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A B S T R A C T   

This paper introduces a straightforward approach to generate multi-model climate projections of intense urban 
heat, based on an ensemble of state-of-the-art global and regional climate model simulations from EURO- 
CORDEX. The employed technique entails the empirical-statistical downscaling method quantile mapping 
(QM), which is applied in two different settings, first for bias correction and downscaling of raw climate model 
data to rural stations with long-term measurements and second for spatial transfer of bias-corrected and 
downscaled climate model data to the respective urban target site. The resulting products are daily minimum and 
maximum temperatures at five urban sites in Switzerland until the end of the 21st century under three emission 
scenarios (RCP2.6, RCP4.5, RCP8.5). We test the second-step QM approach in an extensive evaluation frame-
work, using long-term observational data of two exemplary weather stations in Zurich. Results indicate 
remarkably good skill of QM in present-day climate. Comparing the generated urban climate projections with 
existing climate scenarios of adjacent rural sites allows us to represent the urban heat island (UHI) effect in future 
temperature-based heat indices, namely tropical nights, summer days and hot days. Urban areas will be more 
strongly affected by rising temperatures than rural sites in terms of fixed threshold exceedances, especially 
during nighttime. Projections for the end of the century for Zurich, for instance, suggest more than double the 
number of tropical nights (Tmin above 20 ◦C) at the urban site (45 nights per year, multi-model median) 
compared to the rural counterpart (20 nights) under RCP8.5.   

Practical implications   

• Many users of science-driven climate information need scenario 
data specifically to understand and adapt to future climatic 
changes for urban areas. The urban climate generally differs 
from the climate in the rural surrounding; particularly during 
nighttime, temperatures are markedly higher than outside of the 
densely built urban areas, a phenomenon known as urban heat 
island (UHI e.g. Oke, 1982; Oke et al., 1991; Vogt and Parlow, 
2011). As a consequence of global climate change (IPCC, 2013), 
the additional heat experienced in cities will become increas-
ingly problematic and makes people living in urban agglomer-
ations especially predisposed to heat stress and health risks 
(Gabriel and Endlicher, 2011; Kjellstrom and Weaver, 2009; 
Kovats and Hajat, 2008; Scherer et al., 2013). Given the large 

and steadily growing fraction of urban population, it is imper-
ative to understand future climate conditions in urban envi-
ronments, allowing for effective mitigation and adaptation 
strategies tailored to urban areas.  

• Despite the high relevance of urban climate, “standard” climate 
scenarios like the Swiss climate scenarios CH2018 (2018), are 
often restricted to representative rural sites, where long-term 
and high-quality observational data series are available. These 
data series are typically used for statistical post-processing 
procedures to correct the raw climate model output (Fig. 1, 
“GCM-RCM simulations”) for systematic biases and to fill the 
scale gap with local information (CH2018, 2018; Christensen 
et al., 2008; Rajczak et al., 2016). Results are bias-corrected 
climate scenarios at the rural site scale, here considered as 
“standard climate services” (Fig. 1).  

• In this study, we introduce a straightforward method to quantify 
future urban heat based on a large and state-of-the-art ensemble 
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of global (GCM) and regional climate model (RCM) simulations 
from the Coordinated Downscaling Experiment for the Euro-
pean domain (EURO-CORDEX; Jacob et al., 2014; Kotlarski 
et al., 2014). With empirical quantile mapping (QM), we apply a 
well-established post-processing approach to generate urban 
projections at daily resolution for daily minimum (Tmin) and 
daily maximum temperatures (Tmax) at five large Swiss cities 
(Basel, Bern, Geneva, Pully/Lausanne, Zurich).  

• These results are an important add-on to the existing CH2018 
products: they provide customized climate services (Fig. 1, 
“User-specific climate services”) and help protect those popu-
lation groups and sectors that have been identified as especially 
vulnerable towards high temperatures in urban areas (e.g. the 
elderly; health sector, construction sector/working outside; 
Flouris et al., 2018; Kjellstrom and Weaver, 2009; Ragettli et al., 
2017). As a “ready-to-use” product (bias-corrected, high- 
resolved), the generated urban scenarios are directly appli-
cable to climate change impact assessments. Comparing the 
temperature-based scenarios of the urban sites with the corre-
sponding rural counterparts available through CH2018 enables 
to account for the UHI effect in future climates and provides 
users with a first-order estimate of urban–rural temperature 
differences under various future pathways. In order to make our 
results more approachable, we communicate our findings in 
terms of standard climate indices, such as the number of tropical 
nights (Tmin > 20 ◦C), summer days (Tmax > 25 ◦C) and hot 
days (Tmax > 30 ◦C; CH2018, 2018; ETCCDI, 2019). At the 
same time, we explicitly include major uncertainty sources such 
as climate model and emission scenario uncertainty.  

• Practical implications of this study primarily concern impact 
modelers, regional and local authorities or climate service 
centers that provide users with information on urban future 
climates and the technical information (including limitations 
and uncertainties of the employed data and method) they might 
not be aware of or they need support with. The employed 
method is transferable in both space and scope, i.e. it can be 
applied to locations outside Switzerland and to further climate 
services, such as economic or heat-related mortality analyses for 
urban areas under climate change.   

Introduction 

People living in urban environments tend to be more exposed to heat 
stress and the resulting health risks than people living in non-urban 
regions (Gabriel and Endlicher, 2011; Kjellstrom and Weaver, 2009; 
Kovats and Hajat, 2008; Scherer et al., 2013), because air temperatures 
at urban sites are often higher than temperatures in nearby rural sur-
roundings. The main causes for the so-called urban heat island (UHI) 
effect are the larger heat capacity of urban fabrics, the trapping of long- 
wave radiation in urban canyons, the reduced vertical exchange of air 
masses, the lower evapotranspiration due to sparser vegetation 
coverage, and anthropogenic heat emissions (e.g. Fischer et al., 2012; 

Oke et al., 1991; Roth, 2013). The UHI effect is especially harmful for 
human health as it is mainly a nighttime phenomenon, and the body can 
cope less with daytime heat loads when there is not enough sleep and 
recovery during the night (Gabriel and Endlicher, 2011; Grize et al., 
2005; Kovats and Hajat, 2008; Ragettli et al., 2017; Scherer et al., 2013). 
The combined effect of UHI and the suggested increase in mean global 
air temperatures puts urban heating on the list of key risks due to climate 
change (IPCC, 2014) and creates a growing demand for robust pro-
jections of future climatic conditions in cities. Projections specifically for 
urban sites allow for sophisticated impact assessments and help protect 
the large and continuously increasing urban population (Arnfield, 2003; 
Roth, 2013; Stewart and Oke, 2012). 

