖H f (µ)v‖2 − 1/(2ξ)‖v‖2

)
≤ 2ξ

(
‖H f (µ)v‖2 − ‖(H fτ

(µ; y1, . . . , yd)−H f (µ))v‖2
)

≤ 2ξ‖H fτ
(µ; y1, . . . , yd)v‖2.

By setting w = H fτ
(µ; y1, . . . , yd)v we see that ‖H fτ

(µ; y1, . . . , yd)
−1w‖2 ≤ 2ξ‖w‖2

yielding that
‖H fτ

(µ; y1, . . . , yd)
−1‖M,2 ≤ 2ξ. (3.4.17)

Moreover, by the mean value theorem, there exist 0 ≤ c̃j ≤ 1, j = 1, . . . , d, such that,

∇ fτ(µ) = ∇ fτ(µ)−∇ fτ(µτ) = H fτ
(µ; y1, . . . , yd)(µ− µτ),

where yj = c̃jµ + (1− c̃j)µτ − µ = (1− c̃j)(µ − µτ). Since ‖yj‖2 ≤ ‖µ − µτ‖2 ≤
τ2, H fτ

(µ; y1, . . . , yd) is invertible by (3.4.13). We now apply Proposition 2.3.3 with
K = Bδ(µ) and get constants τ̃(K), c̃2(K) > 0 such that, for all y ∈ K and 0 < τ ≤
min(τ2, τ̃(K)),

‖∇ fτ(y)−∇ f (y)‖2 ≤ c̃2(K)τ2. (3.4.18)

Using (3.4.17) and (3.4.18), we conclude that, for all 0 < τ ≤ min(τ2, τ̃(K)),

‖µ− µτ‖2 ≤ ‖H fτ
(µ; y1, . . . , yd)

−1‖M,2‖∇ fτ(µ)−∇ f (µ)‖2 ≤ 2ξ c̃2(K)τ2.

In the remaining of this section, we further develop the above results by providing
some conditions under which the stationary points (resp. modes, antimodes) of f
are exactly the stationary points (resp. modes, antimodes) of fτ for τ > 0. The key
criteria for the identification of the modes is the notion of symmetry proposed below.

Definition 3.4.1 Given τ > 0, a density function f is said to be τ-centrally symmetric
about µ ∈ S f if, for all x ∈ Rd with ‖x‖2 ≤ τ, f (µ + x) = f (µ− x).

In particular, for d = 1, f is τ-centrally symmetric about µ ∈ R if f (µ− x) = f (µ +
x) for all x ∈ [0, τ]. If f has a continuous derivative, a direct computation using
Corollary 2.2.1 shows that, for G = L, S, B, Kβ, f

′
τ(µ) = 0. Indeed, by (2.2.25), we see

that
fτ(x) =

1
τ

√
LG(x, τ)

where
LG(x, τ) = 2

∫
Tτ
++

f (x + x1) f (x− x2)dx1dx2

and
Tτ
++ = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ τ}.

If f has a continuous derivative, we obtain that

f
′
τ(x) =

1
τ
√

LG(x, τ)

∫
Tτ
++

f
′
(x + x1) f (x− x2) + f (x + x1) f

′
(x− x2)dx1dx2.

Therefore, the sign of fτ(x) depends on the sign of f
′

in the interval (x − τ, x + τ).
In particular, if f is τ-centrally symmetric about µ, then f

′
(µ − x) = − f

′
(µ + x),

yielding that f
′
τ(µ) = 0.
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Our next result uses the above idea and gives sufficient conditions for a station-
ary point µ and a mode m of f to be a stationary point and a mode of fτ.

Theorem 3.4.2 Suppose (2.2.1) holds true and let τ > 0. Then the following hold:
(i) If f has continuous first order partial derivatives in Bτ(µ) ⊂ S f and f is τ-centrally
symmetric about the stationary point µ, then µ is a stationary point for fτ.
(ii) Suppose that f is τ-centrally symmetric about a mode (resp. an antimode) m and has
continuous second order partial derivatives in Bτ(m). If, for all x1, . . . , xk ∈ Bτ(m), the
matrix

J f (x1, . . . , xk) = H f (x1) f (x2) . . . f (xk) + (k− 1)∇ f (x1)∇ f (x2)
> f (x3) . . . f (xk)

is negative (resp. positive) definite, then m is also a mode (resp. an antimode) for fτ.

Notice that J f (m, . . . , m) = H f (m) f k−1(m) is negative (resp. positive) definite and
therefore the last condition of Theorem 3.4.2 is satisfied by f , for τ small.

Proof of Theorem 3.4.2. For (i) notice that if f is τ-centrally symmetric about µ, then,
for all y ∈ Rd with ‖y‖2 ≤ τ, f (µ + y) = f (µ− y) and ∂j f (µ− y) = −∂j f (µ + y). By
the change of variable −(x1, . . . , xk) for (x1, . . . , xk) on the LHS of (3.4.1) and (2.2.6)
it follows that, for all 1 ≤ j ≤ d,∫

h0,τ(x1, . . . , xk)∇ f (µ + x1) f (µ + x2) . . . f (µ + xk)dx1 . . . dxk

=
∫

h0,τ(x1, . . . , xk)∇ f (µ− x1) f (µ− x2) . . . f (µ− xk)dx1 . . . dxk

=−
∫

h0,τ(x1, . . . , xk)∇ f (µ + x1) f (µ + x2) . . . f (µ + xk)dx1 . . . dxk,

and therefore (3.4.1) and ∇ fτ(µ) = 0.
We now prove (ii). Since f is τ-centrally symmetric about m, (i) yields that

∂j fτ(m) = 0 for j = 1, . . . , d (3.4.19)

and m is a stationary point for fτ. Moreover, (3.4.19) implies that, for i, j = 1, . . . , d,

∂i∂j fτ(m) =
1
k

(
1
k
− 1
)
( fτ(m))1−2k(∂i f k

τ (m))(∂j f k
τ (m)) +

1
k
( fτ(m))1−k(∂i∂j f k

τ (m))

=
1
k
( fτ(m))1−k(∂i∂j f k

τ (m)),

where, by Proposition 2.2.1, (2.2.4) and (2.2.6),

∂i∂j f k
τ (m) = k

∫ h0,τ(x1, . . . , xk)

τkdΛ1

[
∂i∂j f (m + x1)

k

∏
l=2

f (m + xl)

+ (k− 1)∂j f (m + x1)∂i f (m + x2)
k

∏
l=3

f (m + xl)

]
dx1 . . . dxk.

Using that the integral of a matrix is the matrix of the integrals, we get that

H fτ
(m) =

1
k
( fτ(m))k−1

∫ h0,τ(x1, . . . , xk)

τkdΛ1
J f (m + x1, . . . , m + xk)dx1 . . . dxk.
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Since the Hessian is symmetric, there exists an orthogonal matrix M ∈ U such that

D = M>H fτ
(m)M

=
1
k
( fτ(m))k−1

∫ h0,τ(x1, . . . , xk)

τkdΛ1
M>J f (m + x1, . . . , m + xk)Mdx1 . . . dxk

is a diagonal matrix. Now, since J f (m + x1, . . . , m + xk) is negative (resp. positive)
definite, for all y ∈ Rd \ {0}, y>J f (m+ x1, . . . , m+ xk)y < 0 (resp. > 0), and therefore
the diagonal elements of M>J f (m + x1, . . . , m + xk)M are negative (resp. positive).
It follows that the diagonal elements of D (that is, the eigenvalues of H fτ

(m)) are
negative (resp. positive) and m is a mode (resp. an antimode) for fτ.

3.5 Convergence of the gradient system under extreme local-
ization

In this section, we replace f by fτ in (3.3.2) and consider the gradient system

u′(t) = ∇ fτ(u(t)). (3.5.1)

Then, we study the relationship between the gradient systems (3.5.1) and (3.3.2) un-
der extreme localization. To this aim, notice that the sets {S fτ

}τ>0 contain S f by
Proposition 2.3.1. Under Assumption 3.3.1, Proposition 2.3.2 (iv) shows that the
gradient and the Hessian matrix of fτ converge to those of f . Recall that, by Re-
mark (2.3.1), if f is m-times continuously differentiable, then, fτ is m-times con-
tinuously differentiable in S fτ

. If it exists, we denote by ux,τ(t) the solution of
(3.5.1) with initial point ux,τ(0) = x. Since fτ is continuous, for α > 0, the sets
Rα,τ = {x ∈ Rd : fτ(x) ≥ α} are closed. The next lemma along with the bound-
edness of Rα for all α > 0 shows that they are also bounded. As shown in Section
3.3 for the gradient system (3.3.2), we conclude that, for all x ∈ S f , ux,τ exists and is
unique in a maximal time interval (a, ∞), for some −∞ ≤ a < 0.

Lemma 3.5.1 Under assumption (2.2.1), (Rα)−ρτ ⊂ Rα,τ ⊂ (Rα)+ρτ, for all τ > 0 and
α > 0. In particular, if Rα is bounded for α > 0, then Rα,τ is also bounded for any τ > 0.

Proof of Lemma 3.5.1. Since x ∈ (Rα)−ρτ satisfies infy∈Rd\Rα
‖x− y‖2 > ρτ, we have

that Bρτ(x) ⊂ Rα. By (2.2.5) and (2.2.1), we also have that Shx,τ ⊂ (Bρτ(x))k ⊂ (Rα)k.
It follows that

fτ(x) =
(∫ hx,τ(x1, . . . , xk)

τkdΛ1
f (x1) . . . f (xk)dx1 . . . dxk

)1/k

≥ α, (3.5.2)

and therefore x ∈ Rα,τ. Next, let x ∈ Rα,τ. Then, there exists (x1, . . . , xk) ∈ Shx,τ

such that f (x1) . . . f (xk) ≥ αk. In particular, since Shx,τ ⊂ (Bρτ(x))k, there exists a
point z ∈ Bρτ(x) with f (z) ≥ α. Hence, z ∈ Rα and, since ‖x − z‖2 ≤ ρτ, we ob-
tain that x ∈ (Rα)+ρτ. Finally, suppose that Rα is bounded for α > 0. Then, there
exists r > 0 such that Rα ⊂ Br(0). It follows that, for τ > 0, x ∈ Rα,τ ⊂ (Rα)+ρτ

satisfies ‖x‖2 ≤ infy∈Rα (‖y‖2 + ‖y− x‖2) ≤ r + infy∈Rα‖y− x‖2 ≤ r + ρτ. Hence,
Rα,τ ⊂ Br+ρτ(0) is bounded.
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We have shown that, under Assumption 3.3.1, the gradient system (3.5.1) has a
unique solution ux,τ. For a stationary point µτ ∈ S f of fτ, the stable manifold gener-
ated by µτ is

Cτ(µτ) = {x ∈ S fτ
: lim

t→∞
ux,τ(t) = µτ}.

We exploit the differentiability properties of fτ to show that the solutions of the
gradient system (3.5.1) converge for τ → 0+ to those of the gradient system (3.3.2).
Under Assumption 3.3.1, let M f = {m1, . . . , mM} and N f = {m1, . . . , mM, µ1, . . . , µL}
denote the set of modes and stationary points of f , respectively.

Theorem 3.5.1 Suppose that (2.2.1) holds true. (i) If f is continuously differentiable in Rd

and, for all α > 0, Rα is compact, then, for all t ≥ 0 and x ∈ S f ,

lim
τ→0+
‖ux,τ(t)− ux(t)‖2 = 0.

(ii) If Assumption 3.3.1 holds true, then, for all m ∈ M f and x ∈ C(m),

lim
τ→0+

sup
t∈[0,∞)

‖ux,τ(t)− ux(t)‖2 = 0.

(iii) If Assumption 3.3.1 holds true, {τj}∞
j=1 is a sequence of positive scalars converging to

zero, and m ∈ M f , then there are τ∗∗ > 0 and {mτj}∞
j=1,τj≤τ∗∗ such that mτj is a mode of fτj

and

C(m) ⊂ lim inf
j→∞

Cτj(mτj) ⊂ lim sup
j→∞

Cτj(mτj) ⊂ C(m) ∪ ∪µ∈N f \M f
C(µ) ∪ ∂S f .

In particular, if λ(C(µ)) = 0 for all µ ∈ N f \M f and λ(∂S f ) = 0, then limj→∞ Cτj(mτj) =
C(m) λ-a.e.

The proof of Theorem 3.5.1 (i)-(ii) is based on Proposition 2.3.2 (iv) and Grönwall’s
inequality. We use (ii) to obtain convergence of the stable manifold Cτj(mτj).

Proof of Theorem 3.5.1. We start by proving (i). Fix x ∈ S f and let α > 0 be
such that x ∈ Rα. Since Rα ⊂ S f is compact, Rd \ S f is closed, and these two sets
are disjoint, we have that dist(Rα, Rd \ S f ) > 0. Let δ = dist(Rα, Rd \ S f )/(3ρ) and
notice that

dist((Rα)
+δ, Rd \ S f ) = inf

y∈Rd\S f ,z∈(Rα)+δ
‖y− z‖2 = inf

y∈Rd\S f

inf
z∈Rd :infw∈Rα‖w−z‖2≤δ

‖y− z‖2.

By the triangle inequality, we have that, for w ∈ Rα,

‖y− z‖2 ≥ ‖y− w‖2 − ‖w− z‖2 ≥ ‖y− w‖2 − δ.

It follows that

dist((Rα)
+δ, Rd \ S f ) ≥ dist(Rα, Rd \ S f )− δ = 2δ > 0. (3.5.3)

Let 0 < τ ≤ δ/ρ. Using Lemma 3.5.1 we see that Rα,τ ⊂ (Rα)+ρτ ⊂ (Rα)+δ ⊂ S f .
Also, for all s ≥ 0, ux(s) ∈ Rα and ux,τ(s) ∈ Rα,τ; as shown in Section 3.3, the solu-
tions of the gradient system (3.3.2) cannot leave the regions Rα, and the same is true
for the gradient system (3.5.1) and Rα,τ. In particular, for all s ≥ 0, ux(s), ux,τ(s) ∈ K,
where K = (Rα)+δ is a compact subset of S f .
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Now, noticing that the integral of a vector is the vector of the integrals of its compo-
nents, we obtain, for t ≥ 0,

ux,τ(t)− ux(t) =
∫ t

0
∇ fτ(ux,τ(s))−∇ f (ux(s))ds.

Next, by adding and subtracting∇ fτ(ux(s)) inside the integral and taking the norm
on both sides, we see that

‖ux,τ(t)− ux(t)‖2 ≤
∫ t

0
‖∇ fτ(ux,τ(s))−∇ fτ(ux(s))‖2ds

+
∫ t

0
‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds.

Since ∇ fτ is locally Lipschitz in S f , it is Lipschitz in the compact subset K; that is,
there exists a constant Lτ < ∞ such that for all y, z ∈ K

‖∇ fτ(y)−∇ fτ(z)‖2 ≤ Lτ‖y− z‖2. (3.5.4)

It follows that

‖ux,τ(t)− ux(t)‖2 ≤ Lτ

∫ t

0
‖ux,τ(s)− ux(s)‖2ds +

∫ t

0
‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds.

We now apply Grönwall’s inequality (see Corollary 6.6 in Hale (1980)) with a = 0,
β(s) = Lτ, 0 ≤ s ≤ t, α =

∫ t
0 ‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds and ϕ(t) = ‖ux,τ(t)−

ux(t)‖2, and obtain that

‖ux,τ(t)− ux(t)‖2 ≤ eLτ

∫ t

0
‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds. (3.5.5)

To prove (i) we need to show that this converges to 0 as τ → 0+. To this end, since
∇ f is also locally Lipschitz in S f , there exists a constant L < ∞ such that, for all
y, z ∈ K

‖∇ f (y)−∇ f (z)‖2 ≤ L‖y− z‖2. (3.5.6)

By (3.5.6) and Proposition 2.3.2 (iv), it follows that, for all y, z ∈ K with y 6= z,

lim
τ→0+

‖∇ fτ(y)−∇ fτ(z)‖2

‖y− z‖2
=
‖∇ f (y)−∇ f (z)‖2

‖y− z‖2
≤ L. (3.5.7)

Hence, {Lτ}0<τ≤δ/ρ in (3.5.4) can be chosen in such a way that limτ→0+ Lτ = L. In
particular, there exists 0 < τ∗ ≤ δ/ρ, such that

Lτ ≤ L + 1, (3.5.8)

for all 0 < τ ≤ τ∗. Therefore, from (3.5.5), it follows that

lim
τ→0+
‖ux,τ(t)− ux(t)‖2 = 0,

if we can show that

lim
τ→0+

∫ t

0
‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds = 0. (3.5.9)
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To show this, we first enlarge the compact set K by δ in such a way that it is still
contained in S f by considering the set (K)+δ ⊂ (Rα)+2δ. As in (3.5.3), we see that

dist((Rα)
+2δ, Rd \ S f ) ≥ dist(Rα, Rd \ S f )− 2δ = δ > 0,

and (K)+δ is indeed a compact subset of S f . Furthermore, for all y ∈ K, Bρτ(y) ⊂
Bδ(y) ⊂ (K)+δ ⊂ S f , and, in particular, by (2.2.5) and (2.2.1), Shy,τ ⊂ (Bδ(y))k ⊂
(S f )

k. Now, by (3.4.2), we see that for y ∈ K, the j-th partial derivative of fτ at y is
given by

∂j fτ(y) = ( fτ(y))1−k
(∫ hy,τ(x1, . . . , xk)

τkdΛ1
(∂j f (x1)) f (x2) . . . f (xk))dx1 . . . dxk

)
and

|∂j fτ(y)| ≤
(

α0

β0

)k−1

α1,j < ∞,

where α0 = maxz∈(K)+δ f (z), β0 = minz∈(K)+δ f (z), and α1,j = maxz∈(K)+δ ∂j f (z) sat-
isfy 0 < α0, β0, α1,j < ∞. It follows that for y ∈ K

‖∇ fτ(y)−∇ f (y)‖2 ≤ ‖∇ fτ(y)‖2 + ‖∇ f (y)‖2

≤ (1 + (α0/β0)
k−1)‖(α1,1, . . . , α1,d)

>‖2 < ∞.

Therefore, for all 0 ≤ s ≤ t, ‖∇ fτ(ux(s))−∇ f (ux(s))‖2 is bounded and by Propo-
sition 2.3.2 (iv), for all 0 ≤ s ≤ t, limτ→0+‖∇ fτ(ux(s)) −∇ f (ux(s))‖2 = 0. Now,
(3.5.9) follows using LDCT completing the proof of (i).

We now prove (ii). We first show that for all α > 0 such that N f ⊂ R̊α, there
exists τ∗∗ > 0 such that, for 0 < τ ≤ τ∗∗, {µτ}µ∈N f are the only stationary points
of fτ in Rα. To this end, let 0 < δ < dist(N f , Rd \ R̊α) and notice that, by Remark
2.3.1 and Proposition 2.3.1, fτ is twice continuously differentiable in Rα ⊂ S f ⊂ S fτ

.
By Theorem 3.4.1 (ii), for all µ ∈ N f , there exist h∗, τ∗ > 0 and a closed hypercube
Fh∗(µ) ⊂ Bδ(µ) with side length 3/2h∗, such that, for 0 < τ ≤ τ∗, fτ has a unique
stationary point µτ in F̊h∗(µ), µτ is of the same type as µ, and limτ→0+‖µτ − µ‖2 = 0.
Let K = Rα \ ∪µ∈N f F̊h∗(µ) and η = minz∈K‖∇ f (z)‖2 > 0. By Proposition 2.3.2 (iv),
there exists 0 < τ∗∗ ≤ τ∗ such that ‖∇ fτ(y) − ∇ f (y)‖2 < η for all y ∈ Rα and
0 < τ ≤ τ∗∗. Hence, for all z ∈ K,

‖∇ fτ(z)‖2 ≥ ‖∇ f (z)‖2 − ‖∇ fτ(z)−∇ f (z)‖2 > 0.

It follows that {µτ}µ∈N f are the only stationary points of fτ in Rα. Let 0 < ε < ξ ≤
minµ,ν∈N f ,µ 6=ν‖µ− ν‖2/3. Using Lemma 3.5.1 and Theorem 3.4.1 (ii) with δ = ε, let
0 < τ̃(ξ) ≤ τ∗∗ and α̃(ξ) > 0 such that, for all 0 < τ ≤ τ̃(ξ), mτ ∈ Bε(m) is the only
stationary point of fτ in Bξ(m) and

B2ε(m) ⊂ (Rα̃(ξ))
−ρτ ∩ C(m) ⊂ Rα̃(ξ),τ ∩ C(m)

⊂ (Rα̃(ξ))
+ρτ ∩ C(m) ⊂ Bξ(m) ⊂ Rα ∩ C(m).

Let t̃(ε) = inf{t ∈ [0, ∞) : ux(t) ∈ Bε(m)} be the first time that ux reaches the ball
Bε(m). Using (i), there exists 0 < τ̂ ≤ τ̃(ξ) such that

‖ux,τ(t̃(ε))− ux(t̃(ε))‖2 ≤ ε,
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for all 0 < τ ≤ τ̂. Therefore, ux,τ(t̃(ε)) ∈ B2ε(m) for all 0 < τ ≤ τ̂. Since ux,τ cannot
leave the connected components of the level set Rα̃(ξ),τ, it follows that

{ux,τ(t) : t ∈ [t̃(ε), ∞)} ⊂ Rα̃(ξ),τ ∩ C(m) ⊂ Bξ(m) (3.5.10)

and
lim
t→∞

ux,τ(t) = mτ. (3.5.11)

Using (3.5.5), (3.5.8), and (3.5.9), we obtain that

lim
τ→0+

sup
t∈[0,t̃(ε)]

‖ux,τ(t)− ux(t)‖2 ≤ eL+1 lim
τ→0+

∫ t̃(ε)

0
‖∇ fτ(ux(s))−∇ f (ux(s))‖2ds = 0.

It follows from (3.5.10) that

lim
τ→0+

sup
t∈[0,∞)

‖ux,τ(t)− ux(t)‖2 ≤ lim
τ→0+

sup
t∈[0,t̃(ε)]

‖ux,τ(t)− ux(t)‖2

+ lim
τ→0+

sup
t∈[t̃(ε),∞)

‖ux,τ(t)− ux(t)‖2 ≤ 2ξ.

We now prove (iii). Notice that mτj is a mode of fτj for all τj ≤ τ∗∗ ≤ τ∗. (3.5.11)
yields that

C(m) ⊂ lim inf
j→∞

Cτj(mτj).

Next, using the definition of Cτj(mτj), Proposition 2.3.1, and (3.3.3), we obtain that

lim sup
j→∞

Cτj(mτj) ⊂ lim
j→∞

S fτj
⊂ S f = ∪ν∈N f C(ν) ∪ ∂S f .

Suppose by contradiction that lim supj→∞ Cτj(mτj) ∩ C(ν) 6= ∅ for some ν ∈ M f \
{m}. Then, there exist x ∈ C(ν) and a subsequence {τ̃j}∞

j=1 of {τj}∞
j=1 such that

limt→∞ ux,τ̃j(t) = mτ̃j . In particular, limj→∞ limt→∞ ux,τ̃j(t) = m. On the other hand,
by (ii), ux,τ̃j converges uniformly on [0, ∞) to ux. Therefore,

lim
t→∞

lim
j→∞

ux,τ̃j(t) = lim
t→∞

ux(t) = ν.

By Moore-Osgood theorem (see Theorem 7.11 in Rudin (1976)), it follows that

m = lim
j→∞

lim
t→∞

ux,τ̃j(t) = lim
t→∞

lim
j→∞

ux,τ̃j(t) = ν.

We conclude that lim supj→∞ Cτj(mτj) ∩ C(ν) = ∅ and

lim sup
j→∞

Cτj(mτj) ⊂ C(m) ∪ ∪µ∈N f \M f
C(µ) ∪ ∂S f .

Finally, notice that, if λ(C(µ)) = 0 for all µ ∈ N f \M f and λ(∂S f ) = 0, then

lim inf
j→∞

Cτj(mτj) = lim sup
j→∞

Cτj(mτj) = C(m)

up to a set of Lebesgue measure zero.
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As an application of Lemma B.4 in Appendix B, we also have that limj→∞(Cτj(mτj))
+ξ =

(C(m))+ξ λ-a.e. for all ξ > 0 and limj→∞ Cτj(mτj) = C(m) λ-a.e.

3.6 Algorithm and consistency of empirical clusters

In this section, we describe the algorithm for the numerical approximation of the
clusters induced by the system (3.5.1) and establish its consistency. Proofs are de-
ferred to Sections 3.7 and 3.8.

Since the sample τ-approximation is not differentiable in x, we use a finite dif-
ference approximation that converges to the directional derivative. For h > 0, the
finite difference approximation of the directional derivative of g : Rd → R, in the
direction of v ∈ Sd−1, is given by

∇h
vg(x) =

g(x + hv)− g(x)
h

.

Notice that, if g is differentiable at x ∈ Rd, then

lim
h→0+

∇h
vg(x) = ∇vg(x),

where ∇vg(·) = 〈∇g(·), v〉 is the directional derivative of g.
Our first result shows that under the condition limn→∞ nh2k

n τ2kd
n = ∞, the finite

difference approximation to the directional derivative of fτn,n converges uniformly
on compact sets, in probability.

Theorem 3.6.1 Suppose (2.2.1) holds true. Let K be a compact subset of S f , {hn}∞
n=1 and

{τn}∞
n=1 sequences of positive scalars converging to 0 and {vn}∞

n=1 be a sequence in Sd−1

converging to v ∈ Sd−1. (i) If f is continuously differentiable, then

lim
n→∞

sup
x∈K
|∇hn

vn
fτn(x)−∇v f (x)| = 0.

(ii) If, additionally, HG is a VC subgraph class of functions and limn→∞ nh2k
n τ2kd

n = ∞,
then, for all ε > 0,

lim
n→∞

P

(
sup
x∈K
|∇hn

vn
fτn,n(x)−∇v f (x)| ≥ ε

)
= 0.

The first step towards identifying the modes is finding a local maximum of a
function. To this end, we use the steepest ascent or gradient ascent idea; that is,
starting from a point in the space, the next point is chosen in the direction given by
the gradient of the function at that point. This procedure is repeated until conver-
gence to a local maximum is achieved. When clustering using modes, this procedure
is often combined with kernel density estimators to find the modes of the density
underlying the given data points, and the clusters associated with them (Fukunaga
and Hostetler, 1975; Menardi, 2016). In the following, we propose a similar tech-
nique (using instead sample τ-approximation), which does not require existence of
gradients, and considers data as potential candidate points for the next move. This
yields a computationally efficient procedure (see Theorem 3.6.2 below).

Turning to the consistency result, we need arguments that allows one to approx-
imate uniformly the directional derivative of points over (i) a compact set, (ii) the
step-size, and (iii) directions. The next lemma addresses this issue and critically uses
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the Bernstein-type inequality developed in Theorem 2.4.3. Part (iii) of the lemma be-
low also provides a upper bound on the uniform approximation mentioned above.

Lemma 3.6.1 Suppose (2.2.1) holds true. Let K be a compact subset of S f and let h∗ > 0
be such that (K)+h∗ ⊂ S f . Also, let {τn}∞

n=1 and {hn}∞
n=1 be sequences of positive scalars

converging to 0. Assume also that f is three times continuously differentiable. Then
(i) the finite difference approximation of the directional derivative of fτ converges uniformly
to that of f . That is,

lim
n→∞

sup
h∈[hn,h∗]

sup
v∈Sd−1

sup
x∈K
|∇h

v fτn(x)−∇h
v f (x)| = 0.

(ii) If, additionally, HG is a VC subgraph class of functions and limn→∞ nh2k
n τ2kd

n = ∞,
then, for all ε > 0,

lim
n→∞

P

(
sup

h∈[hn,h∗]
sup

v∈Sd−1

sup
x∈K
|∇h

v fτn,n(x)−∇h
v f (x)| ≥ ε

)
= 0.

(iii) Let limn→∞
n

log(n)h2k
n τ2kd

n = ∞ and HG be a VC subgraph class of functions. Then, for
all ε > 0, there are constants 0 < c̃ < ∞ and ñ ∈N such that, for all n ≥ ñ,

P

(
sup

h∈[hn,h∗]
sup

v∈Sd−1

sup
x∈K
|∇h

v fτn,n(x)−∇h
v f (x)| ≥ ε

)
≤ c̃

n2 .

We are now ready to state the main result of this section, namely, consistency of
the empirically chosen clusters.

Theorem 3.6.2 Suppose that HG is a VC subgraph class of functions, Assumption 3.3.1
and (2.2.1) hold true and f is three times continuously differentiable. LetXn = {X1, . . . , Xn}
be a sample of i.i.d. random variables from P with density f and {hn}∞

n=1 and {τn}∞
n=1 be

sequences of positive scalars converging to zero with limn→∞ nh2k
n τ2kd

n = ∞. For x ∈ S f
and r > 0, define

Xn,r(x) = {X ∈ Xn : hn ≤ ‖X− x‖2 ≤ r},

Yn,r,0 = x and, recursively, if

max
X∈Xn,r(Yn,r,j)∪{Yn,r,j}

fτn,n(X)− fτn,n(Yn,r,j) > 0, (3.6.1)

then

Yn,r,j+1 = argmax
X∈Xn,r(Yn,r,j)

fτn,n(X)− fτn,n(Yn,r,j)

‖X−Yn,r,j‖2
; (3.6.2)

else stop and let j∗ = j. It holds that j∗ ≤ n. Furthermore, if x ∈ C(mi), and given
0 < η ≤ 1, α∗ ≤ α < f (mi), and 0 < r ≤ r∗, for some α∗, r∗ > 0, then there exist n∗ ∈N

such that, with probability at least 1− η, Yn,r,j∗ ∈ Rα ∩ C(mi), for all n ≥ n∗.

Using the above theorem, one can estimate the mode using the last iterate, namely,
Yn,r,j∗ . The Corollary 3.6.1 below provides strong consistency of this estimate. The
proof of Theorem 3.6.2 and Corollary 3.6.1 is given in Section 3.8, whereas Section
3.7 contains the proof of Theorem 3.6.1, Lemma 3.6.1, and other preliminary results.
Turning to the proof of Theorem 3.6.2, it is divided into four distinct but connected
steps. For the first step, let j∗ be a non-negative integer and define {yr,j} recursively
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as follows: let yr,0 = x and

yr,j+1 = yr,j + hjvj, 0 ≤ j ≤ j∗− 1,

where 0 < hj ≤ r for some small r > 0, and where vj is “close” to the normalized
gradient of f at yr,j. We show that the sequence {yr,j} is close to the solution ux of
(3.3.2). This is achieved, using a version of the discrete Grönwall lemma (Lemma
3.7.1 in Section 3.7). Next, we show that {Yn,r,j} in (3.6.2) behaves like the sequence
{yr,j} described in Step 1, with probability 1− η. This is achieved in Step 2 using
Lemma 3.6.1. The proof of this step requires the existence of sufficient number of
data points in a small neighborhood of all points in the direction of the normalized
gradient. We establish that this is indeed the case using compactness arguments in
Step 3. Finally, we apply the results of Step 1 to {Yn,r,j}

j∗

j=0 yielding that this sequence
is close to the solution ux. Since for all points that are not close to a mode, there
exists, by Step 3, data points yielding a positive finite difference approximation of the
directional derivative, (3.6.1) occurs with the desired probability. This observation
allows to conclude, in Step 4, that Yn,r,j∗ is close to the mode.

As a consequence of the above theorem, setting Jn = I[Yn,r,j∗ /∈Rα∩C(mi)], δ ∈ (0, 1],
and {ηn}∞

n=1 be a sequence of scalars in (0, 1] with limn→∞ ηn = 0 one can show by
Theorem 3.6.2 that

lim
n→∞

P(Jn ≥ δ) = lim
n→∞

P(Jn = 1) ≤ lim
n→∞

ηn = 0,

implying that Jn converges in probability to zero. Since Yn,r,j∗ is the estimate of the
mode, we obtain weak consistency of the mode. Furthermore, using (iii) of Lemma
3.6.1, one can strengthen the conclusion to almost sure convergence. We summarize
this observation as a corollary.

Corollary 3.6.1 Suppose that limn→∞
n

log(n)h2k
n τ2kd

n = ∞ and the assumptions of Theorem

3.6.2 hold. Then Jn
a.s.−→ 0.

It is important to note that one can weaken some of the conditions in the above
Theorem. Indeed, it follows from the next proposition shows that, for d ≥ 6k+ 1, the
conditions involving {hn}∞

n=1 can be removed provided that the sequence {τn}∞
n=1

does not converge to zero too fast.

Proposition 3.6.1 LetXn = {X1, . . . , Xn} a sample of i.i.d. random variables from a proba-
bility distribution P with bounded density f , x ∈ S f , and h̃n = miny,z∈Xn∪{x},y 6=z‖y− z‖2.
Then, (i) h̃n > 0 a.s., (ii) h̃n

a.s.−→ 0, and (iii) for d ≥ 6k + 1 and 0 < δ < 1 − 6k
d ,

n1−δh̃2k
n

a.s.−→ ∞.

Proposition 3.6.1 shows that the distance h̃n between all sample points and a point
x ∈ S f is positive a.s. for all n ∈ N and converges to zero a.s. as n → ∞. However,
d ≥ 6k + 1 is needed for nh̃2k

n τ2kd
n

a.s.−→ ∞, for some sequence of positive scalars
{τn}∞

n=1 converging to zero. Specifically, by Proposition 3.6.1 (iii) we can take τ2kd
n =

n−δ, for some 0 < δ < 1− 6k
d , that is, τn = n−δ/(2kd). This shows that, for d ≥ 6k + 1,

by choosing a suitable sequence {τn}∞
n=1, we can replace hn by h̃n in Theorem 3.6.2.

In turn, this allows replacement of the set Xn,r(x) = {X ∈ Xn : hn ≤ ‖X − x‖2 ≤ r}
by X̃n,r(x) = {X ∈ Xn : ‖X− x‖2 ≤ r, X 6= x}.
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3.7 Proof of preliminary results

This section contains the proof of Theorem 3.6.1, Lemma 3.6.1, and other lemmas for
the proof of Theorem 3.6.2.

Proof of Theorem 3.6.1. We begin by proving (i). Let h∗, n∗ > 0 be such that
(K)+h∗ ⊂ S f and 0 < hn ≤ h∗ for all n ≥ n∗. Notice that fτn is continuously dif-
ferentiable in (K)+h∗ (see Remark 2.3.1). By the mean value theorem, there exist
0 ≤ c1,n, c2,n ≤ 1 such that

f (x + hnvn)− f (x) = hn〈∇ f (x + c1,nhnvn), vn〉 (3.7.1)

and
fτn(x + hnvn)− fτn(x) = hn〈∇ fτn(x + c2,nhnvn), vn〉. (3.7.2)

Using the triangle inequality, we have that

sup
x∈K
|∇hn

vn
fτn(x)−∇v f (x)| ≤ sup

x∈K
|∇hn

vn
fτn(x)−∇hn

vn
f (x)|+ sup

x∈K
|∇hn

vn
f (x)−∇v f (x)|.