The Coordinated Downscaling Experiment for the European domain 
(EURO-CORDEX; Jacob et al., 2014; Kotlarski et al., 2014) initiative 
provides the largest and state-of-the-art ensemble of climate change 
projections based on global (GCM) and regional climate model (RCM) 
simulations, but their spatial resolution of approximately 12 km (EUR- 
11) and 50 km (EUR-44) is usually too coarse to account for the UHI. By 
using some statistical adaptations, such as downscaling and bias- 
correction, this large ensemble has been used to produce climate 
change projections of heat stress at European rural sites (Casanueva 
et al., 2020a) and particularly in Switzerland (CH2018, 2018). The lack 
of long and high-quality observations in urban areas, though, hinders a 
straightforward estimation of future urban climates. 

There have been efforts to simulate the evolution of urban climate on 
the basis of advanced atmospheric models coupled to urban (canopy) 
models or building energy models at high resolution (e.g. Chen et al., 
2011; Lauwaet et al., 2015; Salamanca et al., 2011). In another study, 
Langendijk et al. (2019) use multi-model RCM data (at approximately 
12 km spatial resolution) to investigate opportunities and limitations of 
using EURO-CORDEX RCMs in urbanized areas; more precisely, in the 
research area Berlin (Germany) and its rural surroundings. The RCMs 
considered in the study of Langendijk et al. (2019) represent urban 
environments through their land surface parameterization schemes. 
Results indicate a stronger urban–rural temperature difference based on 
maximum temperatures compared to minimum temperatures, which 
contrasts the observational data and a large number of previous studies 
that propose high gradients especially during nighttime. Fischer et al. 
(2012) focus on the GCM Community Climate System Model (CCSM4) 
that explores subgrid-scale urban processes based on an urban canyon 
model (Oleson et al., 2010). There, the diurnal temperature cycle of the 
UHI is captured remarkably well (see also Oleson et al., 2011). Other 
studies stress the potential of methods on big data in climate research 
(Knüsel et al., 2019). Oh et al. (2020), for instance, use deep-learning 
(neural network models) to forecast the magnitude and characteristics 
of the UHI in Seoul (South Korea). Similarly, Gobakis et al. (2011) 
consider different types of artificial neural networks for UHI prediction 
in the study area Athens (Greece). Apart from that, some authors pro-
pose empirical-statistical methods to generate local climate scenarios for 
urban sites. Van der Schriek et al. (2020) use a five-member RCM sub- 

Fig. 1. Using downscaled and bias-corrected GCM-RCM simulations (left) to generate standard climate services (center; e.g. CH2018 climate scenarios for rural sites) 
that are further customized to user-specific climate services (right; e.g. climate scenarios for urban sites). 
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ensemble from EURO-CORDEX to study future temporal UHI trends by 
contrasting simulated air temperatures of an urban and a rural station in 
Athens (Greece). They bias correct the simulated data against 20-year 
observational records using a quantile mapping (QM) technique. 
Other studies focus on crowdsourced data, i.e. data collected from a 
large number of people (Muller et al., 2015). Meier et al. (2017), for 
instance, compare crowdsourced air temperature data from private 
weather stations (netatmo) with official weather stations of the German 
Weather Service (DWD) and the urban climate observation network 
(UCON; Fenner et al., 2014) in the study area Berlin (Germany). They 
stress the potential of crowdsourced temperature data in terms of cost- 
efficiency and dense data coverage, especially in urban areas due to 
high population density. Nevertheless, they conclude that comprehen-
sive quality checks are key to fully benefit from crowdsourced atmo-
spheric data. Burgstall (2019) compares three promising statistical and 
empirical approaches to generate climate projections for Swiss urban 
sites under a high emission scenario: (1) a physically-based diagnostic 
equation designed by Theeuwes et al. (2017) to parameterize the daily 
maximum UHI, which is then added to existing climate scenarios of rural 
sites (2) a multiple linear regression, taking various predictor variables 
of the rural site in order to model temperatures at the urban site, and (3) 
the post-processing method QM (Rajczak et al., 2016), used to spatially 
transfer projections of rural sites to urban target sites. Especially for QM, 
evaluation results demonstrate good skill in creating robust urban 
climate scenarios at the local scale. 

In the present study, we focus on the most promising method pre-
sented by Burgstall (2019), QM, whose high performance has also been 
acknowledged by a large number of previous studies (e.g.CH2018, 2018; 
Gudmundsson et al., 2012; Gutiérrez et al., 2018; Monhart et al., 2018; 
Themeßl et al., 2012). We extend the work of Burgstall (2019) by 
considering a broader range of possible future pathways and validate the 
QM method more rigorously. We focus on three RCPs (2.6, 4.5 and 8.5 

Moss et al., 2010), which range from a mitigation scenario implying 
fast and substantial reductions in global greenhouse gas emissions 
(RCP2.6) to continued emission growth and global warming until the 
end of the century (RCP8.5). Due to the relatively short observational 
record for urban areas, ranging between 7 and 28 years, we employ QM 
in a two-step manner: first, bias correcting and downscaling regional 
climate models (RCMs) to the rural site scale (done within CH2018) and 
second, spatially transferring scenario data from rural to urban locations 
(done in this paper), resulting in climate scenarios for urban sites. The 

subsequent comparison of rural and urban scenarios (station couples) 
allows for quantifying the (station couple specific) urban–rural tem-
perature difference, i.e. the UHI, in future climates by assuming a sta-
tionary relation between both sites. We analyze the UHI effect in terms 
of standard climate indices such as the number of tropical nights (TN; 
Tmin > 20 ◦C), summer days (SD; Tmax > 25 ◦C) and hot days (HD; 
Tmax > 30 ◦C; CH2018, 2018; ETCCDI, 2019). 

The paper is structured as follows. First, we introduce the data and 
methods including a brief description of the validation framework and 
skill score. After presenting the results of both the evaluation and the 
application of the proposed method, the paper is finalized with a dis-
cussion on potential limitations and concluding remarks. 

Data and methods 

Observational data 

We consider five station couples in Switzerland, i.e. a rural site with 
an adjacent urban station (Fig. 2 and Table 1). We use observed and 
modelled (i.e. quantile-mapped) temperature data at daily resolution, 
namely: minimum (Tmin) and maximum (Tmax) 2 m temperature for 
both urban and rural stations. 

Urban and rural stations are characterized in terms of the local 
climate zones (LCZ) developed by Stewart and Oke (2012; see Table 2). 
We use the classification results of Gehrig et al. (2018), whose analyses 
cover all employed stations except SMA, which is categorized in the 
framework of this study based on a visual analysis of satellite pictures 
(Google Maps). Most of the considered stations labeled as rural are 
located in sparsely built areas or in locations with an open low-rise 
building geometry and low plants. Stations considered as urban are 
surrounded by a compact or open midrise building structure, mostly 
with paved ground. Note that a strict division of the analyzed stations 
into the two categories urban and rural is not always clearly feasible. The 
sites PUY and BAS, classified as rural, for instance, could also be 
described as suburban (see Table 2). For the sake of simplicity, though, 
we continue using the terms urban and rural station throughout the 
manuscript and refer to Table 2 for more detailed information on the 
respective locations. 