We show that each term converges to 0 as n → ∞. First, by (3.7.1), the uniform
continuity of ∇ f in (K)+h∗ and limn→∞‖vn − v‖2 = 0, it follows that

lim
n→∞

sup
x∈K
|∇hn

vn
f (x)−∇v f (x)| = lim

n→∞
sup
x∈K
|〈∇ f (x + c1,nhnvn), vn〉 − 〈∇ f (x), v〉|

≤ lim
n→∞

sup
x∈K
|〈∇ f (x + c1,nhnvn), vn − v〉|

+ lim
n→∞

sup
x∈K
|〈∇ f (x + c1,nhnvn)−∇ f (x), v〉|

≤ sup
y∈(K)+h∗

‖∇ f (y)‖2 lim
n→∞
‖vn − v‖2

+ lim
n→∞

sup
x∈K
‖∇ f (x + c1,nhnvn)−∇ f (x)‖2 = 0.

Also, by (3.7.1) and (3.7.2), it holds that

sup
x∈K
|∇hn

vn
fτn(x)−∇hn

vn
f (x)| = sup

x∈K
|〈∇ fτn(x + c2,nhnvn)−∇ f (x + c1,nhnvn), vn〉|

≤ sup
x∈K
‖∇ fτn(x + c2,nhnvn)−∇ f (x + c1,nhnvn)‖2.

Finally, Proposition 2.3.2 (iv) and the uniform continuity of ∇ f in (K)+h∗ imply that

lim
n→∞

sup
x∈K
|∇hn

vn
fτn(x)−∇hn

vn
f (x)| ≤ lim

n→∞
sup
x∈K
‖∇ fτn(x + c2,nhnvn)−∇ f (x + c2,nhnvn)‖2

+ lim
n→∞

sup
x∈K
‖∇ f (x + c2,nhnvn)−∇ f (x + c1,nhnvn)‖2

≤ lim
n→∞

sup
y∈(K)+h∗

‖∇ fτn(y)−∇ f (y)‖2

+ sup
y∈(K)+h∗

lim
n→∞

sup
z∈Bhn (y)∩(K)+h∗

‖∇ f (y)−∇ f (z)‖2 = 0.

We now prove (ii). Since

sup
x∈K
|∇hn

vn
fτn,n(x)−∇v f (x)| ≤ sup

x∈K
|∇hn

vn
fτn,n(x)−∇hn

vn
fτn(x)|+ sup

x∈K
|∇hn

vn
fτn(x)−∇v f (x)|,
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using (i), it is enough to show that

lim
n→∞

P

(
sup
x∈K
|∇hn

vn
fτn,n(x)−∇hn

vn
fτn(x)| ≥ ε

2

)
= 0.

Notice that, by Lemma 2.3.1,

sup
x∈K
|∇hn

vn
fτn,n(x)−∇hn

vn
fτn(x)| = sup

x∈K

∣∣∣∣ fτn,n(x + hnvn)− fτn(x + hnvn)

hn
− fτn,n(x)− fτn(x)

hn

∣∣∣∣
≤ sup

x∈K

∣∣∣∣LG,n(x + hnvn, τn)− LG(x + hnvn, τn)

hk
nτkd

n Λ1

∣∣∣∣1/k

+ sup
x∈K

∣∣∣∣LG,n(x, τn)− LG(x, τn)

hk
nτkd

n Λ1

∣∣∣∣1/k

.

We now use that limn→∞
√

nhk
nτkd

n = ∞ and apply Theorem 2.4.3 with t = tn =√
nhk

nτkd
n Λ1(ε/4)k. It follows that there are constants σG ≥ 0 and 1 < cG,0, cG,1, cG,2 <

∞ such that, for all n ≥ n∗∗, tn ≥ max(23σG, 24cG,0) and

P

(
sup
x∈K
|∇hn

vn
fτn,n(x)−∇hn

vn
fτn(x)| > ε

2

)
≤ P

(
sup

(x,τ)∈Rd×[0,∞]

∣∣∣∣LG,n(x, τ)− LG(x, τ)

hk
nτkd

n Λ1

∣∣∣∣1/k

≥ ε

4

)
= P

(√
n sup

(x,τ)∈Rd×[0,∞]

|LG,n(x, τ)− LG(x, τ)| ≥ tn

)
≤ MG(n, tn),

where MG is defined in (2.4.5). Now, the result follows from limn→∞ MG(n, tn) = 0.

Proof of Lemma 3.6.1. We begin by proving (i). By Proposition 2.3.3 there are
constants τ̃((K)+h∗), c̃2((K)+h∗) > 0 such that, for all y ∈ (K)+h∗ and 0 < τ ≤
τ̃((K)+h∗),

fτ(y) = f (y) + R̃τ(y)τ2

and ‖∇R̃τ(y)‖2 ≤ c̃2((K)+h∗). Let n∗ ∈N such that τn ≤ τ̃((K)+h∗) for all n ≥ n∗. It
holds that, for all n ≥ n∗,

∇h
v fτn(x)−∇h

v f (x) =
R̃τn(x + hv)− R̃τn(x)

h
τ2

n .

Now, by the mean value theorem, there are constants 0 ≤ c̃n ≤ 1 such that

R̃τn(x + hv)− R̃τn(x)
h

= 〈∇R̃τn(x + c̃nhv), v〉,

implying that∣∣∣∣ R̃τn(x + hv)− R̃τn(x)
h

∣∣∣∣ ≤ ‖∇R̃τn(x + c̃nhv)‖2 ≤ c̃2((K)+h∗).

It follows that

lim
n→∞

sup
h∈[hn,h∗]

sup
v∈Sd−1

sup
x∈K
|∇h

v fτn(x)−∇h
v f (x)| ≤ c̃2((K)+h∗) lim

n→∞
τ2

n = 0.
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We now prove (ii). By (i), it is enough to show that

lim
n→∞

P

(
sup

h∈[hn,h∗]
sup

v∈Sd−1

sup
x∈K
|∇h

v fτn,n(x)−∇h
v fτn(x)| ≥ ε

2

)
= 0.

Notice that, by Lemma 2.3.1,

|∇h
v fτn,n(x)−∇h

v fτn(x)| =
∣∣∣∣ fτn,n(x + hv)− fτn(x + hv)

h
− fτn,n(x)− fτn(x)

h

∣∣∣∣
≤
∣∣∣∣LG,n(x + hv, τn)− LG(x + hv, τn)

hk
nτkd

n Λ1

∣∣∣∣1/k

+

∣∣∣∣LG,n(x, τn)− LG(x, τn)

hk
nτkd

n Λ1

∣∣∣∣1/k

≤ 2 sup
(x,τ)∈Rd×[0,∞]

∣∣∣∣LG,n(x, τ)− LG(x, τ)

hk
nτkd

n Λ1

∣∣∣∣1/k

.

We apply again Theorem 2.4.3 with t = tn =
√

nhk
nτkd

n Λ1(ε/4)k. Then, there are
constants σG ≥ 0 and 1 < cG,0, cG,1, cG,2 < ∞ such that, for large enough n,

P

(
sup

h∈[hn,h∗]
sup

v∈Sd−1

sup
x∈K
|∇h

v fτn,n(x)−∇h
v fτn(x)| ≥ ε

2

)
≤P

(√
n sup
(x,τ)∈Rd×[0,∞]

|LG,n(x, τ)− LG(x, τ)| ≥ tn

)
≤MG(n, tn),

where MG is defined in (2.4.5). Since limn→∞ tn = ∞, limn→∞ hn = 0, and limn→∞ τn =
0, we conclude that limn→∞ MG(n, tn) = 0. Finally, for (iii), we apply Lemma 2.5.1
with an = hk

nτkd
n and b = Λ1(ε/4)k and get constants 0 < c̃ < ∞ and ñ ∈ N such

that MG(n, tn) ≤ c̃
n2 for all n ≥ ñ.

A version of discrete Grönwall lemma (see e.g. Holte (2009)) is needed in Theo-
rem 3.6.2 to evaluate the difference between the sequence {yn,r,j}

j∗

j=1 (defined in the
proof) and the solution ux of (3.3.2). Discrete Grönwall lemma is a suitable tool for
this scope. Indeed, it is often used to compare the solution of ordinary differential
equations with the approximation given by Euler method (see e.g. Theorem 2.4 in
Atkinson et al. (2009)).

Lemma 3.7.1 (Discrete Grönwall lemma) Let {an}∞
n=0, {bn}∞

n=0 and {cn}∞
n=0 be non-

negative sequences. If a0 = 0 and an ≤ (1 + cn−1)an−1 + bn−1 for all n ≥ 1, then,
an ≤ (∑n−1

j=0 bj) exp(∑n−1
j=1 cj).

Proof of Lemma 3.7.1. By applying recursively the inequality for {an}∞
n=0 and using

a0 = 0, we see that

an ≤
n−1

∑
j=0

bj

n−1

∏
l=j+1

(1 + cl).
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Now, using 1 + s ≤ es with s = cl , we get that

an ≤
n−1

∑
j=0

bj exp(
n−1

∑
l=j+1

cl) ≤ (
n−1

∑
j=0

bj) exp(
n−1

∑
j=1

cj).

The next lemma is used to control the finite difference approximations of the di-
rectional derivative of f over certain compact sets. For a differentiable function
g : Rd → R, let

wg(x) =

{
∇g(x)/‖∇g(x)‖2 if ∇g(x) 6= 0
0 if ∇g(x) = 0.

(3.7.3)

Lemma 3.7.2 Suppose that f is continuously differentiable and K is a compact subset of S f

with K ∩N f = ∅. Then, there exist r̃(K), c̃(K) > 0 such that (K)+r̃(K) ⊂ S f and, for all
x ∈ K and (h, v) ∈ (0, r̃(K)]× (Sd−1 ∩ Br̃(K)(w f (x))), ∇h

v f (x) ≥ c̃(K).

Proof of Lemma 3.7.2. Let g : [0, ∞)→ R be given by

g(h) = min
y∈K

(
f (y + hw f (y))− f (y)

)
.

By the mean value theorem, it holds that g(h) = h miny∈K〈∇ f (y+ chw f (y)), w f (y)〉,
for some 0 ≤ c ≤ 1. Let h̃(K) > 0 such that (K)+h̃(K) ⊂ S f . Since, by Remark 2.3.1,
∇ f is uniformly continuous in (K)+h̃(K), we have that

g′(0) = lim
h→0+

g(h)/h = min
y∈K
‖∇ f (y)‖2. (3.7.4)

Now, by multivariate Taylor’s theorem with integral remainder, we have that, for
v ∈ Sd−1 and h > 0,

f (x + hv) = f (x + hw f (x)) + h〈∇ f (x + hw f (x)), v−w f (x)〉

+ h2
∫ 1

0
(1− s)(v−w f (x))>H f (x + hs(v−w f (x)))(v−w f (x))ds.

It follows that, for 0 < h ≤ h̃(K)/2,

f (x + hv) ≥ f (x) + g(h) + h〈∇ f (x + hw f (x)), v−w f (x)〉

+ h2
∫ 1

0
(1− s)(v−w f (x))>H f (x + hs(v−w f (x)))(v−w f (x))ds

≥ f (x) + g(h)− h‖v−w f (x)‖2‖∇ f (x + hw f (x))‖2

− h2‖v−w f (x)‖2
2

∫ 1

0
(1− s)‖H f (x + hs(v−w f (x))‖M,2ds

≥ f (x) + g(h)− h‖v−w f (x)‖2c1 − h2‖v−w f (x)‖2
2c2/2,

where
c1 = max

y∈(K)+h̃(K)/2
‖∇ f (y)‖2

and
c2 = max

y∈(K)+h̃(K)
‖H f (y)‖M,2.
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Therefore, we have that

∇h
v f (x) ≥ g̃(h) = g(h)/h− ‖v−w f (x)‖2c1 − h‖v−w f (x)‖2

2c2/2.

Since f has no stationary points in K, miny∈K‖∇ f (y)‖2 > 0, and the result follows
from (3.7.4).

3.8 Proof of consistency of empirical clusters

In this section, we prove Theorem 3.6.2, Corollary 3.6.1, and Proposition 3.6.1.

Proof of Theorem 3.6.2. First, notice that, for all j = 1, . . . , j∗, Yn,r,j ∈ Xn and, by
(3.6.1), Yn,r,j 6= Yn,r,l , for all l < j. Hence, j∗ ≤ n. The proof of the remaining part
is divided into four steps. In the first step below we introduce few notations and
preliminary calculations.

Step 0. Let α1 = f (x) and 0 < α2 < α1. We recall from Section 3.3 that the
solution ux(t) of (3.3.2) exists for t ∈ (a, ∞), a < 0, and define Gx = {ux(t) : t ∈
[0, ∞)}. Since x ∈ Rα1 and f (ux(·)) is monotonically non-decreasing, we have that
Gx = Gx ∪ {mi} ⊂ C(mi) ∩ Rα1 ⊂ C(mi) ∩ R̊α2 . C(mi) is open by Proposition 3.3.1
and therefore there exists ξ1 > 0 such that (i) α3 = supy∈(C(mi)\(C(mi))

−2ξ1 ) f (y) <

f (mi) and (ii) (Gx)+2ξ1 ⊂ (C(mi) ∩ Rα2)
−2ξ1 . Let max(α2, α3) < α∗ ≤ α < f (mi) and

0 < ξ ≤ ξ1 such that
B4ξ(mi) ⊂ Rα ∩ C(mi). (3.8.1)

Let Kξ = Rα2 ∩ (C(mi))−ξ . It holds that (Gx)+ξ ⊂ Kξ , which implies that, for all
ε > 0,

(Gx)
+ξ \ Bε(mi) ⊂ Kξ \ Bε(mi). (3.8.2)

Also, since α > α3, Rα ∩ C(mi) = Rα ∩ (C(mi))
−2ξ1 , implying that

B4ξ(mi) ⊂ Kξ . (3.8.3)

Recall (3.7.3) and for 0 < r ≤ ξ and j∗ ≥ 0 let

G̃x,j∗,r =

{
{yr,j}

j∗

j=0 : yr,0 = x and, recursively, yr,j+1 = yr,j + hjvj

for some (hj, vj) ∈ (0, r]× (Sd−1 ∩ Br(w f (yr,j))

}
.

(3.8.4)

Step 1. We show that, for small r, every sequence {yr,j}
j∗

j=0 ∈ G̃x,j∗,r either remains in
(Gx)+ξ \ Bξ(mi) or, for some j ∈ {0, . . . , j∗}, yr,j ∈ B4ξ(mi). To this end, we suppose
w.l.o.g. that

‖x−mi‖2 > 2ξ. (3.8.5)

If (3.8.5) does not hold, then yr,0 = x ∈ B2ξ(mi) ⊂ B4ξ(mi). We now define some
quantities that are used in the proof of this fact. Specifically, let t0 = 0 and, recur-
sively, tj+1 = ∑

j
l=0 hl/‖∇ f (yr,l)‖2. Also, let 0 < α̃4(ξ) < f (mi) such that Rα̃4(ξ) ∩

C(mi) ⊂ Bξ(mi), t∗(ξ) = inf{t ∈ [0, ∞) : ux(t) ∈ Rα̃4(ξ)}, t̃∗(ξ) = inf{t ∈ [0, t∗(ξ)] :
ux(t) ∈ B2ξ(mi)}, K̃ξ = Kξ \ R̊α̃4(ξ), c̃1(ξ) = infy∈K̃ξ

‖∇ f (y)‖2 > 0 and c̃2(ξ) =
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supy∈K̃ξ
‖∇ f (y)‖2 > 0. Since ∇ f is differentiable, it is locally Lipschitz; hence, Lips-

chitz in K̃ξ . Denote by L the Lipschitz constant. Let j̃∗ = max{j ∈ {0, . . . , j∗} : tj ≤
t̃∗(ξ)} and, using the continuity of ux, let 0 < r1 ≤ ξ, such that

r1 t̃∗(ξ)

(
c̃2(ξ) + sup

t∈[0,t̃∗(ξ)]
‖u′′x (t)‖2/(2c̃1(ξ))

)
exp(Lt̃∗(ξ)) ≤ ξ (3.8.6)

and, for all 0 < r ≤ r1,

‖ux(t̃(ξ)− r/c̃1(ξ))− ux(t̃(ξ))‖2 ≤ ξ. (3.8.7)

We show that, for all j = 0, . . . , j̃∗ and 0 < r ≤ r1, yr,j ∈ (Gx)+ξ \ Bξ(mi). We
recall that, by (3.8.2), since Rα̃4(ξ) ∩ C(mi) ⊂ Bξ(mi), (Gx)+ξ \ Bξ(mi) ⊂ K̃ξ . First,
notice that ux(t0) = x and, by (3.8.5), it holds that yr,0 = x ∈ (Gx)+ξ \ Bξ(mi). We
now suppose by induction that, for j ≥ 1, yn,r,j−1 ∈ (Gx)+ξ \ Bξ(mi) and show that
yr,j ∈ (Gx)+ξ \ Bξ(mi), thus proving the statement. Since u′x(t) = ∇ f (ux(t)) and
f is three times continuously differentiable, then so is ux. By Taylor theorem with
Lagrange’s form of remainder, there exists tj−1 ≤ t̃j−1 ≤ tj such that

ux(tj) = ux(tj−1) +
hj−1

‖∇ f (yr,j−1)‖2
∇ f (ux(tj−1)) +

h2
j−1

2‖∇ f (yr,j−1)‖2
2

u′′x (t̃j−1).

It follows that

(yr,j − ux(tj)) = (yr,j−1 − ux(tj−1)) + hj−1(vj−1 −w f (yr,j−1))

+
hj−1

‖∇ f (yr,j−1)‖2

(
∇ f (yr,j−1)−∇ f (ux(tj−1))

)
−

h2
j−1

2‖∇ f (yr,j−1)‖2
2

u′′x (t̃j−1).

Now, we use the Lipschitz property of ∇ f and get

‖yr,j − ux(tj)‖2 ≤
(

1 +
hj−1L

‖∇ f (yr,j−1)‖2

)
‖yr,j−1 − ux(tj−1)‖2 + r1hj−1

+
h2

j−1

2‖∇ f (yr,j−1)‖2
2

sup
t∈[0,t̃∗(ξ)]

‖u′′x (t)‖2.

We now apply Lemma 3.7.1 with aj = ‖yr,j − ux(tj)‖2,

bj = r1hj +
h2

j

2‖∇ f (yr,j)‖2
2

sup
t∈[0,t̃∗(ξ)]

‖u′′x (t)‖2,
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cj =
hj L

‖∇ f (yr,j)‖2
and, using (3.8.6) and tj ≤ t̃∗(ξ), we get that ‖yr,j − ux(tj)‖2 is

bounded above by(
r1

j−1

∑
l=0

hl +
j−1

∑
l=0

h2
j

2‖∇ f (yr,l)‖2
2

sup
t∈[0,t̃∗(ξ)]

‖u′′x (t)‖2

)
exp

(
L

j−1

∑
l=1

hl

‖∇ f (yr,j‖2

)

≤r1tj

(
c̃2(ξ) + sup

t∈[0,t̃∗(ξ)]
‖u′′x (t)‖2/(2c̃1(ξ))

)
exp(Ltj) ≤ ξ.

It follows that yr,j ∈ (Gx)+ξ . Moreover, tj ≤ t̃∗(ξ) implies that ‖mi − ux(tj)‖2 ≥ 2ξ.
Hence,

‖mi − yr,j‖2 ≥ ‖mi − ux(tj)‖2 − ‖ux(tj)− yr,j‖2 ≥ ξ,

that is, yr,j /∈ Bξ(mi). In particular, if j̃∗ = j∗, then yr,j ∈ (Gx)+ξ \ Bξ(mi) for all j =
0, . . . , j∗. Next, we show that, if j̃∗ < j∗, then yr, j̃∗ ∈ B4ξ(mi). Since t̃∗(ξ)− r1/c̃1(ξ) <

t j̃∗+1 − r1/c̃1(ξ) ≤ t j̃∗ ≤ t̃∗(ξ), by (3.8.7) it holds that ‖ux(t j̃∗)− ux(t̃∗ξ )‖2 ≤ ξ. Since
ux(t̃∗(ξ)) ∈ ∂B2ξ(mi), we conclude that

‖yr, j̃∗ −mi‖2 ≤ ‖yr, j̃∗ − ux(t j̃∗)‖2 + ‖ux(t j̃∗)− ux(t̃∗ξ )‖2 + ‖ux(t̃∗ξ )−mi‖2 ≤ 4ξ.

Step 2. Notice that K̃ξ ∩N f = ∅. We apply Lemma 3.7.2 with K = K̃ξ and get
constants r∗ = min(r1, r̃(K̃ξ)) > 0 and c∗ = c̃(K̃ξ) > 0 such that, for all x ∈ K̃ξ and
(h, v) ∈ (0, r∗]× (Sd−1 ∩ Br∗(w f (x))),

∇h
v f (x) ≥ c∗. (3.8.8)

For X ∈ Xn and x ∈ S f let h̃X,x = ‖X − x‖2 and ṽX,x = (X − x)/h̃X,x. We show the
existence of 0 < r2 ≤ r∗ such that, for all 0 < r ≤ r2, there exist n1, n2 ∈ N such
that, with probability at least 1− η, for n ≥ max(n1, n2) and x ∈ K̃ξ , we have that
Xn,r(x) 6= ∅,

max
X∈Xn,r(x)∪{x}

fτn,n(X)− fτn,n(x) > 0 (3.8.9)

and

X∗(x) = argmax
X∈Xn,r(x)

fτn,n(X)− fτn,n(x)
‖X− x‖2

= argmax
X∈Xn,r(x)

∇h̃X,x
ṽX,x

fτn,n(x)

satisfies
(h̃X∗(x),x, ṽX∗(x),x) ∈ [hn, r]× (Sd−1 ∩ Br∗(w f (x)). (3.8.10)

To this end, suppose w.l.o.g. that r∗ ≤ 1. Let d̃(r∗) = infy∈K̃ξ
infv∈Sd−1\Br∗ (w f (y))〈w f (y)−

v,∇ f (y)〉 > 0 and choose 0 < d∗ < d̃(r∗)/(5 maxy∈K̃ξ
‖∇ f (y)‖2). Notice that, since

d̃(r∗) ≤ miny∈K̃ξ
‖∇ f (y)‖2r∗, we have d∗ < r∗/5 ≤ 1/5. By the mean value theo-

rem, there exists 0 ≤ c ≤ 1 such that ∇h
v f (x) = 〈v,∇ f (x + chv)〉, x ∈ K̃ξ . Next,

by the uniform continuity of ∇ f over compact sets, we have that ∇h
v f (x) converges

to ∇v f (x) uniformly over v ∈ Sd−1 and x ∈ K̃ξ . Let r3 > 0 be such that, for all
h ∈ (0, r3], v ∈ Sd−1, and x ∈ K̃ξ ,

|∇h
v f (x)−∇v f (x)| ≤ min

y∈K̃ξ

‖∇ f (y)‖2d∗.
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Then, for all x ∈ K̃ξ and v ∈ Sd−1 ∩ Bd∗(w f (x)), it holds that

∇v f (x) ≥ ‖∇ f (x)‖2(1− ‖w f (x)− v‖2) ≥ ‖∇ f (x)‖2(1− d∗),

which implies that, for all x ∈ K̃ξ , h ∈ (0, r3] and v ∈ Sd−1 ∩ Bd∗(w f (x)),

∇h
v f (x) ≥ ∇v f (x)−min

y∈K̃ξ

‖∇ f (y)‖2d∗ ≥ ‖∇ f (x)‖2(1− 2d∗). (3.8.11)

On the other hand, by definition of d∗, we have that, for all x ∈ K̃ξ and v ∈ Sd−1 \
Br∗(w f (x)),

∇v f (x) ≤ (1− 5d∗)‖∇ f (x)‖2,

which implies that, for all x ∈ K̃ξ , h ∈ (0, r3] and v ∈ Sd−1 \ Br∗(w f (x)),

∇h
v f (x) ≤ ∇v f (x) + min

y∈K̃ξ

‖∇ f (y)‖2d∗ ≤ ‖∇ f (x)‖2(1− 4d∗). (3.8.12)

Now, let r2 = min(r3, d∗) < r∗ and 0 < r ≤ r2. Notice that (K)+r ⊂ (K)+r∗ ⊂
(K)+r(K̃ξ ) ⊂ S f . Using Lemma 3.6.1 (ii) with K = K̃ξ and h∗ = r, we choose n2 ∈ N

such that, for all n ≥ n2, with probability at least 1− η/2,

sup
h∈[hn,r]

sup
v∈Sd−1

sup
x∈K̃ξ

|∇h
v fτn,n(x)−∇h

v f (x)| < d∗min
y∈K̃ξ

‖∇ f (y)‖2. (3.8.13)

It follows from (3.8.11), (3.8.12) and (3.8.13) that, with probability at least 1− η/2,
for all x ∈ K̃ξ , h ∈ [hn, r] and v ∈ Sd−1 ∩ Br(w f (x)),

∇h
v fτn,n(x) > (1− 2d∗)‖∇ f (x)‖2− d∗min

y∈K̃ξ

‖∇ f (y)‖2 ≥ (1− 3d∗)‖∇ f (x)‖2, (3.8.14)

and, for all x ∈ K̃ξ , h ∈ [hn, r] and v ∈ Sd−1 \ Br∗(w f (x)),

∇h
v fτn,n(x) < (1− 4d∗)‖∇ f (x)‖2 + d∗min

y∈K̃ξ

‖∇ f (y)‖2 ≤ (1− 3d∗)‖∇ f (x)‖2. (3.8.15)

Since d∗ < 1/5, (1− 3d∗)‖∇ f (x)‖2 > 0 for all x ∈ K̃ξ . We show in Step 3 below that
there exists a constant n1 such that, with probability at least 1− η/2, for all x ∈ K̃ξ

and n ≥ n1, there exists X ∈ Xn,r(x) such that

(h̃X,x, ṽX,x) ∈ [hn, r]×
(

Sd−1 ∩ Br(w f (x))
)

. (3.8.16)

In particular, since P(A∩ B) ≥ P(A)+P(B)− 1 for all n ≥ max(n1, n2), (3.8.13) and
(3.8.16) hold simultaneously with probability at least 1− η. It follows from (3.8.14)
and (3.8.15) that, with probability at least 1− η, for all x ∈ K̃ξ ,

sup
(h,v)∈[hn,r]×Sd−1\Br∗ (w f (x))

∇h
v fτn,n(x) < ∇h̃X,x

ṽX,x
fτn,n(x) ≤ sup

(h,v)∈[hn,r]×Sd−1∩Br(w f (x))
∇h

v fτn,n(x).

Thus, we have shown that the finite difference approximation of fτn,n with step
h̃X,x and direction ṽX,x is larger than all finite difference approximations with step
h ∈ [hn, r] and directions v ∈ Sd−1 \ Br∗(w f (x)). (3.8.10) follows. Also, (3.8.14) and
(3.8.16) imply (3.8.9).
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Step 3. We show (3.8.16). To this end, let 0 < s1 < s2 < r and n3 be such that hn < s1
for all n ≥ n3. It is enough to show that there exists n1 ≥ n3 such that, for all n ≥ n3,

P([Xn ∩ Ds1,s2(x) 6= ∅ ∀x ∈ K̃ξ ]) ≥ 1− η/2,

where Ds1,s2(x) = As1,s2(x) ∩ Cs2(x), As1,s2(x) = Bs2(x) \ Bs1(x), and

Cs2(x) =
{

y ∈ Rd \ {x} : ‖ y− x
‖y− x‖2

−w f (x)‖2 ≤ s2

}
.

Let 0 < ε1 < s2−s1
2 . We first notice that

As1+ε1,s2−ε1(x) ⊂ ∩z∈Bε1 (x)As1,s2(z). (3.8.17)

Indeed, y ∈ As1+ε1,s2−ε1(x) satisfies s1 + ε1 ≤ ‖y− x‖2 ≤ s2 − ε1. Therefore, for all
z ∈ Bε1(x), it holds that

s1 ≤ ‖y− x‖2 − ‖x− z‖2 ≤ ‖y− z‖2 ≤ ‖y− x‖2 + ‖x− z‖2 ≤ s2,

that is, y ∈ As1,s2(z). Now, let h∗ > 0 such that (K̃ξ)
+h∗ does not contain stationary

points of f . Since w f is uniformly continuous in (K̃ξ)
+h∗ , there exists ε2 ∈ (0, h∗]

such that, for all x ∈ K,

sup
y∈Bε2 (x)

‖w f (x)−w f (y)‖2 ≤ ε1/2. (3.8.18)

Suppose w.l.o.g. that ε2 ≤ min(1, s1+ε1
4 )ε1. We show that

Ds1+ε1,s2−ε1(x) ⊂ ∩z∈Bε2 (x)Ds1,s2(z). (3.8.19)

To this end, let y ∈ Ds1+ε1,s2−ε1(z). By (3.8.17), it holds that y ∈ ∩z∈Bε2 (x)As1,s2(z). We
need to show that y ∈ ∩z∈Bε2 (x)Cs2(x). Since, for all z ∈ Bε2(x),

‖ y− z
‖y− z‖2

− y− x
‖y− x‖2

‖2 ≤ 2
‖z− x‖2

‖y− z‖2
≤ 2ε2

s1 + ε1
≤ ε1/2,

using the triangle inequality and (3.8.18), we have that

‖ y− z
‖y− z‖2

−w f (z)‖2 ≤ ‖
y− z
‖y− z‖2

− y− x
‖y− x‖2

‖2 + ‖
y− x
‖y− x‖2

−w f (x)‖

+ ‖w f (x)−w f (z)‖2 ≤ s2.

(3.8.19) follows. Notice that, for all x ∈ K̃ξ , λ(Ds1+ε1,s2−ε1(x)) = λ(Ds1+ε1,s2−ε1(0)) =
Λ̄ > 0. Now, by the compactness of K̃ξ ⊂ ∪x∈K̃ξ

Bε2(x), there exist x1, . . . , xk ∈ K̃ξ

such that K̃ξ ⊂ ∪k
l=1Bε2(xl). It follows from (3.8.19) that, for all z ∈ K̃ξ , there exists xl

such that z ∈ Bε2(xl) and Ds1+ε1,s2−ε1(xl) ⊂ Ds1,s2(z). Therefore, it is enough to show
that there exists n1 ≥ n3 such that, for all n ≥ n1,

P([Xn ∩ Ds1+ε1,s2−ε1(xl) 6= ∅ ∀l ∈ {1, . . . , k}]) ≥ 1− η/2.
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To this end, notice that∪k
l=1Ds1+ε1,s2−ε1(xl) ⊂ (K̃ξ)

+r ⊂ S f and let α0 = miny∈(K̃ξ )+r f (y).
Then, pl = P(Ds1+ε1,s2−ε1(xl)) ≥ α0Λ̄ > 0. Observe that

P(∩k
l=1[Xn ∩ Ds1+ε1,s2−ε1(xl) 6= ∅]) = 1−P(∪k

l=1[Xn ∩ Ds1+ε1,s2−ε1(xl) = ∅])

≥ 1−
k

∑
l=1

P([Xn ∩ Ds1+ε1,s2−ε1(xl) = ∅]).

Let Gl have the geometric distribution with parameter pl . Since {Xl} are indepen-
dent, it holds that

P([Xn ∩ Ds1+ε1,s2−ε1(xl) = ∅]) = P(Gl > n) =
∞

∑
j=n

(1− pl)
j pl = (1− pl)

n,

which implies that

P(∩k
l=1[Xn ∩ Ds1+ε1,s2−ε1(xl) 6= ∅]) ≥ 1−

k

∑
l=1

(1− pl)
n ≥ 1− k(1− α0Λ̄)n. (3.8.20)

The statement follows by taking n1 ≥ n3 such that η/2 ≥ k(1− α0Λ̄)n1 .
Step 4. Let n∗ = max(n1, n2) and n ≥ n∗. Notice that, by Step 2, {Yn,r,j}

j∗

j=0 ∈
G̃x,n,j∗,r∗ with probability at least 1 − η. Since, r ≤ r∗ ≤ r1 ≤ ξ, by Step 1 ei-

ther (i) {Yn,r,j}
j∗

j=0 remains in (Gx)+ξ \ Bξ(mi) or (ii) Yn,r∗,j ∈ B4ξ(mi) for some j ∈
{0, . . . , j∗}. We show that (i) is not possible. Indeed, if Yn,r,j∗ ∈ (Gx)+ξ \ Bξ(mi) ⊂ K̃ξ ,
then, by (3.8.9), there exists X∗(Yn,r,j∗) ∈ Xn,r(Yn,r,j∗) such that fτn,n(X∗(Yn,r,j∗)) >
fτn,n(Yn,r,j∗). However, since j∗ is the last iterate, by (3.6.1) it holds that fτn,n(Yn,r,j∗) ≥
maxX∈Xn,r(Yn,r,j∗ )

fτn,n(X). Let j0 = min{j ∈ {0, . . . , j∗} : Yn,r,j ∈ B4ξ(mi)}. By (3.8.1),
Yn,r,j0 ∈ Rα ∩C(mi). We show by induction that Yn,r,j ∈ Rα ∩C(mi), for all j0 ≤ j ≤ j∗.
First, notice that, if Yn,r,j ∈ Rα̃4(ξ) ∩ C(mi), then Yn,r,j+1 ∈ Bξ+r(mi) ⊂ B2ξ(mi) ⊂
Rα ∩ C(mi). Second, if Yn,r,j ∈ B4ξ(mi) \ (Rα̃4(ξ) ∩ C(mi)), then by (3.8.3) Yn,r,j ∈ K̃ξ

and by (3.8.8) it holds that f (Yn,r,j+1) > f (Yn,r,j). Using the induction hypothesis, we
conclude that Yn,r,j+1 ∈ Rα ∩ C(mi). This completes the proof of consistency of the
algorithm.

Proof of Corollary 3.6.1. Let δ > 0. We show that there exists n∗ ∈ N and {ηn}∞
n=1

such that

∞

∑
n=1

P(Jn ≥ δ) ≤ n∗ − 1 +
∞

∑
n=n∗

P(Jn = 1) ≤ n∗ − 1 +
∞

∑
n=n∗

ηn < ∞.

Then the result follows from Borel-Cantelli lemma. To this end, we explicitly express
the constant η in Theorem 3.6.2 as a function of n and observe the convergence of
the series. We first notice that, for n ≥ n1, we can choose ηn/2 ≥ k(1− α0Λ̄)n in
(3.8.20). Next, we apply in (3.8.13) Lemma 3.6.1 (iii) with K = K̃ξ , h∗ = r, and
ε = d∗miny∈K̃ξ

‖∇ f (y)‖2 and get constants 0 < c̃ < ∞ and ñ ∈ N such that, for all
n ≥ ñ,

P( sup
h∈[hn,r]

sup
v∈Sd−1

sup
x∈K̃ξ

|∇h
v fτn,n(x)−∇h

v f (x)| < d∗min
y∈K̃ξ

‖∇ f (y)‖2) ≤ 1− c̃
n2 .
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Therefore, for all n ≥ n∗ = max(n1, ñ), we can choose ηn/2 = max(k(1− α0Λ̄)n, c̃/n2),
yielding ∑∞

n=n∗ ηn < ∞.

Proof of Proposition 3.6.1. We first prove (i). Since P ∈ Pd,�λ with density f , it
holds that

P(h̃n = 0) = P(∪n
i=1[‖Xi − x‖2 = 0] ∪ ∪n

i=1 ∪n
j=i+1 [‖Xi − Xj‖2 = 0])

≤
n

∑
i=1

P(‖Xi − x‖2 = 0) +
n

∑
i=1

n

∑
j=i+1

P(‖Xi − Xj‖2 = 0)

= nP(‖X1 − x‖2 = 0) +
(

n
2

) ∫
P(‖X1 − y‖2 = 0) f (y)dy = 0.

For (ii), observe that, for all ε > 0,

P(h̃n ≥ ε) ≤ P( min
i=1,...,n

‖Xi − x‖2 ≥ ε) = (P(‖X1 − x‖2 ≥ ε))n.