For rural sites, observations are provided by five automated climate 
stations, which are operationally run by the Swiss national weather 
service MeteoSwiss (SwissMetNet stations) and are in accordance with 

Fig. 2. Station couples (urban and rural site) located in Switzerland (CH) used in this study. Red triangles show rural stations, grey circles indicate urban sites. See 
Table 1 for full station names. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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World Meteorological Organization (WMO) standards. Measurement 
data for urban sites are taken from various cantonal and university 
observational networks: the Department of Environmental Sciences of 
the University of Basel provided data for the station BKLI, the Labo-
ratoire énergie, environnement, architecture of the Haute école du 
paysage, d’ingénerie et d’architecture de Genève, hepia, for the station 
PRAIRIE and the National Air Pollution Monitoring Network (NABEL) 
for the stations NABBER, NABLAU and NABZUE. We consider different 
time periods depending on the station couple and their extent of over-
lapping data, i.e. high-quality measurements at both urban and rural 
sites for the same time period (see Table 1, right column). Independent 
of the data provider, urban stations tend to have a shorter and (or) 
sparser observational data coverage compared to rural stations, which 
are mainly operated by national weather services and guarantee high- 
quality and long-term data sets. The time period used is thus predomi-
nantly determined by the data availability at the respective urban 
station. 

Climate model data 

We consider quantile-mapped, i.e. bias-corrected and downscaled, 
RCM data for Tmin and Tmax at rural stations from the CH2018 product 
DAILY-LOCAL1 (CH2018, 2018). The original RCM simulations repre-
sent a multi-model regional climate projection ensemble (multiple RCMs 

driven by multiple GCMs) provided through EURO-CORDEX (Jacob 
et al., 2014; Kotlarski et al., 2014). RCM output for the period 
1981–2099 at daily resolution and at approximately 12 km (EUR-11) 
and 50 km (EUR-44) spatial resolution were considered. The set of 
RCP8.5 simulations forms the core of the CH2018 projections and 
combines 12 different GCMs (including different GCMs or the same GCM 
with different initial conditions) and 7 different RCM versions 
(including two different versions of one RCM; see Table A1 in the ap-
pendix), offering a decent estimate of climate projection uncertainty. In 
total, 21 model chains (i.e. GCM-RCM combinations) were used for each 
of the three RCPs (RCP2.6, RCP4.5 and RCP8.5). Due to an originally 
smaller number of simulations available for RCP2.6 and RCP4.5, missing 
simulations for these RCPs were filled using time-shift-based pattern 
scaling, which guarantees a simulation basis consistent for all consid-
ered RCPs (CH2018, 2018). Note that the applied pattern scaling 
approach (based on 30-year periods) results, by definition, in non- 
transient projections, that do not support analyses requiring transient 
model data throughout the century. In this work, we therefore restrict 
the analysis to 30-year time slices for the reference period 1981–2010 
(named “1995”) and for three future scenario periods 2020–2049 
(“2035”), 2045–2074 (“2060”) and 2070–2099 (“2085”). Further note 
that the 30-year historical time slices (1981–2010) include 5 years of 
scenario data. Time-slice differences were calculated using in each case 
a RCP scenario period minus the historical period complemented by the 
corresponding RCP scenario run. In Table A1 in the appendix, we show 
the final set of all employed simulations for RCPs 2.6, 4.5 and 8.5. The 
reader is referred to Sørland Lund et al. (2020) for more details on the 
CH2018 methodology. 

Quantile mapping 

Despite constant improvements, RCMs are too coarsely resolved for a 
direct application in climate change impact studies and are prone to 
systematic biases and uncertainties (Christensen et al., 2008; Rajczak 
et al., 2016). A common technique to account for these limitations is to 
consider distribution-based statistical transfer relations that (might) 
include a downscaling component and correct for potential model bia-
ses. Dosio (2016) found that bias adjustment also provides a more robust 
climate change signal for indices based on absolute thresholds. Within 
CH2018 (2018), empirical QM has been applied to statistically adjust 
RCM data to the site-specific climate. The basic principle of QM is to 
correct a biased simulated distribution towards an observed distribution 
by calibrating a quantile-based correction function between observed 
and simulated quantiles (Panofsky and Brier, 1968). QM has been 
widely used in recent studies (e.g. Gudmundsson et al., 2012; Gutiérrez 
et al., 2018; Monhart et al., 2018; Themeßl et al., 2012). Gutiérrez et al. 
(2018), for instance, rate QM among the best performing approaches in 
an intercomparison of various statistical downscaling and bias correct-
ing methods over Europe. Ivanov and Kotlarski (2017) and Rajczak et al. 
(2016) confirm the high performance and robust results of QM after 
validating the approach for a large number of meteorological variables 
and several official weather stations in Switzerland. 

The QM implementation as employed in CH2018 and in the present 
study is taken from Ivanov and Kotlarski (2017) and Rajczak et al. 
(2016) and is integrated in an extensive R-package2, which we use for 
the QM application (second QM step, i.e. spatial transfer) in this work. 
The implementation is based on the correction of the 99 empirical 
percentiles (1st to 99th percentile) of the modelled distribution towards 
their observational counterparts. A linear interpolation of the correction 
is used for values between two percentiles. For values that lie outside the 
calibration range, i.e. values that are smaller than the first and larger 
than the last percentile, the correction function of the first and of the last 

Table 1 
The considered station couples (urban, rural) with the respective overlapping 
time period of available temperature data.  

Rural station (code) Urban station (code) Time period overlap 

Basel Binningen (BAS) Basel Klingelbergstrasse (BKLI) 2003–2018 
Bern Zollikofen (BER) Bern Bollwerk (NABBER) 2001–2018 
Geneva Cointrin (GVE) Geneva Prairie (PRAIRIE) 2010–2016 
Pully (PUY) Lausanne (NABLAU) 1991–2018 
Zurich Fluntern (SMA) Zurich Kaserne (NABZUE) 1995–2018  

Table 2 
Classification of the considered stations (rural, urban) in terms of local climate 
zones (LCZ; Stewart and Oke, 2012) and other local characteristics.  