Since x ∈ S f , it holds that P(‖X1 − x‖2 ≥ ε) < 1 and

∞

∑
n=2

P(h̃n ≥ ε) ≤
∞

∑
n=2

P(‖X1 − x‖2 ≥ ε)n < ∞.

By Borel-Cantelli lemma, it follows that h̃n
a.s.−→ 0. We now prove (iii). To this end, let

M > 0 and notice that P(n1−δh̃2k
n ≤ M2k) is equal to

P(∪n
i=1[‖Xi − x‖2 ≤ Mn−(1−δ)/(2k)] ∪ ∪n

i=1 ∪n
j=i+1 [‖Xi − Xj‖2 ≤ Mn−(1−δ)/(2k)]),

which is bounded above by

n

∑
i=1

P(‖Xi − x‖2 ≤ Mn−(1−δ)/(2k)) +
n

∑
i=1

n

∑
j=i+1

P(‖Xi − Xj‖2 ≤ Mn−(1−δ)/(2k))

= nP(BMn−(1−δ)/(2k)(x)) +
n(n− 1)

2

∫
P(BMn−(1−δ)/(2k)(y)) f (y)dy. (3.8.21)

Now, since f is bounded, we have that α = supy∈Rd f (y) < ∞. For y ∈ Rd, it holds
that

P(BMn−(1−δ)/(2k)(y)) ≤ αλ(BMn−(1−δ)/(2k)(x)) = αcn−d(1−δ)/(2k), (3.8.22)

where c = Mdπd/2/Γ(d/2 + 1). Using (3.8.22) in (3.8.21), we obtain that

P(n1−δh̃2k
n ≤ M2k) ≤ αcn2−d(1−δ)/(2k).

Therefore, using d ≥ 6k + 1 and 0 < δ < 1− 6k
d , we have that

∞

∑
n=1

P(n1−δh̃2k
n ≤ M2k) ≤ αc

∞

∑
n=1

n2−d(1−δ)/(2k) < ∞.

By another application of Borel-Cantelli lemma and Theorem 5.2 in Billingsley (2012),
we conclude that n1−δh̃2k

n
a.s.−→ ∞.
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The next result shows that, the normalized gradient of fτ converges uniformly to the
normalized gradient of f in a compact set not containing the stationary points of f .

Proposition 3.8.1 Suppose that f is continuously differentiable and (2.2.1) holds true. Let
K ⊂ S f be a compact set with K ∩N f = ∅. Then,

lim
τ→0+

sup
x∈K
‖w fτ

(x)−w f (x)‖2 = 0. (3.8.23)

Proof of Proposition 3.8.1. We use Proposition 2.3.2 (iv), which shows that, as
τ → 0+, ∇ fτ converges uniformly in K to ∇ f . Since K ∩N f = ∅, there exists τ∗

such that minx∈K‖∇ fτ(x)‖2 ≥ c/2 for all 0 < τ ≤ τ∗, where c = minx∈K‖∇ f (x)‖2.
Then, using triangle inequality, we see that

sup
x∈K
‖w fτ

(x)−w f (x)‖2 ≤ 4/c sup
x∈K
‖∇ fτ(x)−∇ f (x)‖2,

which gives (3.8.23).

3.9 Clustering Algorithm

In this section, we provide a detailed description of the algorithm for clustering. As
a first step, starting from a point x ∈ Rd, we search, in a given neighborhood of x,
for the point y that yields the largest directional derivative∇h

v fτ,n with h = ‖y− x‖2
and v = (y− x)/‖y− x‖2. Since

(τkdΛ1)
1/k∇h

v fτ(x) =
(LG(x + hv, τ))1/k − (LG(x, τ))1/k

h
and

(τkdΛ1)
1/k∇h

v fτ,n(x) =
(LG,n(x + hv, τ))1/k − (LG,n(x, τ))1/k

h
,

the constant (τkdΛ1)
1/k does not influence the choice of the point y which maximizes

both finite differences∇h
v fτ(x) and∇h

v fτ,n(x). This allows one to ignore the constant
in the specification of the algorithm. That is, the finite difference approximation of
the directional derivative of the kth root of the local depth can be computed avoiding
the computation of the constant Λ1. We show, in fact, that the constant (τkdΛ1)

1/k also
does not influence the clusters induced by the system (3.5.1). Since τ, Λ1 > 0, if, for
x ∈ Rd, ux,τ : R → Rd is a solution of the system (3.5.1) with ux,τ(0) = x, then
ũx,τ : R→ Rd given by ũx,τ(t) = ux,τ((τkdΛ1)

1/kt) also satisfies ũx,τ(0) = x and it is
a solution of the system

ũ′(t) = ∇
(
(LG(ũ(t), τ))1/k

)
. (3.9.1)

Moreover, since limt→∞ ux,τ(t) = limt→∞ ũx,τ(t) for all x ∈ Rd, the clusters in-
duced by (3.5.1) and (3.9.1) are the same. Hence, for x, y ∈ Rd with y 6= x and
h = ‖y − x‖2 ≤ r small enough, we consider the finite difference approximation
of the directional derivatives of (LG(x, τ))1/k and (LG,n(x, τ))1/k along the direction
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v = y−x
‖y−x‖2

given by

dτ(x; y) =
(LG(y, τ))1/k − (LG(x, τ))1/k

‖y− x‖2
and (3.9.2)

dτ,n(x; y) =
(LG,n(y, τ))1/k − (LG,n(x, τ))1/k

‖y− x‖2
. (3.9.3)

We now summarize the procedure for computing the clusters in Algorithm 1.

Algorithm 1: Clustering with local depth
Input: {x1, . . . , xn}, {y1, . . . , yo} (optional), τ, s, r
Output: Local maxima for input points: {z1, . . . , zn+o}

1 Compute the local depth of {x1, . . . , xn} with localization parameter τ
2 Store {x1, . . . , xn}, {y1, . . . , yo} in new variables

for i = 1 to n do
z∗i = xi

end
for i = 1 to o do

z∗i+n = yi

end
3 For all points, compute the corresponding local maxima

for i = 1 to n + o do
repeat

4 zi = z∗i
5 Store the data points (different from zi) at distance from zi smaller

than r or the s closest data points if they are less than s in new
variables w1, . . . , wl (l ≥ s)

6 z∗i = argmaxj=1,...,l dτ,n(zi; wj)

until LG,n(z∗i , τ) > LG,n(zi, τ)

end

The algorithm requires as input, data points {x1, . . . , xn}, the localizing param-
eter τ, and two additional parameters, r and s. Additional points {y1, . . . , yo} may
also be provided as input. Starting from any point x ∈ {x1, . . . , xn} ∪ {y1, . . . , yo},
based on the finite difference (3.9.3), the algorithm moves to another data point
y ∈ {x1, . . . , xn} (hence, except for the initial step, only data points are involved
in (3.9.3)). The parameter r gives a bound on the norm ‖y− x‖2 in (3.9.3) in order to
choose only those points that are close to each other. The parameter s, representing
the minimal number of directions at each step of the algorithm, is exploited to en-
sure that the number of directional derivatives taken into account is not too small.
Based on these choices, the steps 5, 6 and 7 of Algorithm 1 are repeated until the
local maximum is achieved. The resulting data points are returned as output.

We now turn to the choice of the parameters r, s, and τ. We notice that for a good
approximation to the directional derivative, the parameter r cannot be too large.
This is also seen in several exploratory analyses. Hence, we fix r = 0.05 in all our
numerical work.

Turning to s, it is a good idea to consider a large number of various directions.
The parameter s ensures that a sufficient number of directions are evaluated to get
close to the maximum (over v ∈ Sd−1) of the directional derivative. This is partic-
ularly important in regions where data are sparse. The quantity s can also play the
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role of a smoothing parameter. If τ is small with a small sample size n, then the sam-
ple local depth can be noisy and have local peaks with a small basin of attraction
that were not present in the original distribution. In this case, the choice of a larger s
helps to avoid these local maxima.

We now describe a general method for the choice of s. Let w(x) = ∇ f (x)/‖∇ f (x)‖2
and Vi, i = 1, . . . , s be independent according to the uniform distribution PV on the
unit sphere Sd−1. We take uniform distribution on Sd−1 because directions of the s
data points close to x are, in general, unknown. Then, for a given precision ε ∈ (0, 1),
with probability at least 1− η (η ∈ (0, 1)), we require that

Ps
V( min

i=1,...,s
‖Vi − w(x)‖2 ≤ ε) ≥ 1− η.

Using the independence of Vis and due to the uniformity on Sd−1, we see that this is
equivalent to

(1− PV(‖V1 − ed‖2 ≤ ε))s ≤ η,

where ed = (0, . . . , 0, 1)> ∈ Rd. Therefore, s can be taken to be the smallest integer
greater than or equal to

gd(η, ε) = log1−td(ε)
(η),

where td(ε) = PV(‖V1 − ed‖2 ≤ ε). Next, we compute the quantity td(ε). For d = 1,
PV is the Rademacher distribution yielding td(ε) = 1/2. For d ≥ 2, td(ε) is the
probability (i.e. the area) of the hyperspherical cap C1,ε = Sd−1 ∩ Bε(ed). Li (2011)
shows that this is given by

td(ε) =
1
2

Ir2(ε)

(
d− 1

2
,

1
2

)
,

where Iz(α, β) is the cumulative distribution function of a beta probability distribu-
tion with parameters α, β > 0 and r(ε) is the radius of the hyperspherical cap. By
Pythagoras theorem,

r2(ε) = 12 − (1− h(ε))2 = 2h(ε)− h2(ε),

where h(ε) is the height of the hyperspherical cap. To compute r2(ε), we first com-
pute h(ε). Since every point x ∈ C1,ε satisfies 〈x, ed〉 = 1− ε2/2, we conclude that
h(ε) = 1− 〈x, ed〉 = ε2/2 and r2(ε) = ε2 − ε4/2. For d = 1, by choosing η = 0.05
and any ε ∈ (0, 1), the above procedure yields s = 5. For d = 2, η = 0.05, and
ε = 0.3 (thus h(ε) = 0.045), one obtains s = 30. Similarly, if d = 5, η = 0.05, and
ε = 0.7 (thus h(ε) = 0.245), then s = 71. We notice that, for fixed η and ε, gd(η, ε) is
increasing in d as Ir2(ε)(

d−1
2 , 1

2 ) is decreasing in d. This implies that a larger sample
size is required to obtain the same precision in higher dimensions.

We now turn to the parameter τ. Convergence of the clustering algorithm (cf.
Theorem 3.6.2) requires that limn→∞ nτ2kd

n = ∞. Thus, we can take τn = n(−1+δ)/(2kd),
for some δ > 0. More specific choices are possible for some depth functions such as
β-skeleton depth (G = Kβ), lens depth (G = K2 = L), spherical depth (G = K1 = B),
and simplicial depth (G = S). For these depth functions, τ is chosen as a quantile
of order q ∈ [0, 1] based on distances between data points x1, . . . , xn. Specifically,
for β-skeleton depth, q is chosen as a quantile of the empirical distribution of the
(n

2) distances ‖xi − xj‖2, i, j ∈ {1, 2, . . . , n}. For simplicial depth, q is a quantile of
the ( n

d+1) maxima of the form maxi,j=1,...,d+1‖xii − xij‖2 for all ( n
d+1) combinations of

indices i1, . . . , id+1 from {1, 2, . . . , n}.
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We now turn to the computational complexity of β-skeleton and simplicial depth.
To this end, we recall that LKβ,n is a U-statistics of order 2, while LS,n is a U-statistics
of order d + 1. This means that the computational complexity of LKβ,n is of order
O((n

2)), while the computational complexity of the LS,n is of order O(( n
d+1)), which

makes a significant difference, especially in high dimensions. For large d and n,
an approximation to LS can be made by considering a large number of simplices
sampled with replacement amongst all the ( n

d+1) simplices that define LS,n; in our
simulations (see Sections 3.11 and 3.12) we sample 108 simplices to reduce the com-
putational cost.

3.10 Illustrative examples

In this section, we illustrate with some examples the role of the localizing parame-
ter in the τ-approximation and the clustering methodology proposed in this chap-
ter. We begin with a one-dimensional example showing the flexibility of the τ-
approximation for different values of τ. As described in Chapter 2, for small values
of τ, fτ “resembles” the underlying density, while for larger τ it becomes unimodal,
as depth functions are decreasing from the median of the distribution. We take this
univariate distribution to be a mixture of four normal distributions with means −2,
0, 3, 4, standard deviations 0.5, 0.8, 0.5, 0.2 and weights 0.25, 0.5, 0.15 and 0.1, respec-
tively. The resulting density is quadrimodal and is depicted in Figure 3.1 along with
its sample τ-approximation for τ = 0.5, 1, 2, 4. For reproducibility, we use the seed
1234 for all figures that are based on one-sample and appearing in this section and
Sections 3.11 and 3.12 below. As can be seen from Figure 3.1 for τ = 0.5 the approx-
imation has a similar shape to the density with approximately the same number of
modes. For τ = 1, the clusters corresponding to the modes at x = 3 and x = 4 merge
yielding only three clusters. As we increase τ from 1 to 2, we notice that one can still
identify two clusters, while, for τ = 4, the τ-approximation has a unimodal shape.

−4 −2 0 2 4

0.
00

0.
10

0.
20

−5 −4 −3 −2 −1 0 1 2 3 4 5

Density
τ = 0.5
τ = 1
τ = 2
τ = 4

FIGURE 3.1: In black the quadrimodal mixture density and in red,
green, blue and cyan its sample τ-approximation fτ,n for τ =

0.5, 1, 2, 4, respectively, and n = 6000.

Turning to two-dimensional examples studied in the literature (see Chacón (2015)),
we consider mixtures of bivariate normal distributions with the following character-
istics: a two-mixture with equal weights (Bimodal) and identity covariance matrix
and the mixtures investigated in Wand and Jones (1993) and Chacón (2009) referred
to as (H) Bimodal IV, (K) Trimodal III and #10 Fountain. Their analytical expression
is given below.
(i) The Bimodal density is a two-mixture of normal distributions with equal weights,
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identity covariance matrix and means (−2, 0)> and (2, 0)>.
(ii) The (H) Bimodal IV density is a mixture of two normal distributions with equal
weights, means µ1 = (1,−1)>, µ2 = (−1, 1)> and covariances

Σ1 =
4
9

(
1 7

10
7

10 1

)
and Σ2 =

4
9

(
1 0
0 1

)
.

(iii) The (K) Trimodal III density is a mixture of three normal distributions with
weights w1 = w2 = 3

7 and w3 = 1
7 ; means µ1 = (−1, 0)>, µ2 = (1, 2 ·

√
3

3 )> and

µ3 = (1,−2 ·
√

3
3 )>; and covariances

Σ1 =

( 9
25

7
10 ·

9
25

7
10 ·

9
25

49
100

)
and Σ2 = Σ3 =

( 9
25 0
0 49

100

)
.

(iv) The #10 Fountain density is a mixture of six normal distributions with weights
w1 = 1

2 and w2 = w3 = w4 = w5 = w6 = 1
10 ; means µ1 = µ2 = (0, 0)>, µ3 =

(−1, 1)>, µ4 = (−1,−1)>, µ5 = (1,−1)> and µ6 = (1, 1)>; and covariances

Σ1 =

(
1 0
0 1

)
, Σ2 = Σ3 = Σ4 = Σ5 = Σ6 =

( 1
16 0
0 1

16

)
.

The true clusters corresponding to these densities are in Figure 3.2 (first row). They
are constructed as follows. First, we compute the gradient of the densities. Next, we
use the R package deSolve to solve the (negative) gradient system

u′(t) = −∇ f (u(t))

with initial value very close to the saddle points of f (see Chacón (2015)). In this
way, we build the "borders" of the clusters (i.e. the curves in black). Finally, we plot
modes in red and draw each cluster with a different color.

We apply our algorithm to analyze these models and identify clusters using lo-
cal lens depth (LLD); these results are displayed in Figure 3.2 (second row). A com-
parison of our results with the clusters obtained using the kernel density estimator
(KDE) are provided in Figure 3.2 (third row). Specifically, clusters are obtained via
the kernel mean shift algorithm as implemented by the function kms in the R pack-
age ks (Duong, 2018). We set maximum number of iterations to 5000 and tolerance
to 10−8. The plug-in estimator of the bandwidth matrix is given by the function Hpi
with pilot option "dunconstr" and derivatives of order one. The bandwidth ma-
trix is obtained via minimization of the asymptotic mean integrated squared error
(AMISE) of the gradient of the estimated density. For more details on the bandwidth
matrix selection procedure see Sections 3.6 and 5.6.4 in Chacón and Duong (2018).
For more details on the mean shift clustering algorithm see Section 6.2.2 of Chacón
and Duong (2018). By a visual inspection of Figure 3.2, LLD performs a better clus-
tering estimation than KDE. A more detailed analysis of the performance of LLD
and KDE is provided in the next section.

3.11 Numerical experiments

In this section, we compare the performance of clustering Algorithm 1 based on
LDFs with kernel density estimator. We evaluate the performance in three different
ways: (i) true number of clusters identified by the algorithm, (ii) empirical Hausdorff
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FIGURE 3.2: Clusters associated with the Bimodal (left), (H) Bimocal
IV (middle) and #10 Fountain (right) densities. True clusters (first
row). Local depth clustering based on n = 1000 samples from these
densities and parameters q = 0.05, s = 50 and r = 0.05 (second row).
Kernel density estimator clustering (third row). The true modes (first
row) and the predicted modes (second and third rows) are plotted in

red.
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distance between the “true” cluster and the estimated cluster, and (iii) empirical
probability distance (see Chacón (2015), for instance). We recall that the symmetric
difference between two subsets A and B of Rd is A∆B = ((Rd \ A)∩ B)∪ (A∩ (Rd \
B)). Let Pn = 1

n ∑n
i=1 δXi be the empirical probability distribution of n i.i.d. samples,

X1, . . . , Xn, from P ∈ Pd. The empirical probability distance between the clusterings
C = {C1, . . . , Cl} and D = {D1, . . . , Ds} with l < s is given by

d̂Pn,η(C,D) = 1
2

min
π∈Ps

( l

∑
i=1

Pn(Ci∆Dπ(i)]) + η
s

∑
i=l+1

Pn(Dπ(i))

)
,

where Ps is the set of all permutations of {1, . . . , s} and η ≥ 0 is a penalization
coefficient for clusters that do not match with any other. If l = s the second term in
the above expression is zero. In our numerical experiments, we choose η = 1. Next,
the empirical Hausdorff distance is given by

d̃H,Pn(C,D) = max
(

max
i∈{1,...,t}

min
j∈{1,...,s}

Pn(Ci∆Dj), max
j∈{1,...,s}

min
i∈{1,...,t}

Pn(Ci∆Dj)

)
.

In numerical experiments and data analysis, C is taken to be the set of true clusters
while D is the set of estimated clusters, produced by the algorithm. If the estimated
clusters coincide with the true clusters, then both these distances, viz. the clustering
errors, are zero. Thus, small values of these distances suggest a good performance.
As explained before, we consider the following distributions commonly used in the
literature: Bimodal, (H) Bimodal IV, (K) Trimodal III and #10 Fountain. To test the
performance of our methodology in higher dimensions, we also consider a bimodal
and a quadrimodal density in dimension five. We refer to these distributions as
Mult. Bimodal and Mult. Quadrimodal. Specifically, the Mult. Bimodal and Mult.
Quadrimodal densities are obtained as mixtures of normal densities with identity
covariance matrix and equal weights. In particular, the Mult. Bimodal density is a
mixture of two normal distributions with means (−2, 0, 0, 0, 0)> and (2, 0, 0, 0, 0)>

and the Mult. Quadrimodal density is a mixture of four normal distributions with
means (−2, 2, 0, 0, 0)>, (−2,−2, 0, 0, 0)>, (2,−2, 0, 0, 0)> and (2, 2, 0, 0, 0)>. The true
clusters for the Mult. Bimodal density can be deduced from those of the Bimodal
density. Similarly, the true clusters for the Mult. Quadrimodal density are deduced
from those of the two-dimensional density given by a mixture of four normal dis-
tributions with means (−2, 2)>, (−2,−2)>, (2,−2)> and (2, 2)>, and again equal
weights and identity covariance matrix.

Our simulation results are based on a sample size of 1000 and 100 numerical ex-
periments and we choose τ so that the corresponding quantiles q are given by 0.01,
0.05 and 0.1 (see Section 3.9). We compare the results of Algorithm 1 based on lo-
cal lens depth (LLD) and local simplicial depth (LSD), with hierarchical clustering
(Hclust) and Kernel density estimator (KDE). The hierarchical clustering requires
a pre-specification of the number of clusters while the other methods do not, and
it is reported here since it is one of the widely used methods for clustering. Thus,
we compute it making use of the true number of clusters, which implies that the ob-
tained results are not comparable with those of the other methodologies. Specifically,
we use the R function hclust based on the L2-distance between the observations and
the default complete linkage method, i.e. the clusters distance is the maximum dis-
tance between the points in each cluster. Next, we apply the function cutree, based
on the true number of clusters, to the output of hclust, yielding the final clusters.
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For more details about the numerical implementation and the quantiles for LLD and
LSD we refer to Section 3.9.

Tables 3.1 and 3.2 provides clustering errors based on the Hausdorff distance and
the probability distance. The best results are highlighted in bold. From these results
we see that clustering errors based based on the KDE, LLD, LSD, and Hclust are sim-
ilar for the distributions (H) Bimodal IV, (K) Trimodal III, #10 Fountain, and Bimodal.
However, LLD outperforms all the competitors for the distribution in dimension five
as can be seen from the columns Mult. Bimodal and Mult. Quadrimodal. Table 3.3
provides a comparison of the number of times the correct number of clusters is de-
tected. The number of times the procedure identifies a lower number of clusters (on
the left) and a higher number of clusters (on the right) is also provided. Again we
notice that the proposed methods perform as well as the competitors. It is possible
to improve the performance of LSD for distributions in dimension 5, by choosing
smaller values of q, as described in Section 3.12.

Clustering errors (Hausdorff distance)
(H) Bimodal IV (K) Trimodal III #10 Fountain

KDE a 0.00 (0.03) 0.10 (0.15) 0.08 (0.05)
LLD 1 0.05 (0.10) 0.01 (0.15) 0.06 (0.01)
LSD 2 0.05 (0.11) 0.10 (0.15) 0.06 (0.01)
Hclust * 0.05 (0.09) 0.15 (0.09) 0.29 (0.05)

Bimodal Mult. Bimodal Mult. Quadrimodal
KDE a 0.01 (0.05) 0.38 (0.17) 0.16 (0.08)
LLD 3 0.01 (0.03) 0.01 (0.04) 0.02 (0.01)
LSD 4 0.00 (0.00) 0.23 (0.18) 0.38 (0.18)
Hclust * 0.06 (0.05) 0.05 (0.03) 0.07 (0.03)
a pilot="dunconstr" 1 q = 0.1, s = 30. 2 q = 0.01, s = 30. 3 q = 0.1,
s = 50. 4 q = 0.05, s = 30. * The true number of clusters is given in input.

TABLE 3.1: Mean of the clustering errors based on the Hausdorff dis-
tance for the densities (H) Bimodal IV, (K) Trimodal III, #10 Fountain,
Bimodal, Mult. Bimodal and Mult. Quadrimodal. In parentheses the
standard deviation. The true number of clusters is specified as input

for the hierarchical clustering algorithm.

Clustering errors (distance in probability)
(H) Bimodal IV (K) Trimodal III #10 Fountain

KDE a 0.01 (0.07) 0.06 (0.08) 0.21 (0.31)
LLD 1 0.13 (0.28) 0.06 (0.07) 0.06 (0.01)
LSD 2 0.12 (0.27) 0.07 (0.09) 0.06 (0.01)
Hclust * 0.05 (0.09) 0.16 (0.09) 0.35 (0.07)

Bimodal Mult. Bimodal Mult. Quadrimodal
KDE a 0.01 (0.04) 0.12 (0.13) 0.57 (0.33)
LLD 3 0.01 (0.02) 0.01 (0.01) 0.03 (0.01)
LSD 4 0.00 (0.00) 0.20 (0.17) 0.45 (0.17)
Hclust * 0.06 (0.05) 0.05 (0.03) 0.10 (0.04)

TABLE 3.2: Mean of the clustering errors based on the distance in
probability for the densities (H) Bimodal IV, (K) Trimodal III, #10
Fountain, Bimodal, Mult. Bimodal and Mult. Quadrimodal. In paren-
theses the standard deviation. The true number of clusters is specified

as input for the hierarchical clustering algorithm.
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Number of times the true clusters are detected correctly
(H) Bimodal IV (K) Trimodal III #10 Fountain

KDE a (0) 99 (1) (15) 77 (8) (0) 79 (21)
LLD 1 (0) 83 (17) (14) 79 (7) (0) 100 (0)
LSD 2 (0) 85 (15) (13) 75 (12) (0) 100 (0)

Bimodal Mult. Bimodal Mult. Quadrimodal
KDE a (0) 97 (3) (0) 18 (82) (0) 25 (75)
LLD 3 (0) 99 (1) (0) 99 (1) (0) 100 (0)
LSD 4 (0) 100 (0) (12) 63 (25) (77) 18 (5)

TABLE 3.3: Number of times that the procedure identifies the true
number of clusters for the densities (H) Bimodal IV, (K) Trimodal
III , #10 Fountain, Bimodal, Mult. Bimodal and Mult. Quadrimodal.
In parentheses the number of times the procedure identifies a lower
number of clusters (on the left) and a higher number of clusters (on

the right).

3.12 Data analysis

In this section, we evaluate the performance of our methodology on two datasets
taken from the UCI machine learning repository (http://archive.ics.uci.edu/
ml/), namely, the Iris dataset and the Seeds dataset. For the sake of complete-
ness we provide more details concerning the datasets. The Iris dataset consists of
n = 150 observations from three classes (Iris Setosa, Iris Versicolour, and Iris Vir-
ginica) with four measurements each (sepal length, sepal width, petal length, and
petal width). We compare our results to those based on KDE (with built-in band-
width) and Hclust. Our algorithm, based on both lens and simplicial depth, correctly
identifies all three clusters (see Table 3.4); furthermore, the Hausdorff distance and
probability distance from our algorithm are smaller than those of the competitors.

Seeds dataset consists of n = 210 observations concerning three varieties of
wheat; namely, Kama, Rosa, and Canadian. High quality visualization of the in-
ternal kernel structure was detected using a soft X-ray technique and seven geomet-
ric parameters of wheat kernels were recorded. They are area, perimeter, compact-
ness, length of kernel, width of kernel, asymmetry coefficient, and length of kernel
groove. All of these geometric parameters were continuous and real-valued. Table
3.5 contains the results of our analysis. The best results are highlighted in bold and
correspond to LLD. We notice that both of our methods, LLD and LSD, correctly
identify the true number of clusters.

It is worth mentioning here that Hclust was given as input the true number of
clusters, three, as required by this methodology. However, the Hausdorff distance
and probability distance of our proposed methods are smaller than those of Hclust.
KDE, in both the examples, overestimates the true number of clusters.

Clustering errors for Iris data
Number of clusters Distance in prob. Hausdorff distance

KDE a 7 0.37 0.31
LLD 4 3 0.10 0.10
LSD 5 3 0.10 0.10
Hclust * 0.16 0.16
5 q = 10−4, s = 20.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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TABLE 3.4: Mean of the clustering errors based on the Hausdorff dis-
tance and distance in probability for the Iris data. The true number of
clusters is specified as input for the hierarchical clustering algorithm.

Clustering errors for Seeds data
Number of clusters Distance in prob. Hausdorff distance

KDE a 25 0.75 0.33
LLD 4 3 0.10 0.10
LSD 6 3 0.17 0.17
Hclust * 0.20 0.20
6 q = 10−5, s = 20.

TABLE 3.5: Mean of the clustering errors based on the Hausdorff dis-
tance and distance in probability for the Seeds data. The true number
of clusters is specified as input for the hierarchical clustering algo-

rithm.
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Glossary of notation

A a set
∂A, A, and Å boundary, closure, and interior of A
(A)+δ and (A)−δ enlargement and negative enlargement of A by δ
A class of affine transformations
(m-)a.e. and (m-)a.s. m-almost everywhere and m-almost surely
B class of balls on Rd

B(P) (P-)Brownian bridge
Bn(P) abbreviation for

√
n(U1,n(·, P)−U1(·, P))

B(E) Borel σ-algebra on E
Bd Borel σ-algebra on Rd

Br(x) closed ball in Rd with radius r and center x
Br(x) open ball in Rd with radius r and center x
γB(P) and γŴ(P) covariance function of B(P) and Ŵ(P)
C, D collection of sets or clustering
CH collection of subgraphs of functions inH
C closed convex cone in Rd

#A cardinality of A
g ◦ h composition of functions g and h
g ∗ h convolution of functions g and h
∂j partial derivative w.r.t. jth component
∂[n] unidimensional nth derivative
dΣ(P) Mahalanobis distance
d̃L q(Hk ,Q) Lq-pseudodistance on L q(Hk, Q)

d̃(k,0)
H,q,P̂k

n
restriction of d̃L q(Hk ,P̂k

n)
toH

d̃(1,k−1)
H,q,P̂k

n
pseudodistance onH

d̃(1,k−1)
H,q,Pk and d̃

(1,k−1)
H,q,Pk pseudodistances onH

d̂P,η and d̃H,P probability and Hausdorff distance between clusterings
DEk domain of Jk
D depth function
DG Type A depth function with index/kernel function G
D′G Type A depth function defined via h′G,x,∞
D̂G Type B depth function with index G
D̃G Type C depth function with index G
D̃H halfspace depth
D(S ,Pd,1,Pd,2) class of statistical depth functions w.r.t. (S ,Pd,1,Pd,2)
δx Dirac measure at x
∆[x1, . . . , xd+1] closed simplex with vertices x1, . . . , xd+1
det determinant
A∆B symmetric difference between A and B
dist(A, B) distance between A and B
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E (Hausdorff) topological space
E expectation
E∗ outer expectation
{ej}d

j=1 standard basis of Rd

f(A) set of all real-valued functions from A
(F, dF) and (F, d̃F) metric space and pseudometric space
F or FP cumulative distribution function for the probability measure P
f or fP density function for the probability measure P
fτ or fG,τ τ-approximation of f
fτ,n or fG,τ,n sample τ-approximation of f
∇ and ∇v gradient and directional derivative
∇h

v finite difference approximation of ∇v
G class of kernel functions
G index or kernel function for Type A (local) depth functions
G̃τ scaled kernel function G
Hk class of Borel measurable, symmetric functions h : Ek → R

H class of functions in Hk
HG class of functions hG,x,τ
h kernel of a U-statistics
hH envelope function ofH
hG,x,τ function depending on kernel function G
h′G,x,∞ function depending on index G that is unbounded below
Hg Hessian matrix of g
Hx,u closed halfspace with outer normal u and boundary point x
〈·, ·〉 inner product on Rd

IA indicator function of A
iG,x,∞ function depending on index G
Jk(h, Q) integral of h w.r.t. Q ∈ M±(Ek)
Jk(h, Q) integral of h w.r.t. Q ∈ M±(Ek)
k (of kG) the order of a U-statistics (possibly depending on G)
λ Lebesgue measure on Rd

Λ1 or ΛG,1 Lebesgue integral of G over (Rd)kG

`∞(A) ⊂ f(A) set of all bounded functions from A
LG and LG,n Type A and sample Type A local depth function
Lx,u line through x with direction u
Lα and Lα,τ level sets of f and fτ

Lq((Rd)k, λk) space of functions g : (Rd)k → R for which gq is absolutely integrable
Lq((Rd)k) abbreviation for Lq((Rd)k, λk)
L q(Hk, Q) class of symmetric functions with finite qth-moment w.r.t. Q ∈ P(Ek)
lH constants bounding functions inH
l or lG abbreviation for lHG

M matrix
M(E) set of all Borel measures on E
M±(E) set of all finite signed Borel measures on E
m measure
M f set of modes of f
µ(P) mean of P
µ
(j)
m (P) jth-moment of P

µ
(j)
c (P) jth central moment of P
‖·‖q Lq-norm on Rd
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‖·‖M,q Lq-matrix-norm
‖·‖L q(Hk ,Q) Lq-(semi)norm on L q(Hk, Q)
N set of all natural numbers
N(µ, σ2) normal random variable with mean µ and variance σ2

N abbreviation for N(0, 1)
N f set of stationary points of f
N(F, d̃F, ε) ε-covering number of (F, d̃F)
O, o big O, little o
OG function measuring outlyingness and depending on index G
(Ω, Σ, P) probability space
(Ω, Σ, P) completion of (Ω, Σ, P)
P probability measure
Pn = P̂1

n empirical probability distribution
P̂k

n empirical probability distribution for U-statistics of order k
PT push-forward measure of P w.r.t. T
Pu abbreviation for Pπu

PX probability distribution of X
P∗(A) outer probability of A
P(E) set of all Borel probability measures on E
P f d(E) set of all finitely discrete Borel probability measures on E
Pd set of all Borel probability measures on Rd

Pd,1, Pd,2 (general) subclasses of Pd
Pd,�m subclass of absolutely continuous probabilities w.r.t. m
Pd,A and Pd,H subclasses of angularly and halfspace symmetric probabilities
Pd,C and Pd,S subclass of centrally and spherically symmetric probabilities
Pd,c subclass of continuous probabilities
Pd,d and Pd, f d subclass of discrete and finitely discrete probabilities
Pd,hp subclass of probabilities that assign probability zero to all hyperplanes
P (j)

d subclass of probabilities with finite jth-moment
P (2,i)

d (resp. P (2,s)
d ) subclass of probabilities with invertible (resp. singular) covariance matrix

φd d-variate standard normal density
∏n

i=1 ai n-fold product of sets or measures
an power or n-fold product of identical sets or measures
g×n n-fold product of identical functions g
⊗n

i=1Σi n-fold product of σ-algebras
Σ⊗n n-fold product of identical σ-algebras
π transcendental number pi
πu(x) projection of x onto the direction u
πej(x) jth-coordinate of x
Qp(P) quantile set of order p for P
Q−p (P) and Q+

p (P) lower and upper quantile set of order p for P
Q−p,C(P) and Q+

p,C(P) lower and upper C-quantile set of order p for P
Rm set of all partitions of {1, . . . , m}
RD,α(P) (D-)depth quantile sets of P
Rα, Rα,τ, and Rα,τ,n upper level sets of f , fτ, and fτ,n
R set of all real numbers
r radius or rank of a U-statistics
σ̂(M) spectrum of M
σ̃(h) symmetrization of h
Σ(P) covariance of P
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Sg support of a function g
Sd−1 unit sphere in Rd

Sr(x) or Sd−1
r (x) sphere in Rd with radius r and center x

S a class of invertible transformations in T
sgn sign function
T class of Borel measurable functions T : Rd → Rd

TA,µ function used for defining angular symmetry
TC,µ function used for defining central symmetry
TR,U,µ and TS,U,µ functions used for defining spherical symmetry
τ localizing parameter
U class of orthogonal transformations
U(x) neighborhood of x
Uk(h, P) abbreviation for abbreviation for Jk(h, Pk)
Uk,n(h, P) U-statistics of order k and kernel h
U spherical uniform measure on B1(0)
Var variance
V(C) VC index of C
Wk(P) abbreviation for kB(P)(pk,1·)
Wk,n(P) abbreviation for

√
n(Uk,n(·, P)−Uk(·, P))

Ŵ(P) limit process for sample local depth
wg normalized gradient of g
X random variable
d−→ (resp. d∗−→) convergence in distribution (resp. distribution∗)
p−→ (resp.

p∗−→) convergence in probability (resp. probability∗)
a.s.−→ (resp. a.s.∗−−→) almost sure (resp. almost sure∗) convergence
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Appendix

A Measurability in the sense of Arcones and Giné (1993)

In this section, we show that the assumptions in Definition 1.11.2 yield the suffi-
cient measurability conditions required by Arcones and Giné (1993) at page 1497,
allowing for randomization by Rademacher and normal random variables and for
the use of Fubini’s theorem for several classes of functions constructed from H ⊂
L1(Hk, Pk), where P ∈ P(E). These classes include pk,0H, (pk,k − pk,0)H, pk,jH,
pk,jH, and (pk,j − pk,0)H, which are used in the proof of the uniform law of large
numbers, as well as the corresponding “δ-classes” (see Proposition A.3 below), which
play an important role in the uniform central limit theorem. Specifically, we show
that, ifH is image admissible Suslin, then all these classes and their composition via
a measurable function are image admissible Suslin. Next, we show that this prop-
erty yields measurability w.r.t. the completion of (E∞, (B(E))⊗∞, P∞) of suprema
over these classes. For this purpose, we make use of results from Dudley (2014).
We begin by showing that if H is image admissible Suslin, then the classes pk,0H,
(pk,k − pk,0)H, pk,jH, pk,jH, and (pk,j − pk,0)H are image admissible Suslin.