Rural station LCZ Definition LCZ Local 
characteristics 

Altitude 
(m) 

Basel Binningen (BAS) 9D Sparsely built, 
low plants 

Suburban 316 

Bern Zollikofen (BER) D Low plants  553 
Geneva Cointrin 

(GVE) 
9D Sparsely built, 

low plants 
Close to airport 412 

Pully (PUY) 6D Open low-rise, 
low plants 

Suburban 456 

Zurich Fluntern (SMA) 6B Open low-rise, 
scattered trees  

556 

Urban station 

Basel 
Klingelbergstrasse 
(BKLI) 

2E Compact 
midrise, paved 

Rooftop station 285 

Bern Bollwerk 
(NABBER) 

5E Open midrise, 
paved 

Rooftop station 536 

Geneva Prairie 
(PRAIRIE) 

2E Compact 
midrise, paved 

Rooftop station 420 

Lausanne (NABLAU) 5E Open midrise, 
paved  

530 

Zurich Kaserne 
(NABZUE) 

5D Open midrise, 
low plants 

Close to lake 409 

Source: Gehrig et al. (2018) and MeteoSwiss (2020). 

1 https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0. https://www. 
nccs.admin.ch/nccs/en/home/data-and-media-library/data/ch2018—climat 
e-scenarios-for-switzerland.html. 

2 qmCH2018 v1.0.1, https://doi.org/10.5281/zenodo.3275571, https://gith 
ub.com/SvenKotlarski/qmCH2018. 
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percentile is applied, respectively (Themeßl et al., 2012). The QM 
correction function is determined separately for each day of the year 
(DOY) with a moving window of 91 days. More precisely, the quasi- 
seasonal transfer function is centered over a certain day and includes 
45 days before and 45 days after the respective DOY (Feigenwinter et al., 
2018; Rajczak et al., 2016). We apply QM in a two-step manner. The 
technique was originally developed by Rajczak et al. (2016), who 
evaluated a number of meteorological variables for a case study about 
permafrost in Switzerland. Here the method is used and evaluated for 
the first time in the frame of urban climates. 

In the first step (Fig. 3, accomplished within CH2018), simulated and 
observed distributions are matched by calibrating a correction function 
in the historical reference period 1981–2010 that translates the simu-
lated quantiles into their observed counterparts. Applying the so- 
established correction function to the entire simulated period 
1981–2099 results in the CH2018 product DAILY-LOCAL, which is 
available for various (rural) stations in Switzerland and used in the 
present study for further analyses. The first-step QM comprises both a 
bias correction and a downscaling component to the rural site scale. In 
the second step (Fig. 3, carried out in the present work), rural scenarios 
of the selected sites (see Table 1, left column) available through CH2018 
are spatially transferred to the respective urban target site (see Table 1, 
middle column). Here, the calibrated correction function is calibrated on 
pairwise daily observations at the urban and the rural location in a 
common reference period, which depends on the station couple (see 
Table 1, right column). We apply the calibrated correction functions to 
the QM data originating from step 1 (see above) for the individual 30- 
year time slices in the historical period (1995) and in the three sce-
nario periods of the rural data series (2035, 2060 and 2085) to spatially 
translate them to the same 30-year time slices at the urban target site. In 
the second-step, QM does not comprise a bias correction and down-
scaling component, but a spatial transfer function. 

Applying the QM technique two times enables the generation of 
climate scenarios for urban sites despite their often short and (or) sparse 
observational data coverage. The resulting climate scenarios of urban 
stations and their rural counterparts are examined in terms of the heat 
indices TN, SD and HD (CH2018, 2018; ETCCDI, 2019). Contrasting the 
frequencies of the projected heat indices within the respective station 
couples allows to account for some aspects of the UHI in future climates. 
To reveal the long-term climate change signal, simulated frequencies of 
heat indices are averaged over each 30-year period. We then analyze the 
ensemble median values (multi-model medians) of the so-obtained 30- 
year means and their climate change signals between the future sce-
nario periods and the historical reference period, respectively. To ac-
count for model uncertainty, we additionally consider the 5th–95th 
percentiles of the multi-model ensemble. 

Evaluation of quantile mapping 

We evaluate the proposed QM method and consider three indepen-
dent cross-validation techniques, applied to daily summer data (June, 
July and August;JJA) of Tmin and Tmax of the exemplary station pair 
SMA-NABZUE in the observational period 1995–2018. The choice of 
SMA-NABZUE as exemplary station couple is motivated by its high 

quality and long data availability of 24 years for both sites. Note that a 
large number of existing studies has already demonstrated the ability 
and skill of the first-step QM in correcting systematic model biases at the 
local scale (e.g. Gudmundsson et al., 2012; Ivanov and Kotlarski, 2017; 
Themeßl et al., 2012). We thus focus our evaluation on the second-step 
QM only, i.e. its performance for the spatial transfer of climate data. A 
brief description of the used cross-validation strategies is given in the 
following.  

• Split sample approach (SSA): The overlapping time period 
(1995–2018) is split into two chronological data sets of 12 years 
each. The QM model is trained with the first half of data 
(1995–2006) and tested on the remaining half (2007–2018), and 
vice versa. Modeled results of both periods are merged before car-
rying out the performance analysis, resulting in one skill measure.  

• Split sample approach warm/cold (SSA(WC)) and cold/warm (SSA 
(CW)): Same as SSA, but the data set is split in terms of years with 
warmer summers and years with colder summers, based on the 
summer mean temperature within the full period (1995–2018) at the 
rural site. The 12 years with warmer summers are used for training 
the model and the 12 years with colder summers for testing the 
model (WC), and vice versa (CW). The approach results in two in-
dependent skill measures.  

• Limited data approach (LDA): The data set is split into thirds with the 
first two-thirds (1995–2010) used for calibrating the QM model and 
the remaining period (2011–2018) for validating the model. Within 
the training set, different calibration period lengths are analyzed, 
starting with 1 year and steadily increasing to 15 years with an 
increment of 1, resulting in 15 individual skill measures. By 
randomly combining the years, 16 different calibration samples for 
each length are validated against observations for the period 
2011–2018. Within one calibration sample, there is no repetition of 
years and the order does not matter (no permutation). 

Note that the SSA(CW) technique additionally evaluates the QM skill 
by accounting for long-term trends; the observed trend in temperature 
proposes a warmer testing than training period (CH2018, 2018; IPCC, 
2013; Rajczak et al., 2016). The LDA has the additional objective to 
simulate a lack of data availability by employing various sample sizes 
and to quantify uncertainties by considering random combinations of 
calibration years (Rajczak et al., 2016). That way, the LDA helps iden-
tifying the minimum length of overlapping data necessary to calibrate 
QM and to still obtain robust results, i.e. a considerably smaller bias 
compared to shorter calibration lengths. 