Proposition A.1 Let P ∈ P(E). If H ⊂ L1(Hk, Pk) is image admissible Suslin, then the
classes pk,0H, (pk,k − pk,0)H, pk,jH, pk,jH, and (pk,j − pk,0)H are image admissible Suslin
for all j = 1, . . . , k.

Proof of Proposition A.1. Since H is image admissible Suslin, there exists a Suslin
measurable space (Y,Y) and a surjective function T : Y → H such that the func-
tion ψ : Ek × Y → R given by ψ(x1, . . . , xk, y) = (T(y))(x1, . . . , xk) is measurable
on (Ek × Y, (B(E))⊗k × Y). It is enough to show that the maps (x1, . . . , xj, y) 7→∫
(T(y))(x1, . . . , xk)dP(xj+1) . . . dP(xk) are measurable on (Ej×Y, (B(E))⊗j×Y) for

all j = 0, . . . , k (when j = 0 the corresponding term is missing). We suppose w.l.o.g.
that ψ is non-negative (if not apply the same argument to ψ+ and ψ−). Let {ϕn}∞

n=1
be a sequence of simple functions1 with ϕn ↑ ψ (see Theorem 2.10 of Folland (1999)).
For x1, . . . , xj ∈ E and y ∈ Y, let ϕn,x1,...,xj,y : Ek−j → R and ψx1,...,xj,y : Ek−j → R

be given by ϕn,x1,...,xj,y(xj+1, . . . , xk) = ϕn(x1, . . . , xk) and ψx1,...,xj,y(xj+1, . . . , xk) =
ψ(x1, . . . , xk). By Proposition 2.34 of Folland (1999), ϕn,x1,...,xj,y and ψx1,...,xj,y are mea-
surable on (Ek−j, (B(E))⊗(k−j)). Next, by using a monotone class argument (see for
instance the proof of Theorem 2.36 of Folland (1999)), we see that the functions
(x1, . . . , xj, y) 7→

∫
ϕn,x1,...,xj,y(xj+1, . . . , xk, y)dP(xj+1) . . . dP(xk) are measurable on

1A function ϕn is called simple if ϕn = ∑mn
i=1 cn,iIAn,i for some mn ∈ N, cn,i ≥ 0, and An,i ∈

(B(E))⊗k ×Y
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(Ej × Y, (B(E))⊗j × Y).2. It follows from the monotone convergence theorem (The-
orem 2.14 of Folland (1999)) that the functions

(x1, . . . , xj, y) 7→
∫

ψx1,...,xj,y(xj+1, . . . , xk)dP(xj+1) . . . dP(xk)

=
∫

ψx1,...,xj,y(xj+1, . . . , xk)dP(xj+1) . . . dP(xk)

= lim
n→∞

∫
ϕn,x1,...,xj,y(xj+1, . . . , xk)dP(x1) . . . dP(xj)

= lim
n→∞

∫
ϕn,x1,...,xj,y(xj+1, . . . , xk)dP(x1) . . . dP(xj)

are measurable on (Ej ×Y, (B(E))⊗j ×Y).

The next proposition shows that the composition of image admissible Suslin classes
of functions is image admissible Suslin (see Theorem 5.3.6 of Dudley (2014)).

Proposition A.2 LetH1, . . . ,Hm be classes of functions from Ek to R and ϕ : Rm → R be
Borel measurable. IfHi, i = 1, . . . , m, are image admissible Suslin, then ϕ(H1, . . . ,Hm) =
{ϕ(h1, . . . , hm) : hi ∈ H} is image admissible Suslin.

Proof of Proposition A.2. Let (Yi,Yi) be Suslin measurable spaces and Ti : Yi → Hi
be surjective functions such that (x1, . . . , xk, yi) 7→ (Ti(yi))(x1, . . . , xk) are measur-
able on (Ek×Yi, (B(E))⊗k×Yi). Since (Yi,Yi) are Suslin measurable spaces, we have
that (i) Yi are generated by countable subclasses Zi ⊂ Yi and {yi} ∈ Yi for all yi ∈ Yi
and (ii) there are Polish spaces Xi and measurable, surjective maps Si : Xi → Yi.
It follows that ⊗m

i=1Yi is generated by ∏m
i=1Zi and {(y1, . . . , ym)} ∈ ⊗m

i=1Yi for all
(y1, . . . , ym) ∈ ∏m

i=1 Yi. Since the product of separable spaces is separable and the
product of completely metrizable spaces is completely metrizable via the product
metric,3 we obtain that ∏m

i=1 Xi is a Polish space. Next, let S : ∏m
i=1 Xi → ∏m

i=1 Yi
be given by S(z1, . . . , zm) = (S1(z1), . . . , Sm(zm)). Notice that S is surjective because
Si are surjective. Also, since Si are measurable, we have that πi ◦ S : ∏m

i=1 Xi → Yi
are measurable, where πi : ∏m

i=1 Xi → Xi is the projection into the ith-component.
Measurability of the components πi ◦ S implies measurability of S (see Proposition
2.4 of Folland (1999)). We conclude that (∏m

i=1 Yi,⊗m
i=1Yi) is a Suslin measurable

space. Next, notice that T : ∏m
i=1 Yi → ϕ(H1, . . . ,Hm) given by T(y1, . . . , ym) =

ϕ(T1(y1), . . . , Tm(ym)) is surjective because Ti are surjective. To conclude the proof
we need to show that the map (x1, . . . , xk, y1, . . . , ym) 7→ (T(y1, . . . , ym))(x1, . . . , xk) is
measurable on (Ek×∏m

i=1 Yi, (B(E))⊗k×⊗m
i=1Yi). This follows from the measurabil-

ity of ϕ, the measurability of the components (x1, . . . , xk, y1, . . . , ym) 7→ (Ti(yi))(x1, . . . , xk)
on (Ek ×∏m

i=1 Yi, (B(E))⊗k ×⊗m
i=1Yi), and Proposition 2.4.

We show next that, if E is second countable (see 43), then “δ-classes” are image
admissible Suslin. We begin with two lemmas. The first lemma is about sepa-
rability of classes of functions F ⊂ Lq(Hj, Pj) endowed with a pseudodistance
d̃ : Lq(Hj, Pj)× Lq(Hj, Pj)→ [0, ∞) with d̃ ≤ cd̃Lq(Hj,Pj) for some c > 0. In particular,

2To see this, choose in Theorem 2.36 (X,M, µ) to be (Ek−j, (B(E))⊗(k−j), Pk−j), (Y,N ) to be (Ej ×
Y, (B(E))⊗j ⊗ Y), and E to be An,i ∈ (B(E))⊗k × Y . Notice that we do not use the measure ν of
Theorem 2.36 as we are interested in measurability w.r.t. one variable only.

3If (X1, dX1 ), . . . , (Xm, dXm ) are complete metric spaces, then X̃m = ∏m
i=1 Xi endowed with

the product metric dX̃m ,q : X̃m × X̃m → [0, ∞) given by dX̃m ,q((x1, . . . , xm), (y1, . . . , ym)) =

‖(dX1 (x1, y1), . . . , dXm (xm, ym))>‖q is a complete metric space.
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this holds for the pseudodistance d̃(1,j−1)
F ,2,Pj and d̃

(1,j−1)
F ,2,Pj used for continuity of the lim-

iting Gaussian process in the uniform central limit theorem (see Definition 1.11) and
for the asymptotic equicontinuity conditions in Theorems 1.11.5, 1.11.6, and Corol-
lary 1.11.3. Indeed, by Jensen’s inequality, it holds that d̃(1,j−1)

Hj,q,Pj ≤ 2d̃Lq(Hj,Pj)
4 and

d̃
(1,j−1)
Hj,q,Pj ≤ d̃Lq(Hj,Pj).

Lemma A.1 Suppose that E is second countable and let F ⊂ Lq(Hj, Pj), where j ∈ N,
q ≥ 1 and P ∈ P(Ej). Then, if for a pseudodistance d̃ : Lq(Hj, Pj)× Lq(Hj, Pj)→ [0, ∞)

and some c > 0, d̃ ≤ cd̃Lq(Hj,Pj), then (F , d̃F ) is separable, where d̃F is the restriction of d̃
on F .

Proof of Lemma A.1. Since E is second countable, Ej is second countable, and, there
exists a collection of open sets {Ui}∞

i=1 in Ej such that every open set V ⊂ Ej can be
written as union of elements from {Ui}∞

i=1. Thus, {Ui}∞
i=1 generates all open sets

and, therefore, it generates B(Ej). Next, we apply Theorem 4.13 of Brezis (2011) and
obtain that the standard Lq-space {h : (Ej,B(Ej)) → (R,B(R)) : J(|h|q, Pj) < ∞}
endowed with the usual Lq-metric is separable. Using Proposition 3.25 of the same
book, we have that the subspace (Lq(Hj, Pj), d̃Lq(Hj,Pj)) of symmetric functions is also

separable. Since d̃ ≤ cd̃Lq(Hj,Pj), the topology induced by d̃ on Lq(Hj, Pj) is coarsest

than the topology induced by d̃Lq(Hj,Pj) on Lq(Hj, Pj).5 Thus, by definition of separa-

ble space (see 43), we obtain that (Lq(Hj, Pj), d̃) is separable. Finally, we apply again
Proposition 3.25 of Brezis (2011) and obtain that (F , d̃F ) is separable.

The second lemma is a version of Theorem 5.2.5 of Dudley (2014) and it is about
measurability of closed subset of an image admissible class of functions.

Lemma A.2 Suppose that E is second countable and let F ⊂ Lq(Hj, Pj), where j ∈ N,
q ≥ 1 and P ∈ P(Ej), be image admissible Suslin via (Y,Y) and surjective map T : Y →
F . If C ⊂ F is relatively closed in F w.r.t. d̃F , where d̃F is either d̃(1,j−1)

F ,q,Pj or d̃
(1,j−1)
F ,q,Pj , then

T−1(C) ∈ Y .

Proof of Lemma A.2. Let U = F \ C. Since T−1(C) = T−1(F \U) = Y \ T−1(U),
it is enough to show that T−1(U) ∈ Y . By Lemma A.1 we have that (F , d̃F ) is
separable. Using the proof of Proposition 2.1.4 of Dudley (2018) there are sequences
{ fi}∞

i=1 and {ri}∞
i=1, where fi ∈ F and 0 < ri < ∞, such that

U = ∪∞
i=1{ f ∈ F : d̃F ( f , fi) < ri}.

Therefore, it is enough to show that, for all i ∈N,

{y ∈ Y : d̃F (T(y), fi) < ri} = T−1({ f ∈ F : d̃F ( f , fi) < ri}) ∈ Y .

4Recall that d̃(1,j−1)
Hj ,q,Pj (h1, h2) = ‖pj,1h1 − pj,1h2‖Lq(Hj ,Pj) and d̃Lq(Hj ,Pj)(h1, h2) = ‖h1 − h2‖Lq(Hj ,Pj).

Since pj,1 = pj,1 − pj,0, we have that for all h1, h2 ∈ F

‖pj,1h1 − pj,1h2‖Lq(Hj ,Pj) ≤ ‖pj,1h1 − pj,1h2‖Lq(Hj ,Pj) + ‖pj,0h1 − pj,0h2‖Lq(Hj ,Pj) ≤ 2‖h1 − h2‖Lq(Hj ,Pj).

5U is open in (Lq(Hj, Pj), d̃) if and only if for all h ∈ U there exists r > 0 such that { f ∈ Lq(Hj, Pj) :
d̃( f , h) ≤ r} ⊂ U. Using that d̃ ≤ cd̃Lq(Hj ,Pj), we have that { f ∈ Lq(Hj, Pj) : d̃Lq(Hj ,Pj)( f , h) ≤ r

c} ⊂
{ f ∈ Lq(Hj, Pj) : d̃(h, f ) ≤ r} ⊂ U. Thus, U is open in (Lq(Hj, Pj), d̃Lq(Hj ,Pj)).
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To this end, we show that the maps

y 7→ d̃(1,j−1)
F ,q,Pj (T(y), fi) = ‖pj,1(T(y))− pj,1 fi‖Lq(H1,P) and

y 7→ d̃
(1,j−1)
F ,q,Pj (T(y), fi) = ‖pj,1(T(y))− pj,1 fi‖Lq(H1,P)

are measurable. We first notice that, by the proof of Proposition A.1 and Proposition
2.34 of Folland (1999), the map

(x1, y) 7→(pj,1(T(y)))(x1)− (pj,1 fi)(x1) and

(x1, y) 7→(pj,1(T(y)))(x1)− (pj,1 fi)(x1)

are measurable on (E × Y,B(E) ⊗ Y). The result now follows from Fubini-Tonelli
theorem (see Theorem 2.37 of Folland (1999)).

We are now ready to show that “δ-classes” are image admissible Suslin.

Proposition A.3 Suppose that E is second countable and let F ⊂ Lq(Hj, Pj), where j ∈
N, q ≥ 1 and P ∈ P(Ej), be image admissible Suslin. Then, for 0 < δ ≤ ∞ and d̃F equal

to either d̃(1,j−1)
F ,q,Pj or d̃

(1,j−1)
F ,q,Pj ,

Fd̃F ,δ(P) = { f1 − f2 : f1, f2 ∈ F and d̃F ( f1, f2) ≤ δ}.

is image admissible Suslin.

Proof of Proposition A.3. Using Proposition A.2 with k = j, H1 = H2 = F , m = 2,
and ϕ : R2 → R given by ϕ(t1, t2) = t1 − t2, we obtain that F − F = { f1 − f2 :
f1, f2 ∈ F} ⊂ Lq(Hj, Pj) is image admissible Suslin. Let (Y,Y) be the corresponding
Suslin measurable space and T : Y → F −F be surjective and measurable. Notice
that

Fd̃F ,δ(P) = { f ∈ F −F : Fd̃F−F ,δ(P)( f , 0) ≤ δ}

is the closed ball of radius δ in (F − F , d̃F−F ). Using Lemma A.2, we obtain that
Y0 = T−1(Fd̃F ,δ(P)) ∈ Y . It follows that the restriction of T to Y0, namely, T0 : Y0 →
Fd̃F ,δ(P) given by T0(y) = T(y), is surjective and measurable on (Y0,Y0), where
Y0 = Y ∩ Y0. The result follows if we show that (Y0,Y0) is a Suslin measurable
space. To see this, we use that (Y,Y) is a Suslin measurable space. Specifically, (i)
Y is generated by a countable subclass Z ⊂ Y and {y} ∈ Y for all y ∈ Y and (ii)
there is a Polish space X and a measurable, surjective map S : (X,B(X)) → (Y,Y).
It follows that {y} ∈ Y0 for all y ∈ Y0 and Y0 is generated by Z0 = Z ∩Y0.6 Next, let
X0 = S−1(Y0) ∈ B(X). Then, the restriction of S to X0, namely, S0 : (X0,B(X0)) →
(Y0,Y0) given by S0(x) = S(x), is surjective and measurable. Finally, we notice that
X0 ∈ B(X) is itself a Polish space (see page 388 of Dudley (2018)).

The next proposition shows that the envelope of an image admissible class of func-
tions is measurable in (E∞, (B(E))⊗∞, P∞), where, for n ∈N∪{∞}, (En, (B(E))⊗n, Pn)
is the completion of (En, (B(E))⊗n, Pn). In particular, it applies to the classes H,

6To see this, it is enough to show that the smallest σ-algebra generated by Z0 contains Y0. Let B ∈
Y0. Then B ∈ Y can be obtained starting from elements of Z via countable union and complementing.
Using that B = B∩Y0 and for arbitrary set Ai ⊂ Y a) (∪∞

i=1 Ai)∩Y0 = ∪∞
i=1(Ai ∩Y0) and b) (Y \ A1)∩

Y0 = Y0 \ (A1 ∩Y0) we see that B can be obtained starting from elements of Z0.
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pk,0H, (pk,k − pk,0)H, pk,jH, pk,jH, and (pk,j − pk,0)H of Proposition A.1 and to the
classes obtained from these classes via composition as in Proposition A.2. If E is
second countable, then it also applies to the corresponding “δ-classes”.

Proposition A.4 Let P ∈ P(E) and F ⊂ L1(Hj, Pj) be image admissible Suslin. Then,
sup f∈F f and the envelope function fF = sup f∈F | f | are measurable in (Ej, (B(E))⊗j, Pj).

Proof of Proposition A.4. There exists a Suslin measurable space (Y,Y) and a
surjective function T : Y → F such that (x1, . . . , xj, y) 7→ (T(y))(x1, . . . , xj) is mea-
surable on (Ej × Y, (B(E))⊗j ⊗ Y). The result is given by Corollary 5.3.5 of Dudley
(2014) and the definition of universally measurable (u.m.) at page 186 (see also Ex-
ample 1.7.5 of Van Der Vaart and Wellner (1996)).

Remark A.1 Notice that measurability in (En, (B(E))⊗n, Pn) canonically yields measura-
bility in (E∞, (B(E))⊗∞, P∞). That is, if ψ : En → R is measurable in (En, (B(E))⊗n, Pn),
then ψ̃ : E∞ → R given by ψ̃(x1, x2, . . . ) = ψ(x1, . . . , xn) is measurable in (E∞, (B(E))⊗∞, P∞).
Indeed, using the notation ∞− n to denote countable product from n+ 1 to ∞, we have that,
for all B ∈ B(R),

ψ̃−1(B) = ψ−1(B)× E∞−n ∈ (B(E))⊗n × E∞−n ⊂ 7(B(E))⊗∞.

Remark A.2 Let P ∈ P(E). By choosing m = 1 and H1 = F ⊂ L1(Hj, Pj) in Proposi-
tion A.2, where F is image admissible Suslin, we see that the class of functions

{(x1, . . . , xn) 7→ ∑
1≤i1<···<ij≤n

ϕ( f (xi1 , . . . , xij)) : f ∈ F}

is image admissible Suslin. By Proposition A.4, the envelope function

(x1, . . . , xn) 7→ sup
f∈F

∣∣∣∣ ∑
1≤i1<···<ij≤n

ϕ( f (xi1 , . . . , xij)) : f ∈ F
∣∣∣∣

is measurable in (En, (B(E))⊗n, Pn). In particular, we can take ϕ : R → R of the form
ϕ(t) = a1 . . . ajt, where a1, . . . , aj ∈ R. Then, measurability in (En, (B(E))⊗n, Pn) and
Proposition A.5 below allow for randomization by Rademacher and normal random variables
and the use of Fubini’s theorem (cf. Arcones and Giné (1993) page 1497 and Van Der Vaart
and Wellner (1996) pages 85 and 109-111).

When computing expectations and probabilities, measurability w.r.t. the completion
is, in some sense, equivalent to measurability w.r.t. the original probability space.
Specifically, Proposition A.5 shows that the outer expectation of a function that is
completion measurable is equal to the expectation with respect to completion of the
probability space. We begin by showing that the expectation of a random variable
w.r.t. the completion is equal to the original expectation.

Lemma A.3 Let (Ω, Σ, P) be a probability space, (Ω, Σ, P) be its completion w.r.t. P, and
Y : Ω → R be a random variable on (Ω, Σ, P). Then, E[Y] = E[Y], where E denotes
expectation w.r.t. the completed space (Ω, Σ, P).

7Let A ∪ N ∈ (B(E))⊗n, where A ∈ (B(E))⊗n, N ⊂ N∗ ∈ (B(E))⊗n, and (Pn)∗(N) = Pn(N∗) =
0. Then (A ∪ N) × E∞−n ∈ (B(E))⊗∞. Indeed, (A ∪ N) × E∞−n = A × E∞−n ∪ N × E∞−n, where
A× E∞−n ∈ (B(E))⊗∞ and (P∞)∗(N × E∞−n) ≤ P∞(N∗ × E∞−n) = 0.
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Proof of Lemma A.3. By definition of integral on a general probability space, E[Y]
is the supremum of integrals of the form E[ϕ], where ϕ ≤ Y is a simple function,
that is, ϕ = ∑k

j=1 cjIAj
for some k ≥ 1, cj ≥ 0, and Aj ∈ Σ. Notice that Aj = Aj ∪ Nj,

for some Nj ⊂ Ω with P(Nj) = 0. This yields that P(Aj) = P(Aj), which, in turn,
implies that E[ϕ] = E[ϕ], where ϕ = ∑k

j=1 cjIAj . By taking the supremum over all
such ϕ and ϕ, we obtain that E[Y] = E[Y].

Proposition A.5 Let (Ω, Σ, P) be a probability space, (Ω, Σ, P) be its completion w.r.t. P,
and X : Ω → R be a random variable on (Ω, Σ, P). Then, E∗[X] = E[X∗] = E[X] and
X = X∗ P-a.s.

Proof of Proposition A.5. We apply Proposition 2.12 of Folland (1999) with g
replaced by g + ∞IN (g and N are defined there) and obtain a random variable
Y : Ω → R ∪ {±∞} such that (i) Y is measurable on (Ω, Σ, P), (ii) Y ≥ X, and
(iii) Y = X P-a.s. It follows from the definition of X∗ that Y ≥ X∗ and Y = X∗ P-a.s.
Finally, we apply Lemma A.3 to the random variables Y and X∗ and conclude that

E[X∗] ≤ E[Y] = E[Y] = E[X] ≤ E[X∗] = E[X∗]

yielding that E[X∗] = E[X] and X = X∗ P-a.s.

B Convergence of sets

In this section, we summarize with proofs various properties concerning the limits
of sets.

Lemma B.1 Let {An}∞
n=1, {Bn}∞

n=1 be sequences of sets in Rp. Then, it holds that

(i) lim inf
n→∞

(An ∩ Bn) = (lim inf
n→∞

An) ∩ (lim inf
n→∞

Bn),

(ii) lim sup
n→∞

(An ∩ Bn) ⊂ (lim sup
n→∞

An) ∩ (lim sup
n→∞

Bn),

(iii) lim inf
n→∞

(An ∪ Bn) ⊃ (lim inf
n→∞

An) ∪ (lim inf
n→∞

Bn), and

(iv) lim sup
n→∞

(An ∪ Bn) = (lim sup
n→∞

An) ∪ (lim sup
n→∞

Bn).

In particular, if A = limn→∞ An and B = limn→∞ Bn exist, then

(v) lim
n→∞

(An ∩ Bn) = A ∩ B and (vi) lim
n→∞

(An ∪ Bn) = A ∪ B.

Proof of Lemma B.1. We begin by proving (i). It holds that

x ∈ lim inf
n→∞

(An ∩ Bn)⇔∃n∗ ∈N : x ∈ ∩∞
n=n∗(An ∩ Bn)

⇔∃n∗ ∈N : x ∈ (An ∩ Bn) ∀n ≥ n∗

⇔∃nA, nB ∈N : x ∈ An ∀n ≥ nA and x ∈ Bn ∀n ≥ nB

⇔∃nA, nB ∈N : x ∈ ∩∞
n=nA

An and x ∈ ∩∞
n=nB

Bn

⇔x ∈ lim inf
n→∞

An and x ∈ lim inf
n→∞

Bn

⇔x ∈ (lim inf
n→∞

An) ∩ (lim inf
n→∞

Bn).
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For (ii), we have that

x ∈ lim sup
n→∞

(An ∩ Bn)⇔∀n∗ ∈N x ∈ ∪∞
n=n∗(An ∩ Bn)

⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ (Añ∗ ∩ Bñ∗)

⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ Añ∗ and x ∈ Bñ∗

⇒∀nA, nB ∈N ∃ñA ≥ nA and ñB ≥ nB : x ∈ AñA and x ∈ BñB

⇔∀nA, nB ∈N x ∈ ∪∞
n=nA

An and x ∈ ∪∞
n=nB

Bn

⇔x ∈ lim sup
n→∞

An and x ∈ lim sup
n→∞

Bn

⇔x ∈ (lim sup
n→∞

An) ∩ (lim sup
n→∞

Bn).

We now prove (iii). We have that

x ∈ lim inf
n→∞

(An ∪ Bn)⇔∃n∗ ∈N : x ∈ ∩∞
n=n∗(An ∪ Bn)

⇔∃n∗ ∈N : x ∈ (An ∪ Bn) ∀n ≥ n∗

⇐∃nA ∈N : x ∈ An ∀n ≥ nA or ∃nB ∈N : x ∈ Bn ∀n ≥ nB

⇔∃nA ∈N : x ∈ ∩∞
n=nA

An or ∃nB ∈N : x ∈ ∩∞
n=nB

Bn

⇔x ∈ lim inf
n→∞

An or x ∈ lim inf
n→∞

Bn

⇔x ∈ (lim inf
n→∞

An) ∪ (lim inf
n→∞

Bn).

For (iv), we notice that

x ∈ lim sup
n→∞

(An ∪ Bn)⇔∀n∗ ∈N x ∈ ∪∞
n=n∗(An ∪ Bn)

⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ (Añ∗ ∪ Bñ∗)

⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ Añ∗ or x ∈ Bñ∗

⇔∀nA ∈N ∃ñA ≥ nA : x ∈ AñA or ∀nB ∈N ∃ñB ≥ nB : x ∈ BñB

⇔∀nA ∈N x ∈ ∪∞
n=nA

An or ∀nB ∈N x ∈ ∪∞
n=nB

Bn

⇔x ∈ lim sup
n→∞

An or x ∈ lim sup
n→∞

Bn

⇔x ∈ (lim sup
n→∞

An) ∪ (x ∈ lim sup
n→∞

Bn).

Finally, using that A = lim infn→∞ An = lim supn→∞ An and B = lim infn→∞ Bn =
lim supn→∞ Bn, (v) follows from (i) and (ii) and (vi) follows from (iii) and (iv).

Corollary B.1 Let {An}∞
n=1 be a sequence of sets in Rp and B ⊂ Rp. Then, it holds that

(i) lim inf
n→∞

(An ∩ B) = (lim inf
n→∞

An) ∩ B

(ii) lim sup
n→∞

(An ∩ B) = (lim sup
n→∞

An) ∩ B,

(iii) lim inf
n→∞

(An ∪ B) = (lim inf
n→∞

An) ∪ B, and

(iv) lim sup
n→∞

(An ∪ B) = (lim sup
n→∞

An) ∪ B.
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In particular, if A = limn→∞ An exists, then

(v) lim
n→∞

(An ∩ B) = A ∩ B and (vi) lim
n→∞

(An ∪ B) = A ∪ B.

Proof of Corollary B.1. (i),(iv),(v) and (vi) follow directly from Lemma B.1 (i),(iv),(v)
and (vi) with Bn = B for all n ∈N. We now prove (ii). It holds that

x ∈ lim sup
n→∞

(An ∩ B)⇔∀n∗ ∈N x ∈ ∪∞
n=n∗(An ∩ B)

⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ (Añ∗ ∩ B)
⇔∀n∗ ∈N ∃ñ∗ ≥ n∗ : x ∈ Añ∗ and x ∈ B
⇔∀n∗ ∈N x ∈ ∪∞

n=n∗An and x ∈ B
⇔x ∈ lim sup

n→∞
An and x ∈ B

⇔x ∈ (lim sup
n→∞

An) ∩ B.

For (iii), we have that

x ∈ lim inf
n→∞

(An ∪ Bn)⇔∃n∗ ∈N : x ∈ ∩∞
n=n∗(An ∪ B)

⇔∃n∗ ∈N : x ∈ (An ∪ B) ∀n ≥ n∗

⇔∃n∗ ∈N : ∀n ≥ n∗ x ∈ An or x ∈ B
⇔∃n∗ ∈N : x ∈ ∩∞

n=n∗An or x ∈ B
⇔x ∈ lim inf

n→∞
An or x ∈ B

⇔x ∈ (lim inf
n→∞

An) ∪ B.

Lemma B.2 Let {An}∞
n=1 be a sequence of sets in Rp and B ⊂ Rp. Then

lim inf
n→∞

(B \ An) = B \ (lim sup
n→∞

An) and lim sup
n→∞

(B \ An) = B \ (lim inf
n→∞

An).

In particular, if A = limn→∞ An exists, then

lim
n→∞

(Rp \ An) = Rp \ A.

Proof of Lemma B.2. We use that, for a sequence of sets {Cn}∞
n=1 in Rp and D ⊂ Rp,

it holds that D \ (∪∞
n=1Cn) = ∩∞

n=1(D \Cn) and D \ (∩∞
n=1Cn) = ∪∞

n=1(D \Cn). Then,
we have that

lim inf
n→∞

(B \ An) = ∪∞
n=1(B \ (∪∞

l=n Al)) = B \ (lim sup
n→∞

An), and

lim sup
n→∞

(B \ An) = ∩∞
n=1(B \ (∩∞

l=n Al)) = B \ (lim inf
n→∞

An).

Finally, the last part follows from A = lim infn→∞ An = lim supn→∞ An.

Lemma B.3 Let {An}∞
n=1 be a sequence of sets in Rp and A ⊂ Rp. Then, limn→∞ An = A

if and only if limn→∞(An∆A) = ∅.
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Proof of Lemma B.3. First, suppose that limn→∞ An = A. Using Lemma B.2 and
Corollary B.1 (v)-(vi), we have that

∅ = (A ∩ (Rp \ A)) ∪ ((Rp \ A) ∩ A)

= (( lim
n→∞

An) ∩ (Rp \ A)) ∪ (( lim
n→∞

(Rp \ An)) ∩ A)

= ( lim
n→∞

(An ∩ (Rp \ A))) ∪ ( lim
n→∞

((Rp \ An) ∩ A))

= lim
n→∞

((An ∩ (Rp \ A)) ∪ ((Rp \ An) ∩ A)) = lim
n→∞

(An∆A).

Second, suppose that limn→∞(An∆A) = ∅. Then, by Lemma B.1 (iv), Corollary B.1
(ii), and Lemma B.2, it holds that

∅ = lim sup
n→∞

(An∆A) = lim sup
n→∞

((An ∩ (Rp \ A)) ∪ ((Rp \ An) ∩ A))

= (lim sup
n→∞

(An ∩ (Rp \ A))) ∪ (lim sup
n→∞

((Rp \ An) ∩ A))

= ((lim sup
n→∞

An) ∩ (Rp \ A)) ∪ ((lim sup
n→∞

(Rp \ An)) ∩ A)

= ((lim sup
n→∞

An) ∩ (Rp \ A)) ∪ ((Rp \ (lim inf
n→∞

An)) ∩ A).

Therefore, (lim supn→∞ An) ∩ (Rp \ A) = ∅ and (Rp \ (lim infn→∞ An)) ∩ A = ∅,
which imply that lim supn→∞ An ⊂ A and A ⊂ lim infn→∞ An. Hence, limn→∞ An =
A.

Lemma B.4 Let {An}∞
n=1 be a sequence of sets in Rp and ξ ≥ 0. Then,

(lim inf
n→∞

An)
+ξ ⊂ lim inf

n→∞
(An)

+ξ ⊂ lim sup
n→∞

(An)
+ξ ⊂ (lim sup

n→∞
An)

+ξ .

In particular, if A := limn→∞ An exists, then limn→∞(An)+ξ = (A)+ξ and limn→∞ An =
A. Finally, if An and A are open, then limn→∞ ∂An = ∂A.

Proof of Lemma B.4. For the first part, it is enough to show the first and third inclu-
sion. With this aim, let x ∈ (lim infn→∞ An)+ξ . Hence, dist({x},∪∞

j=1 ∩∞
n=j An) ≤ ξ.

Therefore, there exists a sequence {yl}∞
l=1 in ∪∞

j=1 ∩∞
n=j An such that liml→∞‖x −

yl‖ ≤ ξ. Then, for some n∗ ∈N, the sequence {yl}∞
l=1 is in∩∞

n=n∗An, that is, {yl}∞
l=1 is

in An for all n ≥ n∗. It follows that, for all n ≥ n∗, dist({x}, An) ≤ liml→∞‖x− yl‖ ≤
ξ. Hence, for all n ≥ n∗, x ∈ (An)+ξ , that is, x ∈ ∩∞

n=n∗(An)+ξ ⊂ lim infn→∞(An)+ξ .
We now prove the third inclusion. To this end, let x ∈ lim supn→∞(An)+ξ . Then, for
all j ∈ N, there exists a constant n ≥ j such that x ∈ (An)+ξ , that is, dist({x}, An) ≤
ξ. It follows that dist({x},∪∞

k=j Ak) ≤ dist({x}, An) ≤ ξ. Hence, x ∈ (∪∞
k=j Ak)

+ξ =

(∩j
l=1 ∪∞

k=l Ak)
+ξ , for all j ∈ N, which implies that x ∈ (lim supk→∞ Ak)

+ξ . For
the second part, notice that, by definition of limit of sets, A = lim infn→∞ An =
lim supn→∞ An. It follows from the first part that lim infn→∞(An)+ξ = lim supn→∞(An)+ξ =
(A)+ξ . Next, notice that, for all ∅ 6= B ⊂ Rp, x ∈ B if and only if dist({x}, B) = 0. In
particular, B = (B)+0. Hence, limn→∞ An = A. Finally, if An and A are open, then,
using Lemma B.1 (v) and Lemma B.2, we have that

lim
n→∞

∂An = lim
n→∞

(An∩ (Rp \An)) = ( lim
n→∞

An)∩ ( lim
n→∞

(Rp \An)) = A∩ (Rp \A) = ∂A.



Appendix 142

Lemma B.5 Let {An}∞
n=1 be a sequence of sets in Rp and ξ > 0. If limn→∞ An = A, then

there exists n∗(ξ) ∈N such that, for all n ≥ n∗(ξ), A+ξ
n ⊂ A and An ⊂ (A)+ξ .

Proof of Lemma B.5. Since limn→∞ ∪∞
j=n Aj = A ⊂ (A)+ξ , there exists n∗1(ε) ∈ N

such that ∪∞
n=n∗An ⊂ (A)+ξ . Hence An ⊂ (A)+ξ , for all n ≥ n∗1(ξ). On the other

hand, by Lemma B.4, we have that limn→∞ ∩∞
j=n(Aj)

+ξ = (A)+ξ ⊃ A. Hence, there
is n∗2(ξ) such that ∩∞

n=n∗(An)+ξ ⊃ A, which implies that (An)+ξ ⊃ A, for all n ≥
n∗2(ξ).
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