The validation of the second-step QM focuses on the skill score mean 
bias (bias). It describes the offset between predicted (Xpred) and observed 
data (Xobs) according to 

Bias = Xpred − Xobs (1)  

where X is the average value over the respective validation period. Note 
that here Xpred and Xobs refer to observed data since the second step of the 
QM builds upon the differences between the rural and urban observed 
records. We use the bias to evaluate several variables, namely: Tmin, 

Fig. 3. Two-step quantile mapping (QM) approach. Source: Figure modified from Burgstall (2019).  
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Fig. 4. Validation results for urban daily minimum 
temperature (Tmin; a) and urban daily maximum 
temperature (Tmax; b), using the two-step QM 
approach for the station couple SMA-NABZUE. The x- 
axis shows the considered validation techniques: SSA 
(split sample approach), SSA (WC) (SSA warm/cold), 
SSA (CW) (SSA cold/warm), LDA (limited data 
approach) with the number of considered years for 
calibration (#years) increasing from left to right. The 
y-axis denotes the temperature bias. Each boxplot for 
the LDA spans the 16 different calibration samples 
and ranges between the 1st quartile (Q1, lower 
border) and the 3rd quartile (Q3, upper border), 
referred to as interquartile range (IQR). The bold 
black line centered within the IQR shows the median. 
The lower whisker refers to Q1-1.5*IQR and the upper 
whisker to Q3 + 1.5*IQR. Circles below/above the 
whiskers indicate outliers. Source: Figure modified 
from Burgstall (2019).   

Fig. 5. Same as Fig. 4 but for the annual number of tropical nights (TN; Tmin > 20 ◦C), summer days (SD; Tmax > 25 ◦C) and hot days (HD; Tmax > 30 ◦C), 
respectively. Averaged over the observational period (obs.) 1995–2018, there are 7.62 TN, 45.67 SD and 14.88 HD per year at the urban site. Source: Figure modified 
from Burgstall (2019). 
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Tmax and the employed heat indices (TN, SD, HD). 

Results 

Spatial transfer evaluation 

Temperatures 
Validation results of the spatial transfer of Tmin and Tmax from SMA 

to NABZUE, shown in Fig. 4, show remarkably small median biases 
which amount to approximately 0.25 ◦C for Tmin and − 0.25 ◦C for Tmax 
for virtually all validation strategies. The independent cross-validation 
method SSA with training and testing periods of 12 years, respec-
tively, shows especially good skill with a bias that is nearly zero for both 
variables. Keep in mind, though, that modeled results of both periods 
(12 years each) are merged before they are compared to the whole 
observational time series of 24 years; slightly positive and negative 
biases of the individual results partly compensate. When focusing on the 
cross-validation techniques SSA(WC) and SSA(CW), which consider not 
a single bias for the whole time series but for 12 years, respectively, both 
variables indicate slightly positive (WC) and negative (CW) biases, 
depending on the calibration period. Correction functions being calcu-
lated in years with warmer summers and applied to years with colder 
summers, as for SSA(WC), tend to overestimate urban temperatures, 
whereas the opposite holds true for SSA(CW). This effect is slightly more 
pronounced for Tmax (Fig. 4b) than for Tmin (Fig. 4a) as the urban-
–rural temperature difference between the calibration and the valida-
tion period based on Tmax is larger (Burgstall, 2019). From the good 
skill in SSA(CW) for both variables we assume that the spatial transfer of 
rural temperature data to an urban target site will perform equally well 
under ongoing climate change. Yet, one should keep in mind that due to 
slightly underestimated urban temperatures in the validation setting, 
urban climate projections will be conservative estimates and might be 
even higher in reality. Results of the LDA reveal a slight but systematic 
overestimation of urban Tmin values (Fig. 4a) and a slight, systematic 
underestimation of urban Tmax values (Fig. 4b). Interestingly, median 
biases of Tmin approach the bias of SSA(WC) with increasing number of 
years considered for calibration, whereas skills of Tmax behave similar 
to the results of SSA(CW). The reason is that in the calibration period 
1995–2010, where years are randomly selected for LDA, the urban–rural 
temperature offset based on Tmin is slightly higher than in the valida-
tion period 2011–2018, similar to SSA(WC). For Tmax, in turn, the 
difference between urban and rural temperatures is lower in the training 
period than in the testing period, similar to SSA(CW; see also Burgstall, 
2019). Note that the bias for Tmin and LDA with 15 years of training is 
larger than for SSA(WC), which is trained with 12 years. The reason is 
that the urban–rural temperature offset is larger for 1995–2010 with 
respect to 2011–2018 (LDA) than the training compared to the testing 

period in SSA(WC), resulting in a larger overestimation in LDA 
compared to SSA(WC). For Tmax, the offset in the training versus the 
testing period in LDA is almost the same compared to the training versus 
testing period in SSA(CW; see also Burgstall, 2019). The LDA technique 
also reveals the relation between bias and number of years used for 
calibrating QM: for both variables, as expected, the skill substantially 
improves with the number of years employed for calibration (#years in 
Fig. 4). Median biases as well as uncertainty ranges, i.e. extended 
whiskers resulting from different combinations of years, indicate better 
results if at least 7–8 years are considered for the model calibration, 
which is consistent with the results of Rajczak et al. (2016). Yet, already 
three years of calibration can offer reasonable results with a median bias 
close to zero. Relatively large variations are still visible, though. 

Climate indices 
In terms of the number of TN and SD (Fig. 5a and b), the QM per-

formance reveals a very similar pattern compared to Tmin and Tmax, 
respectively, and shows good skill throughout all validation strategies. 
For the number of HD (Fig. 5c), even better skill is achieved. For 15 years 
of calibration, the bias is almost zero (0.06 HD). As the UHI effect is a 
nighttime phenomenon and urban–rural temperature differences are 
mostly visible in terms of Tmin (e.g. Oke, 1982; Oke et al., 1991; Vogt 
and Parlow, 2011), we focus on the evaluation results of TN. 

The SSA technique shows the highest skill among the three valida-
tion strategies with a bias of almost zero for TN (Fig. 5a). Its variants WC 
and CW reveal slightly positive and negative biases of +1 and − 0.5 TN. 
For the LDA, the skill is considerably improved when calibrating the 
model with seven or more years, especially in terms of the uncertainty 
range. A systematic overestimation of about two TN per year remains, 
though, even if considering an extended calibration length of 15 years. 
Modeled values are overestimated, as the calibrated correction function 
is based on a larger urban–rural temperature gradient in the training 
period as it prevails in the testing period (see also Tmin in Fig. 4a). 

Fig. 6a indicates the overall good performance of QM for most of the 
analyzed summers of 1995–2018, cross-validated by the SSA and 
depicted separately for each year. Particularly remarkable is that QM 
manages to (approximately) capture the number of TN at the urban site 
(here: NABZUE) even in years with no TN at the rural site (here: SMA), 
for instance in 1995, 2005 and 2010. Nevertheless, there are years with 
poorer skill, for instance in 2017, where the number of TN is consider-
ably overestimated. Despite such strong offsets during individual years, 
the overall bias shown in Fig. 5a (see SSA) is relatively low, as the bias is 
calculated from the whole 24-year series. To better understand the 
varying results of modeled and observed data during individual years 
like 2017, we focus on the time series of Tmin in that specific summer 
(Fig. 6b). During the first and the last week of August, observed urban 
temperatures happen to be often slightly below the TN-threshold of 

Fig. 6. a) Number of tropical nights (TN; events/ 
year) for the rural (SMA; red), urban (NABZUE; grey) 
and QM-corrected urban station (dashed and black) 
based on SSA for the summers of 1995–2018. b) Daily 
evolution of minimum temperatures (Tmin) for the 
rural (red), urban (grey) and QM-corrected urban 
time series (dashed and black) in summer 2017, 
where the bias in the number of TN (QM vs observa-
tions) is especially large. The dotted horizontal line in 
b) indicates the TN threshold of 20 ◦C. Source: 
Figure modified from Burgstall (2019). (For interpre-
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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20 ◦C. As the quantile-mapped time series overestimates these instances 
to temperatures slightly above 20 ◦C, QM appears to strongly over-
estimate the number of TN during the considered periods (even though 
the bias of Tmin is as small as in other years). Apparently, the absolute 
nature of the temperature threshold index TN strongly affects the QM 
results in terms of skill. 

Climate scenarios for urban sites 

We analyze the projected evolution of the considered heat indices 
over the course of the 21st century in terms of the absolute number of 
events per year for four 30-year periods (reference and scenario) and 
mainly focus on one illustrative station couple (SMA-NABZUE). 

For all considered stations, the number of heat indices is projected to 
increase in the future at both urban and rural sites (Figs. 7–9), which is a 
general result of the increasing temperature level. The increases are 
strongest for RCP8.5 and weakest for RCP2.6. Regardless of the 
considered period or emission scenario, projections suggest urban areas 
to be primarily affected by high temperatures in terms of fixed threshold 
exceedances, especially during nighttime. This is consistent with pre-
vious studies about the UHI effect (e.g. Oke, 1982; Oke et al., 1991; Vogt 
and Parlow, 2011); we see a clear contrast in the number of TN between 
rural and urban sites (UHI) across all analyzed station couples (Fig. 7). 
For RCP8.5 and the late-century period, the urban stations NABBER (24 
TN) and PRAIRIE (62 TN) are projected to experience up to three times 
as many TN as their rural counterparts (9 TN and 22 TN, respective 
multi-model medians). For BKLI (34 TN), projections suggest almost 
twice as many TN compared to BAS (19 TN). The number of TN in 
NABLAU (53 TN) is expected to be about 18% higher than in the sur-
rounding rural area PUY (45 TN). Besides the higher number of urban 
tropical nights, also the change in occurrence of these nights is larger in 
urban environments compared to the rural counterpart. These findings 
are consistent with Fischer et al. (2012). They found that a larger urban 
increase in high heat-stress nights stems from statistical non-linearity in 
the exceedance frequency: based on more frequent present-day ex-
ceedance, the same mean shift in the temperature climatology in 
response to the changing climate leads to a larger change in exceedance 
frequency. 

Also in Zurich (Fig. 7), urbanites will be exposed to nighttime heat 
stress more frequently than people living outside the urban area. 
Already in present-day climate (1995) with TN being basically absent at 
the rural site SMA, the number of TN (multi-model median) at the urban 
site NABZUE is around seven times larger. Even for the lower limit of the 

uncertainty range and already for the mid-century period (2060), the 
number of TN in NABZUE exceeds median conditions at the rural site for 
the late-century period (2085) under all RCPs. At the end of the century, 
projections for RCP8.5 suggest around 45 TN per year (33–70 TN, 
5th–95th percentile range) at the urban site compared to about 20 
threshold exceedances per year (12–38 TN, 5th–95th percentile range) 
at the rural counterpart. Note that the uncertainty ranges under the 
given period and RCP are especially large in the two stations and overlap 
(Fig. 7). The overlap, however, does not imply that a given model chain 
indicates more TN in the rural than in the urban site; the overlapping 
range is due to different model chains. The same applies to the other 
station couples with overlapping uncertainty ranges (Basel, Bern, Pully/ 
Lausanne; Fig. 7). 

The UHI effect is not restricted to nighttime conditions and can also 
occur during the day (Tzavali et al., 2015). Various factors such as extra 
heat release caused by human activities and less evapotranspiration in 
urban areas due to the lack of vegetation and water contribute to higher 
temperatures in urban areas during the day (e.g. Gehrig et al., 2018). For 
the considered Tmax-based indices, SD (Fig. 8) and HD (Fig. 9), and for 
most analyzed station couples, we see more frequent threshold 
exceedances at the urban site. The differences between urban and rural 
stations, though, are less pronounced than for Tmin-based indices 
(Fig. 7). Projections for the urban sites NABBER and NABLAU, for 
instance, show 6%-7% more SD (Fig. 8) and 18%-24% more HD per year 
(Fig. 9) compared the respective rural counterpart. For the station 
couples BAS-BKLI and GVE-PRAIRIE, in turn, the opposite applies and 
the number of SD (Fig. 8) and HD (Fig. 9) at the rural site is higher. Bear 
in mind that the considered urban sites are rooftop stations, character-
ized by lower temperatures during midday compared to the rural 
counterpart (Gehrig et al., 2018; Vogt and Parlow, 2011). Also the fact 
that the rural partner sites are either suburban (BAS) or close to the 
airport with large asphalt structures (GVE) can contribute to the inver-
ted daytime situation. We acknowledge that rooftop stations are less- 
ideal settings for UHI analyses. Especially from the perspective of 
human health, operationally run measurement sites at ground level are 
the preferred data source, if available. A detailed description of the local 
characteristics of the measurement sites (see Table 2) is thus key to make 
UHI results comparable among different station couples. NABBER is a 
rooftop station as well. However, here the rural site (BER) is charac-
terized by very natural surroundings, so that temperatures in the rural 
area stay below urban temperatures at all times (Figs. 7–9). Focusing on 
Zurich, SD occur regularly under current conditions at both sites, yet 
more frequently in the urban area (almost 55 SD; multi-model median) 

Fig. 7. Number of tropical nights (TN) per 
year averaged over the 30-year reference 
period (1995) and the three 30-year scenario 
periods (2035, 2060, 2085, multi-model 
combination) for the RCPs 2.6, 4.5 and 8.5 
at the considered station couples (see also 
Table 1). The respective rural site is shown in 
lighter colors, the urban site in darker colors. 
Bars indicate the ensemble median value and 
whiskers the 5–95% model range. Scenarios 
of the rural site are based on the first-step 
QM (CH2018, 2018); scenarios of the urban 
site are based on the second-step QM (this 
study).   
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compared to the rural surrounding (almost 40 SD; multi-model median; 
Fig. 8). These numbers are projected to considerably increase in the 
future. For RCP8.5 and the late-century period, the rural site (SMA) will 
be affected by almost 90 SD per year; the urban site (NABZUE) will 
experience 15% SD more. With almost 105 SD every year (on average), 
the urban population would experience heat extremes on numerous and 
continuous days of the year. For RCPs 2.6 and 4.5 and earlier scenario 
periods, numbers are lower. 

Overall, for the strong emission scenario RCP8.5 and the late sce-
nario period, all five analyzed station couples, both urban and rural 
sites, are projected to experience summer days, on average, for at least a 
whole summer season (approximately three months). 

Compared to the number of SD, HD occur less frequently at both 
urban and rural site in Zurich. Results in Fig. 9 indicate about 5 days per 
year at the rural site SMA under present-day climate, which are pro-
jected to increase up to 30 days per year at the end of the century for 
RCP8.5. At the respective urban partner site NABZUE, the temperature 
threshold for HD is reached more often already in present-day climate 
(over 12 days per year) and will be exceeded almost 50 times each year 

by the end of the 21st century for RCP8.5. For the period 2060, the 
projected number of HD at the urban site is already higher than the 
number of HD at the rural site for the period of 2085 (comparing the 
respective multi-model medians). 

Differences in the station altitude between the two stations of a given 
couple might influence urban–rural temperature offsets as well (see 
Table 2). This primarily applies to the station couple in Zurich, where 
the urban site NABZUE is located at a 147 m lower altitude than the rural 
counterpart SMA, resulting in an especially pronounced urban–rural 
temperature offset. The opposite is true for the station couple PUY- 
NABLAU. Here, the urban site is located 74 m higher than the rural 
site, reducing the urban–rural temperature offset as the higher altitude 
compensates the higher temperatures at the urban location. For the 
remaining station couples, differences in station altitude are negligibly 
small and thus not considered to play a major role. 

Limitations and sources of uncertainty 

The employed spatial transfer approach applied to climate 

Fig. 8. Same as Fig. 7 but for the number of summer days (SD) per year.  

Fig. 9. Same as Fig. 7 but for the number of hot days (HD) per year.  
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projections is associated with a number of assumptions and limitations 
that need to be taken into account when interpreting our results. Beside 
uncertainties relevant for climate projections (model uncertainty, 
emission scenario uncertainty), the application of the presented method 
QM entails additional sources of uncertainty. 

Note that the resulting projections (as shown in Figs. 7–9) cover a 
certain range of possible future outcomes, which corresponds to the 
spread of the considered climate simulations (ensemble spread). The 
spread is different for each emission scenario and arises primarily from 
model uncertainty. To properly represent the uncertainty associated with 
the climate projections, we use a multi-model combination set combining 
12 different GCMs and 7 different RCM versions (see Table A1 in the 
appendix and Chapter 3). The uncertainty range in the generated pro-
jections can be large and typically increases over the course of the 21st 
century with the signal strength, in particular for RCPs 4.5 and 8.5. The 
number of TN at the urban site NABLAU (Fig. 7), for instance, is projected 
to lie within a range between 41 and 75 TN (5th–95th percentile range) in 
the late scenario period 2085 under RCP8.5. Despite those uncertainties, 
model chains consistently show an increase in frequency of all considered 
indices for the urban and the rural sites until the end of the century. Urban 
projections, though, show distinctly higher frequencies compared to the 
rural counterpart for most analyzed station couples and indices. 

Further limitations are linked to the employed spatial transfer with 
QM (second-step QM). A first potential source of uncertainty are non- 
stationarities of transfer functions under current conditions (Hertig 
and Jacobeit, 2013) and in a changing climate (Christensen et al., 2008). 
The approach assumes the calibrated correction function, i.e. in our case 
the statistical relation between rural and urban site, to be stationary in 
time (Feigenwinter et al., 2018). This might not be valid until the end of 
the century for multiple reasons, such as changes of urban areas in terms 
of building densification, expansion of the urban area, changes in the 
building material, surface albedo, vegetation cover or anthropogenic 
heat release (see also Hoffmann et al., 2012). Directly related to this 
limitation is the fact that QM is based on data of two stations for each 
analyzed city; we acknowledge that such urban–rural comparisons 
provide little indication of spatial variations in UHI characteristics and 
are subject to uncertainties in terms of the station selection. Another 
source of uncertainty related to QM arises from the treatment of “new 
extremes”, i.e. values that lie outside the calibration range (Casanueva 
et al., 2018; Ivanov et al., 2018). The QM implementation employed in 
this study uses a constant extrapolation of the correction function for the 
1st and the 99th percentiles (Feigenwinter et al., 2018; Themeßl et al., 
2012). Thus, it might be that the shape of the correction function in the 
last percentiles includes statistical artifacts in the future signals (Casa-
nueva et al., 2018). Yet, the modification of the climate change signals is 
advantageous in some cases (Gobiet et al., 2015) and constant extrap-
olation is a more robust approach compared to, for instance, linear 
extrapolation (Themeßl et al., 2012). A further source of uncertainty is 
that QM might misrepresent small-scale climate variability on short time 
scales (e.g. at daily scales). This is due to its deterministic nature during 
the spatial transfer, meaning a certain temperature value at the rural site 
always refers to a specific temperature value at the urban site. The 
urban–rural relation, however, is not constant over time, for instance, 
due to different weather conditions affecting e.g. urban ventilation 
through wind advection or surface radiative budget through cloud 
cover. The distribution of the observed urban–rural temperature dif-
ference thus reveals larger variability than the UHI based on quantile- 
mapped urban data. Lastly, the generation of urban scenarios with QM 
strongly depends on available observational data of both rural and urban 
sites for an overlapping time range of at least seven years (see Chapter 
4.1). Especially in urban areas, though, long and high-quality mea-
surements are rare. Other bias correction methods, such as trend- 
preserving approaches like quantile delta mapping (QDM) or the 
method from the third phase of ISIMIP (ISIMIP3), are sometimes 
preferred as preserving the climate change signal of the raw models 
might be an advantage. These methods, though, largely rely on the 

quality of the observational reference used for calibration since the 
simulated signal is transferred to the observations to generate pseudo 
future observations, to which the quantile mapping is applied, i.e. they 
show a higher sensitivity to the considered observational dataset 
(Casanueva et al., 2020b). In light of the generally short observational 
datasets available for urban sites, empirical QM is the preferred method 
for our specific study. Note however, that also other bias correction 
methods could be employed. 

Limitations in terms of the first-step QM (downscaling, bias correc-
tion) are detailed in the CH2018 Technical Report (CH2018, 2018) and 
the literature referenced therein. 

Summary and conclusions 

This study introduces a method to generate multi-model ensemble 
scenarios for urban locations, which are often subject to short and (or) 
sparse data coverage, by means of a straightforward statistical approach. 
We focus on daily data of minimum (Tmin) and maximum temperature 
(Tmax) for three different greenhouse gas emission scenarios and mul-
tiple climate models. The data set is available for rural sites through the 
Swiss climate scenarios CH2018 (2018). In CH2018, a first-step quantile 
mapping (QM) approach has been used to bias correct and downscale 
simulated data to the rural sites. In this study, we apply a second-step 
QM procedure, which allows to spatially transfer these CH2018 data 
series to the urban target site, following the work of Rajczak et al. (2016) 
for permafrost applications. The resulting products are climate scenarios 
for five cities in Switzerland for Tmin and Tmax, available at daily 
resolution for four 30-year time periods (1981–2010, 2020–2049, 
2045–2074 and 2070–2099) until the end of the 21st century. 
Comparing the temperature differences of an urban and an adjacent 
rural site (station couple) allows for station couple specific information 
on the respective UHI effect in the future, which we quantify in terms of 
temperature-based heat indices, namely the number of tropical nights 
(TN), summer days (SD) and hot days (HD). 

Regarding the first-step QM, a large number of studies has already 
acknowledged its high potential to bias-correct and downscale climate 
model data (e.g. CH2018, 2018; Gudmundsson et al., 2012; Gutiérrez et al., 
2018; Ivanov and Kotlarski, 2017; Monhart et al., 2018; Themeßl et al., 
2012). We focus on the second step of the QM technique and validate it in 
an extensive evaluation framework. Validation results reveal a remarkable 
performance in the present-day climate with low biases and uncertainties 
(in terms of data sampling). The method‘s potential to generate climate 
projections at sparsely observed locations is helpful for climate impact 
studies across various research areas, its versatile application is not 
restricted to specific environments such as urban sites and results are easily 
transferable to further climate services. Still, our approach is associated 
with limitations and uncertainties that relate to both climate model pro-
jections themselves and the employed postprocessing methods. Model 
uncertainty can be substantial, especially for the late scenario period and 
RCP8.5. In terms of the applied method, limitations enclose, for instance, 
no explicit consideration of values that lie outside the calibration period. 
Moreover, QM implicitly assumes temporal stationarity of the urban–rural 
temperature relation, which might not be valid in the future, for instance, 
due to structural changes in the urban area. 

According to the generated projections, climate change will have a 
major effect on all analyzed indices: results clearly show a strong in-
crease in the number of TN, SD and HD events until the end of the 21st 
century, especially for the high emission scenario. Even though the 
mean warming is similar in urban and rural areas, most urban areas will 
be more strongly affected by rising temperatures than their rural sur-
roundings in terms of fixed threshold exceedances, regardless of the 
considered period or emission scenario. In a RCP8.5 scenario with over 
105 SD (multi-model median) and 45 TN each year (model-model me-
dian), the urban population of Zurich, for instance, would suffer from 
unprecedented heat stress on numerous days of the year by the end of 
the century. Due to slightly underestimated urban temperatures in the 
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validation setting, urban climate estimates are conservative and may be 
even higher in reality. Results for the adjacent rural site reveal distinctly 
lower frequencies (about 90 SD and 20 TN per year; multi-model me-
dian). Urban and rural projections mostly differ in terms of the daily 
minimum-based index (TN) and less strongly in terms of the indices 
based on daily maximum temperatures (shown in the number of SD or 
HD). The urban–rural temperature difference, i.e. the urban heat island 
(UHI) effect, being generally a nighttime phenomenon is visible 
throughout all scenario periods, RCPs and analyzed station couples. In 
addition, the occurrence of TN increases more strongly in the analyzed 
urban environments than in their rural counterparts due to statistical 
non-linearity in the exceedance frequency. The suggested increase poses 
a particularly high risk for human health as the body can cope less with 
high degrees if nighttime temperatures after a hot day are not falling 
below a certain level that would allow the body to recover. 

The projected strong increases of both nighttime and daytime heat 
stress, especially in urban areas, reveals the urgent need to focus on the 
unique aspects of urban climate. This focus, though, should not exclu-
sively lie on projections based on RCP8.5, as the worst-case scenario is 
not necessarily the most likely one (Hausfather and Peters, 2020). Ac-
cording to Hausfather and Peters (2020), overrating the probability of 
extreme climate impacts can make mitigation measures appear rather 
pointless and might lead to defeatism and despair. They thus propose a 
more realistic range of baseline scenarios, which potentially strengthen 
the assessment of climate risk. With the findings of the present study, we 
add important value by offering a wide-ranging quantification of (tem-
perature-based) climatic conditions at selected urban sites in 
Switzerland until the end of the century, focusing not only on a high 
emission scenario but considering also a medium as well as a low 
emission future pathway. Still, as every scenario remains prone to un-
certainties, adaptation measures should be robust under a wide range of 
possible future outcomes. 
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Appendix A  

Table A1 
The employed GCM-RCM simulations with the respective initial condition member (init), for the different RCPs and the two horizontal resolutions. The ‘x’ marks the 
available simulations and the ‘o’ indicates the simulations that needed to be substituted by pattern scaling.  

GCM init RCM RCP8.5 RCP4.5 RCP2.6    

0.11◦ 0.44◦ 0.11◦ 0.44◦ 0.11◦ 0.44◦

ICHEC-EC-EARTH r1i1p1 KNMI-RACMO22E  x  x  o 
r3i1p1 DMI-HIRHAM5 x  x  x  
r12i1p1 CLMcom-CCLM4-8-17 x  x  o  
r12i1p1 CLMcom-CCLM5-0-6  x  o  o 
r12i1p1 SMHI-RCA4 x  x  x  

MOHC-HadGEM2-ES r1i1p1 CLMcom-CCLM4-8-17 x  x  o  
r1i1p1 CLMcom-CCLM5-0-6  x  o  o 
r1i1p1 ICTP-RegCM4-3  x  o  o 
r1i1p1 KNMI-RACMO22E  x  x  x 
r1i1p1 SMHI-RCA4 x  x   o 

MPI-M− MPI− ESM− LR r1i1p1 CLMcom-CCLM4-8-17 x  x  o  
r1i1p1 CLMcom-CCLM5-0-6  x  o  o 
r1i1p1 SMHI-RCA4 x  x   x 
r2i1p1 MPI-CSC-REMO2009 x  x  x  

MIROC-MIROC5 r1i1p1 CLMcom-CCLM5-0-6  x  o  o 
r1i1p1 SMHI-RCA4  x  x  x 

CCCma-CanESM2 r1i1p1 SMHI-RCA4  x  x  o 
CSIRO-QCCCE-CSIRO-Mk3-6-0 r1i1p1 SMHI-RCA4  x  x  o 
IPSL-IPSL-CM5A-MR r1i1p1 SMHI-RCA4 x  x  o  
NCC-NorESM1-M r1i1p1 SMHI-RCA4  x  x  x 
NOAA-GFDL-GFDL-ESM2M r1i1p1 SMHI-RCA4  x  x  o 

Source: Table modified from CH2018 (2018). 
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